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Search and the City∗

C.N. Teulings and P.A. Gautier†
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Abstract

Can increasing returns to scale in search explain regional differentiation between cities
and rural areas? To answer this question, we develop a model of an economy that consists of
several regions. Within each region, jobs and workers are heterogeneous by respectively skill
and job complexity type. Because of the search frictions, firms and workers in each region
must trade-off a better expected match quality against a longer period of non-production.
Labor mobility between regions induces the equalization of reservation wages for each skill
type and interregional trade of end products yields regional specialization in production.
The model predicts that high density areas make use of their scale advantage by producing
end products with a high dispersion of skill requirements. Empirical evidence for the United
States corroborates the implications of the model.
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Maastricht, IRES, the KNAW-Tinbergen Institute conference on search and assignment models in Amsterdam,
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1 Introduction

The question why people live in cities, where housing prices are typically higher than in rural

areas, has received a lot of attention in the literature. All explanations require some form of

increasing returns to scale (IRS). Well known examples are: Marshall (1890), Arrow (1962),

Romer (1988), Lucas (1988, 1999), Glaeser et al. (1992). Those models imply that people

have incentives to cluster together because the diffusion of knowledge is higher in densely pop-

ulated areas. IRS can also be caused by urbanization spillovers as in Jacobs (1969) who argues

that the most important knowledge transfers are between industry rather than within industry

spillovers.1 Finally, Krugman (1991), Ciccone and Hall (1996) and Fujita et al. (1999) empha-

size transportation costs in combination with ”love for variety demand” to explain why people

prefer to locate close to each other.

We develop a model of clustering based on IRS in job search. Under IRS in search, the

available set of jobs is larger in cities than in the country side. The high number of potential

trading partners increases the amount of contacts per unit of time. A higher contact rate (all else

equal) shortens unemployment durations and improves the expected match quality. This works

as a centripetal force.2 However, the stock of real estate in a city is scarce and this puts a limit

on the number of people that can move into the city. The real estate owners capture the rents

of the advantages that cities offer. Hence, the cost of living is higher in densely populated (large

scale) areas and it therefore works as a centrifugal force. Our model generates sharp predictions

about the composition of workers and jobs in cities relative to the country side. Because cities

have a comparative advantage in search intensive activities, we expect industries that require

a large mix of job and worker inputs to move to cities. This is consistent with the empirical

observation that cities are places where there are concentrations of both very high and very low

skilled workers. In some respects, our model is similar to the knowledge spillover model. In both

approaches, productivity is increasing in the number of interactions between agents. The aim of

this paper is to explicitly model these interactions and to provide empirical evidence supporting

the relevance of the mechanisms described. As a rough estimate, we find that search frictions

can explain about one third of the wage differentials between high and low density areas.

The model that we propose is an extension of the Shimer and Smith (2000) and Teulings
1The empirical evidence for knowledge spillovers in cities is limited. Henderson et al.(1995) finds some evidence.

Glaeser et al. (1992) find more evidence for between industry spillovers than for within industry spillovers. Finally,
Acemoglu and Angrist (2000) use variation in child labor laws and compulsory attendance laws to investigate
whether there exists a causal relation between average schooling and state wage levels. They find the external
returns to schooling to be statistical insignificant.

2 In our model we focus on the labor market but search frictions on the marriage or the goods market are also
lower in cities, so similar arguments can be made for those markets.
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and Gautier (2000) matching models with a continuum of worker and job types. These models

extend the hedonic pricing and assignment models of Rosen (1974), Sattinger (1975, 1995), and

Teulings (1995,2001) with search frictions characterized by IRS. Job seekers and firms trade the

cost of prolonged search against the quality of the match. In a frictionless Walrasian market,

they end up in the optimal match but in a market with frictions, they are prepared to also

accept suboptimal matches in order to save on search cost. The higher the cost of search,

the more willing job seekers are to accept suboptimal matches. We study the implications of

regional differentiation in labor market density where regions are connected through both labor

mobility and commodity trade. Interregional labor mobility equalizes real reservation wages

across regions. Trade forces dense areas to specialize in the production of goods which require

a large variety of task inputs (workers and job types), and which are therefore search intensive.

Our analysis extends previous work, on the effects of shifts in the skill distribution on equi-

librium wage rates in assignment models, see Teulings (2001), and on the cost of search in

assignment models when we take value added in the optimal assignment as given, see Teulings

and Gautier (2000). The cost of search are defined as the difference between log value added in

the optimal assignment (which equals the reservation wage in a frictionless world) and the log

reservation wage. Here we combine both papers to show how search frictions not only yield a

wedge between this optimal value added and the reservation wage, but also affect the optimal

value added itself, by their general equilibrium effect on task prices. There are essentially two

effects, skill compression and skill spoiling. The skill compression effect is directly related to our

IRS assumption. Since the skill distribution is less dense in the tails than around the median,

the cost of search are larger in the tails. Hence, search frictions compress the effective skill dis-

tribution relative to the actual skill distribution. The skill spoiling effect is due to the fact that

a particular type of task is done by a range of skill types in a search equilibrium, while it is done

by a unique skill type in a Walrasian assignment. For tasks done by sub-modal skill types this

implies that more high than low skill types come in (since the skill density is rising within this

interval), while the opposite holds for tasks done by supra-modal skill types. Since we assume

that high skill types are more productive at all jobs, this yields an increase in the output of

tasks done by sub-modal skill types relative to those done by supra-modal skill types. Hence,

search frictions yield a drop in the mean of the effective skill distribution. When we allow for

interregional labor mobility, these general equilibrium effects of search frictions induce shifts in

the regional skill distribution. This yields the prediction that the difference between the means

of the skill and task distribution is larger in non-dense areas to offset the skill spoiling effect. Our

empirical evidence provides support for this surprising implication. As in Teulings and Gautier
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(2000), a full analytical characterization of the equilibrium is not available, so that we have to

rely on Taylor expansions of the equilibrium conditions. We provide numerical simulations to

show that our expansions offer a reasonable description of the equilibrium.

An obvious objection against our model is that most empirical studies based on aggregate

data do not reject CRS in matching, see the overview of Petrongola and Pissarides (2000). In

general, returns to scale are difficult to measure because in equilibrium these returns tend to be

exploited till the point where they no longer exist. The same applies here. Aggregate matching

functions give only limited information on the returns to scale in the contact process for at

least two reasons. In Teulings and Gautier (2000) we argue that part of the returns to scale

in the contact process are absorbed by a greater selectivity on the side of both job seekers and

firms. Here, we show that in equilibrium, dense areas are more heterogeneous because they

produce ”search intensive” goods. This reduces the probability that a given contact results in a

profitable match. We are able to test for the presence of this mechanism by explicitly modeling

the endogenous location of job and worker types. On the job search puts further limits on the

relevance of this type of evidence for establishing the nature of the matching function. When

a large part of search is done while working, unemployment is a bad proxy for the stock of job

seekers, compare Shimer’s (1999) analysis of the courses of low unemployment in regions with

a high inflow of youngsters. Nevertheless, most of the empirical research on returns to scale in

matching has focussed solely on the relation between aggregate matches and aggregate stocks

of unemployment and vacancies.

In a world with worker and job heterogeneity, there are predictions for two alternative sets of

variables. First, since search frictions force workers and firms to accept suboptimal matches, the

output loss relative to the optimal match must be shared by both players in some way. As long

as workers take some part of this loss, for example by Nash bargaining over wages, we must be

able to track the size of this loss in wage data by using measures for match quality. This route

is travelled in a companion paper, Gautier and Teulings (2002), where we find strong support

for the presence of search frictions. Second, when search frictions differ between regions, they

induce interregional labor mobility and specialization in production, yielding predictions for the

distributions of skill supply and task demand in regions of various scale. This paper applies the

latter type of evidence.

At a more general level, the message of the paper is that for many purposes it is important

to explicitly model the heterogeneity of the population. We show that the second moments of

the skill and job complexity level distributions have important effects on the structure of the

economy. Moreover, by taking heterogeneity into account we show that it is actually possible
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to bring the matching models of the Diamond (1982), Mortensen (1982) and Pissarides (1990)

type to the data and investigate their structural implications.

Related arguments have been put forward by others. Kim Sunwoong (1989) has argued

that as the size of the market increases, firms offer a larger variety of job requirements, workers

specialize more and the average match quality improves. Glaeser (1999) argued that for labor

market pooling to work, workers must be able to change employers without changing residencies.

This is typically an advantage that cities have above the country side. Dumais et al. (1997) find

that industry location is far more driven by labor mix than by any other explanatory variable

and that firms locate near one another so that workers can move from one firm to another in

the event of a firm specific downturn. Glaeser and Maré (2001) show that migrants entering

a city receive an immediate wage gain suggesting that the observed city wage premium is not

due to unobserved ability differences but reflects a real benefit. Rotemberg and Saloner (1991)

argue for a different type of spillover derived from the relation between market power and labor

market density: multiple firms protect workers against ex post appropriation of investments in

human capital.

The plan of the paper is the following. Section 2 gives the basic structure of the model.

Section 3 solves the assignment problem for a Walrasian world. In Section 4 we discuss the

direct effect of search frictions, while Section 5 discusses their general equilibrium effect. Section

6 presents the effects of interregional trade and labor mobility. Finally, in Section 7 we show

that the testable implications of the model are supported by empirical cross regional evidence

for the US.

2 The model

2.1 Basic assumptions

The economy considered in this paper is made up of a large number of regions, of which two are

shown in Figure 1. Each region produces a single composite tradable commodity. The regions

are related to each other by interregional trade in those commodities and by labor mobility.

Transportation of commodities and labor mobility are costless, so that real wages for worker

types and commodity prices are equalized between regions. Each region is small relative to the

economy as a whole, so that it takes economy wide wages and commodity prices as given.

Workers supply a fixed amount of labor and receive no unemployment benefits or utility of

leisure. They are risk neutral. The number of workers in a region is determined by the available

stock of real estate. This is the quasi-fixed factor in a region. Hence, real estate owners capture

any region specific rents via the rental price of their property. We refer to a region with a lot of
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real estate as a large region. Both tradable commodities and the cost of real estate enter into the

workers utility function. This utility function is homothetic, so that all workers face the same

cost of living index, irrespective of their level of income. The rental price of real estate adjusts

until the cost of living index has fully absorbed potential nominal wage differences between

regions.

Workers differ by their level of skill, s. They can only produce output when employed by

a firm. Each firm performs one specific type of task. The tasks are indexed by their level of

complexity c. We consider an infinitum of worker and task types: both s and c can take any real

value. The output of a specific task cannot be consumed directly but is used for the production

of the region specific tradable commodity. There exists a unique set of task prices that clears

task markets within each region. Firms of each c-type can enter freely and there is perfect

competition on the task markets. Hence, a zero profit condition applies for each c-type in each

region.

The production technology of tasks is equal across regions and is such that, within each

region, each worker type s has a unique task type where it produces the highest value added.

We label the optimal task type c (s, ·), where ”·” denotes other arguments that will be discussed
below. Hence, each worker type s would be assigned to this ”optimal” task c (s, ·) in a hypothet-
ical Walrasian equilibrium. However, regional labor markets are not Walrasian. Due to search

frictions, workers do not wait forever till they find their favorite task, c(s, ·). Instead, they also
accept tasks that yield a lower value added than task c (s, ·). The contact technology within a
region between vacant tasks and unemployed workers exhibits increasing returns to scale (IRS).

In large regions, more contacts take place per unit of time, so job search is more efficient.

The skill distribution within a region is approximately normal:

s˜N (µs,σs)

where µs is the mean and σs is the log standard deviation of the skill distribution. Throughout

the paper, we adopt the conventions that non-underlined Greek letters are region specific pa-

rameters and that underlined Greek letters are economy wide parameters. It is convenient for

future use to define the parameter vector: πs ≡ [µs,σs]. At the fundamental level, there is no
rational for the normality of the skill distribution, since the distribution in each region is deter-

mined endogenously by labor mobility. The normality assumption can be thought of as a second

order Taylor expansion of a log density function from a more general family of distributions,

with πs being the parameters of this Taylor expansion.

The region specific tradable commodities are produced from tasks by a Leontieff technology;

production does not require other inputs. So, we think of all non-tradables, like for example
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retail trade, as just intermediate c-type tasks that are required for the production of the tradable

commodity. The regional distribution of type c tasks specifies how much of each task is required

for the production of one unit of the region specific tradable commodity. This distribution is

normal with mean µc and standard deviation σc. These parameters are therefore counterparts of

µs and σs, but now for the demand side of the regional labor markets. Analogous to πs ≡ [µs,σs],
we define: πc ≡ [µc,σc]. A tradable commodity is therefore fully characterized by the parameters
πc of the complexity distribution of the tasks that are required for its production. Like πs, πc is

determined endogenously. Each region specializes in that tradable which makes best use of its

comparative advantage.

The following example clarifies this. Consider Detroit, a region that produces cars. The

production of cars requires the input of many c-type tasks which are used in fixed proportions

(wheels are no substitute for the window or the motor). These tasks are on average probably

close to the nation wide mean level of complexity. However, producing cars requires both very

simple tasks (assemblage) and very complex tasks (design). Hence, σc is above the nation wide

average. As an opposite example, consider Arkansas, a region that specializes in agriculture.

Agricultural production requires only relatively simple and homogeneous tasks so that both µc

and σc are below their nation-wide average . In our data, Boston and Washington DC are

examples of regions having both a high µc and σc, while Houston and Seattle have a high µc

but a low σc. Los Angeles and Miami have a low µc and a high σc, while in the rural areas of

Arkansas both µc and σc have a low value.

Figures 2 and 3 plot the empirical relation between πs and πc and labor market density

for the US. 3. The larger the circle, the denser the area. Those Figures suggest that dense

areas produce on average more complex and more dispersed goods and have a more skilled and

heterogeneous labor force.

Due to IRS in search, the market equilibrium in an infinitely large region would be equal to

the hypothetical Walrasian equilibrium. We treat this hypothetical region as the benchmark. It

is useful to define: ∆π ≡ πs − πc. Then:

Assumption: for the economy wide benchmark: πs = πc ≡ π or: ∆π = 0, where we normalize:

µ = 0

The equality µs = µc = 0 is just a matter of a proper normalization and not restrictive. The

equality σs = σc is however an important assumption that greatly simplifies the analysis, as will

become clear below. The general equilibrium effects of search frictions will induce shifts in πs

3We postpone the discussion of the measurement of those variables to section 7.
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and πc, due to interregional labor mobility on the one hand and due to regional specialization

and interregional trade on the other hand. A nice feature of our model is that labor mobility

affects ∆π, while specialization affects only πc, and not ∆π. Any shift in πc due to specialization

translates one for one into a shift in πs, leaving ∆π unchanged. Hence, it is most useful to cast

the analysis in ∆π and πc instead of πs and πc, for this allows us to analyze the effects of labor

mobility and trade separately.

The discussion proceeds as follows. In Section 3, we discuss the equilibrium assignment in

a Walrasian equilibrium, following Teulings (2001). We focus on the general equilibrium effect

of shifts in the skill and complexity distributions on value added in the optimal assignment of

each skill type s. In Section 4, we discuss the implications of the introduction of search frictions,

while keeping value added in the optimal assignment constant, following Teulings and Gautier

(2000). Sections 5 analyzes the general equilibrium effects of search frictions. Search frictions

change the effective skill distribution, causing a shift in value added in the optimal assignment

of skill type s. This provides the missing link for a complete characterization of the equilibrium

assignment problem in a single region with search frictions. This model will then be the starting

point for the analysis of interregional labor mobility and trade in Section 6.

3 Assignment of workers to jobs under Walras

3.1 Technology

Let p (πc) be the nation wide equilibrium price of a tradable commodity of type πc; p (πc)

is a hedonic price index in the sense of Rosen (1974). Since regions are small compared to

the economy as a whole, they take p (πc) as given. There is positive demand for all tradable

commodities. We normalize p (·) and its derivatives in the benchmark region to zero without
loss of generality:

Normalization: p (π) = p
π
(π) = 0

The normalization p (π) = 0 is equivalent to using the benchmark commodity as the nu-

meraire, the normalization p
π
(π) = 0 is equivalent to a definition of the relative units of mea-

surement of commodities of various types. In Section 5.4, it will be shown that this normalization

is the only choice that is consistent with πc = π being the optimal choice in the benchmark re-

gion. For the higher order derivatives we apply a second order polynomial:

Assumption: p (πc) = −12 (πc − π)0Ψ (πc − π)
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whereΨ is a 2×2 symmetric and (semi-) positive definite matrix. Obviously, this specification
is consistent with the previous normalization. p (πc) can be interpreted as a utility function

(transformed to exhibit a constant marginal utility of money), measuring the value of a unit of

consumption with characteristics πc. Then, its matrix of second derivatives, Ψ, measures the

elasticities of substitution between these characteristics.

Let y0 (s, c,∆π,πc) be log value added of an s-type worker employed at a c-type job. By

definition it satisfies:

y0 (s, c,∆π,πc) ≡ p (c,∆π,πc) + f (s, c) (1)

where p (c,∆π,πc) denotes log task prices as function of the skill and complexity distribution

and where f (s, c) is log productivity of a type s worker in a type c task.

Assumption: the log productivity of worker type s in a c-type job satisfies:4

f(s, c) ≡ ξ
¡
1− ec−s¢

where ξ is a nation wide technology parameter. We return to its interpretation below. This

specification of production technology of tasks implies that the level of productivity is log

supermodular: f
sc
> 0. This log supermodularity captures the idea that highly skilled

workers have a comparative advantage at complex job types. The larger c, the larger the

relative productivity gain of an additional unit of s. Furthermore, this specification implies

absolute advantage for better skilled workers: f
s
> 0 for any combination s and c.

The production of the tradable commodity of a region from tasks is fully characterized by

the parameters πc of the task complexity distribution, reflecting the Leontieff coefficients of this

production process.

3.1.1 The Walrasian equilibrium

In equilibrium, the commodity price equals the sum of task prices weighted by their Leontieff

input shares:

p (πc) = ln

·Z ∞

−∞
1

σc
φ

µ
c− µc
σc

¶
exp [p (c, ·)] dc

¸
(2)

where φ (·) is the standard normal density function. Because of the zero profit condition and
since there are no other factors of production than labor, wages are equal to value added. Each

worker type is therefore assigned to the task-type where it produces the highest value added.
4Teulings and Gautier (2001) apply the technology f (s̄, c̄) = s̄c̄. Since we have not yet defined the units of

measurement of s and c, we can apply any rising transformation. When we take: s = − exp(−s) and c = ξ exp(c),
both technologies are equivalent (up to a general efficiency differential ξ).
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Let c (s,∆π,πc) be the value of c that maximizes y0 (s, c, ·) for that s. Hence, assuming p (c, ·)
to be differentiable, c (s, ·) satisfies:

y0c [s, c (s, ·) , ·] = pc [c (s, ·) , ·] + fc [s, c (s, ·)] = 0 (3)

The function c (s, ·) describes the assignment of workers to jobs. Comparative advantage can
be shown to imply cs (s, ·) > 0: better skilled workers are assigned to more complex tasks. Let
y (s,∆π,πc) denote log value added in equilibrium. By definition:

y (s,∆π,πc) ≡ y0 [s, c (s, ·) , ·]

The situation is depicted in y, c-space for a particular s-type in panel A of Figure 5. The curve

y0 (s, c, ·) denotes log value added of this particular s-type for various c-types. By definition, its
maximum is y (s, ·), which is attained at c = c (s, ·). The difference y (s, ·)− y0 (s, c, ·) measures
the relative loss of value added due to suboptimal assignment. In the Walrasian equilibrium,

suboptimal assignments are irrelevant, since they do not occur in equilibrium. However, they are

relevant in the presence of search frictions, since then job seekers and firms trade off the output

loss due to suboptimal assignment against the cost of further job search. By the envelope

theorem, the first order effect of deviations c 6= c (s, ·) vanish. Hence, the second derivative
y0cc (s, c, ·) is an appropriate statistic for the sensitivity of output to suboptimal assignment. It
will therefore be discussed more extensively later on.

The optimal assignment must clear the market for tasks, in logs:

− lnσs − 1
2

µ
s− µs
σs

¶2
+ f [s, c (s, ·)] = − lnσc − 1

2

µ
c (s, ·)− µc

σc

¶2
+ y# + ln cs (s, ·) (4)

where y# is log output of the composite tradable commodity. The left hand side is the log supply

of labor of type s (the normal density function) plus its log productivity in task type c (s, ·).
The first two terms on the right hand side are the log demand for task type c (s, ·) (the log of
the Leontieff coefficient plus log output) and the last term is the log Jacobian dc

ds = cs (s, ·).
In general, the differential equations (3) and (4), which determine p (c, ·) and c (s, ·), do not

have an analytical solution. However, the solution is simple in the special case where ∆σ = 0:

c (s, ·) = s−∆µ
p (c, ·) = p (πc) +Π+ ξe−∆µc (5)

y (s, ·) = p (πc) +Π+ ξe−∆µs+ ξ
¡
1− e−∆µ −∆µ¢

Π ≡ ξ
¡
1− e−∆µ¢ (∆µ+ µc) + 1

2
ξ2
¡
1− e−2∆µ¢σ2
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The expression for Π follows from substitution of the p (c, ·) expression in (2). Relative wages
depend on the difference between the means of the skill and complexity distribution, ∆µ. The

higher the mean of the skill distribution, the higher the supply of highly skilled workers and

the lower therefore their wage surplus compared to less skilled workers, see Figure 2, Panel A.

The return to skill ys (s, ·) is inversely related to µs. An increase in µs causes the wage for
the median s-type to go up, since the skill levels above the median earn more than half of the

value of output. Hence, their wage reductions carry more weight than the wage increase in the

lower half of the distribution. The wage of the median worker therefore has to go up since the

substitution effects sum to zero. The break even point is at s = µs + 1
2σ
s2 .

This mechanism provides an interpretation for the parameter ξ. Consider an increase of the

skill level s of all workers by h. At constant relative wages, this raises their wages by ξh×100%,
see equation (5). However, since s goes up by h for all workers, µs will also increase by h. This

shift in µs changes relative wages. It reduces the return to skill ys (s, ·) by h × 100%. Hence,
1/ξ is the compression elasticity : the percentage decrease of the return to skill per percent

increase of the skill level of workers evaluated at the going rate of return to skill. Obviously, this

change in relative prices is due to imperfect substitution between skill types in the production

of the composite commodity. Alternatively, 1/ξ can therefore be interpreted as a measure of the

substitutability between skill types, as in Teulings (2001).

For the general case of ∆σ 6= 0, no analytical solution is available, but we can provide a

second order Taylor expansion of the solution around the median value of s = µs in the nation-

wide benchmark region, y (0, 0,π). An approximate solution for the general case is presented in

Appendix A.1. In Table 1 we present this solution in the form of a set of derivatives (where ψ
xx

denotes the relevant element of the matrix Ψ). All derivatives are checked easily from equation

(5), except those with respect to ∆σ for which we refer to Appendix A.1. Note that yπc = 0:

relative wages depend only on ∆π, and not on πc. This offers a first intuition for why trade only

affects πc, and not ∆π. The general equilibrium effects of search frictions, which shift task prices

p (c, ·), are fully offset by changes in ∆π. Hence, a change in πc due to regional specialization

leaves task prices unaffected if and only if it leaves ∆π unaffected.

Figure 5, panel B provides an intuition for the derivatives for the case∆σ > 0. An increase in

σs raises relative supply of high and low-skilled workers, at the expense of the supply of workers

with an intermediate skill level. Consequently, wages go down in both extremes of the wage

distribution and rise for intermediate skill levels: yss∆σ (s, ·) < 0. Furthermore: ys∆σ (s, ·) < 0.
Since the upper tail has a greater weight in value added than the lower tail, an equal relative

increase in both tails at the expense of the median skill types is per saldo equivalent to an
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increase in the mean skill level, leading to a decrease in the return to scale. The opposite applies

for ∆σ < 0.

Equivalent to the definition of log value added y0 (s, c, ·) of worker type s in job type c in
equation (1), we can define the log cost per unit of output of employing an s-type worker in a

c-type job:

p0 (s, c, ·) ≡ y (s, ·)− f (s, c) (6)

Just like y0cc (s, c, ·) is an appropriate measure for the cost of suboptimal assignment, c 6= c (s, ·),
from the point of view of the worker, so is p0ss (s, c, ·) an appropriate statistic for the cost
of suboptimal assignment, s 6= s (c, ·), s (c, ·) being the optimal assignment that maximizes
p0ss (s, c, ·). Since the optimal assignments s (c, ·) and c (s, ·) are unique and upward sloping in
the Walrasian equilibrium, the one is the inverse of the other: s [c (s, ·) , ·] = s.5 For future

reference, we refer to this concept as the mismatch coefficient, denoted by g (s,∆π,πc).6 The

mismatch coefficient will be used as a summary statistic for the cost of suboptimal assignment

in our analysis of search frictions. In the Appendix A.3, we proof the following relations:

p0ss [s, c (s, ·) , ·] ≡ g (s, ·) = yss (s, ·) + ys (s, ·) (7)

y0cc [s, c (s, ·) , ·] = −ys (s, ·)2 g (s, ·)−1 (8)

y0cc [s, c (s) , ·] is the mirror image of p0ss [s, c (s, ·) , ·], in that it measures the relative loss in wages
for a worker of being employed at a suboptimal firm type, c 6= c (s).We conclude this section

with some observations regarding the benchmark equilibrium (∆π = 0,πc = π), since it is the

starting point of our Taylor expansions and since the benchmark determines real reservation

wages in all regions, r (s). By equation (5) and (7) we have:

r (s) = y (s, 0,π) = ξs

f [s, c(s, 0,π] = 0

p0ss [s, c (s, 0,π) , 0,π] ≡ g (s, 0,π) = ξ

y0cc [s, c (s, 0,π) , 0,π] = ξ

For ∆σ = 0 (as in the benchmark equilibrium), y (s, ·) is linear, so that the mismatch coefficient
is independent of s. This feature simplifies our analysis considerably. The mismatch coefficient is

directly related to the compression elasticity, 1/ξ. In general, the more difficult it is to substitute

between types of workers, the greater the cost of suboptimal assignment, and the more harmful
5This feature applies only in the Walrasian equilibrium, see Teulings and Gautier (2001).
6This concept is closely related to the complexity dispersion parameter γ, see Teulings (2001).
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are search frictions. Finally, the normality of the skill distribution and the linearity r (s) imply

that the wage distribution is log normal, which is a reasonable description of empirical wage

distributions. Its variance is:

Var [w] = σ2ξ2 ≡ Σ2 (9)

Since contrary to σ2, Σ2 can be observed directly form the data, we shall cast most of our

analysis in terms of the latter.

4 Search Frictions

4.1 Search technology

When there are search frictions, s-type workers meet only a limited amount of c-type firms per

unit of time. After a contact takes place, both have to decide whether to match or continue

searching. When they decide to match, the surplus is shared by Nash bargaining as in Pissarides

(1990), with β being workers’ bargaining power, 0 < β < 1. Matches are destroyed at a Poisson

rate δ and the future is discounted at rate ρ. We study the economy while it is on a golden

growth path, where the discount rate is equal to the growth rate of the labor force.7 There is

free entry of firms, so that the asset value of a vacancy is zero in equilibrium. Central to our

analysis is the notion that there is IRS in the contact technology:

M = UV

where M is the number of contacts, U is the number of job seekers, and V is the number of

vacancies. In rates, the matching function reads:

m = uvΛ (10)

where Λ is the size of the labor force, m is the number of contacts per period of time per unit

of the work force so that M = mΛ, u is the unemployment rate (U = uΛ) and v is the number

of vacancies per unit of the workforce (V = vΛ).

The contact rates λi→j for worker (job) type i to run into job (worker) type j that go with

equation (10) are:

λs→c ≡ v (c)Λ (11)

λc→s ≡ u(s)Λ

7This assumption is not critical for our results, but simplifies the analysis, since it implies that the net
discounted cost of unemployment as a fraction of the reservation wage is equal to the unemployment rate.
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where v (c) and u (s) are the densities of vacancies of type c and of unemployed of type s

respectively, both per unit of total labor supply. Hence:
R
v (c) dc = v and

R
u (s) ds = u. The

contact rates are increasing in Λ. Search frictions are therefore smaller in dense cities than in

rural areas. When the size of the regional labor force becomes infinitely large, Λ = ∞, the
market outcome converges to the hypothetical Walrasian equilibrium.

4.2 Search equilibrium

Since there are no unemployment benefits or utility of leisure, the instantaneous pay off of

unemployment is zero. The current pay off of a firm with a vacancy is equal to the cost of

maintaining a vacancy. When a contact between a worker and a firm occurs, both sides have

to decide whether or not they want to match. A match takes place when the reservation wage

of the worker is less than the value of output. Let R(s, ·) be the reservation wage of worker
type s (upper cases are the exponents of the corresponding lower cases) and κ the flow cost

of maintaining a vacancy of type c in terms of foregone output of this task type. Then, the

Bellman equations for the reservation wage of the worker and for the value of a vacancy read:

R(s, ·) = βλ

Z
mc(s,·)

v(c)
£
Y 0(s, c, ·)−R(s, ·)¤ dc (12)

P (c, ·)κ = (1− β)λ

Z
ms(c,·)

u(s)
£
Y 0(s, c, ·)−R(s, ·)¤ ds (13)

where λ ≡ Λ
δ+ρ ; δ+ ρ is the unemployment inflow rate into job seeking, δ for destroyed matches

and ρ for the growth of the workforce, so λv (c) measures the contact rate of to a job of type c

divided by the inflow rate into job seeking. The left hand side of (13) is the monetary flow cost

of maintaining a vacancy of type c, that is κ units of task type c times the task price P (c, ·).
The sets ms (c, ·) (or: mc (s, ·)) are the subsets of c (or: s) with whom s (or: c) is willing to

match. These subsets are determined by the condition that the match surplus is positive:

Y 0(s, c, ·)−R (s, ·) > 0⇔ y0 (s, c, ·) > r (s, ·)⇔ s ∈ ms (c, ·)⇔ c ∈ ms (s, ·)

The steady state flow equilibrium condition reads:

1

σs
φ

µ
s− µs
σs

¶
− u (s) = λu (s)

Z
mc(s,·)

v (c) dc (14)

The left hand side is equal to total employment for type s, being equal to total labor supply minus

unemployment. The right hand side measures the new hires of type s, divided by unemployment

inflow. Both must be equal in equilibrium. Finally, output of task type c is defined by:

λv (c)

Z
ms(c,·)

u (s)F (s, c) ds− κv (c) =
1

σc
φ

µ
c− µc
σc

¶
exp

³
y#
´

(15)
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which is the equivalent of equation (4) for search equilibria. The left hand side is the output

of the inflow of filled vacancies. The right hand side is task demand for type c, the Leontieff

coefficient times output of the composite commodity.

4.3 The cost of search

The notation introduced previously for the Walrasian case can be extended to the analysis of

search frictions. We express the (relative) cost of search x (s, ·) as the difference between the
maximum of log value added in the optimal task y (s, ·) and the log reservation wage r (s, ·):

x (s, ·) ≡ y (s, ·)− r (s, ·) (16)

We will be specific on the other arguments of x (s, ·) below. x (s, ·) is the relative difference
between the maximum value added and the reservation wage of a type s worker. The situation

is depicted in the lower panel of Figure 5. Panel A represents the Walrasian case, where the

log reservation wage r (s, ·) is equal to y (s, ·); hence, x (s, ·) = 0. All workers of type s will

be assigned to task type c (s, ·). Panel B represents the case with search frictions. The log

reservation wage r (s, ·) is less than the maximum log value added y (s, ·), the difference being
x (s, ·). An s-type job seeker accepts all c-type tasks for which y0 (s, c, ·) > r (s, ·). In the
Walrasian equilibrium, the worker is assigned to the unique job type c (s, ·) that maximizes
y0 (s, c, ·) but under search frictions, she accepts all c-types satisfying the constraint y0 (s, c, ·) >
r (s, ·). Since wages are set by Nash bargaining, a fraction β of the difference y0 (s, c, ·)− r (s, ·)
translates into wages. Hence, wages are a decreasing function of [c− c (s)]2, that is, the deviation
of the actual value of c in a particular match for worker type s from its optimal value c (s).

Gautier and Teulings (2002) find strong empirical support for this implication. Figure 7 depicts

both situations in s, c-space: the Walrasian equilibrium is represented by the diagonal, the search

equilibrium by a band around it.

An approximation of x (s, ·) can be derived from the system (12)-(14), see Teulings and

Gautier (2001) and Appendix A.2 for the derivation:

x(s, ·) =
"
θ
σs

λ
φ

µ
s− µs
σs

¶−1
F [s, c (s, ·)]−1

p
g (s, ·)

#2/5
+O

¡
x2
¢

(17)

where θ ≡ 9
8
√
2

κ

β(1−β) ; θ is of little interest for the purpose of this paper, so we do not discuss it

here. The other three effects in the equation play an important role. First, λ
σsφ

³
s−µs
σs

´
measures

the effect of labor supply of type s. This effect is equal to the size of the total labor supply, λ,

times the density function for type s. This effect is due to IRS in search: the larger the supply
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at a particular interval of the skill distribution, the lower the cost of search at that interval.

Second, labor productivity F [s, c (s)] comes in through the cost of vacancies: the lower the

productivity, the heavier the burden of the cost of a vacancy κ relative to the potential output

of that job. The final factor in equation (17) is the mismatch coefficient g (s, ·), measuring the
curvature of y0 (s, c, ·), see Figure 5, panel B. The larger this coefficient, the larger the cost of
out of equilibrium assignment, and the larger therefore x (s, ·).

Since the first effect, λ
σsφ

³
s−µs
σs

´
, is central to our analysis, we discuss it in somewhat greater

detail. The size of the labor force comes in with an elasticity of 2/5. This elasticity follows from

the order of the first non-vanishing terms in the Taylor expansions for the equations (12)-(14),

see Teulings and Gautier (2001): x (s, ·) enters both Bellman equations (12) and (13) with
order 3/2 (adding up to 6/2), and it enters the flow equilibrium condition (14) with order 1/2,

yielding in total an order of 6/2 - 1/2 = 5/2. Whether this increase comes in by a general

increase in contacts, λ, or by the density of the skill distribution for that s-type, 1
σsφ

³
s−µs
σs

´
, is

irrelevant for the effect on x (s, ·). This trade off between scale and density will be crucial in our
analysis of interregional trade as non-dense regions specialize in the production of homogeneous

commodities which reduces σs-and (partially) offsets the initial negative effect on x (s, ·) of
having a low λ.

Further insights into the nature of scale effects are obtained by rewriting equation (17).

Define:

χ (λ) ≡ λ
2/5
0 λ−2/5 (18)

where λ0 ≡ θσφ (0)−1
p
ξ. Then, equation (17) can be written as:

x (s,χ,πs,∆π,πc) = χ

"
σs

σ

φ (0)

φ ([s− µs] /σs)F [s, c (s,∆π,π
c)]−1

s
g(s,∆π,πc)

ξ

#2/5
+O

¡
χ2
¢
(19)

where we drop the argument of χ (λ). The reason for having separate arguments for ∆π and πs

will become clear in Section 5. Note that

x (0,χ,π, 0,π) = χ+O
¡
χ2
¢

χ is therefore the baseline cost of search. In the hypothetical Walrasian region, λ→∞ and the

baseline cost of search are zero: χ (∞) = 0. So, instead of characterizing a region by its size of
the labor force, we can also characterize it by its baseline search frictions, using the definition

of χ (λ) to switch from the one to the other. This is what we do in what follows: we drop λ,

and focus on χ, since this leads to simpler expressions.
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The density 1
σsφ

³
s−µs
σs

´
reaches a maximum at the median skill type s = µs, and hence x (s, ·)

reaches a minimum at that point. The cost of search is higher in the tails of the distribution.

This would also be true under a CRS contact technology because extreme s-types meet a limited

amount of extreme c−types. The factor between square brackets in equation (19) reflects the
excess cost of search for s 6= µs as well as the effect of deviations of F [s, c (s, ·)] and g (s, ·) from
their benchmark value. The multiplicative structure of equation (19) implies that all derivatives

of x (s, ·) to other arguments than χ are of order O (χ). This has two important implications.

First, the effect of χ on πs,∆π, and πc will be shown to be of O (χ). Then, the indirect effect of

χ via πs,∆π, and πc on x (s, ·) is of order O ¡χ2¢. Hence, we only have to account for the direct
effect of χ in a first order approximation. Second, the larger χ, the more x (s, ·) differs between
the median and the tails of the distribution. The situation is depicted in Figure 8, where the

locus of x (s, ·) is drawn for two different values of χ. We can think of New York as having χ1
and Kansas as having χ2 > χ1. For the median worker type s = 0, the log cost of search are

somewhat higher in Kansas. If we move towards the tails where the market becomes thinner

and thinner, differences in search frictions between New York and Kansas get larger and larger.

This drives small regions with a high value of χ to specialize in tradable commodities that use

predominantly skill types around the median, resulting in a low σc. Since we will apply Taylor

expansions to x (s, ·) , we summarize its derivatives in Table 2 for future reference.
The final column in Table 2 presents the ”adjusted” second derivative of x (s, ·) , x bss, which

is proportional to φ (s/σ)−2/5. Our approach in this paper will be to approximate this function

by a parabola, starting from its minimum at s = 0. Since all even derivatives of this function

are positive, this second order expansion underestimates the value of x (s, ·) in the tails. The
”adjusted” second derivative accounts for this fact, by setting the parameters of the parabola

such that the expected squared deviations between the true value of x (s, ·) and its expansion
is minimized, see the Appendix for details. This adjustment matters, as the ”adjusted” second

derivative is more than twice as large as its unadjusted counterpart: x bss = 2.15xss. Figure 9

provides a graphical comparison of the true value (the continuous curve), the Taylor expansion

(the small dotted curve) and the ”adjusted” expansion (the large dotted curve) for σs = 1. In all

future calculations, we use x bss instead of xss. This does not change our conclusions qualitatively
but since all results depend crucially on the differences in the magnitude of search frictions

between the median and the tails, it does have a substantial quantitative effect.

The cost of search can be decomposed into three factors: the net discounted cost of unem-

ployment and of vacancies, and the efficiency loss due to suboptimal assignment. In general,

workers are not assigned to the job type c (s) that maximizes their log value added y0 (s, c, ·) in
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the presence of search frictions, since it is costly to wait for a job of this type to come along.

The average productivity loss due to suboptimal assignment accounts for one third of the cost

of search x (s, ·), while unemployment and the cost of vacancies account for the other two thirds,
see Teulings and Gautier (2001). The distribution of the latter two thirds is proportional to the

bargaining power of workers and firms.

unemployment rate ∼= 2

3
βx (s, ·) (20)

vacancy rate ∼= 2

3

¡
1− β

¢
x (s, ·)

sub-optimal assignment ∼= 1

3
x (s, ·)

5 The general equilibrium effects of search

Equation (16) defines log reservation wages in search equilibrium as log value added y (s, ·)
minus the cost of search x (s, ·). We have derived a relation for x (s, ·) in the previous section.
This section deals with y (s, ·). Section 2.2 provides a relation for y (s, ·) in the Walrasian case.
However, this relation is influenced by general equilibrium effects of search frictions on task

prices, p (c, ·), which in turn affect y (s, ·). For this purpose, we employ the following definition:

Definition: the effective skill distribution with parameters πs+~πs (χ) is that skill distribution

that in the absence of search frictions, χ = 0, yields the same set of tasks prices p (c, ·) as
the actual distribution with parameters πs yields in the presence of search frictions χ

The general equilibrium effects of search frictions impose a wedge between the actual and

effective skill distribution, captured by a shift in its parameters, ~πs (χ). This section aims at

deriving an expression for ~πs (χ) for the benchmark economy ∆π = 0,πc = π.

The simplest way to get a feeling for this wedge is the skill compression effect. The cost of

search x (s, ·) measures the fraction of labor supply that is lost due to search frictions, either
by unemployment, or the cost of maintaining vacancies, or by the productivity loss due to

suboptimal assignment. x (s, ·) is larger in the tails of the distribution than around the median,
xss (s, ·) > 0. The effective skill distribution is therefore more compressed than the actual

skill distribution since effective supply is reduced by search frictions more heavily in the tails

than around the median, ~σs(χ) < 0. The skill compression effect leads to regression to the

mean. In a perfect Walrasian world, the equilibrium assignment is characterized by a one-to-one

correspondence between skills and task complexities, s = s (c, ·). Search frictions introduce noise
in that relation, so that on average resources are directed more towards the production of the

median complexity type.

18



Besides skill compression, there is also skill spoiling. In a search equilibrium, a particular

c-type task is not only undertaken by the optimal s (c, ·)-type worker but by all the s-types in
the matching set ms (c). Absolute advantage, fs (c, s) > 0, implies that higher s-types are more

productive and therefore replace more than one worker of type s (c, ·). The reverse holds for
lower s-types. Consider a c-type for which s (c, ·) is below the mode of the skill distribution.
Since the density function is increasing below the mode, the likelihood of meeting an s > s(c)

type is larger than an s < s(c) type. The reverse holds for a c-type job for which s (c, ·) is
above the mode of the skill distribution. Since higher s-types have an absolute advantage on all

jobs, search frictions raise output for low c-types relative to high c-types. To offset this shift in

output, workers must be on average assigned to more complex tasks. This is equivalent to a fall

in the mean of the effective skill distribution: ~µs(χ) < 0.

A full analytical characterization of the effective skill distribution is not available. Our

strategy is to apply a second order Taylor expansion to the log density function of the effective

skill distribution to establish its parameters. The derivation is in Appendix A.4. We provide

an intuition for the main steps. Consider equation (15) that gives the market equilibrium for

task type c. The integral on the right hand side is approximated by a Taylor expansion, using a

symmetric integration interval around its midpoint s (c, ·). Taking logs and using the benchmark
assumption ∆π = 0,πc = π yields:8

−1
2

µ
s (c, ·)
σ

¶2
+ f [s (c, ·) , c]− ωx− xs ∼= −1

2

µ
c

σ

¶2
+ constant (21)

where ω ≡ 1− 1
3ξ. The final two terms on the left hand side capture the effect of search frictions.

They are of order O (x). Without these terms, the equation is identical to the market clearing

condition (4) since in the Walrasian case, s(c, ·) is the inverse of c(s, ·). The term −ωx captures
the skill compression effect : a fraction x (s, ·) of the actual skill distribution is ”lost” due to
search frictions.9 The term −xs reflects the skill spoiling effect.

Equation (21) holds identically for all s. Hence, its first two derivatives with respect to

s evaluated at s = 0 must apply. This yields two conditions.10 The skill compression effect

drops out in the first derivative (since xs = 0), but survives in the second (since x bss > 0): skill
compression works by the larger impact of frictions on skill levels in the tails than at the median.

8See equation (15) in the appendix. We use that s (c) is approximately the inverse of c (s), see Teulings and
Gautier (2001), Proposition 4.

9The term − 1
3
ξ captures a small offsetting effect. With search frictions, task type c is done by both better

and lower skilled workers than type s (c, ·). Due to the log linear structure, the extra productivity of the better
skilled worker carries a greater weight than the lower productivity of the less skilled worker, yielding a net output
gain. Hence, a wider matching set, as is observed in the tails, yields a higher output gain.
10Equation (21) itself at the point s = 0 is not informative since it includes a constant containing the level of

aggregate output y#. However, this constant drops out after differentiation.
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The skill spoiling effect survives in the first derivative of equation (21) (again, since x bss > 0),
but vanishes in the second (since xsss = 0): skill spoiling works by its proportional impact on

all skill levels. We obtain the following expressions for skill spoiling and skill compression:

~µs (χ) = −2
3

r
5

3
χ+O

¡
χ2
¢

(22)

~σs (χ) = −1
3

r
5

3
ξ−1Σωχ+O

¡
χ2
¢

5.1 Benchmark values for the exogenous variables

In order to get an idea of the numerical implications of the model we set the parameters at

realistic values from an empirical point of view. Evidence from Teulings and Vierra (1999)

suggests that ξ ' 0.25. For the US, the variance of log wages, Σ, is about 0.60, but for most

European countries it is substantially lower. We apply Σ = 0.50 as a compromise between both

sides of the Atlantic. We apply the standard value for the worker’s bargaining power β ∼= 0.50.
In Teulings and Gautier (2001), we show that this value leads to the smallest efficiency loss.

When we set the natural rate of unemployment at about 5 %, χ ∼= 0.15 according to equation
(20). Table 3 summarizes those benchmark values of the model’s parameters.

5.2 Combining parts: equilibrium in a single region

We are now in a position that we can characterize a search equilibrium in the benchmark economy

with ∆π = 0, and πc = π, completely. Reservation wages in this economy satisfy:

r (s,χ,π) = y (s,∆~π,π)− x (s,χ,π,∆~π,π) (23)

where r (s,χ,πc) is the log reservation wage of worker type s as a function of the baseline cost of

search χ and the characteristics πc of the tradable produced in that region and∆~π ≡ πs+.~πs−πc.
The argument ∆~π in the functions y (s, ·) and x (s, ·) takes the value it has for the effective skill
distribution, in order to account for the general equilibrium effects of search frictions on task

prices p (c, ·). Since we consider the benchmark case where πs = πc, we have ∆~π = ~πs Equation

(23) makes clear why we need to have three arguments, πs,∆~π, and πc in the function x (s, ·),
where normally two arguments would suffice since πs = πc +∆π. The first argument πs refers

to the parameters of the actual skill distribution, at it captures the effect of the actual density

function on the cost of search, while the second argument ∆~π refers to the parameters of the

effective skill distribution relative to πc, as it captures the effect of task prices on productivity

and on the mismatch coefficient, see equation (19).
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Table 4 summarizes the effects of search frictions on the maximum log value added y (s, ·) and
the cost of search x (s, ·), starting from the Walrasian benchmark, χ = 0,∆π = 0,πc = π. Note

that y∆π is a 2×1 vector, and y0∆π denotes its transpose. The effect on reservation wages r (s, ·)
can be obtained by simply subtracting the one from the other since r (s, ·) = y (s, ·) − x (s, ·).
Since a full analytical characterization is unavailable, the effects are presented by their impact

on the level and the first two derivatives of y (s, ·) and x (s, ·), all evaluated for the median skill
type, s = 0. The effects on higher order derivatives are ignored. Note that these higher order

derivatives are zero in the Walrasian benchmark (since y (s, ·) = ξs), so that the approximation

is reasonably precise for small search frictions, χ close to zero. Furthermore, we restrict the

attention to effects of order O (χ), which is again reasonable for small frictions.

The second column presents the level and derivatives of y (s, ·) in the Walrasian benchmark,
and the direct effect of the baseline cost of search. The third column lists the general formulas

for the calculation of the indirect effects via the shifts in ~πs on y (s, ·), while the fourth and
fifth column specify separately the indirect effects of the skill compression effect ~σs and the skill

spoiling effect ~µs, using Table 1 of derivatives of y (s, ·). The indirect effects of ~πs on x (s, ·) drop
out since x∆π = xs∆π = xss∆π = O (χ) and ~π

s = O (χ), so that those indirect effects are O
¡
χ2
¢
.

Both skill compression and skill spoiling lead to an increase in the return to skill ys. This rise

in the return to skill causes y for the median worker to go down. Substitution effects sum to

zero, so that the mean value added E[Y (s, ·)] must be constant. Since there is more value above
than below the median of s (due to the skewness of the log normal distribution), the wage of

the median worker has to go down to make this happen. The skill compression effect yields a

wage distribution which is skewed to the right. Relative wages in both tales of the distribution

are pushed up. Since yss goes up, y must go down to keep E[Y (s, ·)] constant. For reasonable
values of Σ2, the effect of skill compression and skill spoiling at y is about equal. However, skill

spoiling has a much smaller effect on ys than skill compression.

6 Interregional labor mobility and trade

6.1 Interregional labor mobility

Since the long run cost of labor mobility are assumed to be zero, workers will continue to migrate

to other regions till real reservation wages are equal across regions for each s-type. By the

homotheticity of the utility function, all worker types deflate their nominal reservation wage by

the same cost of living index. Hence, log nominal reservation wages net of cost of living are equal

across regions. Let l (χ,πc) denote this log cost of living index for a region with baseline search

cost χ that produces a tradable with characteristics πc. We consider a region that produces the
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benchmark commodity, πc = π. By the choice of numeraire: p (π) = 0. Migration continues till

the cost of living index and the skill distribution are such that real reservation wages for all χ

and s are equal to reservation wages in the Walrasian benchmark region:

r (s,χ,π)− l (χ,π) = y (s,∆~π,π)− x (s,χ,πs,∆~π,π)− l (χ,π) = r(s) (24)

where ∆~π (χ) ≡ πs (χ,π)−π+~πs (χ) measures labor mobility and ~πs (χ) measures the difference
between the actual and the effective skill distribution) and where πs (χ,πc) are the parameters

of the skill distribution as a function of χ and πc. Equation (24) is a straightforward extension

of equation (??). It is verified easily that equation (24) applies in the Walrasian benchmark.11

Again, the parameter ∆~π refers to the effective, and not the actual skill distribution. Apart from

the general equilibrium effects ~πs (χ), it contains also the effect of labor mobility, πs (χ,π)− π.

As in the previous section, we can ignore the effect of ∆~π (χ) on x, since it is of higher order.

The same holds for the effect of πs (χ,π) on x.

Our approach in the analysis of labor mobility is to apply a first order Taylor expansion

in ∆~π to the market clearing condition and its first two derivatives with respect to s, starting

from the Walrasian benchmark, χ = 0,∆π = 0,πc = π, and for the median worker type, s = 0.

This yields three conditions, determining the cost of living and the parameters of the actual skill

distribution for a region with cost of search χ:

r (0,χ,π) = l (χ,π) (25)

rs (0,χ,π) = ξ

rss (0,χ,π) = 0

where we use equation (5). Since these equations must apply identically for all χ, their first

derivatives with respect to χ must also apply. Using Table 1 we obtain:

lχ = y0∆π∆~πχ − 1 (26)

0 = y0s∆π∆~πχ

0 = y0ss∆σ∆~πχ − x bss/χ
where the subscript denotes the partial derivative with respect to χ evaluated at χ = 0. The

final two equations can be solved recursively for the parameters of the effective skill distribution

∆~πχ:

∆~πχ =
x bss

χyss∆σ

"
−ys∆σ
ys∆µ

1

#
=
2

3

r
5

3

·
1

−Σ−1
¸

(27)

11There, χ = 0, and hence ~πs (χ) = 0, so that πs (χ)−π = ∆~π = 0. Then, y (s, 0,π) = r(s) solves the equation,
implying that l (0,π) = 0.
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where we use Tables 1 and 2. Then, the parameters of the actual skill distribution ∆πχ can be

derived by the substraction of the skill spoiling and compression effect:

∆πχ = ∆~πχ − ~πsχ =
1

3

r
5

3

·
4

1
3ξ
−1Σω − 2Σ−1

¸
(28)

For a given complexity distribution πc, the mean of the skill distribution is an increasing

function of the cost of search: µsχ > 0. This is due to the skill spoiling effect ~µ
s
χ: search frictions

cause a loss in the effective use of skill, which raises the return to skill ys. The skill compression

effect reinforces this effect. This invokes immigration of highly skilled workers, until the market

clearing condition rs = ξ is satisfied.

The effect of χ on the standard deviation of the skill distribution depends on two effects in

the tails which are of opposite sign. The direct effect of larger search frictions on reservation

wages (the second term between square brackets) is negative, leading to an emigration of skill

types in the tail (a reduction of σs). The indirect general equilibrium effect (the final term)

works in the opposite direction. The reduction in effective supply in the tails of the distribution

pushes up the wages for these skill types (yss∆π~π
s
χ > 0). The direct effect dominates when

worker types are good substitutes, that is for high values of ξ:

2ξ > Σ2ω (29)

This condition is satisfied for our benchmark parameter values ξ ∼= 0.25 and Σ ∼= 0.50. Then,
smaller regions with larger χ export worker types from the tails of the skill distribution: σsχ < 0.

Substitution of the expressions ∆~πχ and πsχ from (27) and (28) in (26) yields:

lχ = −1− 1
3

r
5

3

¡
1 +Σ2

¢
(30)

The first term on the right hand side measures the direct effect of the baseline cost of search. The

second term measures the general equilibrium effects. A simple way to interpret these effects

is to realize that χ is the minimal value of x (s, ·) attained for the median skill type. Since the
no arbitrage condition (24) dictates that all log reservation wages have to be reduced by the

same amount, the higher value of x (s, ·) in the tails has to be offset by substitution effects that
increase y (s, ·) in the tails. Since the value weighted sum of substitution effects equals zero,

wages have to go down in the median by an amount approximately equal to E
£
ex(s,·)

¤−eχ. The
greater Σ the greater this effect, for the usual reason that there is more value above than below

the median and that substitution effects have to sum to zero.

We can apply equation (30) to calculate the effect of χ on the expected log wages for the

median worker type. By the mirror image of the argument that the average log productivity loss
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due to sub-optimal assignment is one third of the cost of search, E
£
y − y0¤ = 1

3x, the average

log productivity surplus above the log reservation wage must satisfy: E
£
y0 − r¤ = 2

3x. Workers

get a share β of this. The average log nominal wage of the median worker, w, therefore satisfies:

w = l + 2
3βx. Hence:

wχ = lχ +
2

3
β = −1− 1

3

r
5

3

¡
1 +Σ2

¢
+
2

3
β (31)

Log nominal wages decrease by more than the baseline cost of search χ. The cost of living

decreases even more than wages because wages must compensate for the longer unemployment

spells in high χ regions.

In the appendix we show some simulation results to check how accurate our Taylor expansions

are. They show that our model captures about 89% of the cost of search.

6.2 Interregional commodity trade

The analysis of commodity trade extends the case of labor mobility by the endogenization of

the parameters πc of the tradable commodity of a region with search frictions χ. The results

for ∆~π (χ) and ∆π (χ) derived in equation (27) and (28) carry over unchanged to the case with

trade.12 Hence, the parameters of the actual skill distribution satisfy:

πs (χ,πc) = πc +∆π (χ) (32)

This result has an important implication. Any kind of specialization of a region in the production

of a specific type of tradable commodity, πc, will translate one-for-one in a change in the skill

distribution by labor mobility. Regional specialization and trade therefore leave task prices

p (c, ·) unaffected, since the implied changes in task demand are exactly offset by labor mobility.
Hence, the effect of labor mobility and of trade on the skill distribution are additively separable.

The value of the optimal specialization of a region with baseline search frictions χ, denoted

πc (χ), is derived from rewriting the first equation of the system (25):

l (χ,πc) = y [0,∆~π (χ) ,πc]− x [0,χ,πc +∆π (χ) ,∆~π (χ) ,πc] (33)

Equation (33) specifies the cost of living in a region as a function of its baseline search frictions

χ and the characteristics of its tradable commodity πc. Competition forces firms in a region to

produce that tradable commodity that maximizes the log reservation wage for the median skill

type s = 0, y (0, ·) − x (0, ·). Since labor mobility equalizes reservation wages for all skill types
12∆~πχ and ∆πχ do not depend on πc because yπc = xπc = 0 in the benchmark equilibrium, see the tables

of derivatives 1 and 2. We used this fact to simplify notation by not including an argument πc in ∆~π (χ) and
∆π (χ). In a higher order approximation, this simplification would no longer apply.
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s, this will simultaneously maximize the reservation wages of all worker types. The rents from

living in high density area go to the real estate owners, who push up the cost of living till real

reservation wages are equalized between regions, l (·) = y (0, ·) − x (0, ) = r (0) = 0. Similar to
the hedonic price index model in Rosen (1974), an equilibrium value πc (χ) solves the first order

condition:

lπc [χ,π
c (χ)] = 0 (34)

lπcπc [χ,π
c (χ)] ≤ 0

where the inequality is the second order condition of the problem. A second order Taylor

expansion of y (0, ·) and a first order expansion of x (0, ·) with respect to ∆~π and πc yields:13

y (0,∆~π,πc) = y0∆π∆~π +
1

2
∆π0y∆π∆π∆~π

+(πc − π)0 yπc∆π∆~π − 1
2
(πc − π)0Ψ (πc − π) +O(χ3)

x (0,χ,πc +∆π,∆~π,πc) = χ+ xσs (σ
c +∆π) + x0∆π∆~π +O(χ

3)

Differentiation with respect to πc and realizing that ∆~π does not depend on πc up to an order

O
¡
χ2
¢
yields:

yπc (0,∆~π,π
c) = 2yπc∆π∆~π −Ψ (πc − π) +O(χ2)

dx (0,χ,πc +∆π,∆~π,πc)

dσc
= xσs +O(χ

2)

The second equation reveals an important point. The direct effect of σc on x vanishes since

xσc = 0, but there is an indirect effect via σs. This implication follows directly from the fact

that a region’s specialization in the production of tradable commodities, πc, translates one-for-

one into the skill distribution, see equation (32) and leaves task price unaffected. Substitution

of these equations in the first order condition (34), rearranging terms, applying equation (27)

and Tables 1 and 2 yields:

Ψ (πc − π) = 2χyπc∆π∆~πχ − xσs +O
¡
χ2
¢

= ξχ

(
4

3

r
5

3

·
1 Σ
2Σ 1

2(1 + 9Σ
2)

¸ ·
1

−Σ−1
¸
− 2
5

·
0
Σ−1

¸)
(35)

= −ξχ
Σ

"
0
2
3

q
5
3

¡
1 + 5Σ2

¢
+ 2
5

#
+O

¡
χ2
¢

13Again, we use we use yπc = xπc = xµs = 0, see Tables 1 and 2. Furthermore, y (0, 0,π) = 0 and
x (0,χ,π, 0,π) = χ. Note that y∆π∆π and yπc∆π are matrices.

25



If the matrix Ψ were positive definite, equation (35) would define for each value of χ a set πc (χ)

of dimension zero. The equilibrium set of all πc (χ) would be of the same dimension as χ, that

is, only single dimensional, while the characteristics space spanned by πc is two dimensional.

This violates the assumption that there is positive demand for all types πc.14 Hence, p (πc) can

only be a market equilibrium if Ψ is positive semi-definite. Competition will force it to be that

way. The only matrix Ψ that is consistent with this requirement reads:

Ψ =

·
0 0
0 ψ

σσ

¸
(36)

Combining (35) and (36) yields:

σcχ = −
"
2

3

r
5

3

¡
1 + 5Σ2

¢
+
2

5

#
ξ

Σψ
σσ

(37)

The model does not yield any prediction regarding µc. Any value can be the optimal choice for a

region of particular scale, since scale does not yield comparative advantage in the production of

on average more or less complex tradables. Hence, regional specialization does not pay off. This

conclusion is contingent on our choice of setting ∆σ = 0 for the benchmark region. This choice

implies that the mismatch coefficient g (s, ·) is independent of s. Hence, the cost of suboptimal
assignment does not vary with s, so that search frictions are equally important for low and

high skilled workers. However, the model does yield predictions regarding σc, which depends

negatively on χ, and hence positively on the scale of the labor market, λ. A reduction in σc

by specialization translates one-for-one in a reduction in σs. As discussed in Section 3.3, the

scale effect in the cost of search for the median skill type s = 0 is made up of a general level of

supply λ and the density function of the skill distribution, 1
σsφ (0). Part of the negative scale

effect in low density regions is offset by these regions producing more homogeneous products.

This automatically translates into a more homogeneous skill distribution. In other words, a

region with large search frictions specializes in the production of tradable commodities with a

low value of σc because this reduces the need for extensive job search. High density regions

do the opposite, they produce tradables with heterogeneous inputs, in order to explore their

comparative advantage in search intensive production.

The smaller the elasticity ψ
σσ
, the larger the degree of regional specialization in σc, that is,

the higher is σcχ. Figure 4 provides a graphical illustration. The parabola is the function p (σ
c).

14This assumption is not critical for our conclusion. If the assumption were not satisfied for particular combi-
nations of πc, then we can adjust these prices to make lπcπc (·) negative semi-definite, since these πc do not exist
in equilibrium and hence the value of p (πc) is irrelevant. Hence, this case is embedded in the case where the
constraint of negative semi-definiteness is imposed.
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By construction, it reaches a maximum for the benchmark value, σc = σ. Define the function

k (σc,χ) ≡ y (0, ·)− x (0, ·)− p (σc)

which is the cost of producing a tradable of type σc in a region with frictions χ. The right hand

side of equation (35) is the partial derivative of this function, kσc (σc,χ). As this derivative itself

does not depend on σc, k (σc,χ) is linear in σc. Equation (35) reveals that kσc (σc,χ) < 0 and

kσcχ (σ
c,χ) < 0. Figure 4 shows this function for two values of χ (χ2 > χ1). The optimal choice

of σc sets marginal revenue p
σc
(σc) equal to marginal cost kσc (σc,χ). Cost of living adjusts

such that it makes this value of σc a point of tangency between both curves; kσcχ (σc,χ) < 0

implies that regions with large χ choose low values of σc. The fact that this cross-derivative is

non-zero is therefore crucial for our conclusion. If it were zero (as it is for µc), then σc would be

independent of χ, and so would be the pattern of specialization. However, this cross derivative

is non-zero for two reasons: xσs 6= 0 and 2yπc∆π∆~π 6= 0. The first mechanism relates directly to

the cost of search, which are larger in the tails of the distribution, see Figure 8 in Section 2.4.

Since the difference between the cost of search at the median and in the tails is proportional to χ,

metropoles with a low χ have a comparative advantage in producing tradables with a dispersed

complexity distribution, resulting in a high σc. The second mechanism is due to the general

equilibrium effects of this differential impact of search frictions. Skill compression raises task

prices in the tails of the distribution and therefore the production cost of dispersed commodities.

6.3 Do the selection effects offset IRS?

The results in this paper strongly depend on IRS in the contact technology. However, most of

the empirical evidence seems to suggest that returns to scale are mildly increasing at best. In

Teulings and Gautier (2001) we argue that part of the returns to scale are absorbed by workers

and firms becoming more choosy as the scale of the market increases. It is optimal to respond

to the higher contact rate of match offers by turning down a larger share of the offers. This

mechanism accounts for one third of the returns to scale. Hence, direct measurement of the

returns by regressing the flow of realized matches on the stocks of job seekers and vacancies

underestimates the returns to scale by one third. However, this mechanism can never explain

why we do not observe any returns to scale at all, since a greater choosiness can never completely

offset the initial gain in the contact rate.

The model in this paper introduces alternative mechanisms which dampen IRS in contacts.

Metropoles specialize in the production of the most heterogeneous commodities in terms of

task inputs. That is their comparative advantage. A greater heterogeneity in task demand

puts a burden on the search process, by reducing the share of match offers that is acceptable.
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This mechanism can even more than offset the initial advantage in contact technology of large

metropoles.

In order to analyze the relevance of this issue in somewhat greater detail, we extend the

order of approximation of x (0, ·), to terms of O ¡χ2¢:
x [0,χ,πs,∆~π,πc]

= χ+ x0∆π∆~π + xσs (σ
c +∆σ) +O(χ3)

= χ− 2

15

r
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3
χ2
·

1− 2ξ
Σ+ ξΣ−1

¸0 ·
1

−Σ−1
¸

+
2

5
ξΣ−1χ

"
σc − 2

3

r
5

3
Σ−1χ+

1

3

r
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3
ξ−1Σωχ

#
+O(χ3)

= χ+
2

15

r
5

3

·
1 +

5

3
ξ − ξ

Σ2

¸
χ2 − 4

15
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¡
1 + 5Σ2

¢
+
3

5

#
ξ2

Σ2ψ
σσ

χ2 +O(χ3)

where we use xπc = xµs = 0 and σs = σc + ∆σ in the first equality, we replace ∆π and ∆~π

by (27) and (28) and apply Tables 1 and 2 in the second equality, and where we use (37) to

eliminate σc. The first term, χ, captures the direct effect of search frictions. The second term

captures the indirect effects, via the dispersion of the skill distribution and via the curvature of

y0 [s, c (s) , ·], as measured by the mismatch parameter g (s, ·). The skill compression effect ~σs
unequivocally raises the mismatch parameter and therefore search frictions. However, the skill

compression effect is largely offset by labor mobility, which raises σs. Finally, labor mobility in

response to the skill spoiling effect raises productivity in regions with high search frictions due

to the inflow of high skilled workers. This reduces x (s, ·), since the cost of vacancies absorbs
a smaller share of output. The third term captures the effect of regional specialization. This

shifts σc, which translates one for one into a shift in σs.

Whether or not an increase in the scale of the labor market, reduces x (s, ·) depends therefore
on the sign of:

dx (0, ·)
dχ

= 1 +
4

15

r
5

3

·
1 +

5

3
ξ − ξ

Σ2

¸
χ− 8
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¡
1 + 5Σ2

¢
+
3
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#
ξ2

Σ2ψ
σσ

χ+O(χ2)(38)

= 1 + 0.02− 0.062ψ−1
σσ
+O(χ2)

where we use the benchmark parameters and χ = E [χ] = 0.15 in the second line. Hence, the

elasticity of specialization should therefore be of the order of magnitude ψ−1
σσ
∼= 16 for returns

to scale to be fully absorbed by regional specialization. We will test this issue empirically in the

next section.
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7 Empirical evidence

7.1 Introduction

The model discussed in the previous section yields a number of testable implications for the

composition of worker and job types, the wage of the median worker, and the cost of living in

regions of various size. In this section we set out to test these implications. Since large scale

regions like metropoles are more efficient in matching workers and jobs, wages are higher in

these regions, as we observe empirically. One of our goals is to get an idea about the fraction of

those regional wage differences that can be explained by differences in search frictions. We will

use empirical measures for s, c and the baseline cost of search, χ. We discuss these measures in

the next section.

First it is useful to summarize the implications of the model, both qualitatively and quanti-

tatively. For some of the parameters of our theoretical model, like the standard deviation of the

wage distribution, Σ, there exists plenty of information. For others, like the benchmark value

of the mismatch parameter ξ we have to rely on some limited empirical evidence. Only, for the

value of the elasticity ψσσ, which determines the degree of regional specialization in the produc-

tion of the tradable commodities, we have no information at all. Below, we use the parameter

values of Table 3, except for ψσσ, where we use our estimation results to get an impression about

its value. The testable implications are:

1. from (28): ∆µχ > 0, due to the skill spoiling effect. Quantitatively

∆µχ =
4
3

q
5
3 = 1.72.

2. also from (28): ∆σχ ≷ 0, since the direct and the indirect effect of the skill compression
effect are of opposite sign; using Table 3 we obtain

∆σχ =
1
3

q
5
3

¡
1
3ξ
−1Σω − 2Σ−1¢ = −0.93

3. σcχ < 0 due to regional specialization and commodity trade: using the benchmark para-

meter values from Table 3 and equation (37) yields

σcχ = −
h
2
3

q
5
3

¡
1 + 5Σ2

¢
+ 2

5

i
ξ

Σψ
−1
σσ
= −1.17ψ−1

σσ

4. from equation (31): wχ < 0, since large areas are more efficient in matching workers to

jobs; from Table 3 wχ = −1.20

5. from the equations (30) and (30): lχ < wχ < 0, we get lχ < 0, because areas with low

search frictions attract many workers which pushes up the rents, lχ < wχ because wages
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must offset the longer duration of unemployment in small scale regions, and are therefore

less depressed in small areas than the cost of living; from Table 3 we get lχ = −1.53 < wχ.

7.2 Operationalization of variables

Estimation requires that the three crucial variables in our analysis are operationalized, the skill

index s, the complexity index c, and the cost of search χ. For the skill and complexity, we make

use of the positive association between wages on the one hand and both indices on the other

hand. We take the Walrasian equilibrium as a point of reference for the subsequent discussion.

As discussed in Section 3, log wages w are a continuous strictly increasing function of s, due

to absolute advantage, w = w (s) , w0 (s) > 0. Furthermore, the equilibrium assignment of

skill type s to job type c is a strictly increasing, continuous function, s = s (c) , s0 (c) > 0. A

combination of these results yields dw[s(c)]
dc = w0 [s (c)] s0 (c) > 0. Summing up, log wages are

an increasing function of both the skill level s and the level of job complexity c, while the skill

level s is an increasing function of the complexity level c (and vice versa). These results provide

the framework for the operationalization of the concepts skill and complexity. The worker skill

index s is assumed to be a function of the usual variables showing up in an earnings equation:

years of schooling, a third order polynomial in experience, highest completed education, race,

sex, being married, having a full or part time contract and various cross terms of experience,

education and being married, and an error term capturing unobserved worker characteristics.

Since s is positively related to log wages, we can use the regression coefficients of the log earnings

equation as the weights for the aggregation of these variables in a single skill index.15 Similarly,

job complexity is assumed to be proxied by 520 occupation and 242 industry dummies, and an

error term for unobserved characteristics.16 Again, since dw[s(c)]
dc > 0, the regression coefficients

of economy wide log earnings equations are used as the weights for the aggregation of these

dummies in a single complexity index. Call those empirical measures respectively bs and bc.
Note that information on wages does not enter directly into the calculated values of bs andbc. Information on wages is only used to obtain the coefficients for the aggregation of either
personal or job characteristics. Estimates for πs and πc, denoted π̂s and π̂c, are obtained by

the calculation of the mean and standard deviation of bs and bc for each region (we discuss the
classification of regions below). By construction, dw/dbs = dw/dbc = 1. In terms of the model,
this implies that the empirical skill measure is equal to bs = yss = ξs and hence π̂s = ξπs, and
15The empirical results in the next section do not change qualitatively when we use the skill index of Portela

(2001) which is independent of the wage.
16Commentators asked why we estimated separate regressions for the skill and the complexity index. What we

do is what theory dictates: s and c are highly correlated. Hence, we estimate them simultaneously, the one will
be a proxy for the unobserved component of the other and vice versa.
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the same for bc, since c0 (s, ·) = 1 for the Walrasian benchmark. We use the value for ξ from

Table 3 to translate between πs and πc on the one hand and π̂s and π̂c on the other hand.

The index of labor market density developed in Gautier and Teulings (2000) is applied as

a proxy for χ. We label this empirical measure, χ̂. The index is based on the following idea.

Consider a job at a particular location, and consider the likelihood that it will be occupied by

a particular worker living in the neighborhood of that job. In a small, low density local labor

market, only a small number of workers are available for this job, and hence the probability

for each of these workers to actually occupy the job is relatively high. Alternatively, in a high

density metropolitan labor market, many workers are potential candidates to fill the job and

hence the probability for each individual worker to actually occupy the job is low. Gautier

and Teulings (2000) show how to estimate this type of measure for the United States, using

a regional classification of both home and work location into 1138 areas, as is available in the

5% PUMS of the 1990 Census, to construct an index for 1138 public use micro data area’s.

Next, we aggregate up our measure to 82 regions with more than 800 observations (the larger

(C)M(S)As and states for the remaining non-(C)M(S)A areas) and merge it to the CPS March

supplements (89-92). The mean value of our index is 0.64, the standard deviation is 0.21, the

densest areas are Washington D.C. (χ̂ = 0.18) and Boston, the area which is the least dense is

rural Montana (χ̂ = 0.95). Our claim that χ̂ is a good proxy for χ implies that both variables

are highly correlated. It does not imply that they have the same metric. We assume that there

exists a linear relation between them, χ̂ = Θχ+Θ0, so that dχ̂/dχ = Θ. The parameter Θ0 will

be irrelevant for our analysis. For Θ, we have no way to establish its value a priori, so there is

no alternative than deriving it empirically.

We use the Dumond et al.(1999) cost of living index to test for the relation between search

frictions and the cost of living. Finally, we calculate and estimate wχ by estimating an earnings

function for each region with s, c and dummies for each year as the explanatory variables. The

region specific constants are our proxy for the wage of the median worker (for which s = 0) in

that region.

7.3 Estimation results

Table 6 and 7 give the estimation results for ∆π̂bχ, π̂sbχ, π̂cbχ, lbχ, and wbχ. Since the variables to
explain are sample statistics, we weight all estimates by the inverse of their standard error. The

regression results reported in column 1 are based on the 82 regions for which we have at least

800 observations.17 The implications 1 till 4 are supported by the data. All coefficients have
17We have also experienced with leaving the ”immigrant ports” like El Paso, LA, NY, and Miami out. This

did not change the results.
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the predicted sign and are significant at the 95% level (except ∆bµbχ, which is only significant at
the 90% level). We were particularly surprised that we find support for implication 1, ∆bµbχ < 0
due to the skill spoiling effect. One would expect metropolitan areas to have excess supply of

high skilled workers, if alone because the location of universities might bias the distribution of

highly skilled workers towards these regions. However, our model predicts unambiguously the

opposite, and the data confirm this prediction: controlling for the composition of complexity

of labor demand, the mean skill level is higher in low density regions. For the dispersion of

the complexity distribution, this is predicted by the model, see implication 3. We also find a

strong effect for the mean of the complexity distribution bµcbχ < 0. This result provides evidence
neither against nor in favor of our model. The model does not yield any specific prediction, so

any outcome is consistent. However, the fact that the effect is so strong suggests that there is

a systematic force that drives metropolitan areas to produce the more complex tradables. One

explanation, which is consistent with the flavour of our model, is that the mismatch parameter

g (s, ·) is not constant but increasing in s, implying that the impact of search frictions is larger
in the upper than in the lower tail of the complexity distribution. If this is the case, then

metropolitan areas would specialize in complex tradables, by a similar mechanism as why they

specialize in dispersed tradables in the model as it stands. To avoid even more complexity, we

did not investigate this route any further.

Most theories of search on the labor market suggest that search frictions are more relevant for

young workers, see Topel (1991). In the beginning of their career workers have not yet settled

down in a good match. Whenever a better job comes along, they switch. Later on in their

career, most workers have found a reasonable match, and jobs therefore tend to last longer.

Consequently, search frictions are less relevant for older workers. In column 2, we therefore

restrict the analysis to workers younger than 30. This restriction increases all coefficients and

their t-values, even though we use fewer observations per region. To make sure that those results

are not due to the limitation of the analysis of the set of regions with a sufficient number of

observations, we repeat our estimates for exactly the same restricted set of regions, but now for

the entire work force in column 3. Column 3 gives similar results as column 1, suggesting that the

age restriction, not the smaller set of regions drives the increase of the coefficients from column

1 to column 2. In Table 7 we only include CMSA’s because we are worried that other factors

might explain the characteristics of agricultural regions. In particular, the large input of land

in agricultural production might offer an alternative explanation for the special characteristics

of rural areas. Another reason for restricting the sample to CMSA’s only is that we have cost of

living information for those areas, which allows us to test implication 5. Obviously by restricting
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the sample to CMSA’s only, we decrease the mean and standard deviation of χ̂, see Table 8 and

9. Again, the estimates are consistent with implications 1 till 4 and part of implication 5. We

find that lχ < 0, but not lχ < wχ.18 We also restrict the sample to CMSA’s and young workers

only. Again, this makes all coefficients larger and more significant.

We use the coefficients in column 2 to get an impression of the magnitude of search frictions.

Theoretically, an estimate of Θ can be derived both from implication 1 and 2. However, since

the sign of ∆σχ is theoretically ambiguous and since ∆σ̂χ̂ is indeed not significantly different

from zero, we focus on ∆µχ. We have, (see the discussion in Section 3.1 and 3.2):

0.030 = ∆µ̂χ̂ =
ξ

Θ
∆µχ

∼= ξ

Θ
1.72⇒ Θ ∼= 15

This number can be used to calculate the coefficient of variation of χ, using the benchmark value

of E(χ) = 0.16 from Table 3
stdev (χ)
E (χ)

=
stdev (χ̂)
ΘE (χ)

∼= 0.1

From the definition of χ (λ), see equation (18) we know that lnχ = 2
5 lnλ0− 2

5 lnλ, where λ is the

scale or density of the market. Hence, the coefficient of variation of λ is about 52 × 0.1 = 25%.
Our estimation results therefore suggest that a four standard deviation interval of the log of

the scale of the market has a width of 4 × 0.25 = 1, or λ varies with a factor e. Search is e

times as effective in the top 5% metropolitan areas than in the 5% least densely populated rural

regions. Similarly, we can calculate the coefficient of variation for σc, which is σ̂cχ · stdev(χ̂) /σ̂c =
0.034(0.198/0.293) = 2.3%. Hence, regional specialization in tradable commodities offsets about

2.3/25=9.2% of the initial differences in the scale of the labor market by making dense areas

more heterogeneous.

Implication 3 yields an estimate for ψ−1
σσ

0.037 = −σ̂cχ̂ = −
ξ

Θ
σcχ
∼= ξ

Θ
1.17ψ−1

σσ
⇒ ψ−1

σσ
∼= 2

This number is a factor eight lower than the number ψ−1
σσ
∼= 16 quoted in Section 6 as the

value for which the initial advantage of large regions in search frictions is fully offset by their

specialization in the production of search intensive tradables. We can see this directly, from

(38). Substituting ψ−1
σσ
∼= 2 in (38) yields:

dx (0, ·)
dχ

= 1.02− 0.06 ∗ 2 = 0.90
18Glaeser and Mare (2001) show that the city wage premium cannot be fully attributed to unobserved ability

bias because migrants moving into the city experience an immediate wage gain.
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Hence, the comparative advantage of large areas in search is absorbed for 10% by a specialization

in the production of search intensive tradables.

Finally, we use the estimates for CMSA’s only to compare lχ̂ and wχ̂ in the first column

of Table 7 with the theoretically predicted values that attribute all cost of living and wage

differences to differences in search frictions. This gives:

0.27 = −lχ̂ ?
= − lχ

Θ
=
1.53

15
∼= 0.10

0.29 = −wχ̂
?
= −wχ

Θ
=
1.20

15
∼= 0.08

Hence, search frictions account for 28− 37% of the cross regional earnings differentials.

To sum up, the empirical results show that the advantages that dense areas have over non-

dense areas in terms of low search frictions are exploited in equilibrium by labor mobility and

trade. Dense areas produce more complex and or diverse (in terms of task inputs) goods and

demand therefore a wider variety of worker skill levels. Consequently, cities are more hetero-

geneous than the country side. The effects are substantial from a quantitative point of view.

However, the degree of specialization is insufficient to fully offset the initial advantage of large

regions in search efficiency.

8 Final remarks

We have specified a search model with ex ante heterogeneous workers and jobs and IRS in the

contact technology. The model is made analytically tractable by applying Taylor expansions. In

previous work, Teulings and Gautier (2001), we were able to characterize the ”cost of search”

(the relative difference between the maximum value added and the reservation wage) for each

worker type. In this paper, we also managed to characterize the general equilibrium effect of

search frictions. That is, how does the maximum value added for a particular worker type change

due to frictions. It turns out that search frictions give rise to both skill compression (reducing

the dispersion of the effective skill distribution) and skill spoiling (reducing its mean).

When there is interregional variation in scale, interregional labor mobility and trade cause

specialization of regions. Labor mobility offsets the general equilibrium effects of search. In

particular, given the task distribution, small scale regions with large frictions have on average

a better skilled work force. This is an equilibrium response to offset the skill spoiling effect.

Empirical evidence corroborates this surprising implication. Furthermore, large scale regions

use their comparative advantage in search to specialize in search intensive production, that is,

the production of commodities with a highly dispersed distribution of inputs. This implication
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is also supported by the data. Our evidence suggest that search frictions can explain about one

third of the interregional wage differentials.

An important objection one could raise against our analysis is that most of the empirical evi-

dence suggests CRS instead of IRS in matching technology, see Petrongolo and Pissarides (1999).

As discussed in Section 1, there are several reasons why this evidence might be misleading. It

does not make sense to repeat these arguments here. However, one argument relates directly

to the evidence presented in this paper. This argument claims that large regions specialize in

search intensive production, which offsets their initial advantage in search effectiveness. This

standard selectivity problem biases any analysis based on aggregate statistics, like the number of

unemployed and vacancies. The crude calculations presented in Section 7 suggest however that

this mechanism absorbs only one eighth of the initial advantage of large scale regions. Hence,

this selectivity effect seems to be too small to explain the empirical findings in favor of CRS.

We offer two suggestions why this number might be too low an estimate of the true effect.

First, we apply a quadratic contact technology which has extremely large returns to scale.

This was done purely for reasons of tractability. Smaller returns to scale would imply that the

offsetting effect accounts for a larger share in the total returns. Second, our empirical evidence

suggests that large scale regions specialize in the production of commodities, not only with

greater dispersion of the complexity distribution, but also with a higher mean. In fact, the

effect on the mean is much stronger than the effect on the dispersion. As it stands, our model

does not offer an explanation for that phenomenon. A story that is consistent with the framework

of our model is that the mismatch coefficient is increasing in the skill level (we assumed it to be

constant). In other words, when an engineer is sub-optimally matched, the output loss is larger

than when a high school drop-out is imperfectly matched. Then, large scale regions would have

a comparative advantage in the production of commodities with a high mean complexity level.

This specialization pattern implies that the average mismatch coefficient is pushed up in large

regions, undoing part of the initial advantage in the efficiency of the search process.
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Appendix

A Derivations

A.1 The full wage equation

The equivalent of wage equation (5) for the case ∆σ 6= 0 reads, see Teulings (2001):

y(s,∆π,πc) = p(πc) + ξe−∆µ
·
(s−∆µ− µc)− 1

2

∆σ

σc
(s−∆µ− µc)2

¸
−ξ2e−2∆µσc∆σ (s−∆µ− µc)− 1

2
ξ2
¡
e−2∆µ − 1¢σc2 + ξ(1 + µc − e−∆µ)

+
1

2
ξe−∆µσc

³
1 + 3ξ2e−2∆µσc

2
´
∆σ +O

£
∆σ2

¤
A.2 Linear approximation of the relation between s(c, ·) and ∆π

Analogous to equation (3), the first order condition for the cost minimization reads:

p0s
£
s (c, ·) , c, ξ, ·¤ = ys £s (c, ·) , ξ, ·¤− fs [s (c, ·) , c] = 0 (39)

Writing (39) as ys [s (c, ·) , ·] = fs [s (c, ·) , c] and taking logs yields:

ln ys [s (c, ·) , ·] = lnξ + c− s (c, ·)

where we use f
s
[s (c, ·) , c] ≡ ξec−s(c,·). Since this equation applies identically for all c, its first

derivative with respect to c also applies. This yields:

s0 (c, ·) yss [s (c, ·) , ·]
ys [s (c, ·) , ·] = 1− s

0 (c, ·) (40)

Define c0 such that s (c0, ·) ≡ 0. Taylor expansions in∆π around the point ∆π = 0,π = π, c = c0
of the left hand side of both equations yields:

ys∆π (0, 0,π)
0∆π

ys (0, 0,π)
= −∆µ− Σ∆σ = c0 +O

¡
∆σ2

¢
(41)

s0 (c0, ·) yss∆π (0, 0,π)
0∆π

ys (0, 0,π)
= −s0 (c0, ·)

ξ

Σ
∆σ = 1− s0 (c0, ·) +O

¡
∆σ2

¢
where we use Table 1 of derivatives. In particular, we use ys (0, 0,π) = ξ and yss (0, 0,π) = 0.

A.3 Derivation of (8)

In the subsequent derivation we omit all arguments of functions other than s and c. Partially
differentiating equation (6) with respect to s twice and using f

ss
[s, c (s)] = −f

s
[s, c (s)] =

−ys (s, ·), yields:
p0ss [s, c (s, ·) , ·] ≡ g (s, ·) = yss (s, ·) + ys (s, ·) (42)
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The relation between p0ss [s, c (s, 0,π) , 0,π] and y
0
cc [s, c (s, 0,π) , 0,π] can be obtained from

the conditions (3) and (39). Differentiation yields:n
pcc [c (s) , ·] + fcc [s, c (s)]

o
cs (s) + fsc [s, c (s)] = 0n

yss [s (c) , ·]− fss [s (c) , c]
o
sc (c)− fsc [s (c) , c] = 0

Multiplying both conditions and using cs (s) sc (c) = 1 (they are inverse functions) and f cc (s, c) =−f
sc
(s, c) = f

ss
(s, c) yields:

pcc [c (s) , ·] =
f
ss
[s, c (s)] yss (s, ·)

f
ss
[s, c (s)]− yss (s, ·)

Partially differentiating equation (1) with respect to c twice, substitution of previous result, and
using f

ss
[s, c (s)] = f

s
[s, c (s)] = ys (s, ·) yields equation (8).

A.4 Derivation of x(·) from Teulings and Gautier (2001)

In the subsequent derivation we omit all arguments of functions other than s and c. Teulings
and Gautier (2001) apply skill and complexity indices s̄ and c̄ respectively:

s ≡ −e−s
c ≡ ec

Point of departure is their equation (23):

x (s̄) =

µ
θ∗
1

λ
l̄(s)−1

κP [c̄ (s̄)]

R(s)

p
ys̄s̄(s̄)

¶2/5
+O

¡
x2
¢

where θ∗ is a constant, l̄(s̄) is the density function of s̄, ys̄s̄ (s̄) is the second derivative of
log value added in the optimal assignment,19 and where c̄ (s̄) is defined analogous to c (s) in
this paper. The term B∗ (s̄) in their equation drops out, since here the value of leisure is zero.
Their term K∗ (s̄) = κ

R(s) is replaced here by
κP [c̄(s̄)]
R(s) , since the cost of vacancies are in terms of

task type c here, instead of in terms of the composite commodity. Applying a transformation of
variables yields:

ys̄s̄(s̄) = yss (s)

µ
ds

ds̄

¶2
+ ys (s)

d2s

(ds̄)2
= [yss (s) + ys (s)] e

−2s

l̄ (s̄) = l (s)
ds

ds̄
= l (s) es

where l (s) is the density function of s. In the Walrasian benchmark, equation (5) applies.
Hence, R(s)

P [c̄(s̄)] = F (s, c) +O (x). Defining: θ ≡ θ∗κ, using: g (s) ≡ yss (s) + ys (s), and substitu-
tion of the previous relations yields equation (17).
19Their equation (23xx) has c̄s̄ (s̄) instead of ys̄s̄ (s̄). However, these are shown to be equal, see their equation

(XX).
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A.5 The derivation of x bss
For simplicity, we consider the case σs = χ = 1. The proof can easily be generalized. Then:

x (s) =
³
φ(s)
φ(0)

´−2/5
. Define its approximation: x̂ (s) = X0 + 1

2X1xsss
2 = X0 +

1
5X1s

2, where we
use the value for xss from Table 2 in the second step; X0 = X1 = 1 yields the standard second
order Taylor expansion in the point s = 0. For the ”adjusted” approximation, the coefficients
X0 and X1 are set such that they minimize the integral of squared deviations, weighted by the
density of s:

Ω =

Z ∞

−∞
φ (s) [x (s)− bx (s)]2 ds

=

Z ∞

−∞
φ (s)1/5 φ (0)4/5 − 2φ (s)3/5 φ (0)2/5 bx (s) + φ (s) bx (s)2 ds

=

Z ∞

−∞
φ

µ
s√
5

¶
− 2φ

Ã
sp
5/3

!·
X0 +

1

5
X1s

2

¸
+ φ (s)

·
X0 +

1

5
X1s

2

¸2
ds

=
√
5− 2

r
5

3

·
X0 +

1

3
X1s

2

¸
+X2

0 +
2

5
X0X1 +

3

25
X2
1

The first order conditions for X0 and X1 read:

−2
r
5

3
+ 2X0 +

2

5
X1 = 0

−2
3

r
5

3
+
2

5
X0 +

6

25
X1 = 0

Hence:

X0 =
2

3

r
5

3
∼= 0.86

X1 =
5

3

r
5

3
∼= 2.15

A.6 The derivation of ~πs

In most of the subsequent derivation we omit all arguments of functions other than s and
c. Consider Taylor expansions in x around the Walrasian equilibrium for the point ∆π =
πs + ~πs − πc = 0, πc = π, and hence µs = ~µs = 0. In that point, g (s) = ξ, c (s) = s and
F [s (c) , c] = F [s, c (s)] = 1. The domains of interaction ms (c) and mc (s) are given by the
conditions p0 (s, c) ≤ p (c) and y0 (s, c) ≥ r (s) respectively. Define:

x∗ (s, c) ≡ p (c) + f (s, c)− r (s) = p (c)− p0 (s, c) = y0 (s, c)− r (s)
Hence: x∗ [s, c (s)] = x (s), x∗ss = −p0ss and x0cc = y0cc. We use second order Taylor expansions
of x∗ (s, c) around its maximum in s and c, so that ms (c) and mc (s) are symmetric intervals
around s (c) and c (s) respectively:

ms (c) ∼= {s ∈ [s (c)−∆s (c) , s+∆s (c)]} (44)

mc (s) ∼= {c ∈ [c (s)−∆c (s) , c+∆c (s)]}

40



where ∆s (c) and ∆c (s) are the solutions to:

x [s (c)] =
1

2
x∗ss∆s (c)

2 =
1

2
ξ∆s (c)

2 (45)

x (s) = −1
2
x∗cc∆c (s)

2 =
1

2
ξ∆c (s)

2

using equation (7) and (8) for the second derivatives. Division of both side of the Bellman
equations (12) by βλR (s), using ex − 1 = x+O ¡x2¢ and R(s)

P [c̄(s̄)] = F (s, c) +O (x) = 1 +O (x),
and a Taylor expansion of the integrand yields:

v (c) ∼= 3

4
√
2

p
ξ

βλ
x [s (c)]−3/2 (46)

u (s) ∼= 3

4
√
2

κ
p
ξ¡

1− β
¢
λ

P [c (s)]

R (s)
x (s)−3/2

∼= 3

4
√
2

κ
p
ξ¡

1− β
¢
λ
x (s)−3/2

see Teulings and Gautier (2001), Proposition 2. Consider the integral on the right hand side
of equation (15). Z

ms(c)
u (s)F (s, c) ds (47)

∼= 3

4
√
2

κ
p
ξ¡

1− β
¢
λ

Z
ms(c)

x (s)−3/2 F (s, c) ds

∼= 3

4
√
2

κ
p
ξ¡

1− β
¢
λ

Z ∆s(c)

−∆s(c)
H (z, c) dz

∼= 3

4
√
2

κ
p
ξ¡

1− β
¢
λ

Z ∆s(c)

−∆s(c)

µ
H (0, c) +Hz (0, c) z +

1

2
Hzz (0, c) z

2

¶
dz

∼= 3

2

κ¡
1− β

¢
λx [s (c)]

µ
1 +

1

3
ξ−1x [s (c)] a [s (c)]

¶
where H (z, c) ≡ x [z + s (c)]−3/2 F [z + s (c) , c] (hence, H(0, c) = x [s (c)]−3/2) and a [s (c)] ≡
Hzz (0, c) /H (0, c). The first step in (47) applies equation (46), the second uses the approxi-
mation of the domain of integration, see (44), the third applies a Taylor expansion to H (z, c)
around z = 0, while the final step applies equation (45) for ∆s (c) and the standard formula for
integration of a parabola. Since f

s
(s, c) = −f

ss
(s, c), we have:

a (s) = −f
s

³
1− f

s

´
− 3f

s

xs
x
− 3
2

xss
x
+
15

4

xs
2

x2

1 +
1

3
ξ−1x (s) a (s) ∼= exp

·
−ξ−1

µ
1

3
f
s

³
1− f

s

´
x+ f

s
xs +

1

2
xss − 5

4

xs
2

x

¶¸
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where we omit the argument(s) of x and f
s
for the sake of convenience. Hence:

λ

Z
ms(c)

u (s)F (s, c) ds− κ (48)

∼= κ

Ã
3

2

1¡
1− β

¢
x
exp

·
−ξ−1

µ
1

3
f
s

³
1− f

s

´
x+ f

s
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1

2
xss − 5

4

xs
2

x

¶¸
− 1
!

∼= 3

2

κ¡
1− β

¢
x
exp

·
−2
3

¡
1− β

¢
x− 1

3

¡
1− ξ

¢
x− xs − ξ−1

µ
1

2
xss − 5

4

xs
2

x

¶¸
where we use eax − bx = e(a−b)x + O (x) and f

s
= ξ in the last line. Similarly, consider the

integral on the right hand side of equation (14):Z
mc(s)

v (c) dc ∼= 3

4
√
2

p
ξ

βλ

Z
mc(s)

x [s (c)]−3/2 dc (49)

∼= 3

4
√
2

p
ξ
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Z ∆s
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x[z + s]−3/2dz ' 3

4
√
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p
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2
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βλx
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¶¸
Rewriting equation (14) and substitution of the equations (46) and (49) yields:

l (s) = u (s)

"
λ

Z
mc(s)

v (c) dc+ 1

#
(50)

∼= 9

8
√
2

κ
p
ξ

β
¡
1− β

¢
λ
x−5/2 exp

·
2

3
βx− ξ−1

µ
1

2
xss − 5

4

xs
2

x

¶¸
where we apply again eax − bx = e(a−b)x + O (x). Using this relation we can rewrite equation
(46) for v (c) as:

v (c) ∼= 2

3

¡
1− β

¢
x

κ
exp

·
−2
3
βx+ ξ−1

µ
1

2
xss − 5

4

xs
2

x

¶¸
l [s (c)] (51)

Substitution of equation (48) and (51) in (15) and taking logs yields:

−1
2

µ
c

σ

¶2
+ constant ∼= f [s (c) , c]− 1

2

µ
s (c)

σ

¶2
− ωx− xs

where ω ≡ 1− 1
3ξ. This equation holds identically for all c. Hence, its derivatives with respect

to c have to apply. Define c0 such that s (c0) ≡ µs = 0. Then:20

− c0
σ2

∼= f
s

£
s0 (c0)− 1

¤− x bsss0(c0)
−σ−2 ∼= f

s

£
s0 (c0)− 1

¤2 − σ−2s0 (c0)2 − ωx bsss0 (c0)2
20 Implicitly, by substituting f

s
[s (c) , c] for ξ in the terms in the second line of equation (??), we ignore its

derivative with respect to c. However, since these terms include a factor of order O (x) and since taking the
derivative introduces a factor s0 (c0)− 1, which is also of order O (x), these terms are of order O

¡
x2
¢
.
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since f
c
= −f

s
, f

ss
= f

s
, xs = xsss = 0, and s” (c) = g0 (s) = 0 (due to ∆σ = 0). In the

benchmark equilibrium, s (c) = c. The terms c0 and s0 (c0)− 1 are therefore of order O (x), and
hence: s0 (c0)2 = 1 + 2 [s0 (c0)− 1] +O

¡
x2
¢
and: ec0 = 1 +O (x). Rearranging terms, dropping

all terms of order O
¡
x2
¢
, using Table 2, and applying x (0) = χ yields:

−c0 ∼= ξ−1Σ2
£
s0 (c0)− 1

¤− 2
3

r
5

3
χ (53)

s0 (c0)− 1 ∼= −1
3

r
5

3
ωχ

Since the analysis starts in the point ∆π = 0, we have ∆~π = ~πs. Substitution in equation (41)
yields:

0 = c0 + ~µ
s +Σ~σs (54)

s0 (c0) = 1 +
ξ

Σ
~σss0 (c0)

Substitution of (54) in (53), rearranging terms, and using s0 (c0) − 1 = O (x) yields equation
(22).

B Numerical simulations

Section 4.3 provides a characterization of the search equilibrium with labor mobility by means
of Taylor expansions. However, one can never be sure how accurate these expansions are in
practice, in particular when a multitude of expansions are combined in a complicated manner.
Hence, we offer some numerical simulations of the model. Our calculations are based on a 600
x 600 grid, where we let s and c vary from −3σ to 3σ, using the values of πs as derived from
the Taylor expansions in the previous sections.21 Table 5 provides simulation results for the
derivatives of r and x, next to their ”theoretical” values for χ = 0.038 and 0.116 (generating an
average unemployment rate of respectively 1.23 and 3.74 %). In the latter case, we underestimate
x [s,χ,πs (χ,πc) , g (s,∆π,πc)] by 11% and underestimate the drop in r(s,∆π,πc) due to search
frictions by 30% whereas when χ = 0.038, those figures are respectively: 11% and 23%.

21We use the benchmark values of the exogenous variables for our simulations. Teulings and Gautier (2001) have
presented similar simulations. However, their ambition is more limited in the sense that their Taylor expansion
expression for x takes r in the search equilibrium as given, while here we use the Taylor expansion for skill
compression and skill spoiling effects to charaterize r, so that we calculate r and x simultaneously.

43



C Tables and Figures

Table 1: Derivatives of the function y (s,∆π,πc)
level ∆µ µc ∆σ σc

y 0 Σ2 0 1
2Σ
¡
1 + 3Σ2

¢
0

ys ξ −ξ 0 −ξΣ 0

yss 0 0 0 −ξ2Σ−1 0

yµc 0 ξ −ψ
µµ

ξΣ −ψ
σσ

yσc 0 2ξΣ −ψ
µσ

1
2ξ(1 + 9Σ

2) −ψ
µσ

Table 2: Derivatives of the function x (s,χ,πs,∆π,πc)
level µs σs ∆µ ∆σ s ss bss

x χ 0 2
5σ
−1χ 1

5

¡
2ξ − 1¢χ −15Σ

¡
1 + ξΣ−2

¢
χ 0 2

5σ
−2χ 2

3

q
5
3σ
−2χ

Table 3: Benchmark parameter values
ξ Σ β E[χ] ω

0.25 0.50 0.50 0.15 0.92
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Table 4: Direct and indirect effects of search frictions in a single region up to an order O
¡
χ2
¢

Function
Walras/

direct effect
General equilibrium

effect
Skill spoiling
(via ~µs)

Skill compression
(via ~σs)

y 0 y0∆π~π
s −23

q
5
3Σ

2χ −16
q

5
3ξ
−1ωΣ2

¡
1 + 3Σ2

¢
χ

ys ξ y0s∆π~π
s 2

3

q
5
3ξχ

1
3

q
5
3ωΣ

2χ

yss 0 y0ss∆σ~σ
s 0 1

3

q
5
3ωξχ

x χ 0 0 0
xs 0 0 0 0

x bss 2
3

q
5
3ξ
2Σ−2χ 0 0 0

Table 5: Simulation results in %
λ = 12500 (U = 1.23) λ = 3125 (U = 3.74)

derivative 0 1 2 4 0 1 2 4
x(·)
expansion 3.81 0.00 0.38 0.11 6.64 0.00 0.66 0.20
numerical 4.22 0.04 0.61 -0.32 7.46 0.12 0.96 0.19
r(·)
expansion -5.86 25.00 0.00 0.00 -10.21 25.00 0.00 0.00
numerical -7.62 25.58 0.50 0.06 -14.50 26.54 1.02 -0.01
χ 3.38 11.6
~µs -3.3 -9.9
~σs -2.5 -7.5

Table 6: Cross regional WLS estimates of key variables on labor market density
Sample unrestricted age < 30 yrs unrestricted
# regions 82 (min obs=800) 62 (min obs=400) 62 (same as age<30)
mean (χ̂) 0.635 0.637 0.637
stdev (χ̂) 0.210 0.219 0.219
µ̂sχ̂ -0.058 (3.17) -0.089 (5.23) -0.043 (2.23)
µ̂cχ̂ -0.078 (4.25) -0.119 (6.79) -0.072 (3.50)
σ̂sχ̂ -0.018 (2.37) -0.025 (2.95) -0.019 (2.38)
σ̂cχ̂ -0.011 (1.89) -0.037 (4.08) -0.011 (1.65)
∆µ̂χ̂ 0.020 (1.84) 0.030 (2.67) 0.029 (2.74)
∆σ̂χ̂ -0.006 (0.93) -0.013 (1.85) -0.008 (1.21)
ŵχ̂ -0.370 (8.90) -0.350 (7.08) 0.372 (7.89)
Note: T-values within brackets. The regressions are weighted by the inverse of the standard error of the lhs
variable.
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Table 7: Cross regional WLS estimates of key variables on labor market density continued
Sample cost of living areas age < 30 yrs, (C)MSA
# regions 67 (min obs=500) 50 (min obs = 250)
mean (χ̂) 0.617 0.612
stdev (χ̂) 0.187 0.198
µ̂sχ̂ -0.056 (2.28) -0.072 (2.96)
µ̂cχ̂ -0.088 (3.48) -0.102 (4.43)
σ̂sχ̂ -0.018 (1.97) -0.033 (3.12)
σ̂cχ̂ -0.018 (2.52) -0.034 (3.18)
∆µ̂χ̂ 0.032 (2.12) 0.031 (2.02)
∆σ̂χ̂ -0.002 (0.02) -0.002 (0.15)
l̂χ̂ -0.266 (3.69) -0.300 (3.59)
ŵχ̂ -0.288 (7.09) -0.310 (5.91)
Note: T-values within brackets.. The regressions are weighted by the inverse of the standard error of the lhs
variable.

Table 8: Means of the estimated vaiables
Sample unrestricted age < 30 yrs unrestricted
# regions 82 (min obs=800) 62 (min obs=400) 62 (same as age<30)
σ̂c 0.353 0.293 0.353
∆σ̂ 0.020 0.0193 0.0191
Note: µ̂s and µ̂s are by construction 0.

Table 9: Means continued
Sample cost of living areas age < 30 yrs, (C)MSA
# regions (min obs=500) 60 (min obs = 250)
σ̂c 0.354 0.294
∆σ̂ 0.020 0.018
Note: µ̂s and µ̂s are 0.
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Figure 2:

Figure 3:
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Figure 5: Shifts in µs and σs
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