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My research on measuring, modeling and forecasting financial market volatility as a
doctoral student is presented in this dissertation in the form of three chapters. Chapter 2
of this dissertation introduces a novel heuristic bias-correction that aims at improving
realized range-based volatility estimates. The third chapter introduces an innovative
approach for estimating covariances using high-low price ranges sampled at intraday
frequencies. The fourth chapter introduces a new covariance matrix estimator that is
based on the idea of combining the merits of factor models and high-frequency data.
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Chapter 1

Introduction

1.1 Volatility

Volatility is a measure of the relative degree of change. In Finance volatility is often

defined as the dispersion in asset price movements over a period of time. Financial

market volatility plays an important role in financial economics and is at the heart

of several subjects including asset allocation, market timing, risk management and

the pricing of assets and derivatives.

Recent developments in financial markets such as for instance the bursting of the

IT bubble, the US subprime mortgage crisis and Europe’s ongoing sovereign debt

debacles, exemplify the importance of adequate risk measurement and risk manage-

ment techniques that adapt more rapidly to changing market circumstances than

traditional methods do. Coincidentally, measuring and modeling volatility with in-

traday data has become a rapidly growing field in financial econometrics and applied

statistics. In practice traditional portfolio risk models are based on low-frequency as-

set return data such as for instance sixty monthly observations or more progressively

a few years of weekly or daily data. An inherent drawback of the use of risk models

based on low-frequency data is that they are severely impacted by structural breaks

and these models are not sufficiently adaptive to shifts in financial markets. For this

reason the popularity of more accurate short term risk measures and risk models is

rapidly increasing in the financial industry. Practically it is by now hard to find a

large and respectable vendor of financial risk models that does not offer models that

predict risk over relatively short horizons such as monthly, weekly or daily periods.

The shift to risk models that utilize high-frequency intraday data is needed to provide

practitioners with more accurate short-term risk measures and models. Besides aca-
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demics certain risk vendors and quant groups within the asset management industry

have started studying the practical merits of high frequency data for financial risk

management. For instance De Rossi et al. (2012) discuss how low-frequency risk-

and portfolio-managers benefit from hedging short-term risk factor exposures using

high-frequency data estimates.

A problem that will diminish with time is the relatively short history of available

high-frequency data. Although tick-data is available from 1980 onwards for a limited

number of assets (FX, bond, stock and commodity futures), this is swamped by over

a hundred years of daily data history that is available for thousands of individual

securities such as stocks. The adoption of using high-frequency data for financial

risk management in practice depends on several other factors as well. Academics can

certainly help at several stages to accelerate the transition in the financial industry

from low-frequency data risk measurement towards the use of more accurate measures

and models based on high-frequency data.

Adequate standards and formal approaches to ‘cleaning’ high-frequency data are

needed.1 By now considerable progress has been achieved on understanding the the-

oretical properties of univariate risk measures based on high-frequency data, but the

practical relevance of these applications can still be improved. To get regulators

to endorse and approve the use of high-frequency data for risk measurement and

risk reporting, applications that are appealing to regulators and risk departments of

financial institutions could be considered more often. For instance applications deal-

ing with (Conditional) Value-at-Risk measures, forecasts and models are appealing

since they are linked to the control and reporting of financial risk, economic capital,

regulatory capital and stress testing. In addition, the focus in the multivariate high-

frequency literature on volatility estimation needs to move towards more meaningful

multivariate dimensions rather than using bi-variate or low-dimensional settings. At

the moment the most commonly encountered multivariate dimensions considered in

the literature are in the range of two to thirty assets. Financial market participants

such as hedge fund and mutual fund managers, however, generally hold substantially

more assets. In addition, their investment performance is typically measured relative

to market indices with hundreds of underlying assets. For these reasons the num-

ber of assets used in multivariate studies on measuring and forecasting financial risk

with high-frequency data needs to be dramatically increased. It is surprising that

until recently, no academic high-frequency data studies have considered the factor

models that are successfully being used in practice and have been documented in

1Exceptions that provide the first steps in studying, reporting and formalizing the data cleaning
procedures for high-frequency data include Brownlees and Gallo (2006) and Barndorff-Nielsen et al.
(2009).
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the literature for decades (see e.g. Ross (1976)). The idea of combining the insights

from factor models with the benefits of high-frequency data for accurate estimation

of practically relevant vast dimensional covariance matrices remains overlooked.

1.2 Traditional Volatility Models: (G)ARCH and

Stochastic Volatility

The vast collection of literature on financial market volatility dynamics was kick-

started by Engle (1982) and Bollerslev (1986) who introduced the (Generalized)

Autoregressive Conditional Heteroskedasticity – (G)ARCH models. Consistent with

economic theory daily asset return predictions exhibit negligible or very little ex-

planatory power. For this reason it is common practice to assume daily stock returns

are unpredictable. The volatility of daily returns, however, is conditionally depen-

dent and due to its relatively high persistence it is quite predictable, especially when

compared to the predictability of daily stock returns. Mandelbrot (1963) already no-

ticed that periods of high (low) volatility tend to be followed by periods of high (low)

volatility. This time-varying volatility clustering and the predictability of volatility

processes results in important implications for financial risk measurement and risk

management. It is not surprising that the number of econometric contributions on

forecasting financial market volatility is vast compared to contributions concerned

with forecasting asset returns. The popularity of the (G)ARCH process is partially

explained by its ability of incorporating volatility clustering in an intuitive way. In

these models expected volatility today is proportional to the previously observed

squared return(s). If the squared return was relatively large yesterday, then today’s

volatility is more likely to be high than is the case if the squared return was rela-

tively small. Since the introduction of (G)ARCH many extensions and modifications

have been proposed and the family of (G)ARCH models as such is one of the most

important working horses in the field of financial econometrics.

Besides the expanding literature in financial econometrics on (G)ARCH type

models, important contributions on understanding and measuring financial market

volatility can be ascribed to the class of Stochastic Volatility (SV) models. Although

both classes of models are stochastic in nature, the main difference is that in tradi-

tional ARCH type models the return process generally depends on one error process

and the volatility process in turn depends on this return process. Hence, the volatil-

ity process is indirectly driven by the innovations in the return process. In contrast,

SV models generally depend on two error processes; one error process in the return

equation and an error process in the volatility equation.
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Despite the important progress made on understanding, measuring and modeling

of financial market volatility using (G)ARCH- and SV-type models, an important

problem that remained unsolved for about a decade or two is that the conditional

volatility in these models is unobservable and needs to be estimated. The traditional

way of estimating volatility is based on using low-frequency asset return data. An

important drawback of using data sampled at a low-frequencies, such as daily data, is

that although this volatility estimator is unbiased, it is imprecise and the variation in

daily volatility estimates is too large for certain applications. This for instance raised

the debate on the quality of volatility forecasts generated using standard (G)ARCH-

type models. Although these models achieve a high in-sample explanatory power,

their out-of-sample forecasting performance is poor when judged on the explanatory

power measured in running a regression of a series of realized daily squared returns

on daily conditional volatility forecasts.

1.3 Realized Volatility

Merton (1980) notes that the variance of the returns on an asset over an extended

period of time can be estimated with high precision if during that period a sufficient

number of sub-period returns is available. Because the squared mean return con-

verges to zero as the sampling frequency increases, the variance of the returns over

an extended period can be calculated by summing the squared sub-period returns and

ignoring the mean return. This is what today is called the concept of realized volatil-

ity and this term is interchangeably used with realized variance. Realized volatility

type estimators have shown up in several ‘early’ studies without formal derivations

being present at the time.2

The concept of realized volatility remained non-formalized until the work of An-

dersen and Bollerslev (1998), Bardorff-Nielsen and Shephard (2001) and Comte and

Renault (1998). Andersen and Bollerslev (1998) show that volatility forecasts gen-

erated by (G)ARCH-type models perform satisfactorily after all if the unbiased but

noisy daily squared return is replaced by realized volatility when determining the

accuracy of volatility forecasts through regressing ex-post realizations on forecasts.

Although the daily squared return is accurate on average, it is too noisy causing an

underestimation of the explanatory power of potentially accurate volatility forecasts.

The formalization of the concept of realized volatility combined with the increasing

availability of high-frequency data has spurred the development of a novel and to-

2Examples of such studies include French et al. (1987), Schwert (1990), Schwert and Seguin
(1990), Hsieh (1991), Zhou (1996) and Taylor and Xu (1997).
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day still growing field within financial econometrics that is concerned with accurate

measuring, modeling and forecasting of financial market volatility.

One of the most important advantages of using high-frequency data for volatility

estimation is the improvement in statistical efficiency that results from the reduction

in variance of the realized volatility estimator relative to the variance of the daily

squared return estimator. Although in theory the precision of the realized volatility

estimator is maximized by sampling asset returns as often as possible, this is not

feasible in practice due to the existence of market microstructure frictions. Observed

transaction prices at very high frequencies tend to randomly alternate between prices

at bid- and ask-quotes. These transient high-frequency price fluctuations are a source

of market microstructure noise for volatility estimation since they are independent of

the asset’s underlying volatility process. Hence, volatility estimates based on returns

calculated from transaction prices sampled at very high frequencies are upward bi-

ased. The bias caused by bid-ask bounce increases with the sampling frequency. The

increase in bias and reduction in variance of the estimator results in a trade-off in

terms of statistical efficiency. To strike a balance between bias and precision the orig-

inally proposed sampling frequencies were in the 5- to 30-minutes range, motivated

by volatility signature plots that display the variance or the mean squared error as

a function of the sampling frequency.

Academic interest in the realized volatility literature has shifted to studies that

take market microstructure noise into account. This resulted in considerable im-

provements for practical volatility estimation. On the one hand authors focused on

optimizing the sampling frequency in the presence of noise, see e.g. Bandi and Rus-

sell (2008b), and bias-correction methods that allow and justify the use of higher

sampling frequencies on the other hand, see e.g. Zhang et al. (2005). These recent

advances in the academic literature on the use of high-frequency data for improved

risk measurement enable practitioners to use risk models based on high-frequency

data that can substantially expand their arsenal of risk management tools. Short

term risk models based on high-frequency data are more precise, more adaptive and

less impacted by structural breaks than their low-frequency data counterparts. Be-

sides improved measurement of portfolio risk, practitioners are now starting to use

the merits of high-frequency data at several stages of the integral risk management

process. High-frequency data is for example also increasingly being studied by prac-

titioners for improved estimation of dynamic factor exposures and hedging these over

short horizons, see e.g. De Rossi et al. (2012).

The literature on measuring and forecasting financial market volatility remains

an active field that continues to develop in several directions. Notable is the shift

from the initial theoretical working assumptions towards including realistic mar-
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ket microstructure frictions. With the exception of non-trading, most studies that

consider the impacts of market microstructure noise on volatility estimation with

high-frequency data are confined to univariate settings. Very little is known about

the complex structure of multivariate microstructure frictions arising from for in-

stance large trades in basket instruments such as derivatives, market indices and

ETFs. Transactions in these instruments are becoming increasingly more relevant

than transactions in individual securities. Another potentially important source of

market microstructure noise that can affect stocks in particular sectors or countries

are recently implemented short-sell restrictions. The common working assumption of

independence in microstructure frictions across assets is likely to be challenged. This

especially applies to periods surrounding economic news announcements where often

entire asset classes move in a certain direction and independence between the arrival

of bid- and ask-transactions across underlying individual assets, especially those with

similar factor exposures, is not likely to be realistic. The only study that the author

is aware of on this topic is the recent work presented in Diebold and Strasser (2012)

which opens the door to more work on this challenging but interesting subject that

is potentially relevant for multivariate volatility estimation.

Another interesting and promising recently started development in the literature

is the increase in high-frequency data studies and applications that are relevant for

asset pricing. Recent examples of such studies involve the studying of asset class

(variance) risk premia and systemic risks, see e.g. Andersen et al. (2007), Boller-

slev et al. (2009), Bollerslev and Todorov (2011), Todorov and Bollerslev (2010) and

Wright and Zhou (2009) for work along these lines. Also of importance is the appli-

cation to asset classes other than stocks and FX rates. For instance, applications in

fixed income and commodity markets are rare, which is surprising given the impor-

tance of such asset classes. Studies that do look beyond the traditional FX and stock

market applications include Andersen et al. (2007), Busch et al. (2010), Duyvesteyn

et al. (2011), Fleming et al. (2003), Liu et al. (2012) and Wright and Zhou (2009).

1.4 Parkinson’s Range, Realized Range and Mar-

ket Microstructure Noise

Besides estimating volatility measures using asset returns, it is also possible to use

the high-low price range as a measure of return volatility. The daily high and low

prices of an asset are often quoted in databases and media such as financial newspa-

pers alongside quantities such as the closing price and the daily return. The daily

high-low range is the difference between the highest and lowest price at which trans-
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actions are executed and recorded. Parkinson (1980) illustrates that in a world with

continuous trading and without market frictions the daily high-low range is a more

efficient volatility estimator than the daily squared return since the variance of the

range-based estimator is about five times smaller than the variance of the squared

return estimator. Garman and Klass (1980) extend the work of Parkinson (1980)

by including open and close prices which further increases the efficiency of the daily

range-based volatility estimator. The Parkinson (1980) volatility estimator is biased

if the underlying diffusion has a drift. Alternative drift-robust daily range estimators

are proposed in Rogers and Satchell (1991), Kunitomo (1992) and Yang and Zhang

(2000).

Martens and Van Dijk (2007) and Christensen and Podolskij (2007) in indepen-

dent work propose the realized range as a highly efficient estimator of ex-post volatil-

ity. Similar to the concept of realized volatility being based on aggregating squared

intraday returns, the realized range is based on aggregating squared intra-period

high-low price ranges. The improvement in efficiency of the daily range relative to

daily squared return continues to hold when returns and ranges are sampled at higher

frequencies. The realized range is upward biased due to bid-ask bounce as is the case

for the realized volatility estimator. An advantage of the realized range estimator of

Martens and Van Dijk (2007), however, is that it is affected by an opposing source of

noise. In the context of the daily range Garman and Klass (1980), Beckers (1983) and

Marsh and Rosenfeld (1986) find that the volatility estimates are downward biased

due to non-trading. In practice transaction prices are observed in discrete time and

occur infrequently and irregularly during a trading day. The ‘true’ high (low) of the

underlying continuous time price process is unlikely to be recorded as a transaction

and the observable high (low) price underestimates (overestimates) the unrecorded

‘true’ high (low). This results in the downward bias in the daily range that carries

over to ranges sampled at higher frequencies. The realized volatility estimator is not

affected by non-trading, for the realized range, however, bid-ask bounce and non-

trading partially offset each other. For the possibly remaining net impact of noise

Martens and Van Dijk (2007) propose a multiplicative bias-correction.

The difference between the realized range estimators that appeared in Martens

and Van Dijk (2007) and Christensen and Podolskij (2007) is that Martens and Van

Dijk (2007) follow Parkinson (1980) by assuming that there is a sufficiently large

number of observed transactions in an interval so that the (sum of) squared range(s)

is adequately scaled by the variance of the range of a Brownian motion. Christensen

and Podolskij (2007), in contrast, propose to determine the scaling parameter by

estimating the variance of the range of a discretely observed Brownian motion. Hence,

the Christensen and Podolskij (2007) estimator is not downward biased due to non-
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trading and does not have the advantage of partially offsetting the upward bias due

to bid-ask bounce. For this reason Christensen et al. (2009) propose a bias-correction

that mitigates the impact of bid-ask bounce.

The proposed biased correction in Christensen et al. (2009) boils down to estimat-

ing the bid-ask spread and subtracting it from each intraday range. This methodol-

ogy works under the implicit assumption that the high (low) is always observed as

a transaction executed at the ask (bid) quote. In practice, however, the high (low)

price is not always recorded at the ask (bid) quote. Although it is most likely that an

intraday range is upward biased, it can also be unbiased when both the high and low

price in an interval are recorded at the same type of quote (both are bids or asks).

It is also possible that an intraday range is downward biased. Although unlikely, the

probability of observing a high price at a bid quote and observing the low price at

an ask quote in a specific interval is non-zero. The non-zero probability is important

when the intraday sampling frequency is high since this results in a large number of

intraday ranges.

In Chapter 2 we relax the implicit assumption in Christensen et al. (2009) of

the high (low) price always being a transaction executed at the ask (bid) quote.

This results in a novel heuristic approach for correcting the realized range based

on simulations, sorting and estimating the probabilities of observing upward, no

or downward bias due to bid-ask bounce in a particular intraday interval. This

approach results in a further increase in statistical efficiency which is achieved by a

further decrease in bias at the cost of a negligible increase in variance. We illustrate

the merits of the proposed bias-adjustment for volatility estimation using stochastic

volatility simulations and an empirical volatility forecasting application.

1.5 Realized Covariance and Realized Co-Range

The concept of realized volatility is extended to the multivariate case by Ander-

sen et al. (2001), Andersen et al. (2003) and Barndorff-Nielsen and Shephard (2004).

Similar to the univariate case, realized covariance and realized correlation also benefit

from the reduced variance of these estimators. The impacts of market microstruc-

ture noise, however, are different. Whereas bid-ask bounce is a dominant source

of upward bias for realized volatility estimates, the impact on realized covariance

estimates is minor.3 This is not to say that the impacts of microstructure noise

are less complicated in a multivariate setting. Realized covariance estimates based

3The impact of bid-ask bounce on microstructure noise partially depends on whether bid- and
ask-quoted transactions occur independently across assets or not.
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on high-frequency data can be severely biased towards zero since assets trade non-

synchronously.

Brandt and Diebold (2006) extend the daily range-based volatility estimator to

the multivariate case by forming a portfolio of two assets and using the daily ranges

of the portfolio and the two individual assets to estimate the daily covariance; see

also Brunetti and Lildholdt (2007). This daily co-range estimator has attractive

properties such as the relatively low variance of the co-range estimator.

In Chapter 3 we combine the suggestion of Brandt and Diebold (2006) with the

realized range estimator proposed in Martens and Van Dijk (2007) and Christensen

and Podolskij (2007) in order to use intraday ranges for covariance estimation re-

sulting in the novel realized co-range estimator. Realized covariances are unaffected

by bid-ask bounce under the assumption that bid and ask transactions occur inde-

pendently across assets. The realized co-range, however, is based on realized range

estimates which are impacted by bid-ask bounce. In contrast to the realized covari-

ance, the realized co-range is upward biased due to bid-ask bounce. This source of

noise in high-frequency range-based covariance estimates can partially offset the bias

towards zero induced by non-trading. Using extensive simulations that incorporate

market microstructure noise and an empirical asset allocation application to stocks,

bonds and gold futures, we illustrate that the realized co-range has attractive proper-

ties as a novel alternative asset return covariance estimator based on high-frequency

data.

1.6 Factor Models and High-Frequency Data

For the practically relevant case of portfolios consisting of a large number of assets,

several studies have successfully considered factor structures to tackle the ‘curse of

dimensionality’ (see e.g. Chamberlain and Rothschild (1983), Chan et al. (1999) and

Jagannathan and Ma (2003)). Recently Fan et al. (2008) illustrate the merits of a

linear factor structure using low-frequency daily data. An important problem faced

in the high-frequency literature on multivariate volatility estimation is the limitation

in asset universe dimension. To guarantee a positive semi-definite covariance matrix

most authors have initially avoided applications beyond the bi-variate case (see e.g.

Hayashi and Yoshida (2005)) or have used small dimensional applications that cannot

work for hundreds of assets. See e.g. Barndorff-Nielsen et al. (2011)) who propose

multivariate realized kernels that are implemented based on refresh-time sampling.

Refresh-time sampling in the context of realized covariances first appeared in Martens

(2006). Although the idea may be useful for small dimensional applications it is

suboptimal for vast dimensional applications where substantial differences in trading
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activity exist across individual securities. In general refresh time sampling leads to

the least liquid asset(s) determining the effective sampling frequency. This resulting

sampling frequency is much lower than could be achieved for the more liquid assets

under consideration. Lowering of the effective sampling frequency in turn reduces

the number of assets for which a positive semi-definite covariance matrix can be

estimated. Given this problem, which is inherent to refresh-time sampling, Hautsch

et al. (2012) propose to improve upon simple refresh-time sampling by first grouping

the assets based on their liquidity and estimating covariance matrix series for the

individual groups to reduce the loss of data.

In Chapter 4 we propose to combine the insights from the Finance literature on

factor models with the increased precision rendered by using high-frequency data.

The ‘curse of dimensionality’ for a long period limited the practical applicability of

multivariate volatility estimation with high-frequency data. We introduce a novel

approach for accurate measurement and forecasting of the covariance matrix of vast

dimensional stock portfolios by combining the use of high- and low-frequency data

with a linear factor structure. The factor covariance matrix is estimated using highly

liquid exchange traded funds (ETFs) as observable factors. These ETF instruments

are essentially free of market microstructure noise which justifies the use of ultra high-

frequency data. For the factor loadings, however, we propose the use of daily low-

frequency data to circumvent the potentially severe impacts of market microstructure

noise for illiquid stocks. Using simulations we illustrate that in a bi-variate setting

the realized mixed-frequency factor model (MFFM) compares favorably to (lead-lag

adjusted) realized covariance estimators and the ‘all overlapping returns’ estima-

tor proposed in Hayashi and Yoshida (2005). In an empirical setting the MFFM

is successfully implemented by estimating and forecasting the asset return covari-

ance matrix for hundreds of stocks belonging to the S&P500, S&P400 and S&P600

universes.



Chapter 2

Measuring and Forecasting

Volatility with the Realized

Range in the Presence of

Noise and Non-Trading∗

2.1 Introduction

Measuring and forecasting the volatility of asset returns plays a key role in various

areas of financial economics, including portfolio management, risk management and

the pricing of derivatives. The increasing availability of high-frequency asset price

data has triggered a vast amount of academic studies proposing volatility estimators

that exploit intraday prices to estimate and forecast daily volatility measures.

The realized variance (RV) estimator sums squared non-overlapping intraday re-

turns to estimate the daily variance, see e.g. Andersen et al. (2001). In a frictionless

market with continuous trading, RV converges to the integrated variance (IV) as the

sampling frequency of the intraday returns increases. In practice, however, high-

frequency asset prices are contaminated with market microstructure noise. This

causes potentially severe problems in terms of consistent estimation of the daily IV

by means of realized measures, see McAleer and Medeiros (2008) for a review. For RV

estimators based on intraday returns obtained from transaction prices the dominant

source of market microstructure noise is bid-ask bounce. Transactions take place at

∗This chapter is based on Bannouh, Martens and Van Dijk (2012).
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bid and ask prices causing an upward bias in the RV estimator. The magnitude of

the bias increases with the sampling frequency.

A pragmatic solution to circumvent the problems arising from bid-ask bounce is

to sample returns more sparsely by using longer intraday intervals; examples include

the popular 5- and 30-minute frequencies. While lowering the sampling frequency

reduces the bias in RV estimators, it also increases the variance. The use of sparse

sampling frequencies aims to strike a balance between these two aspects. More formal

approaches to correct for the effects of bid-ask bounce and other types of microstruc-

ture noise also exist. Among the most popular bias-correction methods is the two time

scales RV (TSRV) estimator of Zhang et al. (2005). In this approach the microstruc-

ture noise component is consistently estimated using the highest sampling frequency

available and subtracted from a subsampled RV estimator that is estimated using a

‘sparse’ sampling frequency.

Martens and Van Dijk (2007) and Christensen and Podolskij (2007) propose the

realized range (RR) estimator as a more efficient measure of ex-post volatility. The

RR estimator replaces the squared intraday returns in the RV estimator by squared

intraday ranges. The results of Martens and Van Dijk (2007) illustrate that in a

frictionless market the RR estimator is indeed more efficient than the RV estimator

when comparing similar sampling frequencies. These results continue to hold in

settings where market microstructure noise, in particular bid-ask bounce, is present.

The use of intraday ranges for volatility measurement is further complicated by a

different source of market microstructure noise, namely infrequent trading. Trading

does not occur continuously, that is, in practice we observe transactions at irregularly

spaced points in time, see e.g. Engle (2000) or Griffin and Oomen (2008). For the

RV estimator, non-trading increases the variance but does not cause a bias. In

contrast, infrequent trading introduces a downward bias in RR estimators as the

observed intraday high and low prices are likely to be below and above their ‘true’

values, respectively.1 Christensen and Podolskij (2007) propose an adjustment of the

standard RR estimator to account for the effects of non-trading.

Returning to the issue of bid-ask bounce, Christensen et al. (2009) propose a

‘two time scales’ RR (TSRR) estimator that aims to correct the upward bias due to

bid-ask bounce along the same lines as the TSRV estimator of Zhang et al. (2005).

The two time scales RR is implemented by estimating the bid-ask spread using the

highest sampling frequency available and subtracting this quantity from each of the

intraday ranges.

1Note that a possible advantage of the ‘standard’ realized range estimator is that the positive
bias due to bid-ask bounce and the downward bias due to non-trading offset each other to a certain
extent.
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In this paper we extend the bias-adjustment for the realized range presented in

Christensen et al. (2009) by relaxing the assumption that the observed high (low)

price in each intraday interval originates from a transaction taking place at the ask

(bid) quote. While this may be the most likely situation, in practice the high (low)

price may also be observed as a transaction at the bid (ask) quote, such that an

intraday range is not necessarily upward biased. Intuitively, the likelihood of an

intraday range being upward biased decreases when the noise-to-volatility ratio be-

comes smaller or when the trading intensity of the asset becomes lower. We propose a

heuristic adjustment of the RR that utilizes simulation-based estimates of the proba-

bilities of an intraday range being upward biased, downward biased or unbiased. For

the heuristic adjustment we need three inputs that are readily available from a sam-

ple path of tick data for a full trading day for which one wants to estimate the daily

volatility. These inputs are estimates of the following quantities: (i) the daily range

that is unaffected by noise, (ii) the non-trading probability and (iii) the half-spread.

Using these inputs we simulate a geometric Brownian motion with variance (i) and

implement noise with settings (ii) and (iii). For the simulated geometric Brownian

motions we keep count of how many intraday ranges are upward biased, unbiased or

downward biased. By averaging over simulation runs we estimate probabilities for

the three cases that can be attached to the ranks of sorted intraday ranges. We apply

these probability ranks to the sorted vector of initial high-low ranges for which we

are now able to indicate whether an intraday range is expected to be upward biased,

unbiased or downward biased.

We study the proposed heuristic bias-adjustment for the realized range estimator

in a simulation setting with plausible levels of bid-ask bounce and non-trading. Using

Monte Carlo simulations with several different stochastic volatility models as data

generating process we find that the heuristically adjusted realized range estimator

TSRRh provides volatility estimates that compare favorably, in terms of statistical

efficiency, with the (TS)RV and (TS)RR estimators studied in Christensen et al.

(2009) and the (TS)RV estimators in Aı̈t-Sahalia and Mancini (2008). In an empiri-

cal forecasting application for the relatively liquid IBM stock and Zimmer Holdings

(ZMH), a relatively illiquid constituent of the S&P500 belonging to the health care

sector, we also find encouraging results. For IBM the heuristically adjusted RR

volatility estimator provides more efficient one-step ahead forecasts. For ZMH the

TSRRh outperforms (TS)RV and TSRR and competes with the RR estimator.

Our paper is related to several recent articles examining the relative performance

of different realized measures in terms of measuring and forecasting the daily inte-

grated variance. Among the studies that focus on out-of-sample predictive ability,

Liu et al. (2012) recently consider the model confidence set approach to test for
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350 assets, selected from several asset classes, whether alternative volatility forecasts

can beat RV forecasts. They conclude that there are better forecasts but that it is

difficult to significantly improve upon the RV forecasts. Their study includes the re-

alized range which is implemented in the form proposed by Christensen and Podolskij

(2007), which takes non-trading into account but is not unadjusted for other forms of

microstructure noise. They find that the realized range forecasts compare favorably,

especially for interest rate futures. Aı̈t-Sahalia and Mancini (2008) put forward fore-

casting results for TSRV and RV measures in the presence of jumps, noise correlated

with the efficient price, autocorrelated noise, long-memory in volatility and leverage

effects in volatility. In addition they compare TSRV and RV forecasts for the rela-

tively liquid DJIA stocks. They find that TSRV forecasts are more efficient than RV

forecasts. Andersen et al. (2011) evaluate out-of-sample volatility forecasts in a sim-

ulation setting that uses stochastic volatility diffusions. The resulting efficient price

processes are contaminated with microstructure noise. Their analysis is extended in

several dimensions such as an implementation where the noise is serially correlated.

They find that a combination of the TSRV and a RV estimator constructed by weight-

ing different sampling frequencies performs best. Ghysels and Sinko (2011) evaluate

volatility forecasts in the Mixed Data Sampling (MIDAS) framework and include re-

sults for iid-distributed noise and dependent noise. Consistent with Aı̈t-Sahalia and

Mancini (2008) they find that at high sampling frequencies TSRV forecasts achieve

the highest efficiency. Christensen et al. (2009) compare (TS)RV and (TS)RR esti-

mators and find that in the presence of bid-ask bounce TSRR and TSRV compete

in terms of statistical efficiency and that TSRR is more efficient when more than

300 observations are available. In an empirical application Christensen et al. (2009)

estimate the volatility of two highly liquid IT stocks, Microsoft and INTEL, and find

that (TS)RV estimators have a smaller variance than RR. The TSRR they propose,

however, has a smaller variance than the (TS)RV estimators.

The remainder of this paper is structured as follows. In Section 2 we develop

the heuristic bias-adjustment for the RR estimator and discuss the (two time scales)

realized volatility and (two time scales) realized range estimators. The simulation

results are discussed in Section 3. Empirical forecasting results are presented in

Section 4. We conclude in Section 5.
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2.2 Volatility estimators, noise and bias-corrections

2.2.1 Volatility estimators

We assume that the logarithmic asset price Pt follows a driftless diffusion

dPt = σtdWt, (2.1)

where σ is a strictly positive stochastic volatility process and Wt is a Wiener process.

The daily interval is standardized to unity, such that the daily integrated variance

(IV) is given by

IVt =

∫ t

t−1

σ2
sds. (2.2)

Let rΔt,j = logPt+jΔ − logPt+(j−1)Δ denote the log-return over the j-th intra-day

interval of length Δ on day t, for a given interval length 0 < Δ < 1 such that we have

J = 1/Δ intervals in a given day.2 The realized variance estimator is calculated by

summing squared intraday returns that are sampled from non-overlapping intervals

of length Δ,

RV Δ
t =

J∑
j=1

r2t,j . (2.3)

The realized range replaces the squared returns in RV by squared intraday ranges,

RRΔ
t =

1

4 log 2

J∑
j=1

(logHt,j − logLt,j)
2, (2.4)

where Ht,j = sup(j−1)Δ≤i≤jΔ Pt+i and Lt,j = inf(j−1)Δ≤i≤jΔ Pt+i denote the high

and low prices during the j-th interval on day t. In a frictionless market environment

with continuous trading, both RVt and RRt are consistent estimates of the integrated

variance IVt when the number of intraday intervals J →∞. In the constant volatility

case σt = σ the variance of RV is 2σ4Δ2 and the variance of RR is approximately3

0.407σ4Δ2, which renders the RR about 5 times more efficient.

2.2.2 Market microstructure noise

Market microstructure noise refers to imperfections in the trading process of finan-

cial assets causing observed prices to deviate from the underlying ‘true’ price pro-

2For convenience we assume that Δ is such that J is an integer.
3The exact variance of the RR is (

9ζ(3)

(4 log 2)2
− 1)σ4Δ2 where ζ(x) =

∑∞
m=1 1/m

x is Riemann’s

zeta function.
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cess. Microstructure noise generally implies that realized volatility and realized range

measures are inconsistent estimators for the integrated variance, with the impact be-

coming more pronounced as the sampling frequency increases. We focus on bid-ask

bounce and non-trading since these are the two most relevant sources of noise that

affect range-based volatility estimates based on high-frequency intra-day transaction

prices.

Bid-ask bounce

Observed transactions take place at bid and ask quotes causing negative autocorre-

lation in high-frequency returns as the observed price jumps transiently from ask to

bid and vice versa, see e.g. Roll (1984). Hence, at the micro level bid-ask bounce

introduces volatility in the observed price process that is unrelated to the volatility

of the ‘true’ price process. For this reason bid-ask bounce causes an upward bias in

high-frequency volatility estimates.

A general representation of bid-ask bounce and the relationship between the ‘ef-

ficient’ price Pt and the ‘noisy’ transaction price P ∗t is given by:

P ∗t = Pt + ωt, (2.5)

where bid-ask bounce is represented by ωt which follows an i.i.d. distribution with

support on +ω and −ω, such that ω represents the half-spread.

Infrequent trading

Strictly speaking, non-trading does not fall under the heading of microstructure noise

as defined above, in the sense that observed transaction prices are (or can be) equal

to the efficient price. As the price process is not observed continuously though, non-

trading does affect the RR estimator. As the observed high and low prices in a given

intra-day interval are likely to be below and above their ‘true’ values, respectively,

infrequent trading introduces a downward bias in the ‘standard’ RR estimator in

(2.4). Effectively, in the presence of non-trading the scaling parameter 4 log 2, which

is the variance of a continuously observed Brownian motion, is not appropriate.

Following Christensen and Podolskij (2007), we therefore use

RRΔ
t =

1

λm

J∑
j=1

(logHt,j − logLt,j)
2, (2.6)

where m is the number of observations in an intraday range. The appropriate scaling

parameter λm = E[ max
0≤s,t≤m

(Wt/m − Ws/m)2] is determined through simulating an
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infrequently observed Brownian motion W and estimating the second moment of its

range. Note that this adjustment destroys the possibility that the upward bias due to

bid-ask bounce and the downward bias due to infrequent trading (partly) offset each

other, necessitating a further adjustment of the RR in Equation (2.6) to account for

the effects of microstructure noise.

2.2.3 Correcting for bid-ask bounce

Subsampling aims at at improving the accuracy of realized measures by using multiple

intraday sample paths through shifting the point at which a sample starts. Assuming

one has access to 1-minute price observations at 9:30, 9:31, 9:32, etc. the standard

approach to estimate RV using, for example, 5-minute returns is to use transaction

prices at 9:30, 9:35, 9:40 etc. A way to exploit more of the available data is to use a

5-minute price sample consisting of observations 9:31, 9:36, 9:41 etc. This approach

provides five different samples giving rise to five different RV estimates. These can be

averaged such that more data is used. The number of subsamples one can compute

depends on the ‘intended’ sampling frequency and on the highest sampling frequency

available. Assuming that there are S subsamples, the subsampled RV S estimator is

defined as:

RV Δ,S
t =

1

S

S∑
s=1

RV Δ
t,s. (2.7)

The two time scales estimator introduced in Zhang et al. (2005) combines the

subsampled RV S estimator at a ‘sparse’ frequency, e.g. 5-minutes (n = 78), with

an ultra-high-frequency estimator that uses all of the N observed transaction-based

intraday returns to estimate the noise component. At the ultra-high-frequency RV is

estimated using all of the N +1 observed price ticks in a trading day and is denoted

RV N . This ‘all returns’ estimator produces a consistent estimate of the quantity

2NE(ω2) such that E(ω2) = RV N/2N . Combining the sparsely subsampled RV S

estimator and the ‘all returns’ estimate to remove the noise results in a consistent

estimator of the integrated variance, the two-time-scales realized variance (TSRV)

estimator:

TSRV Δ
t = RV Δ,S

t − n̄

N
RV N , (2.8)

where n̄ = n−S+1
S . A small sample adjustment is applied to adjust for the fact that

the number of returns in each of the sub-grids may not be equal:

TSRV Δ,adj
t =

1

1− n̄
N

TSRV Δ
t . (2.9)
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For sufficiently large samples the correction term converges to unity. The TSRV esti-

mator uses all available intraday price observations to estimate the noise component.

For the RV subsampler at sparse frequencies, however, TSRV does not necessarily

use all of the available data. Range-based volatility estimators by construction use

all of the available data to calculate the highs and lows in an interval, and hence,

make more efficient use of the high-frequency data to estimate volatility.

Similar to the TSRV estimator, Christensen et al. (2009) propose the use of a

bias-correction for the realized range estimator based on two time scales. The bias-

correction is derived under the assumption that the noise is represented by bid-ask

bounce4, i.e. an iid-noise distribution centered around zero with support on only two

points, see also Equation (2.5) for a general representation. The highest frequency

time scale is used to estimate the impact of bid-ask bounce. Specifically, a consistent

estimate of the half-spread is obtained using ω̂ =
√
RV N/2N . This quantity is then

used to filter out the bid-ask spread ω in each interval of the sparsely sampled realized

range estimator:

TSRRΔ
t =

1

λ̃m

J∑
j=1

(logHt,j − logLt,j − γω̂)2, (2.10)

where Christensen et al. (2009) use γ = 2 which is based on the implicit assumption

that Ht,j is always at the ask-quote and Lt,j is always at the bid-quote. The scaling

parameter λ̃m = E[ max
s:ωs/m=−ω,t:ωt/m=ω

(Wt/m −Ws/m)2] is determined through esti-

mating the variance of the range of a discretely observed Brownian motion that is

contaminated with noise.

The TSRR proposed in Christensen et al. (2009) takes into account that observed

prices are contaminated by bid-ask bounce and that prices are observed infrequently.

The latter is done through the multiplicative scaling parameters λm and λ̃m which

take on different values for RR and TSRR due to microstructure noise. Underlying

the additive part of the bid-ask correction where γ = 2, is the implicit assumption

that the high is always an ask price and the low is always a bid price. In the presence

of plausible levels of bid-ask bounce and non-trading, however, the probabilities of

an intraday range being unbiased or downward biased are non-zero. The assumption

of all intraday ranges being upward biased only holds when an asset trades very fre-

quently throughout the day and a sufficiently large number of transactions is recorded

in each of the intraday sampling intervals. In addition, the noise-to-volatility ratio

4It is hard, if not impossible, to derive a bias-adjustment for the RR estimator under noise distri-
butions with unlimited support. Christensen et al. (2009) provide extensions to other microstructure
noise distributions with bounded support such as a uniform noise distribution and rounding errors.
The focus in their study, however, is also mainly on bid-ask bounce.
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should be sufficiently large. For illiquid assets such as stocks that are traded infre-

quently this assumption may not always hold. This can be exemplified by analyzing

an artificial price path where in some specific intraday interval the high and low are

equal, i.e. this interval should not contribute to the daily volatility. For the RV and

RR estimators this is the case, as both the intraday return and range are zero for

this interval and do not contribute to the daily volatility estimates. This specific

interval will, however, introduce an upward bias in TSRR of 4ω2

λ̃
. This upward bias

for a specific interval also occurs when the high and low are non-equal but both were

recorded at the bid quote (ask quote). For these reasons we relax the assumption that

the observed high (low) price always originates from a transaction executed at the

ask (bid) quote. Specifically, we use simulation-based estimates of the probabilities

that a specific intraday range is unbiased or even downward biased. The underlying

idea is that if one would sort all the observed intraday highs (lows), then the highest

high (lowest low) is more likely to be at the ask-quote (bid-quote) than is the case

for the lowest (highest) observed high (low).

In more detail, we propose the following bias adjustment procedure that is based

on simulation and sorting. Given a trading day of tick data that is contaminated by

noise and infrequent trading:

1. Estimate the non-trading probability using the number of observed transactions
on day t.

2. Use Parkinson (1980)’s daily high-low range estimator to obtain an initial es-
timate of the volatility for day t.5

3. Estimate bid-ask bounce, i.e. ω̂ =
√
E(ω2) =

√
RV N/2N .

4. Simulate intraday sample-paths based on a geometric Brownian motion with in-
puts being the estimated non-trading probability, the initial volatility estimate
and the estimated bid-ask spread.

5. Using the bid-ask and non-trading contaminated simulated sample paths, esti-
mate the probability of observing (a) no bias, (b) upward bias and (c) downward
bias in the intraday range.6

6. Sort the empirical intraday high-low’s. Based on the estimated probabilities
from the previous step, calculate how many of the intraday ranges are expected
to be (a) unbiased, (b) upward biased or (c) downward biased. Use Equation
(2.11) and apply (a) γj = 0, (b) γj = 2 and (c) γj = −2 to adjust for (b)
upward bias and (c) downward bias.

5It is important that this estimator is (almost) not affected by microstructure noise (we will use
the daily range, alternatively one can use another (almost) bias-free measure, e.g. the TSRV or the
daily squared return).

6Case (a) occurs when in an intra-day interval the observed high and low are both executed at a
bid price (or both being an ask), (b) occurs when the observed high is an ask-price and the observed
low is a bid-price (c) occurs when the high is a bid-price and the low is an ask price.
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Hence, our estimator has the same form as the estimator proposed in Christensen

and Podolskij (2007) with the difference being that we do not use γ = 2 to correct

each of the intra-day ranges. Instead we propose to use

TSRRhΔ
t =

1

λ̃

J∑
j=1

(logHt,j − logLt,j − γjω̂)
2, (2.11)

where we use γj = 2 if after sorting and using the simulated probabilities an intraday

range is expected to be biased upward (b). Assuming that the J intraday ranges

are sorted in a descending manner and the estimated probability of intraday ranges

being biased upward is q, then the first Jq intraday ranges are expected to be biased

upward. Similarly, assuming that the probability of an intraday being unbiased is

estimated to be v, we use γj = 0 (a) for the subsequent Jv intraday ranges and for

the remaining7 J(1− q − v) intraday ranges γj = −2 (c) is used.8

2.3 Monte Carlo Simulation

In the following Monte Carlo simulation experiments we compare ex-post volatil-

ity estimates using the (TS)RV and (TS)RR estimators with the newly proposed

TSRRh estimator. The estimators are compared in terms of bias, variance and effi-

ciency. We simulate the integrated variance using several stochastic volatility diffu-

sions that were also used in Aı̈t-Sahalia and Mancini (2008), among others. Returns

and integrated volatilities are simulated from a Heston Jump-Diffusion, a Fractional

Ornstein-Uhlenbeck process and a discrete-time log-volatility model. We simulate

1,000 trading days of 6.5 hours, i.e. 23,401 prices are simulated per day to match

a time step of 1 second. Subsequently non-trading is implemented by assuming a

trade is observed with probability 0.10 such that on average 2,340 ‘clean’ prices are

observed during the day. Microstructure noise is implemented by contaminating the

prices with a half-spread of ω = 0.025% on the asset price. Bid and ask prices are

assumed to occur equally likely. In all experiments we use 100 sub-sample grids to

calculate TSRV. For each daily TSRRh estimate 500 simulations are used to estimate

7Assuming Jq and Jv are integer.
8For the statistical properties of the TSRR(h) estimator we refer to Christensen et al. (2009)

who obtain consistency using double asymptotics for the number of intervals and the number of ob-
servations per interval. Asymptotically the TSRR and TSRRh estimators share the same statistical
properties when microstructure noise is represented by bid-ask bounce as in Equation (2.5) and the
number of observations per interval diverges to infinity. The probability of observing upward bias
in an intraday range converges to 1. For the TSRRh estimator this results in γ = 2 and therefore
it becomes equivalent to the TSRR estimator. The small sample properties of these volatility esti-
mators under several different stochastic volatility diffusions as data generating process are studied
in the following section.
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the impact of bid-ask bounce for rank-sorted intraday ranges in order to implement

the proposed bias-adjustment as in Equation (2.11).

2.3.1 Heston stochastic volatility jump-diffusion

The data generating process for returns and volatility under the Heston (1993)

stochastic volatility jump-diffusion model is specified by

dPt = (μ− σ2
t /2)dt+ σtdW1,t,

dσ2
t = −κ(σ2

t − α)dt+ γσtdW2,t + Jtdqt,

with drift parameter μ = 5%, a long term average volatility α = 3.5%, and mean

reversion parameter κ = 5. The volatility of volatility parameter γ = 0.5 facilitates

leverage effects as the two Brownian motions are negatively correlated with ρ = −0.5.
The occurrence of jumps in the volatility process has distribution qt ∼ Poi(φ) and

the jump magnitude follows an exponential distribution Jt ∼ Exp(ζ). Following

Aı̈t-Sahalia and Mancini (2008) we set λ = 1/2 and ζ = 0.0007. Empirical stylized

facts are taken into account by the inclusion of jumps in the volatility process and a

leverage effect to allow for the empirically plausible negative relation between returns

and volatility shifts.

2.3.2 Fractional Ornstein-Uhlenbeck process

Following Aı̈t-Sahalia and Mancini (2008) we simulate IV using a fractional Brownian

motion,

dPt = (μ− σ2
t /2)dt+ σtdWt,

dσ = −κ(σt − α)dt+ γdWH,t,

where dWt is a Wiener process and dWH,t is a fractional Brownian motion with Hurst

index H ∈ (0, 1). A fractional Brownian motion is a continuous mean zero Gaussian

process with stationary increments and covariance E(WH,tWH,s) = 1
2 (s

2H + t2H −
|s − t|2H). The covariance structure illustrates that the increments are positively

correlated when 1
2 < H < 1 and exhibit long-memory, for H = 1

2 the increments

are independent and correspond to a standard Brownian motion. To simulate the

fractional Brownian motion we use the Davies and Harte (1987) algorithm with Hurst

effect H = 0.7.



22
Measuring and Forecasting Volatility with the Realized Range in the Presence of

Noise and Non-Trading

2.3.3 Discrete-time log-volatility model

In many applications the logarithm of volatility is used because the logarithm of

(realized) volatility is empirically found to be closer to a Gaussian distribution (see

e.g. Figure 1 in Andersen et al. (2001)). The discrete time model we use is the model

employed in Andersen et al. (2003) and Aı̈t-Sahalia and Mancini (2008). The daily

integrated volatility lt follows an AR(5) process

lt =
1

2
log(IVt) = φ0 +

5∑
i=1

φilt−id + et, (2.12)

where IVt is the daily integrated variance and et is white noise. Intraday efficient

returns are obtained using rt =
√
IVtzt with zt ∼ NID(0, 1). For the parameters

we use those reported by Aı̈t-Sahalia and Mancini (2008), φ0 = −0.0161, φ1 = 0.35,

φ2 = 0.25, φ3 = 0.20, φ4 = 0.10, φ5 = 0.09 and σe = 0.02.

2.3.4 Monte Carlo results

Volatility estimation results using Monte Carlo simulations for the three stochastic

volatility models9 discussed above are summarized in Table 2.1. The microstructure

noise settings used are a probability equal to 0.10 of observing a trade10, which results

in 2,340 observations per day on average and a half-spread of 0.025% of the asset

price.

Under the Heston jump-diffusion the bias for the RV estimator (0.093) is some-

what smaller than would be expected based on using a half-spread of 0.025% of the

asset price (0.0975 = 2∗390/5∗0.025%2).11 This is due to the quadratic variation be-

ing larger because of jumps in the volatility process. The variance of all the volatility

estimators considered under the Heston jump-diffusion models is considerably larger

than in models that do not incorporate jumps since the volatility estimators dis-

cussed here are not designed to be jump-robust. Theoretically the RR estimator is

expected to have a substantially smaller variance than the (TS)RV estimators. It is

interesting to compare the competing estimators in the presence of bid-ask bounce,

non-trading and jumps in the volatility process. Indeed we find that at the 5-minute

9Results for a Brownian motion with constant volatility are similar in the sense that TSRRh
improves upon (TS)RV because of having a smaller variance leading to a smaller RMSE. The
TSRRh also improves upon (TS)RR because of a smaller bias that comes at the cost of a modest
increase in variance. This bias-variance trade-off results in TSRRh having a smaller RMSE than
(TS)RR as well. Results are available upon request.

10The trading probability is in line with the results presented in Table 1 in Hansen and Lunde
(2006).

11Errors are multiplied with 104 to improve readability.
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sampling frequency the variance of RR (0.071) is still more than 3 times smaller

than the variance of RV (0.253) and less than half the variance of TSRV (0.170).

In terms of RMSE the RR (0.460) performs better than RV (0.511) but in turn it

is outperformed by the TSRV (0.414) because the latter is approximately unbiased

(−0.038). The bias of the RR (0.374) estimator is substantially larger than the bias

in the RV estimator. Bias-correcting the realized range as proposed by Christensen

et al. (2009) successfully reduces the bias from 0.374 to −0.263 at the cost of an

increase in variance from 0.071 for RR to 0.108 for TSRR. Despite the reduced bias,

the TSRR (0.421) still does not improve upon TSRV (0.414). Taking into account

that not all intraday ranges are upward biased and that the largest intraday ranges

in a day are more likely to be upward biased than the smallest intraday ranges is

exemplified by TSRRh (−0.239) having a smaller bias than TSRR (−0.263). As a

result the RMSE of TSRRh (0.407) is also smaller than the RMSE (0.414) of the

unbiased TRSV estimator. At the 30-minute sampling frequency the impact of noise

is substantially smaller as expected12 and for this reason it is optimal to use the RR

without bias-correction.

Across models we find that using 5-minute intervals to estimate daily volatility

outperforms the lower 30-minute and daily sampling frequencies in terms of variance

and statistical efficiency. Under the fractional Brownian motion model the TSRV

estimator minimizes the bias (−0.023) at the 5-minute sampling frequency as was

the case under the Heston model. Again the realized range-based estimators achieve

a smaller variance than (TS)RV. However, it is also the most biased estimator and for

this reason the least efficient with a RMSE of 0.422. The TSRV (−0.023) successfully
reduces the bias of RV (0.098) and achieves a RMSE of 0.219. Similarly the TSRR is

very successful in reducing the bias of RR (0.395) to −0.138 and also has a smaller

RMSE (0.208) than the (TS)RV estimators. By using the informational content

contained in the size of the intraday ranges through implementing the TSRRh the

bias is further reduced from −0.138 for TSRR, down to −0.120 for TSRRh which

results in TSRRh having the smallest RMSE (0.199).

For the discrete-time log-volatility model we find similar results in the sense that

at the 5-minute sampling frequency the TSRV estimator minimizes the bias (−0.037)
but has a variance (0.048) that is inferior to that of the RR (0.022), TSRR (0.024)

and TSRRh (0.025) estimators. The TSRRh (−0.134) is less biased than the TSRR

(−0.151) which in turn is less biased than RR (0.380). The result is that, similar

to the results under the Heston Jump-Diffusion and the fractional Brownian motion

model, the TSRRh at the 5-minute sampling frequency achieves the smallest RMSE

in the discrete-time log-volatility model.

12For instance the expected RV bias is now only 0.01625.
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2.4 Empirical application

For a relatively liquid (IBM) and illiquid (Zimmer Holdings, ZMH) stock we obtain

intraday transaction prices and quotes from the TAQ database for the 1/1/2006 –

12/31/2008 period. The data are cleaned following the procedures documented in

Barndorff-Nielsen et al. (2009) with the exception that we do not use moving-average

rules to judge the adequacy of observed transactions.13 Using the cleaned data we

estimate the bid-ask spreads, following Roll (1984), to be 2.13 basis points (bps) for

IBM and 4.93 bps for ZMH. The daily and intra-daily variation in bid-ask spreads

through our sample period is, however, quite substantial. This particularly applies

to the financial market turmoil in 2008. The trading probabilities are estimated to

be 0.084 for ZMH and 0.201 for IBM on a 1-second time-grid.14

Figure 2.1 plots annualized volatility estimates for IBM and ZMH. The sample

period 2006–2008 is interesting since it contains the relatively tranquil period before

the 2008 crisis, the height of the financial market turmoil in the second half of 2008

when stock market volatility peaked and the reversion towards normal volatility

levels at the end of 2008. Consistent with the simulation results, the two time scales

realized range and the heuristically adjusted two time scales realized range render

very similar volatility dynamics. Since the heuristical adjustment does not always

assume that an intraday range is upward biased, the empirical volatility estimates

are slightly higher than the two time scales realized range volatility estimates. Note

that these differences are more emphasized when volatility is relatively high (2008)

and the stock is relatively illiquid (ZMH), as expected based on the discussion in

Section 2.2.3 and the simulation results in Section 2.3.

We evaluate the out-of-sample forecasting performance of the heuristically bias-

adjusted RR, (TS)RV and (TS)RR estimators. For each realized measure we use an

AR(1) model (with intercept) to construct one day ahead volatility forecasts, using

a rolling window of one year to estimate the AR(1) coefficients. The out-of-sample

period is 1/1/2007–12/31/2008. We compare volatility forecasts using the commonly

used 5-minute sampling frequency. This choice is motivated by the Monte-Carlo

13Transactions and quotes are cleaned as follows: 1: Delete observations not originating from
the NYSE 2: Delete all implausible data, e.g. negative quotes/prices those equal to 0, 0.01 or e.g.
999.9., observations associated with a negative spread (ask<bid) etc. 3: Delete observations with
sale condition other than ”E”/”F”. 4: Delete observations with time stamps outside the 9:30–16:00
hours. 5: Delete all corrected observations (corr �= 0) 6: When multiple transaction prices have the
same time stamp use the median, do the same for bid-quotes and ask-quotes. 7: Delete transactions
that traded more than a spread size outside the bid-ask spread.

14For IBM the number of observed transactions before data cleaning procedures is substantially
larger with 29,923 observations per day. We follow the convention to limit ourselves to the 1-second
time grid, as described in the footnote above, we take the median of those transactions and this
dramatically reduces the resulting number of transactions that are used to estimate the volatility.
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results described in Section 2.3. We report Mincer-Zarnowitz and encompassing

regression results to evaluate the predictive accuracy. In the Monte Carlo simulation

we illustrated that for several stochastic volatility models the TSRRh is a highly

efficient volatility estimator in the presence of bid-ask bounce and non-trading. Since

for empirical data the integrated variance is unknown we compare the volatility

forecasts using forecast comparison regressions rather than bias, variance and RMSE.

We run Mincer-Zarnowitz and encompassing regressions to evaluate the compet-

ing forecasts and following Aı̈t-Sahalia and Mancini (2008) we use the two-time-

scales realized variance TSRV as the ex-post volatility measure. Hence, the Mincer-

Zarnowitz regressions are of the form

TSRVt = α+ βxt|t−1 + εt, (2.13)

where xt|t−1 is the volatility forecast for day t conditional on the data available at

day t − 1.15 In the encompassing regressions the realizations are regressed on two

competing forecasts (being, e.g., the realized range and realized volatility forecast),

TSRVt = α+ β1x1,t|t−1 + β2x2,t|t−1 + εt. (2.14)

Equation (2.14) is a pair-wise encompassing forecast regression in the standard

form.16 For these regressions we report the coefficient estimates and their corre-

sponding t-statistics based on Newey-West HAC robust standard errors (20 lags).

2.4.1 Empirical forecast results

Table 2.2 summarizes the Mincer-Zarnowitz regression results for volatility forecasts

based on the (TS)RV, (TS)RR and TSRRh estimators. We find for both stocks that

the differences in forecast accuracy are small due to the high correlation between

volatility forecasts. For the relatively liquid IBM stock, we find that the realized

variance forecasts have a Mincer-Zarnowitz R2 of 49.6%. The two-time-scales realized

volatility manages an R2 of 50.8%. It slightly underperforms the unadjusted realized

range forecasts which explain 50.9% of the variation in the ex-post TSRV estimates.

This finding is quite remarkable, in the sense that the TSRV serves as proxy for

the integrated variance in the Mincer-Zarnowitz regressions. Forecasts based on the

bias-adjusted realized range proposed by Christensen et al. (2009) achieve an R2

15The joint null hypothesis for x being unbiased and efficient is given by H0 : α = 0 and β = 1.
16The null hypothesis of forecasts x1 encompassing forecasts x2 is given by H0 : β1 = 1

⋂
β2 = 0

and the alternative hypothesis is H1 : β1 �= 1
⋃

β2 �= 0. Similarly the competing non-nested null
hypothesis of forecasts x2 encompassing forecasts x1 is given by H0 : β2 = 1

⋂
β1 = 0 and the

alternative hypothesis is H1 : β2 �= 1
⋃

β1 �= 0.
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of 50%, hence the bias-adjusted realized range performs slightly worse compared to

its unadjusted counterpart. Consistent with the volatility estimation results in the

Monte Carlo simulations, the empirical forecasts based on the heuristically adjusted

realized range outperform the forecasts based on other estimators as the TSRRh

achieves an R2 of 51.0%.

Table 2.2: Mincer-Zarnowitz Forecast Regressions

RV TSRV RR TSRR TSRRh RV TSRV RR TSRR TSRRh

Panel A: IBM 5m Panel C: IBM 5m with outlier correction
α 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
tstat 1.311 1.471 1.531 1.523 1.398 1.494 1.642 1.668 1.660 1.539
β 1.231 1.222 1.010 1.196 0.914 1.164 1.147 0.946 1.123 0.858
tstat 23.801 19.853 18.282 19.448 17.546 21.980 16.745 11.509 12.612 11.182
R2 0.496 0.508 0.509 0.500 0.510 0.685 0.687 0.686 0.681 0.689

Panel B: ZMH 5m Panel D: ZMH 5m with outlier correction
α 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
tstat -0.928 -0.879 -0.242 -1.022 -0.988 -1.076 -1.030 -0.372 -1.230 -1.150
β 1.736 1.820 1.562 2.054 1.250 1.691 1.779 1.522 2.003 1.220
tstat 9.124 7.295 10.921 9.995 8.812 10.019 7.740 12.244 11.040 9.517
R2 0.331 0.328 0.335 0.328 0.333 0.433 0.432 0.437 0.430 0.436

Note: The table summarizes the results of Mincer-Zarnowitz forecast regressions with and with-
out an outlier-correction applied to 10/10/2008. The (TS)RV, (TS)RR and TSRRh forecasts
are generated using 5-minute sampling frequencies and a AR(1) process that is dynamically
re-estimated using a moving window with window length 250 days. The imperfect volatility
proxy used is the TSRV at the 5-minute sampling frequency.

For the relatively illiquid stock, Zimmer Holdings (ZMH), we find that the R2’s

are substantially lower than for IBM volatility forecasts. Interestingly, the advan-

tage of a bias-correction almost vanishes. This may be due to the fact that most

corrections, in contrast to TSRR(h), are derived under continuous-time assumptions

that do not hold for illiquid stocks. For example, the standard realized volatility

has a Mincer-Zarnowitz R2 of 33.1%, being somewhat higher than that of the TSRV

(32.8%). Again we expected the latter to actually have a small advantage since it is

the ex-post quantity used to evaluate the forecasts. Unreported simulation results

indicate that TSRV does not outperform the standard RV estimator due to the noise

estimate RV N/2N being inaccurate when N is small in practice, whereas in the the-

ory outlined by Zhang et al. (2005) it is assumed that N →∞. When N is large we

can assume that the volatility signal in RV N is dwarfed by the noise signal. It is easy

to see, however, that when N is small the volatility signal in RV N increases. For this
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reason it causes a downward bias due to overcorrecting for noise.17 The (TS)RV and

TSRR forecasts are outperformed by the unadjusted realized range (R2 = 33.5%) and

the novel heuristic adjustment (R2 = 33.3%). The bid-ask adjustment of Christensen

et al. (2009) is at par with the two-time-scales estimator (32.8%). The heuristic bias-

adjustment for the realized range (33.3%) outperforms (TS)RV and TSRR. Hence,

for the relatively illiquid ZMH stock we find that bias-adjustments do not pay-off in

terms of forecasting performance, it is in this case better to just use the RR volatility

estimator without applying a bias-correction and if we insist on using intraday data,

then the TSRRh is preferred based on its forecast regression R2.

Table 2.3 summarizes the results for the encompassing forecast regressions in

Equation (2.14). Here we compare directly with each other the AR(1) forecasts of

the various volatility measures at the 5-minute frequency. We find that for IBM the

forecasts obtained from the TSRV estimator encompass those from the unadjusted

RV estimator, as expected based on the results in Aı̈t-Sahalia and Mancini (2008).

The coefficient on TSRV (1.570) in column 1 of panel A, is statistically significant (t =

3.500) whereas the coefficient on RV is negative (-0.357) and statistically insignificant

(t= -0.846). Similarly, the results in column 2 of panel A indicate that the unadjusted

realized range encompasses the unadjusted realized variance with coefficients being

1.090(t = 1.692) and -0.100(t = -0.134), respectively. Adding RR or TSRV forecasts

to unadjusted RV forecasts results in the same R2 of 50.9%. When we add the

forecasts based on the TSRR estimator to RV forecasts (panel A, column 3) we

find that the R2 shrinks to 50.1% and both coefficients are statistically insignificant.

However, adding the forecasts based on the heuristic bias-adjustment for realized

range (TSRRh) to unadjusted RV forecasts actually improves the R2 to 51.0% with

its coefficient being 0.992(t = 1.709) and the coefficient on RV being -0.107(t =

-0.145). In addition we report encompassing regression results for all other (bi-

variate) forecast combinations and find that adding the unadjusted RR forecasts to

the TSRV forecasts results in similar and statistically insignificant coefficients being

0.562(t = 0.733) and 0.546(t = 0.599), respectively, and an R2 of 51.0%. Hence,

combining RV and TSRRh forecasts results in the same R2 as combining TSRV and

RR. When we add the TSRR forecasts to TSRV forecasts we again find statistically

insignificant coefficients being 1.633(t = 1.053) on TSRV and -0.408(t = -0.269) on

TSRR. In contrast, we find that TSRV 6.143(t = 4.891) and TSRRh -6.139(t =

17See e.g. also Zhang et al. (2005) or Aı̈t-Sahalia and Mancini (2008) who report a very small
negative bias in TSRV in a setting where 23,401 transactions per day are observed, if we move to
more realistic settings and the number of observations decreases, this negative bias becomes more
pronounced. Of course, using a lower sampling frequency for TSRV could reduce the impact of
non-trading.
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-3.857) compete, having statistically significant coefficients of similar absolute size

but opposite signs, due to a high correlation between the forecasts. Running an

encompassing regression for TSRR and TSRRh forecasts results in both forecasts

being statistically significant and opposite signs with TSRR having a coefficient of

-3.219(t = -2.332) and 3.346(t = 3.334) for TSRRh. Looking at the 10 possible

forecast combinations the optimal combination found for the IBM data is that of RR

and TSRR forecasts with an R2 of 52.9%.

A similar analysis for the relatively illiquid stock (ZMH) illustrates that in con-

trast to the IBM results now RV 1.652(t = 1.561) forecasts outperform TSRV 0.090(t

= 0.084) forecasts (column 1, panel B). The RV forecasts 0.254(t = 0.327), however,

are outperformed by the RR 1.336(t = 2.321) forecasts (column 2, panel B), as ex-

pected. However, the RV forecasts 1.719(t = 2.007) almost reduce the coefficient

on TSRR 0.021(t = 0.024) to zero (column 3, panel B). Hence, whereas the bias-

adjustments worked for the relatively liquid IBM data this is not the case for the

illiquid ZMH data. We find similar results when we add the TSRV or TSRR to

RR forecasts, that is, the unadjusted RR forecasts are better than the TSRV and

TSRR. In the direct competition between TSRV and TSRRh both coefficients are

insignificant for IBM data with TSRRh having a somewhat larger weight of 0.554

than the weight of 0.486 on TSRV (column 7, panel A). For ZMH data (column 7,

panel B), however, TSRRh forecasts encompass TSRV forecast with TSRRh hav-

ing a statistically significant coefficient of 1.288(t = 2.358) whereas the coefficient on

TSRV is negative -0.056 and insignificant. Similar results are found after applying an

outlier correction to 10/10/2008 (column 7, panel D). For the out-of-sample period

2007–2008, the TSRRh forecasts are preferred over TSRR and TSRV forecasts.
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2.4.2 Outlier correction

During our out-of-sample period, which contains the height of the recent financial

crisis and the beginning of its aftermath, several trading days exhibited extremely

high volatility and can be regarded as outliers. It is interesting to analyze how an

outlier correction would influence the results. There is a vast literature on how to

adjust for outliers, such as truncating values that are more than several standard

deviations away from the (local) average of the volatility process or incorporating

dummy variables etc. Because there are several ways to go and we do not want to

alter the empirical data too much we will only incorporate a dummy for 10/10/2008

which was found to be an outlier using several approaches and analyze how this alters

the results discussed above.18

The Newey-West t-statistic for the dummy variable on 10/10/2008 is larger than

70 for all estimators when using Mincer-Zarnowitz regressions and for the IBM data

the t-stat is 145 for the dummy when using RV forecasts. Note the huge increase in

the Mincer-Zarnowitz R2’s for IBM and ZMH by explicitly incorporating this outlier.

For the IBM data the average R2 shifts 18.1% in absolute terms and 35.8% in relative

terms and for ZMH the shifts are 10.3% and 31.0%, respectively.

For the IBM data the conclusions do not change in the sense that if we rank the

forecasts on the Mincer-Zarnowitz regression R2 the TSRRh (R2 = 68.9%) forecasts

still slightly outperform (TS)RV and (TS)RR forecasts. Similarly, for the ZMH data

we again find that the unadjusted RR has the largest R2 being 43.7% and if we

insist on using a bias-adjusted estimator the TSRRh achieves the best result with

R2 = 43.6%.

For the encompassing regressions we find that for the IBM forecasts the TSRRh

are not rendered obsolete by the other forecasts. The ZMH results illustrate that in

the encompassing regressions with outlier correction the TSRRh performs satisfac-

torily as it outperforms the (TS)RV and TSRR and it competes with the unadjusted

realized range. Hence, including an outlier dummy for the most severe outlier in our

sample does not alter the main conclusions.

18For example, the RV on 10/10/2008 is more than 8 standard deviations away from the uncon-
ditional average.
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2.5 Conclusion

We have proposed a novel heuristic bias-correction for realized range-based volatility

estimates. For the heuristic adjustment we use three inputs that are easily and

accurately estimated from high-frequency data. The needed inputs are estimates

of the following quantities: (i) the daily range that is unaffected by noise, (ii) the

non-trading probability and (iii) the half-spread. Using these inputs we simulate a

geometric Brownian motion with variance (i) and implement noise with settings (ii)

and (iii). For the simulated Brownian motions we keep count of how many intraday

ranges are upward biased (most likely), unbiased or downward biased (least likely).

By averaging over simulation runs we estimate probabilities for the three cases that

can be attached to the ranks of sorted intraday ranges. We apply these probability

ranks to the sorted vector of initial high-low ranges for which we are now able to

indicate whether an intraday range is expected to be upward biased, unbiased or

downward biased.

Using three stochastic volatility models for the integrated volatility, which can in-

clude jumps, leverage effects and dependence in the increments of a Brownian motion,

we find that in the presence of bid-ask bounce and non-trading, volatility estimates

based on the new heuristically bias-adjusted realized range estimator (TSRRh) are

more efficient than estimates based on the realized variance, realized range and their

two time scales adjusted counterparts.

In an empirical setting we evaluated out-of-sample volatility forecasts using Mincer-

Zarnowitz and encompassing forecast regressions. For the relatively liquid IBM stock

we find that the heuristically bias-adjusted realized range estimator (TSRRh) com-

pares favorably to forecasts based on the (TS)RV and (TS)RR estimators. For the

relatively illiquid Zimmer Holdings stock (ZMH), we find that TSRRh improves upon

(TS)RV and TSRR forecasts and is on par with the RR estimator. Since the heuris-

tic adjustment does not assume that every observed intraday range is always up-

ward biased due to microstructure frictions, this essentially leads to a ‘smaller’ bias-

adjustment and therefore higher volatility estimates. ‘Overcorrecting’ for microstruc-

ture noise frictions for illiquid assets that have relatively small noise-to-volatility ra-

tios, can lead to unwanted underestimation of volatilities and risk measures such as

Value-at-Risk, that use volatility estimates as inputs.





Chapter 3

Range-based Covariance

Estimation using

High-Frequency Data: The

Realized Co-Range∗

3.1 Introduction

This paper develops a novel estimator of the daily quadratic covariation between

asset returns, based on high-frequency intraday price ranges. This so-called realized

co-range estimator combines two recent ideas that have revived the use of high-low

ranges for estimating the volatility and covariance of asset returns. First, it employs

the realized range, independently introduced by Martens and Van Dijk (2007) and

Christensen and Podolskij (2007), to estimate daily volatility by means of the sum

of squared intraday price ranges. Second, it adopts the suggestion of Brandt and

Diebold (2006) to use range-based volatility estimates of a portfolio and the individual

assets to estimate their covariance.

The increasing availability of high-frequency asset price data has led to a rapidly

expanding literature on the use of intraday prices to measure, model and forecast

daily volatility, see Andersen et al. (2006a) and McAleer and Medeiros (2008) for

recent reviews. Based on the theoretical results of Barndorff-Nielsen and Shephard

(2002) and Andersen et al. (2001, 2003), in the absence of microstructure noise the

∗This chapter is based on the article by Bannouh, Van Dijk and Martens (2009).
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sum of squared intraday returns, called realized variance, is a highly efficient estima-

tor of the daily quadratic variation. The benefits of high-frequency data continue to

hold in a multivariate context as intraday returns provide more accurate estimates of

the daily covariance between asset returns. Barndorff-Nielsen and Shephard (2004)

show that the realized covariance, that is, the sum of cross-products of intraday re-

turns, converges in probability to the quadratic covariation. The economic value of

using realized covariances in a volatility timing strategy has been explored by Flem-

ing et al. (2003) and De Pooter et al. (2008), who find that a risk-averse investor is

willing to pay between 50 and 200 basis points per annum to switch from covariance

measurement based on daily data to intraday data.

Intraday price ranges have only recently been considered for the purpose of esti-

mating daily volatility. This might appear surprising, given that it has been known

since Parkinson (1980) that the high-low range is considerably more efficient as an

estimator of volatility than the squared return, with a variance that is five times

smaller. Martens and Van Dijk (2007) and Christensen and Podolskij (2007) exploit

this result for developing an estimator of daily volatility based on intraday ranges,

which is more efficient than the realized variance (sampled at the same frequency)

by the same 5:1 ratio. A plausible reason for ignoring the range in the context of

high-frequency data is that the extension to the multivariate case, that is, to estimate

the covariation between asset returns, was an unresolved challenge until the recent

proposal by Brandt and Diebold (2006), see also Brunetti and Lildholdt (2007). This

exploits the fact that the covariance between two assets can be expressed in terms of

their individual variances and the variance of a portfolio of the two assets. The range-

based covariance estimator is then obtained by using daily price ranges to estimate

these variances.

The main contribution of this paper is to combine these two ideas to provide

an intraday range-based covariance estimator. In particular, we employ the realized

range of Martens and Van Dijk (2007) and Christensen and Podolskij (2007) for

estimating the daily volatilities that enter the co-range estimator of Brandt and

Diebold (2006), which results in the novel realized co-range estimator. Given the

relative efficiency of the realized range estimator, we expect the realized co-range

also to be more efficient than the realized covariance.

Market microstructure effects pose a serious challenge to the use of high-frequency

data. In the univariate case, the most important effect is due to bid-ask bounce, which

renders the standard realized variance estimator biased and inconsistent. This has

led to several proposals for bias-corrected realized volatility estimators on the one

hand, and for determining the optimal sampling frequency for the standard realized
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variance estimator on the other hand.1 As discussed in Martens and Van Dijk (2007)

and Christensen and Podolskij (2007), the realized range estimator in addition suffers

from infrequent trading. This causes a downward bias as the observed minimum and

maximum price over- and underestimate the true minimum and maximum, respec-

tively. In the multivariate case, the greatest concern for realized covariance estimators

is the presence of non-synchronous trading. As a result of assets trading at differ-

ent times, estimates of their covariance will be biased towards zero. This so-called

Epps (1979) effect becomes worse with increasing sampling frequency. The impact

of microstructure noise on the realized covariance estimator has recently received a

considerable amount of attention, see Hayashi and Yoshida (2005), Sheppard (2006),

Griffin and Oomen (2011), Zhang (2011), Voev and Lunde (2007), and Bandi et al.

(2008), among others.

In this paper we propose the use of an additive bias-correction for the realized co-

range, where we add the average difference between the covariance estimates based on

daily ranges and on intraday ranges over the previous Q trading days to the standard

realized co-range estimate. The main advantage of this additive bias-correction is

that it deals with the “net” bias that arises due to different possible microstructure

effects. This contrasts to other bias-corrections that have been put forward in the

context of range-based volatility estimators, which correct only for a single source of

bias such as infrequent trading, see Rogers and Satchell (1991), or bid-ask bounce,

see Christensen et al. (2009).

We assess the performance of the realized co-range estimator by means of ex-

tensive simulation experiments and an empirical application. In the simulations we

start from an idealized continuous-time setting without microstructure noise, where

we find that the realized co-range outperforms the returns-based realized covariance

estimator, as expected. In more realistic settings that incorporate bid-ask bounce, in-

frequent trading and non-synchronous trading, we find that the impact of the different

microstructure effects is reduced successfully by using the additive bias-correction.

The bias-corrected realized co-range is more efficient than the bias-corrected realized

covariance estimator for plausible levels of noise, as is the case for the daily co-range

compared to the daily covariance estimator.

In the empirical application we focus on the economic value of high-frequency

intraday ranges for estimating covariances. Specifically, we adopt the framework de-

veloped by Fleming et al. (2001, 2003) and use the realized co-range in a dynamic

1The choice of sampling frequency reflects the trade-off between accuracy, which is theoretically
optimized using the highest possible frequency, and microstructure noise, which calls for lowering
the data frequency. See Oomen (2005), Zhang et al. (2005), Aı̈t-Sahalia et al. (2005), Bandi and
Russell (2006, 2008a), Hansen and Lunde (2006) and Awartani et al. (2009) among others, for recent
discussions.
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volatility timing strategy for constructing mean-variance efficient portfolios consist-

ing of futures on stocks, bonds and gold. Sampling at the popular 5-minute frequency,

we find that the bias-corrected realized co-range and realized covariance estimators

provide similar results in terms of portfolio return and risk, before transaction costs.

At first sight, this indicates that both estimators render similar (co)variance dy-

namics. Closer inspection reveals that the correlation estimates obtained from the

realized co-range are less ‘noisy’ than those resulting from the realized covariance.

In the volatility timing strategy this causes less variation in the realized co-range

portfolio weights, which implies lower turnover and, hence, lower transaction costs.

Taking transaction costs into account, we find that a mean-variance investor would

be willing to pay 60 basis points per annum to switch from the realized covariance

to the realized co-range when the decay parameter of the used exponential weighting

scheme is estimated using a maximum-likelihood procedure. A sensitivity analysis of

the decay parameter, which determines how much weight is put on recent estimates

for predicting covariances, illustrates that the realized co-range outperforms the real-

ized covariance also in terms of risk-return characteristics and therefore gross Sharpe

ratios when more weight is put on the most recent estimate.

The remainder of this paper is organized as follows. In Section 3.2 we discuss the

realized (co-)variance and realized (co-)range estimators. In Section 3.3 we use Monte

Carlo simulations to analyze the properties of the realized co-range and realized

covariance estimators in the presence of noise. In Section 3.4 we consider the empirical

application to volatility timing strategies. We conclude in Section 3.5.

3.2 Volatility and covariation estimators

The traditional way to estimate daily volatility ex post is by means of the daily

squared return. Although this estimator is unbiased (in the absence of drift in the

asset price), it also is very noisy in the sense that it has a high variance. In order to

improve accuracy, high-frequency intra-day returns may be used. Dividing day t into

M non-overlapping intervals of length Δ = 1/M , the realized variance estimator is

given by

RV Δ
t ≡

M∑
m=1

(logPt,m − logPt,m−1)
2, (3.1)

where Pt,m is the last observed transaction price during the m-th interval on day t.

In the absence of noise and under weak regularity conditions for the stochastic log-

price process, the realized variance is a consistent estimator of the daily integrated
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variance, see Barndorff-Nielsen and Shephard (2002) and Andersen et al. (2003),

among others.

Further efficiency gains can be achieved by exploiting the superior properties of

the range as a volatility proxy compared to squared returns. In particular, Martens

and Van Dijk (2007) and Christensen and Podolskij (2007) define the realized range

as the sum of intraday price ranges, that is,

RRΔ
t =

M∑
m=1

1

4 log 2
(logHt,m − logLt,m)2, (3.2)

where the high price Ht,m and the low price Lt,m are defined as the maximum and

minimum, respectively, of all transaction prices observed during the m-th interval on

day t. The scaling factor 1/(4 log 2) is the second moment of the range of a Brownian

motion. Note that the realized range exploits the complete price path in the intra-day

intervals, while the realized variance only uses the first and last price observations.

For this reason, the realized range achieves a lower variance than the realized variance

based on the same sampling frequency. Specifically, assuming that the asset price Pt

follows a geometric Brownian motion with constant instantaneous variance σ2, the

variance of the realized range estimator is equal to 0.407σ4Δ2, compared to 2σ4Δ2

for the realized variance. Hence, the variance of the realized range is approximately

five times smaller than the variance of the realized variance estimator. Christensen

and Podolskij (2007) show that the realized range remains consistent and relatively

efficient in case volatility is time-varying, requiring only mild assumptions on the

stochastic volatility process σt.

3.2.1 Realized covariance and realized co-range

The intraday return-based realized variance in (3.1) provides an efficient estimator for

the variances of individual asset returns. Similarly, the realized covariance between

assets i and j can be obtained by summing cross-products of intraday returns,

RCV Δ
t =

M∑
m=1

ri,t,mrj,t,m, (3.3)

where ri,t,m = log(Pi,t,m/Pi,t,m−1) is the continuously compounded return on asset

i during the m-th interval on day t. Barndorff-Nielsen and Shephard (2004) study

the properties of the realized covariance, showing that it is consistent for the daily

integrated covariation under mild regularity conditions.
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Brandt and Diebold (2006) introduce a simple but effective way to estimate the

covariance by combining range-based estimates of the variances of two individual

assets and of a portfolio composed of these assets. Consider a portfolio of assets i

and j with weights λi and λj = 1− λi, with asset returns denoted as ri and rj . The

variance of the portfolio return rp ≡ λiri + λjrj is given by

Var[rp] = λ2
iVar[ri] + λ2

jVar[rj ] + 2λiλjCov[ri, rj ],

such that, after rearranging

Cov[ri, rj ] =
1

2λiλj

(
Var[rp]− λ2

iVar[ri]− λ2
jVar[rj ]

)
. (3.4)

The daily co-range estimator of Brandt and Diebold (2006) is obtained by using the

daily high-low range of the corresponding prices of the portfolio and the individual

assets as estimators of three variances on the right-hand side of (3.4). Due to the

fact that the range-based variance estimates make use of the complete price path

during the day, the daily co-range estimator is relatively efficient compared to the

cross-product of daily returns. In fact, Brandt and Diebold (2006) find that, in the

absence of noise, the efficiency of the daily co-range is between that of the realized

covariance in (3.3) computed using 3-hour and 6-hour intraday returns. Furthermore,

the daily co-range turns out to be robust to the effects of microstructure noise such

as bid-ask bounce and non-synchronous trading, which severely affect the realized

covariance.

We combine the idea of using intraday ranges for estimating daily volatilities,

with the idea of estimating the daily covariance from estimates of the volatilities

of the individual assets and of the portfolio. Specifically, using the realized range

defined in (3.2) for estimating the three variances on the right-hand side of (3.4), we

obtain the realized co-range estimator

RCRΔ
t =

1

2λiλj

(
RRΔ

p,t − λ2
iRRΔ

i,t − λ2
jRRΔ

j,t

)
, (3.5)

where RRp,t is the realized range of the portfolio, and RRi,t and RRj,t are the realized

ranges of the individual assets. Each realized range is estimated using (3.2).2 It is

2Note that (3.4) can also be used to estimate the daily covariance with realized variances, by
using RV as defined in (3.1) to estimate the variances on the right-hand side. However, this yields
exactly the realized covariance as given in (3.3), as

1

2λiλj
(

M∑
m=1

(λiri,m + λjrj,m)2 − λ2
i

M∑
m=1

r2i,m − λ2
j

M∑
m=1

r2j,m) =

M∑
m=1

ri,mrj,m.
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important to note that the high (low) price of asset i in a given intraday interval will

probably be obtained at a different point in time than the high (low) price of asset j.

The high-low range of the portfolio then is not the same as the weighted sum of the

individual ranges. Therefore, it is necessary to construct a portfolio price path at the

highest possible sampling frequency and estimate the realized range of the portfolio,

RRp,t, using (3.2).

3.2.2 Bias-correction

As discussed in the introduction, market microstructure effects hamper the use of

high-frequency data for estimating daily variances and covariances. First, both the

realized variance in (3.1) and the realized range in (3.2) suffer from an upward bias

due to the presence of bid-ask bounce. For example, when trading is continuous, the

observed high price in a given interval is an ask and the observed low price is a bid

with probability close to 1. The realized range therefore overestimates the true daily

variance by an amount equal to the squared spread s2 times the number of intraday

intervals M . Second, while infrequent trading does not affect the realized variance, it

leads to a downward bias in the realized range. When the continuous underlying price

process is only observed at discrete points in time, the observed high price during a

given intraday interval underestimates the true maximum. Similarly, the observed

low price overestimates the true minimum. A correction for the infrequent trading

bias in range-based volatility estimators has been proposed by Rogers and Satchell

(1991). Christensen and Podolskij (2007) directly account for infrequent trading in

their realized range estimator by replacing the scaling factor 1/(4 log 2) in (3.2) by the

second moment of the range of a Brownian motion when it is observed infrequently.

Martens and Van Dijk (2007) suggest to deal with the “net” bias due to the combined

effects of bid-ask bounce and infrequent trading on the realized range by applying a

multiplicative bias-correction, see also Fleming et al. (2003). Specifically, the scaled

realized range is defined by

RRΔ
S,t =

(∑Q
q=1 RRt−q∑Q
q=1 RRΔ

t−q

)
RRΔ

t , (3.6)

where RRt ≡ RR1
t is the daily range. Hence, the multiplicative correction factor is

the ratio of the average daily range estimator and the average of the realized range

over the past Q days.

Although Martens and Van Dijk (2007) demonstrate that the multiplicative cor-

rection in (3.6) is quite effective in removing the bias in the realized range, here we

consider an alternative, additive correction. This is motivated by observing that the
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presence of market microstructure effects is often represented by assuming that the

observed log price logPt is equal to the efficient log price logP ∗t plus an additive

noise term εt:

logPt = logP ∗t + εt, (3.7)

where εt is assumed to have zero mean and variance σ2
ε . In this set-up, the realized

variance based on observed returns converges to the true integrated variance plus a

bias term determined by the noise variance σ2
ε and the covariance between logP ∗t and

εt (which often is assumed to be zero, but see the discussion in Hansen and Lunde

(2006)). This suggests that we may use an additive bias-correction, and define a

corrected realized variance estimator as

RV Δ
C,t = RV Δ

t +
1

Q

(
Q∑

q=1

RVt−q −
Q∑

q=1

RV Δ
t−q

)
, (3.8)

where RVt ≡ RV 1
t is the daily squared return. As discussed in Christensen et al.

(2009), deriving consistent estimators of the integrated variance based on intraday

high-low ranges is difficult, if not impossible in the presence of general microstructure

noise as in (3.7). For that reason, we adopt a pragmatic approach and consider a

realized range estimator with an additive bias-correction of the form (3.8), that is,

RRΔ
C,t = RRΔ

t +
1

Q

(
Q∑

q=1

RRt−q −
Q∑

q=1

RRΔ
t−q

)
. (3.9)

For covariance estimators based on intraday data, the most important microstruc-

ture effect is the occurrence of non-synchronous trading. Using returns or ranges over

fixed intraday intervals results in covariance estimates that are biased towards zero.

This so-called Epps (1979) effect becomes worse with increasing sampling frequency,

and in the limit the standard realized covariance and realized co-range estimators

converge to zero. Most of the recent proposals for alternative high-frequency covari-

ance estimators are in fact attempts to fix the bias due to non-synchronous trading,

see Hayashi and Yoshida (2005) and Sheppard (2006), among others. Griffin and

Oomen (2011), Zhang (2011) and Voev and Lunde (2007) consider the combination

of non-synchronous trading and additive microstructure noise. Here we limit our-

selves to implementing the additive bias-correction discussed above for the realized

co-range and realized covariance.
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3.3 Monte Carlo simulation

In this section we investigate the performance of the realized co-range estimator in

a controlled environment by means of Monte Carlo simulations. Throughout we

compare the realized co-range estimator with the realized covariance estimator. Of

particular interest are the effects of bid-ask bounce, infrequent trading and non-

synchronous trading on the two estimators and the usefulness of the additive bias-

correction described in the previous section.

3.3.1 Simulation design

We simulate prices for two correlated assets for 24-hour days, assuming that trading

takes place around the clock. For each day t, the initial prices for both assets are set

equal to 1, and subsequent log prices for asset i = 1, 2 are simulated using

logP ∗i,t+k/K = logP ∗i,t+(k−1)/K + εi,t+k/K , i = 1, 2, k = 1, 2, . . . ,K, (3.10)

whereK is the number of prices per day. We simulate 100 prices per second, such that

K = 8, 640, 000, where price observations are equidistant and occur synchronously for

the two assets. The shocks εi,t+k/K are serially uncorrelated and normally distributed

with mean zero and variance σ2
i /(D ·K), where D is the number of trading days in

a year, which we set equal to 250. The annualized standard deviations σi of the

log price processes are set equal to 0.20 and 0.40 (20% and 40%) for assets 1 and

2, respectively. The shocks ε1,t+k/K and ε2,t+k/K are contemporaneously correlated

with correlation coefficient ρ, which we set equal to 0.50, resulting in a covariance

between the asset returns of 0.04.

We consider the effects of bid-ask bounce by assuming that transactions take

place either at the ask price or at the bid price, which are equal to the true price

plus and minus half the spread, respectively. Hence, the actually observed price

Pi,t+k/K is equal to P ∗i,t+k/K + s/2 (ask) or P ∗i,t+k/K − s/2 (bid), where s is the

bid-ask spread and P ∗i,t+k/K is the true price obtained from (3.10). We assume that

bid and ask prices occur equally likely and that the occurrence of bid and ask prices

is independent across assets. Infrequent trading is implemented by imposing that,

given the price path obtained from (3.10), the probability to actually observe the

price P ∗i,t+k/K is equal to pobs = 1/(100τ). Put differently, the price of each asset

is observed on average only every τ seconds. Price observations for the two assets

occur independently, such that in addition we observe prices non-synchronously.
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Computational details

We assess the potential merits of using intraday ranges for measuring (daily) co-

movement by computing both the realized co-range and the realized covariance. To

do so we divide the trading day into Δ-minute intervals, which is referred to as the

Δ-minute frequency below, where we vary Δ among 1, 2, 3, 4, 5, 10, 15, 20, 30, 45, 60,

and 1440. For example, when Δ = 5 we divide the 24-hour day into 288 five-minute

intervals. For the realized covariance at this sampling frequency the cross-products of

five-minute returns are summed to obtain the realized covariance at that frequency,

as in (3.3). The realized co-range is computed using (3.5) as follows. For the two

assets the high and low prices are computed per five-minute interval and the resulting

five-minute squared ranges are summed to obtain the realized ranges for the day, as

in (3.2). To obtain the realized range of a portfolio consisting of the two assets, we

first compute the intraday prices of an equally-weighted portfolio setting λi = 0.5,

i = 1, 2, and assuming continuous rebalancing throughout the day.3 Note that in

the case of synchronous price observations for the two assets we can compute exact

portfolio prices at each instant. In case of non-synchronous trading the portfolio

price is updated each time a new price for one of the two assets occurs, combining

this with the most recently observed (hence stale) price for the other asset. Second,

the portfolio prices are used to compute the corresponding realized range in the usual

way. This is then combined with the realized ranges for the two individual assets

using (3.5) to compute the realized co-range. We also consider the bias-corrected

versions of the realized covariance and the realized co-range, computed according to

(3.8) and (3.9), respectively.4

In our experiments the characteristics of bid-ask bounce and infrequent trading

are identical for all trading days, such that in principle we could use a large number

of trading days Q to compute the additive adjustment factor to fully explore the

merits of the bias-adjustment procedure. In practice, however, the characteristics

of microstructure noise are likely to change over time and a smaller value of Q

seems more appropriate. We therefore set Q = 66 throughout the simulations. The

sensitivity of the results with respect to the value of Q is discussed in more detail

below. For each selected frequency we compute the mean and Root Mean Squared

Error (RMSE) for the various estimators of the assets’ covariation, taken over 5000

simulated trading days.

3We perform a sensitivity analysis on the portfolio weights by experimenting with λ1 =
0.1, 0.3, 0.5, 0.7, 0.9. We find that the choice of portfolio weights has only minor influence on the
efficiency (RMSE) of the co-range estimator. Detailed simulation results are available upon request.

4We also considered an alternative bias-correction for the realized co-range, by computing it
according to (3.5) but using the scaled realized ranges as defined in (3.9). This “indirect” bias-
correction results in qualitatively and quantitatively similar results (which are available upon re-
quest) as the “direct” bias-correction reported in this section.
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3.3.2 Simulation results

Table 3.1 reports results for experiments with (close to) continuous trading where

all K = 8, 640, 000 prices on a given day are observed. In order to establish a

benchmark, panel A shows results for the ideal situation where the ‘clean’ prices

P ∗i,t+k/K are observed. Panel B considers the effects of bid-ask bounce, where we set

the spread s equal to 0.0005 (or 0.05% of the starting price of 1) as in Brandt and

Diebold (2006).5

As expected, in Panel A the RMSE of the realized co-range is always substantially

lower than that of the realized covariance at the same frequency. In fact, for all but

the very highest sampling frequencies the ratio of the RMSE’s is close to
√
5, which

is the ratio of the standard deviations of the daily squared returns and daily ranges.

Hence, the same efficiency factor seems to apply to the intraday range- and return-

based measures of covariation examined here. The slight loss in relative efficiency

of the realized co-range at the highest sampling frequencies is due to the downward

bias it experiences when the underlying price ranges are computed over very short

intervals, as shown in the second column of Table 3.1. This is inherent to the nature

of the high-low range: In case the price path is not observed continuously (in this case

we observe ‘only’ 6000 prices per minute) the observed minimum and maximum over-

and underestimate the true high and low prices, respectively, such that the observed

range underestimates the true range. We investigate the effects of infrequent trading

in more detail below. Finally, we mention that also the daily co-range suggested

by Brandt and Diebold (2006), reported in the last row of this table (Δ = 1440

minutes), achieves an RMSE that is substantially lower at 4.044 compared to 8.830

for the cross-product of daily returns.

The results in panel B demonstrate that, as expected, in the presence of bid-ask

bounce the realized co-range suffers from a pronounced upward bias, which gets worse

as the sampling frequency increases. With continuous price observations the observed

range for the individual assets will overestimate the true ranges by a quantity close

to the spread, as the maximum price will be an ask and the minimum price will

be a bid with probability close to 1. For the equally-weighted portfolio, the true

range is overestimated by the bid-ask spread as well when trading is continuous.

Hence, the net effect on the realized co-range in (3.5) is an upward bias. The realized

covariance is not affected by bid-ask spread, which also is conform expectations. In

this particular parameter configuration the realized co-range outperforms the realized

covariance up to the 45-minute frequency. For higher sampling frequencies the RMSE

5Results for other magnitudes of the bid-ask spread are summarized at the end of this section,
with details being available upon request.
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Table 3.1: Realized co-range and realized covariance with continuous trading and
bid-ask bounce

Frequency RCRΔ
t RCRΔ

C,t RCV Δ
t RCV Δ

C,t

(minutes) Mean RMSE Mean RMSE Mean RMSE Mean RMSE

Panel A: No bid-ask bounce (s = 0)

1 3.928 0.130 3.945 0.505 3.999 0.229 4.000 1.045
2 3.946 0.160 3.944 0.513 3.996 0.322 3.999 1.067
3 3.955 0.190 3.944 0.526 3.990 0.402 4.000 1.112
4 3.961 0.218 3.944 0.539 3.988 0.469 3.999 1.125
5 3.963 0.236 3.945 0.545 3.995 0.513 4.002 1.147

10 3.965 0.335 3.944 0.591 3.963 0.733 3.996 1.259
15 3.957 0.422 3.943 0.647 3.961 0.931 4.000 1.404
20 3.959 0.469 3.943 0.684 3.958 1.008 3.999 1.440
30 3.961 0.595 3.942 0.769 3.968 1.302 4.000 1.645
45 3.953 0.724 3.940 0.868 3.976 1.607 3.995 1.903
60 3.951 0.846 3.937 0.969 3.994 1.850 3.986 2.092

1440 3.928 4.044 3.928 4.044 3.985 8.830 3.985 8.830

Panel B: Bid-ask bounce (s = 0.0005)

1 14.615 10.617 4.154 0.576 3.992 0.359 4.017 1.134
2 10.881 6.886 4.153 0.580 3.996 0.428 4.015 1.155
3 9.395 5.402 4.153 0.594 3.986 0.472 4.019 1.179
4 8.556 4.565 4.153 0.610 3.988 0.542 4.013 1.204
5 8.000 4.012 4.153 0.617 3.983 0.583 4.018 1.222

10 6.694 2.725 4.153 0.668 3.955 0.778 4.011 1.326
15 6.141 2.198 4.152 0.730 3.962 0.964 4.019 1.448
20 5.828 1.907 4.152 0.769 3.942 1.037 4.015 1.489
30 5.463 1.611 4.151 0.857 3.967 1.329 4.016 1.679
45 5.165 1.413 4.149 0.953 3.975 1.640 4.008 1.950
60 4.993 1.356 4.145 1.057 4.004 1.858 4.003 2.118

1440 4.135 4.128 4.135 4.128 3.982 8.871 3.982 8.871

Note: The table summarizes the results of simulating 5000 days of 8,640,000 (log) prices (100
prices per second) from a bivariate normal distribution with mean zero, variance 4 and 16 and
correlation 0.5, such that the true covariance is equal to 4. Panel A reports results in case all
prices are observed without distortion due to bid-ask bounce. Panel B reports results in case all
prices are observed, but are converted to bid and ask prices (with equal probability) by either
subtracting or adding half the spread s = 0.0005 (on a starting price of 1). The occurrence of
bid and ask prices for the two assets is independent. For each day the realized co-range (RCRΔ

t ),
the bias-corrected realized co-range (RCRΔ

C,t), the realized covariance (RCV Δ
t ), and the bias-

corrected realized covariance (RCV Δ
C,t) are computed for various sampling frequencies shown in

column 1. RCRΔ
C,t and RCV Δ

C,t are obtained from (3.9) and (3.8) with Q = 66 (with RR and

RV replaced by RCR and RCV ).
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of the realized covariance is smaller. Bias-correcting the realized co-range works

remarkably well, in the sense that the bias is removed completely and the RMSE

values are almost brought back to the original level observed for RCRΔ
C,t in the

ideal case without bid-ask bounce. For sampling frequencies of 10 minutes or lower,

the RMSE of the bias-corrected realized co-range is smaller than the RMSE of the

realized covariance.

Table 3.2 shows the results when infrequent trading occurs, such that for both

assets the price is observed on average only every τ = 12 seconds.6 Again panels A

and B show results for experiments without and with bid-ask bounce, respectively.

The results in panel A show that for the realized co-range the RMSE first de-

creases when increasing the sampling frequency up to 20 minutes. It increases again

for higher frequencies because the larger bias due to non-trading (and hence under-

estimating the range for each intraday interval) then outweighs the reduction in the

standard deviation of the estimates. The realized covariance estimator is not affected

by infrequent trading but does suffer from non-synchronous trading in terms of a bias

towards zero.7 As a result, at the 15-minute frequency the realized co-range still is a

more accurate measure of co-movement than the corresponding realized covariance,

but at higher frequencies the realized covariance has a lower RMSE than the real-

ized co-range.8 Bias-correcting the realized co-range in this case eliminates the bias

to a large extent but not completely, due to the fact that the daily co-range also

is somewhat biased downward due to the infrequent and non-synchronous trading.

The bias-adjustment does reduce the RMSE of the realized co-range considerably,

such that RCRΔ
C,t is more accurate than the realized covariance for all sampling

frequencies except 2-5 minutes.

In case bid-ask bounce and infrequent and non-synchronous trading are jointly

present in panel B of Table 3.2, we find that the realized co-range still suffers from

an upward bias, but it is of a considerably smaller magnitude than in the case of

bid-ask bounce only due to the off-setting negative bias induced by infrequent and

non-synchronous trading. As a result, the realized co-range now has a lower RMSE

than the realized covariance at all sampling frequencies. The overall minimum RMSE

for the realized co-range is obtained at the 2-minute sampling frequency and equals

0.205. For the realized covariance the optimal frequency is the 3-minute frequency for

which the RMSE is 0.551. Note that in this particular setting, where the different

6Results for other trading frequencies are summarized at the end of this section, with details
being available upon request.

7This becomes evident from unreported results from simulations with infrequent but simultaneous
trading for the two assets. Detailed results are available upon request.

8Of course the exact frequency at which one estimator improves over the other will depend on
the trading intensity. For example, when transaction prices are observed once per second on average
the realized co-range improves over the realized covariance up to the five-minute frequency.
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Table 3.2: Realized co-range and realized covariance with infrequent trading and
bid-ask bounce

Frequency RCRΔ
t RCRΔ

C,t RCV Δ
t RCV Δ

C,t

(minutes) Mean RMSE Mean RMSE Mean RMSE Mean RMSE

Panel A: No bid-ask bounce (s = 0)

1 2.017 1.985 3.866 0.547 3.203 0.828 3.979 1.210
2 2.470 1.535 3.866 0.557 3.596 0.521 3.980 1.235
3 2.696 1.314 3.866 0.564 3.731 0.482 3.979 1.254
4 2.836 1.179 3.866 0.572 3.791 0.506 3.979 1.277
5 2.937 1.084 3.866 0.583 3.833 0.550 3.980 1.300

10 3.211 0.849 3.866 0.626 3.914 0.751 3.979 1.399
15 3.339 0.770 3.865 0.667 3.942 0.927 3.979 1.493
20 3.418 0.739 3.866 0.703 3.955 1.045 3.979 1.574
30 3.516 0.748 3.866 0.780 3.961 1.294 3.977 1.743
45 3.592 0.813 3.866 0.877 3.960 1.590 3.978 1.967
60 3.641 0.893 3.864 0.973 3.959 1.818 3.979 2.158

1440 3.862 4.173 3.862 4.173 3.976 9.192 3.976 9.192

Panel B: Bid-ask bounce (s = 0.0005)

1 3.861 0.210 3.956 0.555 3.213 0.869 3.973 1.237
2 4.082 0.205 3.956 0.565 3.599 0.583 3.973 1.257
3 4.129 0.250 3.956 0.574 3.732 0.551 3.972 1.280
4 4.142 0.278 3.956 0.584 3.793 0.574 3.972 1.301
5 4.143 0.301 3.957 0.596 3.836 0.608 3.973 1.322

10 4.139 0.387 3.956 0.645 3.917 0.794 3.971 1.425
15 4.126 0.460 3.956 0.689 3.944 0.956 3.972 1.512
20 4.114 0.514 3.956 0.727 3.962 1.078 3.971 1.598
30 4.100 0.625 3.956 0.809 3.963 1.312 3.970 1.757
45 4.079 0.752 3.956 0.908 3.955 1.603 3.971 1.978
60 4.069 0.864 3.955 1.007 3.954 1.829 3.971 2.169

1440 3.952 4.208 3.952 4.208 3.968 9.183 3.968 9.183

Note: The table summarizes the results of simulating 5000 days of 8,640,000 (log) prices (100
prices per second) from a bivariate normal distribution with mean zero, variance 4 and 16 and
correlation 0.5, such that the true covariance is equal to 4. Subsequently with probability pobs =
1/(100τ) we observe a price and with probability 1 − pobs we do not, such that the price is
observed on average only every τ seconds. The table reports results for τ = 12. Panel A reports
results in case prices are observed without distortion due to bid-ask bounce. Panel B reports
results in case the observed prices are converted to bid and ask prices (with equal probability)
by either subtracting or adding half the spread s = 0.0005 (on a starting price of 1). The
occurrence of price observations and bid and ask prices for the two assets is independent. For
each day the realized co-range (RCRΔ

t ), the bias-corrected realized co-range (RCRΔ
C,t), the

realized covariance (RCV Δ
t ), and the bias-corrected realized covariance (RCV Δ

C,t) are computed

for various sampling frequencies shown in column 1. RCRΔ
C,t and RCV Δ

C,t are obtained from

(3.9) and (3.8) with Q = 66 (with RR and RV replaced by RCR and RCV ).



biases affecting the realized co-range approximately cancel out, bias-adjustment is

not attractive. Although the mean of RCRΔ
C,t is closer to the true covariance of 4,

the variance increases considerably due to the bias-adjustment such that the RMSE

increases compared to the ‘raw’ realized co-range RCRΔ
t . Finally, in Table 3.2,

we also observe that bias-correcting the realized covariance is never worthwhile, as

apparently the reduction in bias does not outweigh the increase in variance, such

that the RMSE of RCV Δ
C,t is always substantially higher than the RMSE of the ‘raw’

realized covariance RCV Δ
t .

3.3.3 Sensitivity analysis: Trading frequency, spread size, and

bias correction

Whether or not the realized co-range improves upon the realized covariance, and

whether or not bias-adjustment is appropriate of course depends on the (relative)

magnitudes of the market microstructure frictions. For that reason, Table 3.3 pro-

vides an overview of the different covariance estimators for different trading frequen-

cies τ , ranging from 2 to 60 seconds, and different bid-ask spreads s, ranging from 0

to 0.00075. For each combination of τ and s, the table shows the optimal sampling

frequency for the four covariance estimators, along with the corresponding RMSE

and mean. The covariance estimator that achieves the lowest RMSE for a given

combination of τ and s is shown in italics.

The patterns that can be observed in Table 3.3 are as expected. First, in the ab-

sence of bid-ask bounce (first column, s = 0), the realized covariance estimator per-

forms best when prices are observed relatively frequently, up to once per 15 seconds

on average. Under these circumstances, the downward bias due to non-synchronous

trading affects the realized covariance less than the realized co-range and the bias-

correction cannot compensate for this. However, when trading is less frequent, the

adjusted realized co-range achieves the lowest RMSE.

Second, in the presence of bid-ask bounce, the unadjusted realized co-range per-

forms best for those combinations of τ and s for which the downward bias due to

infrequent trading and the upward bias due to bid-ask bounce approximately cancel.

This is the case for s equal to 0.00025 and τ equal to 3 to 6 seconds, for s equal to

0.0005 and τ equal to 10 to 20 seconds, and for s equal to 0.00075 and τ equal to 20

to 40 seconds. Hence the higher the spread (upward bias) the less frequent trading

should be (downward bias) to have the two biases offset each other. Note that in

financial markets there is indeed a strong negative relationship between spread and

trading frequency: The less an asset trades, the higher the spread. We would there-
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Table 3.3: Realized co-range and realized covariance with infrequent trading
and bid-ask bounce

Trading
frequency s = 0 s = 0.00025 s = 0.0005 s = 0.00075

(seconds) SF Mean RMSE SF Mean RMSE SF Mean RMSE SF Meean RMSE

RCRΔ
t

2 10 3.652 0.480 8 4.276 0.420 36 4.753 1.029 72 5.016 1.425
3 12 3.613 0.531 1 4 .133 0 .179 36 4.626 0.934 72 4.916 1.351
4 15 3.600 0.571 2 3 .879 0 .199 36 4.524 0.866 72 4.834 1.291
6 20 3.576 0.629 6 3 .728 0 .379 18 4.524 0.721 72 4.700 1.202

10 20 3.464 0.705 12 3.592 0.549 5 4 .349 0 .440 36 4.730 1.016
12 24 3.458 0.738 15 3.557 0.604 2 4 .082 0 .205 36 4.621 0.937
15 24 3.401 0.779 16 3.472 0.674 4 3 .865 0 .272 24 4.592 0.828
20 30 3.387 0.830 24 3.456 0.743 10 3.720 0.447 1 4 .109 0 .238
30 40 3.358 0.906 32 3.383 0.847 20 3.564 0.643 4 3 .872 0 .292
40 40 3.271 0.965 40 3.345 0.917 24 3.429 0.765 10 3 .686 0 .483
50 48 3.253 1.019 40 3.263 0.975 32 3.387 0.851 15 3.546 0.625
60 48 3.192 1.061 45 3.222 1.026 40 3.355 0.917 20 3.456 0.727

RCRΔ
C,t

2 1 3.908 0.542 1 3.961 0.545 1 4.059 0.571 2 4.164 0.630
3 1 3.902 0.542 1 3.948 0.544 1 4.041 0.566 2 4.144 0.623
4 1 3.897 0.543 1 3.938 0.542 1 4.026 0.562 2 4.128 0.617
6 1 3.887 0.544 1 3.921 0.543 1 4.002 0.559 2 4.100 0.607

10 1 3.871 0.546 1 3.899 0.545 1 3.968 0.552 1 4 .059 0 .589
12 1 3.866 0.547 1 3.891 0.547 1 3.956 0.555 1 4 .045 0 .589
15 1 3.857 0.548 1 3.881 0.548 1 3.942 0.553 1 4 .026 0 .582
20 1 3 .843 0 .550 1 3 .864 0 .548 1 3.921 0.549 1 4.001 0.570
30 1 3 .824 0 .556 1 3 .842 0 .551 2 3 .890 0 .558 1 3.960 0.556
40 1 3 .808 0 .559 1 3 .820 0 .555 1 3 .861 0 .550 1 3.923 0.553
50 1 3 .791 0 .563 1 3 .804 0 .557 1 3 .841 0 .550 1 3 .898 0 .550
60 1 3 .776 0 .565 1 3 .787 0 .561 1 3 .821 0 .555 1 3 .874 0 .552

RCV Δ
t

2 1 3 .866 0 .268 1 3 .867 0 .296 1 3 .868 0 .393 2 3 .942 0 .556
3 1 3 .799 0 .306 1 3.798 0.331 1 3 .798 0 .418 2 3 .903 0 .560
4 1 3 .733 0 .353 1 3.732 0.374 2 3 .866 0 .449 2 3 .869 0 .568
6 2 3 .797 0 .388 2 3.798 0.411 2 3 .798 0 .476 2 3 .798 0 .590

10 3 3 .776 0 .457 3 3 .774 0 .477 3 3.772 0.532 3 0.583 0.626
12 3 3 .731 0 .482 3 3 .732 0 .499 3 3.732 0.551 3 3.733 0.642
15 3 3 .666 0 .521 3 3 .664 0 .536 3 3.663 0.585 4 3.747 0.670
20 4 3.657 0.576 4 3.656 0.589 4 3.657 0.631 4 3.657 0.704
30 6 3.661 0.657 6 3.662 0.666 6 3.663 0.701 6 3.665 0.762
40 6 3.548 0.720 6 3.550 0.728 6 3.553 0.759 6 3.556 0.815
50 8 3.578 0.787 8 3.581 0.796 8 3.585 0.826 8 3.588 0.877
60 8 3.491 0.835 8 3.495 0.843 8 3.499 0.870 8 3.503 0.918

RCV Δ
C,t

2 1 3.981 1.208 1 3.978 1.212 1 3.976 1.237 1 3.974 1.301
3 1 3.981 1.208 1 3.979 1.212 1 3.978 1.236 1 3.976 1.298
4 1 3.982 1.208 1 3.980 1.212 1 3.979 1.235 1 3.978 1.296
6 1 3.981 1.209 1 3.978 1.213 1 3.976 1.239 1 3.973 1.305

10 1 3.980 1.209 1 3.976 1.210 1 3.972 1.232 1 3.968 1.292
12 1 3.979 1.210 1 3.976 1.212 1 3.973 1.237 2 3.970 1.301
15 1 3.979 1.211 1 3.976 1.216 1 3.974 1.241 1 3.973 1.305
20 1 3.977 1.208 1 3.975 1.213 1 3.973 1.239 1 3.972 1.300
30 1 3.975 1.206 1 3.972 1.211 1 3.969 1.234 1 3.966 1.288
40 1 3.977 1.213 1 3.975 1.218 1 3.974 1.238 1 3.972 1.283
50 1 3.976 1.216 1 3.974 1.221 1 3.973 1.239 1 3.971 1.277
60 1 3.974 1.217 1 3.972 1.222 1 3.970 1.238 1 3.969 1.272

Note: The table provides results for the simulation experiment with infrequent and non-
synchronous trading and bid-ask bounce for different trading frequencies τ , ranging from 2
to 60 seconds, and different bid-ask spreads s, ranging from 0 to 0.00075. See Table 3.2 for
details of the simulation set-up. For each combination of τ and s, the table shows the optimal
sampling frequency for the four covariance estimators, along with the corresponding RMSE and
mean. The covariance estimator that achieves the lowest RMSE for a given combination of τ
and s is shown in italics.
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fore expect that (close to) offsetting biases will arise in actual data, and this will

favor the realized co-range.

Third, when trading occurs relatively frequently, such that the upward bias dom-

inates, the realized covariance is preferred. On the other hand, when trading occurs

relatively infrequently, such that the downward bias dominates, the adjusted realized

co-range renders the lowest RMSE values. Note that for the largest spread considered

here, s = 0.00075, the adjusted realized co-range in fact also outperforms the realized

covariance for ‘frequent’ trading at once per 10-15 seconds. Unreported results for

even higher values of s (0.001) show that the bias-corrected realized co-range in that

case dominates for all trading frequencies.

Fourth, Table 3.3 shows that for the bias-corrected realized covariance and real-

ized co-range, apart from a few exceptions, the highest possible sampling frequency

leads to the lowest RMSE. This is not surprising given that sampling more frequently

leads to a lower standard deviation of the covariance estimators, which in the absence

of bias also implies a lower RMSE. For the unadjusted realized covariance, we observe

that less frequent trading always leads to less frequent sampling to achieve the lowest

possible RMSE. For the realized co-range this only holds in the absence of bid-ask

bounce. When bid-ask bounce does occur next to infrequent and non-synchronous

trading, it sometimes pays off to sample more frequently, such that the positive and

negative biases approximately cancel.

Finally, as noted in the previous section, the number of trading days Q used to

compute the correction factor for RCRΔ
C,t in (3.9) is a crucial choice to be made. If the

trading intensity and the spread are constant over time, Q may be set large in order

to gain accuracy. On the other hand, when the magnitude of these microstructure

frictions varies over time, only the recent price history should be used and Q should

be set fairly small. Figure 3.1 shows the RMSE of the bias-corrected realized co-

range for the experiment with infrequent trading as a function of Q. The RMSE

monotonically declines as Q increases, but the largest gains occur up to Q = 100,

beyond which the RMSE more or less stabilizes. Hence, our choice of Q = 66 does

not seem unreasonable. Also note that the reduction in RMSE due to increasing Q

is largest for higher sampling frequencies.

3.4 Empirical application

In this section we study the empirical usefulness of the realized co-range by evaluat-

ing its performance in a dynamic volatility timing strategy, adopting the framework

developed by Fleming et al. (2001, 2003). We consider an investor who uses con-

ditional mean-variance analysis for constructing a portfolio with minimum variance
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Figure 3.1: RMSE of the bias-corrected realized co-range RCRΔ
C,t obtained from

(3.9) as a function of Q, for sampling frequencies as listed in the first column of
Table 3.2 augmented with 90, 120, 180, 240, 360 and 720 minutes. The sampling
frequency increases from the top line to the bottom.

given a specific target return. The portfolio is dynamic in the sense that optimal

weights are re-computed daily. The investor follows a volatility-timing strategy, as

the portfolio weights are based on a forecast of the conditional covariance matrix

while expected returns are held constant. We assess the merits of using the realized

co-range to construct these forecasts, relative to the realized covariance. We also

include their daily counterparts in the comparison.

3.4.1 Data

Following Fleming et al. (2001, 2003), we consider portfolios consisting of stocks,

bonds and gold. We assume that the investor trades futures contracts to construct

her portfolio, to avoid short-selling restrictions and to save on transaction costs. We

obtain intraday transactions data for futures contracts on stocks (S&P500, Chicago

Mercantile Exchange, with trading hours from 8:30 am - 3:15 pm), US T-bonds

(Chicago Board of Trade, 8:00 am - 2:00 pm) and gold (New York Mercantile Ex-

change, 7:20 am - 1:30 pm9), for the period from January 3, 1984 to December 31,

2006.10

9All trading hours are standardized to the CST zone.
10The data is obtained from Tick Data, http://www.tickdata.com/.
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We exclude all days on which any of the three markets is closed, leaving a total of

5,592 days of high-frequency data on which the three contracts traded simultaneously.

Our sample period includes the October 19, 1987 stock market crash and September

11, 2001. The bid-ask spreads on the three futures contracts were much higher in

the days following the October 1987 crash, and for this reason we follow Fleming

et al. (2003) by replacing the high-frequency covariance estimators by their daily

counterparts for the period October 19 to 30, 1987. We exclude the days following

September 11, 2001 as markets were closed. The very large negative overnight return

for the September 11-17 period is excluded as well.

At any given day we use prices of the nearby futures contract in each market,

rolling to the second nearby contract when the nearby contract enters its final month

for gold and bonds and on the 11th trading day in the final month for stocks. We

assume that the investor updates her portfolio daily at 1:30 pm, motivated by the

trading hours for gold futures. For the daily return series that is used to evaluate the

investment strategy, we use the last transaction prices occurring before that time. In

case a contract is rolled forward on day t+1 we use the price at 1:30 pm on day t of

the ‘new’ contract to compute the daily return for day t+ 1.

We adopt the popular five-minute frequency for computing the realized (co-

)ranges and realized (co-)variances. The five-minute returns that are used in the

latter estimator are obtained from the last transaction prices in each intraday inter-

val. For the variance estimates for day t based on the realized variance and realized

range we use all intraday returns and prices, respectively, between 1:30 pm on day

t − 1 and 1:30 pm on day t. For the covariance estimates, we adopt the follow-

ing two-step procedure of Fleming et al. (2003). First, we construct estimates of

volatilities and covariances with intraday data for the common trading hours from

8:30 am - 1:30 pm, from which we back out estimates of the correlations among the

three assets. Second, we convert these correlations back into covariances by using

the realized variances and realized ranges for the complete trading day.

The high-frequency data only covers the part of the day during which futures

markets are open. Fleming et al. (2003) and De Pooter et al. (2008) add the cross-

product of overnight returns to the realized covariance estimate in order to obtain a

measure of the covariation during a complete 24-hour day. Both studies find that in-

corporating overnight returns adds information and improves the performance of the

volatility timing strategy. We choose not to include the overnight returns, however,

as adding the same overnight returns to the realized co-range and realized covari-

ance would diminish the difference between these estimators and, presumably, any

differences in their overall performance. Since both estimators aim to estimate the

integrated covariation they are already expected to behave similarly to a large extent.
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Table 3.4: Summary statistics

Panel A: Mean, standard deviation, skewness and kurtosis

Stocks Bonds Gold

Mean 0.072 0.044 −0.011
St.Dev. 0.166 0.104 0.150
Skewness −0.720 0.464 −0.229
Kurtosis 17.417 16.290 10.182

Panel B: Correlations

Stocks Bonds Gold

Stocks 1
Bonds 0.101 1
Gold −0.107 −0.070 1

Panel C: Realized variance and realized range
√
RVs

√
RRs

√
RVb

√
RRb

√
RVg

√
RRg

Mean 0.104 0.069 0.078 0.053 0.109 0.072
St.Dev. 0.053 0.032 0.032 0.018 0.055 0.033
Skewness 2.658 2.519 1.912 1.784 2.207 2.059
Kurtosis 16.818 15.161 9.667 9.692 13.059 12.168

Panel D: Realized correlations

ρs,b(RCV ) ρs,b(RCR) ρg,s(RCV ) ρg,s(RCR) ρg,b(RCV ) ρg,b(RCR)

Mean 0.112 0.128 −0.056 0.003 0.006 0.070
St.Dev. 0.388 0.314 0.179 0.128 0.183 0.122
Skewness −0.501 −0.593 −0.445 −0.513 0.136 0.033
Kurtosis 2.229 2.568 3.555 3.878 3.461 3.597

Note: This table summarizes the data statistics of the daily returns, realized volatility and
realized range estimators and the correlations implied by the intraday estimators for the stocks
(s), bond (b), and gold (g) futures.

√
RVx represents the annualized realized volatility sampled

at the 5-minute frequency and
√
RRx is the realized range. The realized correlations implied

by the realized covariance are denoted ρx,y(RCV ) and ρx,y(RCR) is the correlation implied by
the realized co-range.



Table 3.4 displays summary statistics for the annualized daily returns and the

high-frequency volatility and correlation estimates. For all three assets we find that

the mean of the realized range is smaller than the mean of the realized variance,

suggesting that infrequent trading is more important than bid-ask bounce for these

futures contracts, such that the realized range is biased downward. As expected, the

standard deviation of the realized range turns out to be substantially smaller than

that of the realized variance. This carries over to the multivariate case, where the

standard deviation of the correlations estimated by means of the realized co-range

is smaller than the standard deviation of the correlations implied by the realized

covariance. This indicates that the realized co-range is less noisy than the realized

covariance. Graphical support for this result is provided in Figure 3.2. Although both

estimators render similar correlation patterns, the daily correlations based on the

realized covariance are more volatile and show much more spikes than the correlations

based on the realized co-range.

3.4.2 Volatility timing

The investor uses conditional mean-variance analysis for forming a portfolio with

minimum variance given a specific target return. The portfolio weights wt for day t

follow from solving the standard quadratic programming problem, where the portfolio

variance σ2
p = w′tΣtwt is minimized subject to a target portfolio return μp = w′tμt,

with μt the (3 × 1) vector of conditional expected returns for the stocks, bonds

and gold futures and Σt the (3 × 3) conditional covariance matrix. The resulting

minimum-variance weights are given by

wt =
μpΣ

−1
t μt

μ′tΣ
−1
t μt

. (3.11)

In general, these unrestricted portfolio weights do not add up to one. We include a

risk-free asset (cash) with weight 1−w′tι, where ι is a vector of ones, which makes the

portfolio fully invested. Given that we want to focus on differences in the investment

strategy’s performance through the dynamics of Σt, we keep the expected returns

constant by setting μt = μ, where μ is taken to be the vector of full-sample mean

returns, see line 1 of Table 3.4. Again following Fleming et al. (2003), we set the

annualized target portfolio return μp = 10% and assume a constant risk-free rate

rf = 6%.

Implementing the volatility timing strategy requires an estimate of the conditional

covariance matrix Σt in (3.11). Following Fleming et al. (2003), we use backward-

looking ‘rolling’ estimators using an exponential weighting scheme, motivated by the
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(a) Gold and stocks

(b) Gold and bonds

(c) Stocks and bonds

Figure 3.2: This figure illustrates plots of the realized correlations between gold
and stocks (a), gold and bonds (b) and stocks and bonds (c). The correlations
are obtained using the 5-minute sampling frequency before bias-corrections and
rolling of the covariance estimators. RCV(5) is the realized correlation implied
by the realized covariance and RCR(5) is the realized correlation implied by
the realized co-range.
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work of Foster and Nelson (1996) and Andreou and Ghysels (2002). The general

expression for the rolling daily conditional covariance estimator for day t is given by

Σ̂t = exp(−α)Σ̂t−1 + α exp(−α)Vt−1, (3.12)

where α is the decay parameter and Vt−1 is an estimate of the realized covariance

matrix on day t − 1. We expect that the decay parameter decreases with the level

of noise in Vt−1. Our main interest lies in the performance of the volatility timing

strategy when using the realized (co-)range in (3.2) and (3.5) to construct Vt−1,

compared to using the realized (co-)variance in (3.1) and (3.3). In order to reduce

the effects of microstructure noise, we follow Fleming et al. (2003) and employ the

bias-corrected versions of these estimators, as discussed in Section 3.2.2. For the

additive bias-correction we set Q = 22, that is, we use a shorter history compared to

the simulations in Section 3.3. This is motivated by the fact that the rolling estimator

in (3.12) ‘smooths’ the realized estimators, which also reduces the effects of noise to

a certain extent. To gauge the benefits of using intraday data, we also include

estimators of Vt−1 based on daily (close-to-open) returns and daily (co-)ranges.

The decay parameter α in (3.12) is estimated by maximizing the log-likelihood

function corresponding with the model

rt = μ+ Σ̂
1
2
t zt (3.13)

where μ is the vector of daily expected returns, Σ̂t is the conditional covariance matrix

obtained from (3.12), and zt ∼ NID(0, I). The likelihood function is maximized

using the complete sample period, as in Fleming et al. (2003), although we use the

first year of our sample as a burn-in period for the (co)variance dynamics.11 The

maximum-likelihood procedure results in a decay parameter of 0.082 for the daily

co-range and 0.0298 for the daily covariance. For the intraday based covariation

estimators we find decay parameters equal to 0.064 and 0.062 for the bias-corrected

realized co-range and realized covariance, respectively. The daily co-range has a much

larger decay parameter than the daily covariance estimator, due to the fact that the

co-range is less noisy.

The daily portfolio weights (3.11) are based on the one day ahead forecast of

the bias-corrected rolling covariance matrix estimator in (3.12). The daily realized

returns of the portfolio are obtained as w′trt, where rt is the vector of daily returns.

Below we report the annualized average portfolio returns, volatility and the Sharpe

Ratio (SR). Furthermore we also keep track of the turnover of the portfolio using

11This burn-in period is excluded from all performance evaluations below.



58
Range-based Covariance Estimation using High-Frequency Data: The Realized

Co-Range

TOt = |wt − wt−1|′ι to provide insight into the transaction costs arising from daily

rebalancing the portfolio. In addition, we compute the break-even costs, that is,

the level of transaction costs that would reduce the profitability of the investment

strategy to zero.12

3.4.3 Empirical results

The rolling estimators based on the realized range and realized variance estimators,

as well as their daily counterparts, result in similar volatility dynamics, as visualized

in Figure 3.3. The main difference appears to be that the range-based estimators

in panels (a) and (c) show higher levels of stock volatility during periods of turmoil

such as October 1987 and the Russia crisis in 1998.

12Here we deviate from Fleming et al. (2003) who use a quadratic utility function to assess the
economic value of volatility timing using realized covariances compared to daily covariances. The
reason we do not use such utility function is because it is based on the mean and volatility of the
portfolio returns. Tables 3.5 and 3.6 illustrate that the mean portfolio return and the volatility of
the portfolio are very similar for the realized covariance and realized co-range. However, the levels
of noise in the correlations implied by the realized covariance and realized co-range are different,
see Figure 3.4 and Table 3.4, and for this reason there exists a substantial difference in turnover in
both portfolio weights, see Table 3.5. Therefore we choose to compare both estimators in terms of
break-even transaction costs.
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Larger differences between range-based and return-based rolling estimators are

found in the behavior of the correlations, shown in Figure 3.4. Although the general

correlation patterns appear to be similar, the correlations based on the realized co-

variance or daily covariance are larger in absolute value and tend to fluctuate more

widely than the range-based correlations, in agreement with the differences in realized

correlations shown in Figure 3.2. The relative stability of the range-based correla-

tions may in fact be an advantage. Not only is an investor likely to be reluctant to

base her investment decisions on very volatile correlation estimators, a more stable

correlation estimate will also result in less day-to-day fluctuations in the portfolio

weights, and hence lower transaction costs.

The results in Table 3.5 illustrate that over the whole sample (1985-2006) the

performance of the volatility timing strategy based on the bias-corrected rolling real-

ized co-range and realized covariance estimators is very close. The realized co-range

earns a slightly higher average return of 9.4% compared to 9.3% for the realized co-

variance. As the portfolio volatilities are the same at 7.2% annually, this results in

Sharpe ratios that are almost identical and equal to 1.31 and 1.30, respectively.

Although the strategies based on the realized co-range and realized covariance

result in a similar performance before transaction costs, the dynamics of the un-

derlying portfolios are quite different. The portfolio weights displayed in Figure 3.5

demonstrate that the realized co-range yields weights that are much less volatile than

the realized covariance. The turnover generated by the realized co-range portfolio is

equal to 5.9, almost 40% smaller than that of the realized covariance at 9.5. This

results in break-even transaction cost levels of 159.8 and 98.4 basis points for the

realized co-range and for the realized covariance, respectively. Hence, the realized

co-range outperforms the realized covariance substantially by more than 60 basis

points.

Table 3.5 illustrates that the main results continue to hold across three-year sub-

periods. The realized co-range and realized covariance provide similar risk-return

characteristics and therefore identical Sharpe ratios. The turnover in the realized co-

range portfolio weights is substantially smaller than that of the realized covariance

in each of the subsamples considered. This results in a better performance of the

realized co-range in terms of break-even transaction costs.

Consistent with other high-frequency data studies, we find that the use of intraday

data leads to better estimates than daily data. This holds for both return- and range-

based estimators. When we compare the performance of the daily covariance with

the realized covariance using 5-minute intervals we see that more precise (co)variance

estimates increase the average return by 20 basis points from 9.1% to 9.3%. The risk

of the portfolio, as measured by the volatility of the portfolio returns, decreases from
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Table 3.5: Volatility timing strategy

Realized Co-Range (5 min) Realized Covariance (5 min)

Mean St.Dev. SR TO BETC Mean St.Dev. SR TO BETC

1985-2006 0.094 0.072 1.306 5.9 159.8 0.093 0.072 1.291 9.5 98.4

1985 0.000 0.061 -0.007 2.9 -1.4 0.004 0.061 0.058 4.6 7.8
1986-1988 0.110 0.078 1.406 5.5 199.8 0.110 0.079 1.381 9.1 121.0
1989-1991 0.132 0.070 1.879 6.4 207.4 0.130 0.070 1.856 9.6 135.1
1992-1994 0.092 0.053 1.746 5.7 161.4 0.087 0.053 1.642 9.2 94.3
1995-1997 0.161 0.047 3.412 4.5 360.6 0.161 0.047 3.403 7.3 221.4
1998-2000 0.132 0.073 1.822 5.7 233.2 0.130 0.073 1.787 8.8 147.8
2001-2003 0.014 0.085 0.169 5.3 27.1 0.017 0.085 0.203 8.9 19.3
2004-2006 0.038 0.084 0.446 8.3 45.5 0.036 0.084 0.432 13.6 26.8

Daily Co-Range Daily Covariance

Mean St.Dev. SR TO BETC Mean St.Dev. SR TO BETC

1985-2006 0.088 0.072 1.224 17.1 51.6 0.091 0.074 1.234 10.2 89.0

1985 -0.006 0.060 -0.092 8.3 -6.7 -0.001 0.064 -0.020 5.0 -2.6
1986-1988 0.107 0.079 1.362 14.6 73.7 0.123 0.080 1.534 8.8 139.3
1989-1991 0.120 0.069 1.742 17.2 69.5 0.119 0.070 1.695 9.8 121.4
1992-1994 0.087 0.052 1.658 14.6 59.4 0.096 0.054 1.779 9.3 102.6
1995-1997 0.156 0.047 3.300 13.1 118.9 0.153 0.049 3.150 8.0 190.7
1998-2000 0.121 0.073 1.657 15.4 78.9 0.120 0.075 1.598 9.3 128.4
2001-2003 0.021 0.085 0.242 20.6 10.0 0.020 0.086 0.230 11.5 17.2
2004-2006 0.028 0.085 0.333 24.5 11.6 0.026 0.086 0.303 14.7 17.7

Note: This table summarizes the performance statistics of the volatility timing strategy based
on the bias-corrected rolling estimators constructed from 5 minute return data (realized covari-
ance) and 5 minute range data (realized co-range). The decay parameter α is estimated in a
maximum-likelihood procedure. The annualized average daily portfolio return is denoted by
Mean and St.Dev. represents the corresponding annualized volatility of daily portfolio returns.
TO is the annualized average absolute daily change in portfolio weights. BETC represents the
annualized break-even transaction costs (in basis points), which would reduce the profitability
of the investment strategy to zero.
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7.4% to 7.2%, which is equal to the risk of the daily co-range portfolio. The turnover

decreases from 10.2 to 9.5, leading to slightly higher break-even transaction costs, an

increase of almost 10 basis points per annum.

For the co-range the use of intraday data is even more profitable.13 The daily co-

range achieves an average portfolio return of 8.8%, compared to 9.4% for the realized

co-range. The return difference of about 60 basis points comes at the same level of

portfolio risk, such that the Sharpe ratio increases from 1.23 to 1.31 when switching

from the daily co-range to the realized co-range. The most notable difference occurs

in terms of turnover, which is substantially larger for the daily co-range (17.1) than

for the realized co-range. This leads to much higher transaction costs for the daily

co-range, resulting in a large difference in break-even transaction costs of more than

100 basis points (51.6 compared to 159.8).

Concluding, the use of the realized co-range in a volatility timing investment

strategy has appealing economic advantages, especially when transaction costs are

taken into account. The more precise covariance estimates that are obtained with

high-frequency intraday ranges result in a more stable portfolio with smaller turnover

and, thus, higher break-even transaction costs.

3.4.4 Sensitivity analysis for the decay parameter

The empirical results described above are based on decay parameters α in (3.12)

that maximize the log-likelihood function of the GARCH-type model in (3.13). For

several reasons it is interesting to examine the sensitivity of the volatility timing

results for the choice of α. First, the results of Fleming et al. (2003) and De Pooter

et al. (2008) illustrate that the decay parameters that maximize the statistical fit do

not necessarily provide the best economic performance in a volatility timing strategy.

Second, in the forecasts obtained from (3.12), the decay rate α determines the weight

put on the ‘backward looking’ rolling estimator, which equals exp (−α), and the

weight put on the innovation term, α exp (−α). When α is small this indicates that

the estimator requires a high degree of ‘smoothing’ because it is noisy, whereas a

large α indicates less smoothing. Hence when we use a small decay parameter for

the realized covariance and realized co-range, they are expected to provide similar

results as the noise is ’smoothed’ out to a large extent.14 The maximum-likelihood

estimates for the decay parameters are relatively small, which implies a high degree of

13This result is corroborated by Table 3.6, which summarizes the results for a range of decay
parameters. The higher profitability of the realized co-range is not caused by the fact that it has
a smaller decay parameter than the daily co-range. When we fix the decay parameter to be equal,
the realized co-range also outperforms the daily co-range.

14We thank Torben Andersen for providing this insight.
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smoothing and therefore small differences in performance. Pinning down α at larger

values for both estimators is a good test case as it allows us to assess the quality

of the innovation term Vt−1 in (3.12). Doing so we expect to find larger differences

in the average returns and levels of risk for the volatility-timing portfolios based on

the realized covariance or realized co-range. Third, we expect the decay parameter

to have an important impact on turnover as a large decay parameter implies a large

weight on the most recent innovation and therefore more turnover in the portfolio

weights. Fixing the decay rates enables a fairer comparison in terms of the break-even

transaction costs.

Table 3.6 summarizes the empirical results for the competing rolling variance-

covariance estimators over the 1985-2006 period for a grid of decay parameters rang-

ing from 0.01 to 0.175. Before taking into account turnover and transaction costs

the performance of the realized co-range and realized covariance is similar for small

and intermediate decay rates (α = 0.01 to 0.10). For example, using a decay rate of

0.05 results in identical levels of risk (7.2%) and return (9.4%) and therefore approx-

imately equal Sharpe ratios (1.302 and 1.308).

However, for larger decay rates with more weight being put on the most recent es-

timate, the performance of the realized covariance deteriorates while the performance

of the realized co-range remains robust. For example, when we use a decay rate of

0.15 the Sharpe ratio of the realized covariance decreases to 1.15 while the realized

co-range still achieves a Sharpe ratio equal to 1.29. At the daily sampling frequency

the co-range also seems more robust to the choice of decay parameter than the daily

covariance estimator. Although the performance of the daily co-range worsens for

large decay rates, the decline in performance is substantially less than that of the

daily covariance. Before taking into account turnover and transaction costs, the daily

co-range outperforms the daily covariance for the whole range of decay rates, and it

competes with the realized covariance when using decay rates larger than or equal to

0.15. The realized co-range outperforms the daily co-range regardless of the decay

rate. The difference is more pronounced for large decay parameters. The risk-return

characteristics of the realized co-range are substantially better as expressed by the

difference in Sharpe ratio, which increases with the weight put on the most recent

covariance estimate.

The portfolios based on the realized co-range exhibit substantially lower turnover

than the portfolios based on the realized covariance, with the difference ranging from

33% for a decay parameter of 0.01 up to 62% for a decay parameter of 0.15. Using

the realized covariance instead of the daily covariance reduces turnover by about 35%

for large decay rates and up to 55% for small and intermediate decay parameters.

A similar comparison of the realized co-range with its daily counterpart shows a
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Table 3.6: Volatility timing strategy: Sensitivity analysis for decay rate

Realized Co-Range (5 min) Realized Covariance (5 min)

α Mean St.Dev. SR TO BETC Mean St.Dev. SR TO BETC

0.010 0.095 0.074 1.279 1.1 846.0 0.095 0.074 1.286 1.7 567.8
0.025 0.095 0.073 1.304 2.6 369.2 0.095 0.073 1.310 4.0 236.2
0.050 0.094 0.072 1.308 4.8 198.1 0.094 0.072 1.302 7.8 121.3
0.075 0.094 0.072 1.303 6.8 137.4 0.093 0.072 1.284 11.4 81.1
0.100 0.093 0.072 1.297 8.8 105.7 0.091 0.072 1.264 15.1 60.5
0.125 0.093 0.072 1.292 10.8 86.3 0.090 0.072 1.243 18.9 47.7
0.150 0.093 0.072 1.288 12.7 73.2 0.096 0.083 1.153 33.7 28.6
0.175 0.093 0.072 1.285 14.5 63.7 0.086 0.101 0.854 37.4 23.0

Daily Co-Range Daily Covariance

α Mean St.Dev. SR TO BETC Mean St.Dev. SR TO BETC

0.010 0.093 0.074 1.263 2.2 431.5 0.093 0.074 1.257 3.4 273.0
0.025 0.092 0.073 1.271 5.4 172.1 0.091 0.073 1.245 8.5 107.0
0.050 0.090 0.072 1.251 10.6 85.2 0.088 0.074 1.181 17.1 51.2
0.075 0.089 0.072 1.229 15.7 56.4 0.084 0.075 1.120 25.6 32.8
0.100 0.087 0.072 1.211 20.8 42.1 0.081 0.076 1.064 34.2 23.7
0.125 0.086 0.072 1.195 25.7 33.6 0.079 0.077 1.014 42.8 18.4
0.150 0.086 0.072 1.182 30.6 28.0 0.076 0.079 0.969 51.3 14.9
0.175 0.085 0.073 1.170 35.4 24.0 0.074 0.080 0.929 59.8 12.4

Note: This table displays the performance statistics of the sensitivity analysis for decay rates
in the volatility timing strategy based on the bias-corrected rolling estimators constructed from
5 minute return data (realized covariance) and 5 minute range data (realized co-range). α
is the decay parameter. The annualized average daily portfolio return is denoted by Mean
and St.Dev. represents the corresponding annualized volatility of daily portfolio returns. TO
is the annualized average absolute daily change in portfolio weights. BETC represents the
annualized break-even transaction costs (in basis points), which would reduce the profitability
of the investment strategy to zero.

reduction in turnover of about 50% to almost 60%, for small and large decay rates,

respectively.

From the sensitivity analysis we conclude that the realized co-range is more ro-

bust to the choice of decay parameter α in (3.12) than the realized covariance, the

daily covariance and the daily co-range. The smaller turnover and better break-even

transaction costs of the realized co-range do not depend on the decay rate but they

are caused by more precise estimates of the covariance matrix. When pinning down

the decay rate, the realized co-range never has a worse performance than the realized

covariance before measuring turnover and costs. If we do take into account turnover

and compute break-even transaction costs, the realized co-range outperforms the re-

alized covariance and the two daily estimators. When the weight on recent estimates
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is large, the realized co-range also achieves a better performance than the realized

covariance in terms of risk and returns and therefore results in higher Sharpe ratios

in the volatility timing strategy.

3.5 Conclusion

We have extended range-based covariance estimation with a novel high-low range

estimator based on intraday data. The covariance between two assets is backed out

from their individual variances and the variance of a portfolio of the two assets,

where the realized range is used to estimate each of these variances. In case of con-

tinuous trading and no market frictions, the realized co-range provides a considerably

more accurate measure of covariation than the realized covariance, which uses cross-

products of intraday returns, due to the relative efficiency of range-based volatility

measures when using the same sampling frequency.

The realized co-range continues to have attractive properties in the presence of

market microstructure noise due to bid-ask bounce, infrequent trading and non-

synchronous trading. A key advantage of the co-range is that the upward bias due

to bid-ask bounce and the downward bias due to infrequent and non-synchronous

trading partially offset each other. Although the realized covariance is also downward

biased due to non-synchronous trading, it is not biased due to bid-ask bounce. In

simulation experiments we indeed find that the realized co-range improves upon

the realized covariance for empirically plausible levels of bid-ask bounce and non-

synchronous trading. In case the different biases do not offset each other, bias-

correcting the realized co-range with the recent historical average (relative) level of

the daily co-range is an effective procedure to restore the efficiency of the realized

co-range.

In the empirical study for S&P500, bond and gold futures, we find that in Fleming

et al.’s (2003) volatility timing strategy the realized co-range and realized covariance

provide similar results before taking into account transaction costs. The level of noise

in the correlations implied by the realized co-range is substantially smaller than that

of the realized covariance, leading to smaller variation in the portfolio weights whilst

still providing a similar risk-return profile. After taking into account transaction

costs, the realized co-range outperforms the realized covariance by about 60 basis

points per annum when the decay parameters in the exponentially weighted rolling

estimators are estimated by maximum-likelihood. The reason behind the similar risk-

return profile is that for forecasting covariances both the realized co-range and the

realized covariance use small decay parameters putting considerable weight on older

covariance estimates to smooth noise. If larger decay parameters are used, putting
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more emphasis on the covariance estimates of the most recent day, the risk-return

profile of the co-range becomes superior.

Several interesting directions for future research emerge from our study. First,

it will be interesting to study the theoretical properties of the co-range. Second,

alternative estimators based on intraday highs and lows could be explored, such as

the generalized range estimator of Dobrev (2007). Third, an empirical application to

individual stocks could be considered, to examine the properties of the realized co-

range for assets exhibiting more noise, and for higher dimensional problems. Fourth,

in the context of such large-scale covariance matrices, factor models may be consid-

ered to alleviate the adverse effects of non-synchronous trading. Fifth and finally,

the impact of jumps on the realized co-range should be investigated. The impact of

jumps on the realized range has been examined by Christensen and Podolskij (2006),

who consider a bipower range estimator as a jump-robust alternative to the ‘stan-

dard’ realized range. Also, Dobrev’s (2007) generalized range estimator is robust

to jumps. In case of covariance estimation, a crucial question is whether the jumps

are idiosyncratic or common across assets. Bollerslev et al. (2008) provide empirical

evidence for US stocks that both types of jumps are relevant. In case of fully idiosyn-

cratic jumps, jump-robust range estimators may be used to estimate the covariance

due to the continuous part of the price processes. In case of correlated (or partially

common) jumps, ‘standard’ range-based estimators may be used to estimate the ‘to-

tal’ covariance. A key issue then may also be to separately identify the covariances

due to the continuous and jump parts of the price processes.



Chapter 4

Realized Mixed-Frequency

Factor Models for

Vast-Dimensional Covariance

Estimation∗

4.1 Introduction

Accurate measures and forecasts of asset return covariances are important for finan-

cial risk management and portfolio management. Recent academic research in these

areas has focused on two different issues. First, intraday data has been shown to

render more precise measures and forecasts of daily asset return volatilities and co-

variances. Second, for the practically relevant case of portfolios consisting of a large

number of assets, factor structures have been found useful to tackle the “curse of

dimensionality”. In this paper we put forward a novel approach for accurate mea-

surement and forecasting of the covariance matrix of vast dimensional portfolios by

combining the use of high and low-frequency data with a linear factor structure.

Specifically, we introduce a “mixed-frequency” factor model (MFFM), where high-

frequency data on relatively liquid factors is used for precise estimation of the factor

covariance matrix and idiosyncratic risk whereas the factor loadings are estimated

from low-frequency data.

∗This chapter is based on the article by Bannouh, Martens, Oomen and Van Dijk (2012).
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In recent years, a substantial body of literature has emerged on the use of high-

frequency data for obtaining more accurate measures and forecasts of financial risk,

see e.g. Andersen et al. (2006a) and McAleer and Medeiros (2008) for recent re-

views. For the multivariate case, Barndorff-Nielsen and Shephard (2004) introduced

the realized covariance, summing the cross-products of intraday returns. Market mi-

crostructure, however, poses two challenges: First, transactions take place against

bid and ask prices, causing overestimation of the volatility. Second, non-synchronous

trading of stocks biases covariance estimates towards zero. Several covariance esti-

mators have been proposed that are robust to microstructure frictions. Focussing

on the bi-variate case, Bandi and Russell (2005) illustrate how to choose the opti-

mal sampling frequency for the realized covariance in the presence of microstructure

noise. Hayashi and Yoshida (2005) propose an “all overlapping” returns estima-

tor that is robust to non-synchronous trading. Griffin and Oomen (2011), Martens

(2006), and Voev and Lunde (2007) provide further insights into the properties of the

Hayashi-Yoshida and lead-lag adjusted realized covariance estimators in the presence

of non-trading and microstructure noise. Zhang (2011) extends the two-scales esti-

mator of Zhang et al. (2005) to covariance estimation. Moving beyond a bi-variate

setting, Barndorff-Nielsen et al. (2011) introduce multivariate realized kernels which

deliver consistent and positive semi-definite covariance matrix estimates. For these

multivariate kernels, refresh time-sampling discards a substantial part of the avail-

able high-frequency data, although Hautsch et al. (2012) propose a block approach

to reduce this problem. None of the aforementioned approaches, however, can em-

pirically cope with a universe consisting of hundreds or even thousands of stocks that

make up most stock market indices used to benchmark fund managers.

Recently Fan et al. (2008) revisited the use of factor models for covariance esti-

mation in case of a large number of assets, in order to reduce the dimensionality of

the problem. They show that the factor model approach improves over the sample

covariance matrix (based on daily data) in particular when the portfolio optimiza-

tion problem requires the inverse of the covariance matrix. The reason is that in

the factor model approach only the factor covariance matrix needs to be inverted,

which typically is of much lower dimension. In addition, using the covariance matrix

based on a factor structure reduces the problem of error maximization for portfolio

construction applications, see for example Jagannathan and Ma (2003).

With the MFFM we introduce an innovative methodology that exploits the ad-

vantages of both high-frequency data and the factor model approach: It enables

more efficient estimation of covariances whilst still being able to cope with a very

large number of stocks. The covariance matrix based on the factor model requires

three estimates: The covariance matrix of the factor returns, the factor loadings, and
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the stock-specific variances. Without compromising the consistency and positive-

definiteness of the resulting covariance matrix we can choose different sampling fre-

quencies for each of these three estimates.

First, in the MFFM approach we use realized covariances obtained from high-

frequency intraday returns to estimate the daily factor covariance matrix. This is

motivated by the fact that nowadays highly liquid financial contracts such as index

futures and exchange-traded funds (ETFs) are available as proxies for the most com-

monly used factors. This further increases the added value of high-frequency data

because microstructure frictions are relatively small. For this reason the factor co-

variance matrix can be estimated with high precision from intraday data. Second,

we estimate the factor loadings using daily data for the reason that single-day betas

based on high-frequency data are very noisy due to the non-synchronicity between

factor returns and stock returns, see for example Andersen et al. (2006b), Todorov

and Bollerslev (2010) or Hansen et al. (2010) for related discussions.

Finally, although intraday data is also available for individual stocks, these are

generally less liquid than index futures and ETFs. Hence, we can use intraday data

for stock-specific variances, but possibly at a lower frequency than the one used for

the factor covariance matrix.

We provide theoretical, simulation-based and empirical evidence that the MFFM

offers a useful approach for estimating vast dimensional covariance matrices. In the

theoretical part of this paper we show that, assuming i.i.d. microstructure noise and

a Poisson arrival process for non-synchronous trading, the covariance estimates of

the MFFM are unbiased and we obtain a closed form expression for the variance

of these covariance estimates. Based on analytical expressions for the variance of

the estimators, we show that the MFFM improves substantially in terms of efficiency

over that of the popular Hayashi and Yoshida (2005), realized covariance and lead-lag

adjusted realized covariance estimators.

Next, we use Monte Carlo simulations to show that the MFFM estimator is also

superior to the realized covariance estimator, when we relax several of the assump-

tions underlying the theoretical results and move from the bi-variate case to a realistic

setting of 500 assets.

We empirically evaluate the MFFM estimator by comparing its performance to

the (sample) realized covariance and a factor model based on daily returns. We con-

sider three stock universes: The S&P 500 (large caps, most liquid), the S&P 400

(mid caps), and the S&P 600 (small caps, illiquid). To the best of our knowledge, we

are the first in the literature to consider such high dimensional problems involving

high-frequency data. Of course, in the empirical case unlike for the theory and simu-

lations we do not know the true covariances. For this reason we analyze two empirical
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applications. First, we use Mincer-Zarnowitz and forecast encompassing regressions

to obtain insights in the ability of the MFFM to forecast the volatility of vast dimen-

sional portfolios out-of-sample. Second, we evaluate the performance of minimum

tracking error portfolios.1 We find that in each of the three S&P universes the out-

of-sample MFFM portfolio volatility forecasts improve upon realized covariance and

daily factor model forecasts when we rank the forecasts on their Mincer-Zarnowitz

R2. Using encompassing regressions, in which we add the realized covariance or daily

factor model forecasts to MFFM we find that the coefficient on realized covariance

and the daily factor model is negative. Adding these forecasts to the MFFM fore-

casts improves the MFFM forecasts only marginally. When the objective is to track

a benchmark using out-of-sample covariance matrix forecasts, the MFFM provides

smaller tracking errors and much smaller portfolio turnover than the realized covari-

ance. Conventional factor models based on daily data manage to achieve a similar

tracking error as the MFFM, but only if a long historical data period is used. This is

due to the fact that it needs a substantial amount of smoothing, whereas the MFFM

can manage the same performance with a very short span of historical data. In ad-

dition, the portfolio turnover of the daily factor model is about three times larger

than the MFFM turnover. For forecasting portfolio volatility and for minimizing the

tracking error we find that differences between the MFFM and realized covariance

increase as we move from the most liquid stock universe to the least liquid universe,

as expected.

In recent work Hansen et al. (2010) and Noureldin et al. (2012) advocate the use

of high-frequency data in a parametric GARCH framework. Related to our idea of

using a mixed-frequency sampling approach for modeling vast dimensional covariance

matrices several authors have recently implemented subcases and modifications of the

mixed-frequency (factor model) methodology. Kyj et al. (2009) study a single-factor

model, which is a special case of the MFFM, to forecast covariance matrices in the

absence of noise and non-trading. Halbleib and Voev (2011) propose to use mixed-

frequency sampling for predicting covariance matrices by using high-frequency data

for realized volatilities and low-frequency data for correlations. Hence, without using

a factor structure, by using mixed-frequency sampling they successfully circumvent

the issue of non-trading for estimating correlations. Combining the Hautsch et al.

(2012) blocking and regularization kernel estimator with the MFFM, Hautsch et al.

(2011) propose to select factors in a data driven way where mixed-sampling frequen-

cies can be used for volatilities, correlation eigenvalues and eigenvectors. In contrast

1Chan et al. (1999) show that differences between covariance estimators are small for minimum
variance portfolios because the market factor dominates.
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to our study they use a multi-time-scale approach for reducing the impacts of noise,

non-trading and estimation error, rather than studying these frictions explicitly.

The remainder of this paper is structured as follows. In Section 2 we derive the

theoretical properties of the MFFM and provide a theoretical comparison with the

bi-variate Hayashi and Yoshida (2005), realized covariance and lead-lag estimators.

Section 3 contains an extensive Monte Carlo study in which we replicate the S&P500

universe to evaluate the realized covariance and the MFFM covariance matrix esti-

mates. In Section 4 we study the empirical performance of the MFFM and compare

it to the realized covariance and a factor model based on daily data. We conclude in

Section 5.

4.2 The Mixed-Frequency Factor Model

Consider a linear factor structure for the return on asset i, that is

ri = μi + β′if + εi (4.1)

where f is a K × 1 vector of common factors, βi is a K × 1 vector of factor loadings

measuring the exposure to f , and εi is the idiosyncratic component. We assume that

E[f ] = 0 and E[εi] = 0, such that μi is the expected return. Furthermore, we assume

that the idiosyncratic component is orthogonal to the common factors, i.e. εi ⊥ f .

Under these assumptions the covariance between asset i and asset j can be expressed

as

γij ≡ Cov[ri, rj ] = β′iΛβj + σij (4.2)

where Λ = E[ff ′] is the factor covariance matrix and σij = E[εiεj ] is the covariance

between the assets’ idiosyncratic components. Throughout, we consider a “strict”

factor structure in the spirit of Ross (1976), i.e. we assume that the factor structure

exhausts the dependence among the assets so that σij = 0 for i �= j. Approximate

factor models where σij can be non-zero but small are considered in Chamberlain

and Rothschild (1983); Ingersoll (1984) and Connor and Korajczyk (1994).

Using hats to denote estimates of unknown quantities, the covariance estimator

is given by

γ̂ij = β̂′iΛ̂β̂j for i �= j. (4.3)

The properties of this generic covariance estimator are characterized in the theorem

below, where we use the notation X̂ = X +Xε.
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Theorem 4.2.1 Assuming (i) E[σij ] = 0 for i �= j, (ii) E[βε] = 0, (iii) E[Λε] = 0,

and (iv) βε ⊥ Λε element-by-element, then

E[γ̂ij ] = γij , (4.4)

for i �= j with

V[γ̂ij ] = β′iΛΣβ,jΛβi + β′jΛΣβ,iΛβj + tr(Σβ,iΛΣβ,jΛ)

+ g(βiβ
′
i, βjβ

′
j ,Φ) + g(βiβ

′
i,Σβ,j ,Φ) + g(βjβ

′
j ,Σβ,i,Φ) + g(Σβ,i,Σβ,j ,Φ), (4.5)

where Σβ,i = V[β̂i] and Φ = E[vech(Λε)vech(Λε)′] and

g(A,B,Φ) =

N∑
m,n,p,q

AmpBnqΦf(p,n),f(q,m),

and f(p, q) = N(min{p, q} − 1) + 1
2 (min{p, q} −min{p, q}2) + max{p, q}.

Proof See Appendix 4.A. �

It is useful to note that the assumptions in this Theorem are not unreasonable for

the mixed-frequency approach developed in this paper. Specifically, we propose to

estimate betas using low-frequency data, such that it is plausible to assume that betas

are unbiased, whereas the factor covariance matrix is estimated from high-frequency

data. The factors are essentially free of microstructure noise since the ETFs we

propose as factors are very liquid, see Table 4.1. This justifies the assumption that

the factor covariance estimates are unbiased and that possible sources of noise in low-

frequency betas and factors observed at high sampling frequencies are independent2.

The linear factor decomposition of asset returns in (4.1) has a long and established

history in the theoretical and empirical finance literature. Three types of factor

models can be distinguished, depending on how the factors f and the associated

exposures β are constructed. Specifically, the model in (4.1) can be categorized as (i)

a statistical factor model (Ross, 1976) when both β and f are unspecified and inferred

from the panel of asset returns, (ii) a characteristic-based factor model (Rosenberg,

1974) when β is fixed and determined by asset-specific characteristics while f is

inferred from the data, or (iii) a macro-economic factor model (Chen et al., 1986)

when f is observable and derived from macroeconomic or asset pricing theory while

2In Section 3 we analyze the impact of estimation errors in betas for the MFFM.
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Table 4.1: Description of ETF contracts

sector / style # trades
ticker description classification per day
XLE.A Energy Sector SPDR Fund Energy 76,392
XLB.A Materials Sector SPDR Fund Materials 16,708
XLI.A Industrial Sector SPDR Fund Industrials 12,207
XLY.A Consumer Discretionary Sector SPDR Fund Consumer Discretionary 9,731
XLP.A Consumer Staples Sector SPDR Fund Consumer Staples 6,153
XLV.A Health Care Sector SPDR Fund Health Care 6,697
XLF.A Financial Sector SPDR Fund Financials 112,191
XLK.A Technology Sector SPDR Fund Information Technology 9,243
IYZ.N iShares Telecommunications Sector Fund Telecommunications 762
XLU.A Utilities Sector SPDR Fund Utilities 11,753

SPY.A SPDR Trust Series 1 Large Cap 356,876
IWM.A iShares Russell 2000 Index Fund Small Cap 140,192
IVE.N S&P 500 Value Index Fund Value 3,030
IVW.N S&P 500 Growth Index Fund Growth 3,912

Average across ETFs 54,703
Average across S&P400 constituents 4,898
Average across S&P500 constituents 19,395
Average across S&P600 constituents 1,990

Note: This table lists the ETF contracts used in the empirical analysis, together with
the average number of trades per day over the period January 2007 through April
2009. The “SMB” (“HML”) factor is specified as IWM.A - SPY.A (IVE.N - IVW.N).

β is estimated from the data. See Grinold and Kahn (2000) or Connor et al. (2012)

for further discussion.

The factor model we develop in this paper can be classified as a traditional macro-

economic model in the sense that the factors are observable and their loadings are

estimated from the data. However, its construction is designed to make efficient use

of high-frequency data while simultaneously avoiding the potentially severe biases

induced by market micro-structure noise. Specifically, our “mixed-frequency factor

model” involves the use of liquid assets as factors for precise estimation of the factor

covariance matrix using high-frequency data, while factor loadings are estimated

using lower-frequency returns of the, possibly illiquid, individual assets. The use of

liquid factors in the MFFM is motivated by the empirical observation that a growing

number of highly liquid exchange traded funds (ETFs) and futures contracts are

now available that proxy commonly used country, industry, and style factors. With

minimal spreads and accurate real-time pricing for many of these contracts, the effects

of market microstructure noise are of little concern and the use of high-frequency data

is justified. Particularly for a large and heterogeneous asset universe, however, many

of the individual assets may be illiquid and contaminated by market microstructure

effects at high sampling frequencies. To support this point Table 4.1 shows statistics
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on the ETFs we use in our empirical application. The average number of observations

for these ETFs is over 54,000 per day. In contrast the average number of observations

for a constituent of the S&P500 is just over 19,000 per day, and this drops to about

only 2,000 per day for the constituents of the S&P600, i.e. the small cap index.

We now specialize the rather general result in Theorem 4.2.1. to the MFFM

setting to gain further insights into its properties. We define F and F as the matrices

of low- and high-frequency factor return observations with dimensions (T ×K) and

(M×K). Similarly, Ri and Ri denote the vectors of low- and high-frequency returns

of asset i of length T and Ni, and τi the (Ni × 1) vector of time-stamps associated

with Ri.

Assumption N The factor returns F are jointly normal with zero mean, serially un-

correlated and observed without friction3. The (integrated) factor covariance matrix

is estimated using the high-frequency factor returns as Λ̂ = F ′F .
Assumption O The asset return dynamics at low frequency are governed by a

linear factor model as in (4.1) with i.i.d. normal residuals εi. The factor loadings

are estimated by means of linear regression using the low-frequency returns β̂i =

(F ′F )−1F ′Ri.

Corollary 4.2.2 Let assumption N, O, and those in Theorem 4.2.1. hold. Then

for i �= j

E[γ̂ij ] = γij (4.6)

and

V[γ̂ij ] =
A

T
+

B

M
, (4.7)

where

A = σ2
jβ
′
iΛβi + σ2

i β
′
jΛβj + σ2

i σ
2
j

K

T
,

B =
K∑

m,n,p,q

(βi(m)βi(p) + Σβ,i(m, p)) (βj(n)βj(q) + Σβ,j(n, q)) (ΛpqΛnm + ΛpmΛnq)

Proof See Appendix 4.A. �

The above corollary provides insights into the properties of the MFFM covariance

estimator. In particular, it is unbiased with a variance that can be attributed to the

3Given the highly liquid ETFs we propose as factors, see Table 4.1, it is justified to assume that
factor returns are serially uncorrelated and observed without friction.
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measurement error in factor loadings (i.e. A/T ) and to the measurement error in the

factor covariance matrix (i.e. B/M).4

To illustrate the efficiency of the MFFM in a bi-variate setting, we compare it to

the (i) Hayashi and Yoshida (2005) estimator, (ii) realized covariance and (iii) real-

ized covariance lead-lag estimator. For this purpose, we assume that intraday price

observations for asset i (from which the returns Ri are computed) arrive according

to a Poisson process with intensity λi = E[Ni]. Further, we assume that prices are

contaminated with i.i.d. microstructure noise with variance ξ2i = πiγ
2
i /λi. We use

closed-form expressions for the efficiency of the popular aforementioned estimators

(see Griffin and Oomen (2011) for details) and compare these with the variance of

the MFFM covariance estimator. To compute the variance of the MFFM covariance

estimator, we need to make some assumptions about the underlying factor structure.

Here, we use a setting with K = 5 factors, factor loadings βi = (0.5,−0.1, 0, 0.2, 0.6)′,
βj = (0.7,−0.2,−0.3, 0.4, 0.2)′, and factor covariance matrix Λ = IK + 1

2 (1 − IK).

The specific or idiosyncratic risk component is σ2
h = β′hΛβh for h ∈ {i, j} so that

the R2 of the factor regression is around 50% and the assets have a correlation of

ρij ≈ 40% with:

V (r) = (βi, βj)
′Λ(βi, βj) + Σ =

(
2.075 0.765

0.765 1.584

)

In Figures 4.1 and 4.2 the efficiency of the estimators is plotted against the num-

ber of returns an estimator has access to. Figure 4.1 displays the performance for

asynchronously traded assets i and j that are observed without additive microstruc-

ture noise. Figure 4.2 shows the performance when the asynchronous returns are

contaminated with microstructure noise.

From these graphs, we observe that for reasonable scenarios the MFFM comfort-

ably outperforms the HY estimator unless a large number of intraday return obser-

vations on the individual assets is available. For instance, using 5-minute (M = 78)

factor returns to estimate the 5× 5 factor covariance matrix and 1 year (T = 250) of

daily asset returns to estimate the 5× 1 factor loading vector β, the MFFM delivers

better estimates unless the HY estimator has access to more than 500 clean or 1250

noisy intraday (asynchronous) observations. The MFFM is also substantially more

efficient than the realized covariance (lead–lag) estimator.

4Note that in some circumstances β is (assumed to be) known so that V (γ̂ij) = B/M , see e.g.
Grinold and Kahn (2000, Ch. 3).
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Figure 4.1: Comparison of MFFM to Hayashi-Yoshida, RC and RC-LL in terms
of ln MSE without microstructure noise
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Figure 4.2: Comparison of MFFM to Hayashi-Yoshida, RC and RC-LL in terms
of ln MSE with microstructure noise
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4.3 Monte Carlo Simulation

The theoretical results presented in the previous section demonstrate the superior

properties of MFFM compared to existing covariance estimators in a bi-variate set-

ting. An important additional feature of the MFFM is that its factor structure

ensures stable and positive definite covariance matrices in higher dimensional set-

tings. In this section we provide further insights into this property of the MFFM

by means of an extensive simulation study. In addition to increasing the dimension

of the covariance matrix to realistic magnitudes of several hundreds of assets, we

relax some of the assumptions made in the previous section to study the effects of

estimation errors in the factor exposures for individual stocks.

4.3.1 Simulation design

We simulate returns for asset i at high frequency as

Ri,tj = Ftjβi + εi,tj + ηi,tj − ηi,tj−1

where i = 1, 2, . . . , (number of stocks), j = 1, 2, . . . , Ni (number of observations in a

day), 0 ≤ tj−1 < tj ≤ 1, and Ftj denotes the factor return between tj−1 and tj . To

ensure a realistic setup, we calibrate the data generating process (DGP) based on

characteristics of the data used in the empirical application in Section 4. Specifically,

the common factor F is a tri-variate Brownian motion with a covariance structure

Λ as estimated for the daily Fama and French three-factor (market, size, and value)

returns5 over the period January 1998 through December 2007. The 3× 1 vector of

factor exposures βi are obtained from regressing daily (corporate action adjusted)

excess returns for each of the S&P500 constituents on the Fama and French three-

factor returns, using the same sample period.

The idiosyncratic component εi,tj ∼ i.i.d. N (0, σ2
i (tj − tj−1)/Ni) where σ2

i is

the residual variance of the Fama and French regression for the ith S&P500 con-

stituent, the market microstructure noise component ηi,tj ∼ i.i.d. N (0, ω2
i ) where

ω2
i = 1

4 (β
′
iΛβi + σ2

i )/Ni,
6, and the observation times tj are based on a Poisson pro-

cess with intensity λi set to the average number of daily trades for the ith S&P500

constituent, Ni.

This simulation setup ensures a realistic covariance structure of the 500-dimensional

returns process at low frequency. At the same time, it incorporates non-synchronous

5Data available from http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data li-
brary.html.

6As shown in Oomen (2009), this level of noise is representative for the S&P500 universe.
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trading and market microstructure noise at high frequency. We simulate second-

by-second factor prices for a 6,5 hour trading day (23,400 seconds) and residuals to

generate stock returns according to the DGP. The Poisson process in combination

with the market microstructure noise then provide the simulated stock price paths.

4.3.2 Covariance models

For the simulated asset returns we estimate the covariance matrix using either MFFM

or the realized covariance matrix.

Realized covariance

The realized covariance is a popular and efficient estimator of the latent integrated

covariance. RC converges in probability to the integrated covariance in the absence

of noise, see Barndorff-Nielsen and Shephard (2004). The RC is estimated as the

cross-product of intraday returns:

RC = R′R
where R is a N × S matrix of intraday returns. Here N is the number of non-

overlapping intraday intervals where in each interval we take the last observed price.

In case an interval has no price the last price of the previous interval is used, resulting

in a zero return for that interval.

Mixed-frequency factor model

For the MFFM we need to estimate the factor loadings, the factor covariance matrix,

and the residual variances. This will give us the MFFM-based covariance matrix as

MFFM = β̃′Λ̂β̃ + Δ̂ (4.8)

where Λ̂ = F ′F is the estimated K ×K realized factor covariance matrix, β̃ is the

K×S matrix of factor loadings contaminated with i.i.d. measurement errors, and Δ̂

is a S × S matrix with the estimated residual variances on the diagonal and zeroes

elsewhere.

In empirical applications the factor covariances, residual variances and factor

loadings can be estimated at different sampling frequencies. First, we propose to

estimate the betas at the daily frequency. The main problem with estimating betas

with intraday returns is that they can become severely biased towards zero due to

the non-synchronicity of the relatively liquid factors and the considerably less liquid
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stocks. Also, Todorov and Bollerslev (2010) illustrate that jumps can cause single-day

realized betas to exhibit erratic time-series behavior. We therefore propose a simple

moving window history of 2.5 years of daily returns data that combined with OLS

delivers betas that are smooth and by construction exhibit a much smaller variance

than single-day realized betas while improving upon using monthly data.7

Second, the realized factor covariance matrix can be estimated at very high fre-

quencies due to the high liquidity of ETF factor proxies. Third and finally, the

residual variances can also be estimated using intraday data, but possibly at a lower

frequency than the factor covariance matrix. This is to reduce the impact of the

noise terms (η). We first compute the residuals, using εi,tj = Ri,tj − Ftj β̃i. Then

we compute the variances of these residuals. While it is possible to use all intra-day

returns for asset i for this purpose, due to market microstructure noise and the dif-

ference between the observation frequency for the factors and the stock prices these

residual variances will be biased upwards. Below we examine to what extent lowering

the sampling frequency to compute these residual variances reduces this bias.

4.3.3 Simulation results

As a measure of relative accuracy of the covariance estimates, we compute their dis-

tance to the true covariance matrix using the Frobenius norm. We do this separately

for the diagonal and off-diagonal elements to disentangle the variance and covariance

terms, i.e. we compute

S∑
i=1

|Γ̂ii − Γii|2 and 2

S∑
i=1

S∑
j=i+1

|Γ̂ij − Γij |2 (4.9)

where Γ = β′Λβ +Σ, with Σ the diagonal matrix with the residual variances on the

diagonal, and Γ̂ being either the MFFM or the RC covariance matrix estimate.

Non-synchronous prices, no noise

Figure 4.3 illustrates the performance of the RC and the MFFM when prices are non-

synchronous but market microstructure noise is absent (i.e. ωi = 0). The covariance

results illustrate that the MFFM has an excellent performance and is very robust

across sampling frequencies. Furthermore, in contrast to RC, its performance is not

affected by non-synchronicity.

7We have empirically experimented with the use of intraday data to estimate beta’s. For sampling
frequencies ranging from 15s to 65m we find that using intraday data to estimate beta’s substantially
increases the variance of the MFFM estimator. Aggregating realized betas to monthly or quarterly
data and then applying EWMA smoothing helps to decrease the variance but the performance is
inferior compared to using low-frequency beta’s. Detailed results are available upon request.
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Non-synchronicity, however, does affect the MFFM variance estimates. This may

seem counterintuitive at first as non-synchronicity usually affects the covariances and

not so much the variances. The reason for the upward bias in the MFFM variances

is caused by a mismatch between the very frequently observed factor returns and less

frequently observed stock returns, which results in an additional quadratic bias term

in the MFFM diagonal. The mismatch between liquid factors and less liquid stocks

disappears when sampling at the 5-minute frequency or lower. Also note that with an

increasing number of assets in a portfolio, the variance elements play a more limited

role as the covariances become more dominant. For example, in the simulation with

500 stocks we only have 500 variances in contrast to 249,500 covariances. However,

in some circumstances it may be interesting to introduce a third sampling frequency,

that is, we can sample the residual returns at a lower sampling frequency than the

sampling frequency for factor returns used to estimate the factor covariance matrix.

We examine this possibility below.

Non-synchronous prices and market microstructure noise

Figure 4.4 illustrates the more practically relevant case where prices are non-synchronous

but also contaminated by additive market microstructure noise.

Market microstructure noise does not deteriorate the performance of both co-

variance estimators as the noise is (assumed to be) cross-sectionally independent.

However, the noise does affect the variances computed with the MFFM (through the

residual variances) and RC. For both estimators the diagonal elements perform fairly

similar at the 5min and lower sampling frequencies while the MFFM covariances are

substantially more efficient.

Lower frequency for residual variances to reduce MFFM variance bias

Finally, we examine the effects of introducing a third sampling frequency, that is,

sampling the residual returns at a lower sampling frequency than the sampling fre-

quency for factor returns used to estimate the factor covariance matrix.

Note that for the MFFM we use the assumption that the common factors fully

capture the correlation among asset returns thus the residual returns only enter the

MFFM by adding the diagonal residual variances to the systematic variances. Hence

introducing a third frequency still delivers a well conditioned positive semi-definite

covariance matrix.

Figure 4.5 illustrates how reducing the sampling frequency of the residual vari-

ances relative to the frequency used for the factor covariances can improve the ef-

ficiency of the variance elements in the MFFM. If the sampling frequency for the

factor returns is ultra-high (sampling more frequently than once a minute) we use
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Figure 4.5: This Figure displays the Frobenius norm for the variance elements of
the MFFM when a bias adjustment is used by introducing a lower 3rd sampling
frequency for calculating idiosyncratic risk. The MFFM with small measure-
ment errors in the betas (T = 10 years) is bias-adjusted while the case with
larger measurement errors (T = 1 year) is not bias-adjusted. The sampling
frequency used for residual risk is the 1m frequency if we use factor covariances
sampled at higher frequencies. When the sampling frequency for the factor co-
variances is 1m or lower, then we use the same sampling frequency for residual
risk.

the 1-minute frequency to sample the residual variances to restore the efficiency of the

variance elements in the MFFM. At sampling frequencies lower than the 1-minute

frequency we use the same frequency for the factor covariances and residual vari-

ances. Using a lower sampling frequency than the 1-minute frequency to calculate

residual risk is of course also possible to eliminate the bias but would deteriorate the

performance of the MFFM as it also increases the variance of the estimates. This is

the well-known trade-off in the efficiency of high-frequency data estimates between

bias and precision.
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4.4 Empirical Applications

We apply the MFFM approach to three universes of stocks with different levels of

market capitalization to assess its empirical performance compared to the realized

covariance and the factor model based on daily data. Whereas in the simulation

experiments reported in the previous section we evaluated the (relative) accuracy of

measurements of daily covariances, here we focus on the performance in terms of

out-of-sample forecasts. In empirical applications the “true” covariances are unob-

servable. For this reason we focus on forecasts instead of covariance measurements.

We do this in two ways. First, we evaluate the forecasting performance of the MFFM

and RC for the volatility of vast dimensional equally-weighted portfolios. Second,

we compare the out-of-sample performance by constructing minimum tracking error

portfolios.

4.4.1 Data

Our data sets comprises the constituents of the S&P500 (large caps), S&P400 (mid

caps) and S&P600 (small cap) indexes. For each index we only use those stocks that

were included in the index during the complete sample period, which runs from May

1, 2004 until April 30, 2009. This leaves 442 large-caps, 342 mid-caps and 491 small-

caps. We collect high-frequency data from November 1, 2006 onwards. Specifically,

we sample National Best Bid Best Offer (NBBO) mid-points, originating from NYSE

and NASDAQ only, at the 15-seconds sampling frequency. The first 2.5 years of the

sample period are used only to obtain estimates of the factor loadings in the MFFM,

for which we require only daily (close-to-close) returns.

4.4.2 Covariance estimators

Volatilities and correlations of stock returns typically are time-varying. We incor-

porate this feature explicitly in the methodology that is used to obtain covariance

forecasts, as described in detail below.

Realized Covariance

In the portfolio volatility forecasting exercise with S stocks we use the traditional

RC estimator to obtain an estimate of the covariance matrix on day t, that is,

RCt = R′tRt, (4.10)

where Rt is the N × S matrix of (intraday) stock returns on day t.
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In the minimum tracking error application we employ intraday excess stock re-

turns net of the relevant benchmark, which for each of the three universes is taken

to be the corresponding S&P index. The active realized covariance estimator is then

computed as

RCA
t = (Rt −RMte)

′(Rt −RMte), (4.11)

where RMt is a N × 1 vector of intraday returns on the corresponding index, and e

is an S × 1 vector of ones. In both cases we include overnight returns by adding the

outer product of the vector of close-to-open (active) returns.

Finally, we consider theRCt andRCA
t estimators for a range of intra-day sampling

frequencies, equal to 15 seconds, 1, 5, 15, 30, 65 and 130 minutes. We also include

the sample realized covariance based on daily close-to-close returns.

Mixed-frequency factor models

For the MFFM approach we employ a 12-factor model based on the Fama and French

(1993) size and value factors and ten industry factors. The motivation to use 10

industry factors is that many stocks have activities in (and thus exposure to) multiple

sectors, see Grinold and Kahn (2000), page 60. We allow for time-varying factor

loadings, which are estimated using a moving window of 2.5 years (632 days) of daily

close-to-close returns8. By means of the regression

Ri,t−j = Ft−jβi,t + εi,t−j , for j = 0, 1, . . . , L− 1, (4.12)

whereRit is a vector of daily returns on stock i, Ft = [SMBt HMLt I1 . . . I10]

is a matrix of factor returns on the size (Small-Minus-Big), value (High-Minus-Low)

and industry factors, and L denotes the length of the moving window. The intraday

residuals needed to compute idiosyncratic variances are obtained as

ε̂t = Rt −Ftβ̂t−1, (4.13)

Finally the MFFM covariance matrix estimate for day t is then computed as

MFFMt = β̂′t−1Λ̂tβ̂t−1 + diag(ε̂′tε̂t), (4.14)

where Λ̂t = F ′tFt is the factor covariance matrix. The motivation to use ‘lagged’

factor loading estimates β̂t−1 (that is, based on the moving window that ends on

8In earlier studies on factor models the number of observations used for estimating betas is
usually 3 to 5 years. Here we use 2.5 years as using a longer history would limit the number of
constituents that survived our sample period, thereby reducing the dimension of the covariance
matrix.
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day t− 1) rather than β̂t stems from assumption (iv) in Theorem 4.2.1. stating that

the measurement errors in the factor loadings and in the factor covariance matrix

are orthogonal, i.e. βε ⊥ Λε. By lagging the beta estimates in (4.13) and (4.14) we

avoid the possibility that measurement errors in factor loadings are correlated with

the measurement errors in the factor covariance matrix.9 For the minimum tracking

error application we follow the same approach, except that we use stock returns in

excess of the returns on the relevant market index. Hence, we obtain estimates of

the factor loadings from the regression

Ri,t−j −RM,t−j = Ft−jβ
A
t + εAi,t−j , j = 0, 1, . . . , L− 1, (4.15)

while we compute the active intraday residuals as

ε̂At = Rt −RM,t −Ftβ̂
A
t−1, (4.16)

and the MFFM estimator for day t using (4.14). We include overnight returns in the

factor covariance matrix Λ̂t by adding the outer product of the vector of close-to-open

factor returns, similar to including overnight stock returns in the realized covariance.

For the idiosyncratic variances we also include the (active) residual overnight returns

throughout the empirical analysis.

In the MFFM estimator in (4.14), we consider the same range of intra-day sam-

pling frequencies for the factor covariance matrix and the idiosyncratic variances as

used for the realized covariance estimator given in the previous subsection. Also,

we include a conventional ‘low-frequency’ factor model where all parts of (4.14) are

based on daily close-to-close returns.

4.4.3 Covariance matrix forecasts

We consider forecasts based on an exponentially weighted moving average (EWMA)

scheme, motivated by the work of Foster and Nelson (1996) and Andreou and Ghysels

(2002). In this framework, the covariance matrix forecast for day t, denoted Σt|t−1,

is given by

Σt|t−1 = αΣt−1|t−2 + (1− α)Σ̂t−1, (4.17)

where the scalar α is a fixed decay parameter and Σ̂t−1 is the covariance matrix

estimate for day t− 1 as given by either the RC estimator in (4.10) (or (4.11) in the

minimum tracking error application) or the MFFM estimator in (4.14). We consider

9We have experimented with using β̂t instead of β̂t−1, finding that this deteriorates the perfor-
mance of the MFFM forecasts (although the differences are small).
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several weighting schemes with α ∈ {0.94, 0.75, 0.50, 0.25}. The value of 0.94 for

α is the optimal decay parameter for daily data documented by RiskMetrics (see

e.g. Zumbach (2006)). The use of smaller decay parameters allows us to examine

the effects on the forecasting performance when putting more weight on more recent

data. Smaller levels of α are also closer to our simulation study where in fact α =

0. Further, using smaller values of α provides more insight in the quality of the

covariance estimator itself rather than the ‘smoothed’ forecast. Less smoothing can

be important also from an economic point of view, as it enables the forecasts to adjust

more rapidly to important changes in variance and covariance dynamics, which for

example occur at turning points between periods of high and low volatility.

We use the period from November 1, 2006 until December 31, 2006 as ‘burn-

in period’ for the covariance dynamics in (4.17) and exclude these two months in

the performance evaluations below. The out-of-sample period therefore runs from

January 3, 2007 until April 30, 2009.

4.4.4 Equally-weighted portfolios

In our first forecasting exercise, we consider equally-weighted portfolios for the S&P500,

S&P400 and S&P600 stock universes. As noted before, we only use the S constituents

that were included in a single index during the complete sample period. For each uni-

verse the daily equally-weighted portfolio return is computed as rp,t = e′rt where rt

is an S×1 vector of close-to-close returns on the individual stocks and e is the equal-

weight vector with entries 1/S. We obtain one-day ahead forecasts of the volatility

of these equally-weighted portfolios as σ̂2
P,t|t−1 = e′Σt|t−1e, using the MFFM- and

RC-based covariance matrix forecasts from (4.17).

We evaluate the accuracy of the volatility forecasts in two ways. First, we run

Mincer-Zarnowitz (MZ) regressions, in which the portfolio volatility proxy σ̂2
p,t|t is

regressed on a constant and one of the volatility forecasts, that is,

σ̂2
p,t|t = γ + δσ̂2

p,t|t−1 + εt. (4.18)

Here we use the squared daily return r2p,t as the volatility proxy. Although this proxy

is known to be noisy, at least it is unbiased. Obvious alternatives would be to use the

RC or MFFM estimates of the covariance matrix for day t, but this might bias the
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MZ regression towards one of the forecasts. Using the squared daily return avoids

this issue.10

In addition we report results for forecast encompassing regressions where the

squared daily return is regressed on the MFFM-based forecast σ̂2
p,MFFM,t|t−1 and a

competing forecast σ̂2
p,X,t|t−1, that is,

r2p,t = γ + δ1σ̂
2
p,MFFM,t|t−1 + δ2σ̂

2
p,X,t|t−1 + εt. (4.19)

These regressions can be used to obtain insights in how well the MFFM approach

empirically competes with existing forecast methods. We consider two competing

forecasts X, namely the RC at the same intraday sampling frequency as used for the

MFFM and the daily factor model, denoted FM. Regression R2’s and coefficients are

reported and statistically significant coefficients at the 5% level are displayed in bold

fonts.

Figures 4.6–4.8 illustrates that the RC and MFFM provide very similar dynamics

at the 5 min sampling frequency. In addition we observe that the estimates obtained

with high-frequency data for the RC and MFFM are much more precise than their

daily counterparts. The daily sample covariance and daily factor model estimates are

“noisy”. The equally-weighted portfolio volatility estimates are all plotted against

the (scaled) daily absolute return.

We run Mincer-Zarnowitz and encompassing regression results with decay param-

eter α = {0.94, 0.75, 0.50, 0.25, 0.00}. For space considerations we only report results

for α = 0.94 since the results for the other settings of α lead to similar conclusions.

The only exception is that the performance of the daily factor model deteriorates

rapidly for smaller α. This occurs because the daily factor model is based on only

one observation per day and therefore require a longer history of covariance estimates

to compete with the estimators based on higher sampling frequencies.

10Using the RC and the MFFM estimator based on a 5 min sampling frequency as the volatility
proxy does not alter the main conclusions as reported here. The main difference is that we obtain
higher regression R2’s that are about 10 to 15% higher than the R2 for the daily squared return.
In addition, we have considered the MZ regression using the absolute return as dependent variable
(which then is regressed on a constant and the square root of σ̂2

p,t|t−1
. This also results in higher R2

values than those reported here (by about 5%), mostly because the absolute return is more robust
to outliers. However, using this transformation of the variance does not lead to consistent forecast
rankings when the forecast target is the conditional variance, see Patton (2011).
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Table 4.2 summarizes the results for the S&P500 Mincer-Zarnowitz and encom-

passing regressions. Based on the Mincer-Zarnowitz regressions we find that the

EWMA forecasts for the volatility of the equally-weighted portfolio have statistically

significant coefficients. The constants, frequently interpreted as forecast bias, are

statistically insignificant across all sampling frequencies. From the regression R2’s

we learn that the results for RC and MFFM are very close, indicating that our factor

structure indeed does a good job, and for both the RC and the MFFM we find that

using high-frequency data improves the R2 by about 3%.11

Table 4.2: S&P500 Portfolio volatility, Mincer-Zarnowitz and encompassing
regressions

15s 1m 5m 15m 30m 65m 130m C2C

Panel A: RC Mincer-Zarnowitz
c 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
RC 1.599 1.350 1.233 1.226 1.154 1.136 1.010 0.906
R2 0.241 0.242 0.244 0.246 0.244 0.245 0.229 0.205

Panel B: MFFM Mincer-Zarnowitz
c 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
MFFM 1.490 1.366 1.299 1.311 1.253 1.233 1.120 1.036
R2 0.242 0.244 0.247 0.249 0.248 0.247 0.232 0.208

Panel C: MFFM + RC Encompassing
c 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
MFFM 1.236 4.353 4.179 3.745 3.591 2.091 1.841 2.230
RC 0.272 -2.968 -2.752 -2.296 -2.174 -0.795 -0.656 -1.056
R2 0.242 0.246 0.250 0.252 0.250 0.248 0.232 0.209

Panel D: MFFM + FM Encompassing
c 0.000 0.000 0.000 0.000 0.000 0.000 0.000
MFFM 3.315 3.284 3.288 3.470 3.157 2.445 1.656
FM -1.396 -1.609 -1.762 -1.904 -1.753 -1.141 -0.536
R2 0.257 0.264 0.271 0.277 0.272 0.261 0.234

Note: This Table summarizes the results for Mincer-Zarnowitz and encompassing regressions using
the daily squared portfolio return as unbiased proxy for the latent portfolio variance. The evaluation
is based on 442 of the S&P500 constituents to forecast the variance of the equally-weighted portfolio
one day ahead using EWMA covariance matrix forecasts with decay parameter α = 0.94. Compared
are the volatility forecasts generated with the MFFM, RC and the daily factor model. The out-
of-sample period is Jan. 2007 – Apr. 2009. Coefficients that are statistically significant at the 5%
level, based on Newey-West standard errors with 20 lags, are displayed in bold fonts.

11By lowering α the forecasting performance of the daily counter parts of the RC and MFFM
deteriorates rapidly and regression coefficients become close to zero if we do not apply EWMA
to generate forecasts due to the high variance of estimators based on daily data as displayed in
Figure 4.6. The differences in R2 between daily and high-frequency data when using non-smoothed
estimates (α = 0) are about 15%.
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For the relatively liquid S&P500 encompassing regressions we find that the RC

and MFFM forecasts do not encompass each other. The bias and loadings on the

forecast have statistically insignificant Newey-West t-statistics at the 5% level. Using

similar encompassing regressions, but now for the MFFM sampled at each intraday

frequency against the daily factor model (FM), we find that the daily factor model

forecasts are encompassed by the MFFM forecasts at each intraday sampling fre-

quency. The improvement in regression the regression R2 compared to regressing on

MFFM only (see Panel B in Table 4.2) is also small.

Table 4.3: S&P400 Portfolio volatility, Mincer-Zarnowitz and encompassing
regressions

15s 1m 5m 15m 30m 65m 130m C2C

Panel A: RC Mincer-Zarnowitz
c 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
RC 2.105 1.594 1.369 1.365 1.257 1.220 1.064 0.915
R2 0.250 0.249 0.255 0.258 0.254 0.259 0.244 0.221

Panel B: MFFM Mincer-Zarnowitz
c 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
MFFM 1.488 1.363 1.283 1.304 1.231 1.196 1.081 0.993
R2 0.259 0.259 0.262 0.266 0.266 0.266 0.252 0.230

Panel C: MFFM + RC Encompassing
c 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
MFFM 9.158 8.508 5.035 4.407 4.207 2.469 2.362 3.429
RC -11.051 -8.535 -4.070 -3.310 -3.119 -1.322 -1.287 -2.300
R2 0.279 0.284 0.272 0.275 0.277 0.268 0.255 0.240

Panel D: MFFM + FM Encompassing
c 0.000 0.000 0.000 0.000 0.000 0.000 0.000
MFFM 2.355 2.333 2.324 2.527 2.457 1.923 1.355
FM -0.630 -0.768 -0.881 -1.027 -1.087 -0.669 -0.271
R2 0.263 0.266 0.271 0.278 0.278 0.272 0.253

Note: This Table summarizes the results for Mincer-Zarnowitz and encompassing regressions using
the daily squared portfolio return as unbiased proxy for the latent portfolio variance. The evaluation
is based on 342 of the S&P400 constituents to forecast the variance of the equally-weighted portfolio
one day ahead using EWMA covariance matrix forecasts with decay parameter α = 0.94. The out-
of-sample period is Jan. 2007 – Apr. 2009. Coefficients that are statistically significant at the 5%
level, based on Newey-West standard errors with 20 lags, are displayed in bold fonts.
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For the S&P400 mid-cap universe Table 4.3 summarizes the forecast regression

results. Using Mincer-Zarnowitz regressions we find that the forecasts based on RC

and MFFM are statistically significant at each sampling frequency and the forecast

bias is not significant. The regression R2’s for the MFFM regressions are higher than

for the RC regressions. In the encompassing regression results for MFFM and RC

(Panel C) we observe that, at high sampling frequencies, between 15 sec and 30 min,

the MFFM forecasts encompass the RC forecasts if we use the squared daily return

as proxy. Differences increase by moving from the relatively liquid S&P500 stocks

to the less liquid S&P400 stocks where non-synchronicity plays a more important

role. In line with the results for the S&P500 we find for the S&P400 universe that

the daily factor model forecasts are encompassed by MFFM and this holds at every

intraday sampling frequency, and adding the daily factor model forecasts to MFFM

forecasts only improves the regression R2 by about a half percent.

When we move to the relatively illiquid S&P600 constituents we observe in Table

4.4 that for the Mincer-Zarnowitz regressions the forecasts of RC and MFFM are

significant at every frequency and the forecast bias is not. Similar to the S&P400

results we find that the regression R2 for MFFM is higher than for RC. Using en-

compassing regressions we find that the MFFM forecasts are favored over the RC

forecasts at very high frequencies between 15s and 1m. Consistent with the results

for the S&P500 and S&P400 the MFFM forecasts obtained using intraday sampling

encompass the factor model based on daily data.

4.4.5 Minimum tracking error portfolios

Given the one day ahead EWMA forecasts of the covariance matrices we construct

minimum TE portfolios by calculating the standard fully-invested minimum variance

portfolios (when using the active covariance matrix as we do here, then the minimum

TE portfolio is the minimum variance portfolio):

wt =
Σ−1

t|t−1e

e′Σ−1
t|t−1e

(4.20)

where e is a S× 1 vector of ones and Σt is the EWMA conditional covariance matrix

forecast of RC or MFFM. The daily minimum TE portfolio returns are obtained by

computing RPt = w′trt where rt is the vector of daily stock returns. We calculate

the ex-post tracking error using daily returns TE = Std(RP −RM ) and compare the

results for the RC and the MFFM.

In this application we keep track of the daily turnover in the portfolio weights

wt which is directly associated with the transaction costs that an investor faces who
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wishes to re-balance his or her portfolio daily. We compute turnover by summing the

absolute daily weight changes over the stock names,

TOt = |wt − wt−1|′e. (4.21)

We expect that a covariance estimator that is well-conditioned and numerically stable

will result in smaller daily portfolio turnover. The daily turnover will also be related

to the decay parameter α in (4.17) which is used to generate EWMA forecasts. A

large decay parameter implies that more weight is assigned to historical estimates

whereas a smaller decay parameter corresponds to assigning more weight to the most

recent estimate(s). More weight on historical estimates will make an estimator more

stable and cause less portfolio turnover but on the other hand, recent shifts in for

example market volatility will be picked up at a slower pace.

Table 4.4: S&P600 Portfolio volatility, Mincer-Zarnowitz and encompassing
regressions

15s 1m 5m 15m 30m 65m 130m C2C

Panel A: RC Mincer-Zarnowitz
c 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
RC 2.878 2.080 1.656 1.590 1.406 1.306 1.125 0.916
R2 0.229 0.232 0.235 0.237 0.236 0.240 0.225 0.209

Panel B: MFFM Mincer-Zarnowitz
c 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
MFFM 1.188 1.191 1.167 1.198 1.114 1.068 0.957 0.924
R2 0.241 0.241 0.241 0.244 0.243 0.241 0.228 0.216

Panel C: MFFM + RC Encompassing
c 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
MFFM 2.226 3.397 2.275 1.875 1.475 0.686 0.682 2.254
RC -2.601 -3.942 -1.599 -0.918 -0.466 0.475 0.329 -1.345
R2 0.244 0.247 0.243 0.245 0.243 0.242 0.228 0.220

Panel D: MFFM + FM Encompassing
c 0.000 0.000 0.000 0.000 0.000 0.000 0.000
MFFM 1.523 1.543 1.442 1.576 1.497 1.184 0.783
FM -0.284 -0.298 -0.239 -0.322 -0.348 -0.111 0.180
R2 0.242 0.242 0.242 0.246 0.245 0.241 0.229

Note: This Table summarizes the results for Mincer-Zarnowitz and encompassing regressions using
the daily squared portfolio return as unbiased proxy for the latent portfolio variance. The evaluation
is based on 491 of the S&P600 constituents to forecast the variance of the equally-weighted portfolio
one day ahead using EWMA covariance matrix forecasts with decay parameter α = 0.94. The out-
of-sample period is Jan. 2007 – Apr. 2009. Coefficients that are statistically significant at the 5%
level, based on Newey-West standard errors with 20 lags, are displayed in bold fonts.
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4.4.6 Minimum tracking error results

Table 4.5 illustrates the performance in terms of annualized minimum tracking er-

rors for the S&P500 large caps. Consistent with the simulation results we find that

the MFFM covariance matrix estimator is remarkably robust across sampling fre-

quencies indicating that, in contrast to RC, the factor covariance matrix can be

estimated at very high frequencies as the level of market microstructure noise and

non-synchronicity in the factors is relatively small compared to individual stocks.

At almost each of the considered sampling frequencies and forecast weights α, the

MFFM produces better results than RC. However, for the relatively liquid S&P500

universe the RC competes with the MFFM if we use a sampling frequency between

15s and 15m combined with α = 0.94 for RC but deteriorates rapidly by putting

more weight on the most recent estimates (lower α’s). The difference between the

MFFM and RC are small when we choose the best sampling frequency and forecasts

weights for RC, but the differences are substantial on average across these settings.

The covariance matrices considered here have a dimension of 442 and we find that at

sampling frequencies of 30min and lower the RC is not well-conditioned and therefore

not invertible, we indicate this with “NA”. The näıvely diversified equally-weighted

portfolio, advocated recently by DeMiguel et al. (2009), achieves a tracking error

equal to 0.099 and is outperformed by the MFFM in each of the parameter settings

and by most parameter settings for the RC given that these settings result in an

invertible covariance matrix forecast.

Important differences in numerical stability of the covariance matrix forecasts are

exemplified by the very large differences in portfolio turnover. At most of the sam-

pling frequencies the difference is at least 8 times larger. This indicates, as noted by

Fan et al. (2008), that using (sample) realized covariances for portfolio optimization

can be “tricky” for vast dimensional portfolios. In contrast, due to its factor structure

and the use of relatively liquid factors, the MFFM delivers exceptionally small levels

of turnover associated with tracking errors that are at par with the best results for

the realized covariance and outperform the realized covariance at all other settings

without having to resort to putting a lot of weight on historical estimates. In fact

the MFFM is found to be relatively insensitive to the choice of α and the sampling

frequency. It is interesting to observe that on average the MFFM tracking errors

are fairly constant across sampling frequencies and decay parameters. This is due

to the factor structure which ensures stability of the covariance matrix. The level

of turnover, however, does depend on the sampling frequency and decay parameter.

The highest sampling frequencies produce very small levels of turnover because the

(factor) covariance estimates are very precise. Applying a higher decay parameter,
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i.e. less weight on recent data, further smooths the covariance matrix and there-

fore reduces turnover. The lower sampling frequencies produce less precise (factor)

covariance estimates and therefore higher levels of turnover. For lower sampling fre-

quencies the covariance estimates are accurate on average due to the factor structure

but they are less precise than when higher sampling frequencies are used.

Table 4.5: Annualized tracking errors S&P500 (large cap) universe

α 15s 1m 5m 15m 30m 65m 130m C2C

Panel A: RC tracking error
0.94 0.060 0.058 0.056 0.060 0.066 0.211 NA NA
0.75 0.062 0.062 0.061 0.075 0.088 0.178 NA NA
0.50 0.064 0.068 0.077 0.102 0.122 NA NA NA
0.25 0.068 0.077 0.099 0.127 NA NA NA NA

Panel B: MFFM tracking error
0.94 0.059 0.059 0.058 0.058 0.059 0.059 0.058 0.058
0.75 0.059 0.058 0.058 0.058 0.058 0.059 0.058 0.058
0.50 0.059 0.058 0.058 0.057 0.058 0.058 0.058 0.059
0.25 0.059 0.058 0.058 0.057 0.058 0.058 0.058 0.064

Panel C: RC turnover
0.94 0.236 0.292 0.357 0.458 0.582 7.922 NA NA
0.75 0.844 1.041 1.379 1.875 2.435 6.842 NA NA
0.50 1.728 2.222 3.115 4.229 5.450 NA NA NA
0.25 2.861 3.960 5.748 7.668 NA NA NA NA

Panel D: MFFM turnover
0.94 0.028 0.032 0.037 0.042 0.046 0.051 0.057 0.079
0.75 0.089 0.101 0.120 0.141 0.158 0.182 0.209 0.297
0.50 0.162 0.185 0.225 0.269 0.307 0.361 0.420 0.603
0.25 0.239 0.275 0.339 0.414 0.478 0.573 0.675 0.986

Note: This table reports the ex-post annualized minimum tracking errors in percentages and the
daily average portfolio turnover using 442 of the S&P500 constituents. The results are based on RC
and MFFM to forecast the active covariance matrix one day ahead using EWMA forecasts over the
sample period 3/1/2007 - 30/4/2009 with decay parameter α. For the MFFM we use a 12-factor
model specification (size, value, and 10 industry factors). The “NA” entries indicate that the RC
is not-invertible at certain combinations of sampling frequencies and weighting schemes.

For the S&P400, see Table 4.6, we decrease the näıve equally-weighted portfolio

tracking error of 9.3% to 8.3% with RC and this result depends heavily on the forecast

weighting scheme and sampling frequency. Using the MFFM further decreases the

tracking error to 7.8% with results being robust. As expected, the tracking errors

have increased for the S&P400 mid caps compared to the S&P500 large caps, see

also Table 1 for the average number of trades per day in each S&P universe. Higher

levels of non-synchronicity and microstructure noise in individual stocks explain this
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result. Similar to the portfolio turnover results for the S&P500 universe we find that

the RC portfolios cause a daily turnover which is at least a factor 10 times larger

than the turnover in the MFFM portfolios.

Table 4.6: Annualized tracking error S&P400 (mid cap) universe

α 15s 1m 5m 15m 30m 65m 130m C2C

Panel A: RC tracking error
0.94 0.089 0.085 0.083 0.087 0.091 0.275 NA NA
0.75 0.095 0.095 0.096 0.114 0.122 0.305 NA NA
0.50 0.102 0.104 0.118 0.156 0.174 NA NA NA
0.25 0.107 0.120 0.154 0.211 NA NA NA NA

Panel B: MFFM tracking error
0.94 0.078 0.078 0.078 0.078 0.078 0.078 0.078 0.078
0.75 0.078 0.078 0.078 0.078 0.078 0.077 0.078 0.079
0.50 0.078 0.078 0.078 0.078 0.078 0.078 0.078 0.081
0.25 0.078 0.078 0.078 0.078 0.079 0.078 0.079 0.086

Panel C: RC turnover
0.94 0.251 0.341 0.411 0.484 0.597 3.397 NA NA
0.75 0.915 1.183 1.520 1.939 2.427 6.485 NA NA
0.50 1.869 2.429 3.403 4.364 5.357 NA NA NA
0.25 3.071 4.197 6.217 8.000 NA NA NA NA

Panel D: MFFM turnover
0.94 0.023 0.025 0.027 0.031 0.033 0.037 0.040 0.075
0.75 0.083 0.089 0.101 0.115 0.126 0.141 0.160 0.282
0.50 0.160 0.172 0.198 0.229 0.254 0.291 0.335 0.580
0.25 0.245 0.265 0.309 0.363 0.407 0.475 0.560 0.963

Note: This table reports the ex-post annualized minimum tracking errors in percentages and the
daily average portfolio turnover using 342 of the S&P400 constituents. The tracking errors are based
on RC and MFFM to forecast the active covariance matrix one day ahead using EWMA forecasts
over the sample period 3/1/2007 - 30/4/2009 with decay parameter α. For the MFFM we use a
12-factor model specification (size, value, and 10 industry factors). The “NA” entries indicate that
the RC is not-invertible at certain combinations of sampling frequencies and weighting schemes.

For the S&P600 small caps, where the level of non-synchronicity plays a more

important role than for mid- and large-caps, we find larger tracking errors when using

the RC because it is sensitive to market microstructure frictions and the increased

portfolio dimension. The tracking errors for the RC are in fact larger, for every

combination of sampling frequency and forecast weighting scheme, than that of the

näıve 1/N portfolio which achieves a tracking error of 8.9%. The MFFM, however,

achieves smaller tracking errors than it achieves for the S&P400 mid-caps, indicating

that its performance is not compromised by the illiquidity of the S&P600 universe.

The MFFM comfortably decreases the best RC tracking error, being 9.1%, to 7.0%
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and the MFFM easily outperforms the näıve portfolio for all combinations of sampling

frequencies and forecast weighting schemes. In line with the turnover results for the

S&P500 and S&P400 we find that the RC portfolios have a turnover that is 12 times

larger.

Table 4.7: Annualized tracking error S&P600 (small-cap) universe

α 15s 1m 5m 15m 30m 65m 130m C2C

Panel A: RC tracking error
0.94 0.098 0.091 0.091 0.095 0.105 NA NA NA
0.75 0.109 0.114 0.126 0.157 0.200 NA NA NA
0.50 0.121 0.135 0.183 0.249 NA NA NA NA
0.25 0.136 0.162 NA NA NA NA NA NA

Panel B: MFFM tracking error
0.94 0.073 0.072 0.072 0.071 0.071 0.071 0.071 0.070
0.75 0.072 0.072 0.071 0.070 0.070 0.071 0.071 0.070
0.50 0.072 0.071 0.071 0.070 0.070 0.070 0.071 0.070
0.25 0.072 0.071 0.071 0.070 0.070 0.071 0.072 0.077

Panel C: RC turnover
0.94 0.367 0.503 0.658 0.806 1.018 NA NA NA
0.75 1.393 1.885 2.649 3.389 4.219 NA NA NA
0.50 2.901 4.043 6.035 7.636 NA NA NA NA
0.25 4.842 7.230 NA NA NA NA NA NA

Panel D: turnover
0.94 0.030 0.033 0.039 0.044 0.049 0.056 0.062 0.085
0.75 0.090 0.100 0.121 0.145 0.164 0.192 0.221 0.308
0.50 0.164 0.181 0.224 0.274 0.315 0.374 0.435 0.613
0.25 0.244 0.270 0.338 0.421 0.490 0.589 0.690 1.000

Note: This table reports the ex-post annualized minimum tracking errors in percentages and the
daily average portfolio turnover using 491 of the S&P600 constituents. The tracking errors are based
on RC and MFFM to forecast the active covariance matrix one day ahead using EWMA forecasts
over the sample period 3/1/2007 - 30/4/2009 with decay parameter α. For the MFFM we use a
12-factor model specification (size, value, and 10 industry factors). The “NA” entries indicate that
the RC is not-invertible at certain combinations of sampling frequencies and weighting schemes.

Note that outperforming the equally-weighted portfolio is not necessarily an easy

task. DeMiguel et al. (2009) analyze various advanced methods consisting of Bayesian

estimation, shrinkage, robust allocation etc. and find that none of the 14 models they

implement can consistently outperform the 1/N portfolio. Hence, the fact that the

MFFM consistently outperforms the 1/N and RC portfolios is encouraging support.

Further, the results in Madhavan and Yang (2003) illustrate that using the sample

(realized) covariance matrix for unrestricted optimization, results in a performance

that is worse than the equally-weighted portfolio.
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4.5 Conclusion

Recently there has been great interest in the use of high-frequency data to estimate

variances and covariances. The advantage is that the use of high-frequency data

results in more accurate covariance estimates, but on the other hand it also brings

problems such as microstructure noise which reduces the efficiency of covariance es-

timators based on intraday data and non-synchronous trading leading to covariance

estimates being biased towards zero. What so far has been lacking is to bring the

merits of high-frequency data to factor models. With the introduction of exchange-

traded funds important factors are now traded much more actively than individual

stocks. For example the S&P500 ETFs (Spiders) have on average traded 18 times

more frequently than the average individual stock in the S&P500. In this study we

have proposed the Mixed Frequency Factor Model. In particular we can use ultra

high-frequency data for ETFs to obtain a very accurate estimate of the factor co-

variance matrix, as prices are observed essentially free of noise. We use daily data to

estimate the factor loadings conservatively to avoid problems inherent in the use high-

frequency data for illiquid stocks and non-synchronicity biases between the returns on

factors and stocks. Furthermore we take advantage of the facts that factor models can

easily be applied to vast numbers of assets and that covariance matrices from factor

models are less prone to error maximization in portfolio construction problems. Us-

ing Mincer-Zarnowitz and encompassing regressions we find that the MFFM portfolio

volatility forecasts improve upon the daily factor and realized covariance forecasts

when the forecasts are ranked on R2 and as indicated by the positive weights on the

MFFM versus negative weights on the RC and daily factor model. Adding a RC

or daily factor model forecast to a MFFM forecast only improves the regression R2

marginally. In a minimum tracking error application we reduce the tracking errors by

using the MFFM rather than RC for computing the covariance matrix. The differ-

ences between RC and MFFM increase with the level of non-synchronicity between

individual stocks, i.e. we find a larger difference when considering the S&P600 small

caps than when we consider the S&P500 large caps. The RC outperforms the näıvely

diversified equally-weighted 1/N portfolios when considering large- and mid-caps but

fails by a substantial margin for the illiquid S&P600 small caps. The MFFM com-

fortably outperforms the 1/N portfolios regardless of the universe considered. For

realized covariance the results in the tracking error applications depend severely on

the sampling frequency and the weighting scheme applied to the past daily covari-

ance matrices. In contrast, the performance of the MFFM is robust across sampling

frequencies and weighting schemes and consistently outperforms RC and the näıve

1/N portfolios.
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4.A Proofs

Proof of Theorem 4.2.1 Using the notation X̂ = X +Xε, we have for i �= j:

γ̂ij = β′iΛβj + β′iΛβ
ε
j + β′iΛ

εβj + β′iΛ
εβε

j + βε′
i Λβj + βε′

i Λβ
ε
j + βε′

i Λ
εβj + βε′

i Λ
εβε

j .

Assumption (i) implies βε
i ⊥ βε

j so that E(βε′
i Λβ

ε
j ) = 0. All other terms, except

β′iΛβj , are zero in expectation by assumptions (ii-iv). Hence, we have unbiased-

ness. To compute the variance of this estimator, note that all terms are mutually

uncorrelated, so that the variance of the sum is the sum of the variances.
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All terms involving Λε are of the form E(tr(AZBZ)) where A, B, and Z are square

symmetric matrices of equal dimension with A and B fixed and Z random with

E(vech(Z)vech(Z)′) = Φ. Define A = AZ and B = BZ with

Aij =
∑
k

AikZkj and Bij =
∑
m

BimZmj .

Then

E(tr(AZBZ)) = tr(E(A B)) =
∑
i,j

E(AijBji) =
∑

i,j,k,m

AikBjmE(ZkjZmi)

=
∑

i,j,k,m

AikBjmΦf(k,j),f(m,i).

�

Proof of Corollary 4.2.2 Given the assumptions, we have Σβ,i =
1
T σ

2
iΛ
−1 (asymp-

totically). Thus, β′jΛΣβ,iΛ
′βj = 1

T σ
2
i β
′
jΛβj and tr(Σβ,iΛΣβ,jΛ

′) = 1
T 2σ

2
i σ

2
j tr(IK) =
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K
T 2σ

2
i σ

2
j . Combining this, gives term A. For term B, note that

g(A,B,Φ) =

N∑
m,n,p,q

AmpBnqE((Λ̂pn − Λpn)(Λ̂qm − Λqm))

=

N∑
m,n,p,q

AmpBnq(E(Λ̂pnΛ̂qm)− ΛpnΛqm)

=
1

M

N∑
m,n,p,q

AmpBnq(ΛpqΛnm + ΛpmΛnq)

using that for a multivariate normal random variable x with characteristic function

lnφ(ξ) = −ξ′Σξ/2 we have

E(σ̂mnσ̂pq) = σmnσpq +
σmpσnq + σmqσnp

M

where

σ̂mn ≡ 1

M

M∑
i=1

x
(m)
i x

(n)
i

�





Nederlandse samenvatting

(Summary in Dutch)

Dit proefschrift bestaat uit drie studies op het gebied van het meten en voorspel-

len van de volatiliteit van rendementen op financiële instrumenten met behulp van

intradag data. Volatiliteit is een maatstaf voor de beweeglijkheid van financiële in-

strumenten zoals aandelen, staatsobligaties en goud. De volatiliteit op financiële

markten is een indicator voor risico en daarmee een centraal onderwerp binnen het

financieel-economische vakgebied. In ieder hoofdstuk worden nieuwe en originele

schatters en methoden ontwikkeld voor het schatten van de (multivariate) volatiliteit

voor financiële markt rendementen. Deze nieuwe methoden en technieken worden

uitgebreid getest in gesimuleerde omgevingen die zo goed mogelijk de realiteit be-

naderen. Daarnaast wordt het gebruik van deze nieuwe methoden en technieken,

en de daarmee samenhangende voordelen, gëıllustreerd met behulp van empirische

toepassingen.

Traditioneel wordt de volatiliteit geschat aan de hand van rendementen die be-

rekend zijn met behulp van koersen die gemeten zijn op lage frequentie. Hierbij

kan gedacht worden aan het gebruik van maandelijkse, wekelijkse of dagelijkse ren-

dementen. Een belangrijk kenmerk van volatiliteit is dat het een dynamisch en dus

tijdsvariërend proces is. Mandelbrot (1963) merkte al op dat periodes van hoge (lage)

volatiliteit veelal gevolgd worden door periodes van hoge (lage) volatiliteit. Deze per-

sistentie in het volatiliteitsproces verklaart deels de relatief goede voorspelbaarheid

van de volatiliteit van aandelenrendementen. Deze voorspelbaarheid is met name

aanzienlijk wanneer ze vergeleken wordt met de voorspelbaarheid van rendementen

die, consistent met economische theorie, relatief laag of verwaarloosbaar is.

Merton (1980) merkte op dat de volatiliteit van rendementen over een vaste pe-

riode kan worden gekwantificeerd met hoge precisie mits gedurende die periode een

voldoende groot aantal sub-periode rendementen beschikbaar is. Onder de aanname
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van het afwezig zijn van marktfricties geldt statistisch gezien dat wanneer een gro-

ter aantal intra-periode observaties beschikbaar is, de schatting van de volatiliteit

preciezer wordt. Dit is hoe tegenwoordig de dagelijkse volatiliteit met gebruik van

intradag koersdata kan worden berekend. Door het sommeren van gekwadrateerde

rendementen die intradag worden waargenomen kan de dagelijkse volatiliteit zeer

precies worden geschat. Dit is het zogenaamde concept van ‘gerealiseerde volatiliteit’

en staat in sterk contrast tot populaire volatiliteit modellen als GARCH waarin de

volatiliteit helaas niet observeerbaar is en dus parametrisch geschat moet worden met

meetfouten.

Het concept van het meten van gerealiseerde volatiliteit op basis van intradag

koersdata heeft sinds de studies van onder meer Andersen en Bollerslev (1998), waarin

het idee is geformaliseerd, in hoog tempo aan populariteit gewonnen. Dit proefschrift

omvat drie studies naar het gebruik van hoog frequente intradag koersdata voor het

ontwikkelen van preciezere financiële risicomaatstaven en voorspellingen daarvan.

Een centraal en bijzonder relevant onderwerp in deze literatuur en in dit proef-

schrift is het ontwikkelen van maatstaven die robuust zijn voor realistische markt-

fricties. Bij dit soort fricties kan gedacht worden aan het feit dat transactieprijzen

op en neer springen tussen bied- en laat-prijzen, zelfs wanneer de onderliggende ‘ef-

ficiënte’ prijs constant is. In een multivariate context is het feit dat transacties in

verschillende financiële instrumenten asynchroon plaatsvinden een complicerende fac-

tor. Deze frictie leidt er in de regel toe dat wanneer men covarianties of correlaties

schat met behulp van op hoge frequentie waargenomen koersdata, de samenhang

tussen financiële instrumenten verkeerd zal worden ingeschat omdat deze maatsta-

ven dan bloot staan aan een afwijking die de meting richting nul drukt. Dit leidt

in de regel tot een potentieel gevaarlijke onderschatting van risicomaatstaven voor

vermogensportefeuilles.

In hoofdstuk 2 introduceren wij een verbeterde methodologie om schattingen en

voorspellingen van volatiliteit, gemeten met behulp van de Realized Range, te corri-

geren voor de effecten van marktfricties. Wanneer de Realized Range gebruik maakt

van intradag hoog en laag prijzen in bijvoorbeeld intervallen van vijf minuten, dan zal

het feit dat de prijzen heen en weer bewegen tussen bied- en laat prijzen zorgen voor

een overschatting van de volatiliteit. De verbetering die wij voorstellen is gebaseerd

op het relaxeren van een belangrijke impliciete aanname in de studie van Christen-

sen et al. (2009). Aan de hand van gesimuleerde en empirische voorspellingen van

volatiliteit illustreren wij de voordelen die samenhangen met het gebruik van de door

ons voorgestelde methodiek, die onder meer gebaseerd is op simulatie en sortering,

om te corrigeren voor het bestaan van marktfricties.
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In hoofdstuk 3 breiden wij de zogenaamde univariate Realized Range methodiek

uit naar een multivariate context. De Realized Range is gebaseerd op het gebruik van

hoog- en laag-prijzen die worden waargenomen gedurende intradag intervallen. De

dagelijkse Range als risicomaatstaf is in multivariate context uitgebreid door Brandt

en Diebold (2006). Daarnaast introduceren Martens en Van Dijk (2007) en Christen-

sen en Podolskij (2007) het gebruik van intradag hoog-laag prijsverschillen voor om

in univariate context volatiliteit preciezer te kunnen schatten. Het combineren van

beide ideeën resulteert in de nieuwe covariantieschatter, de Realized Co-Range. Deze

schatter wordt uitgebreid bestudeerd in een gesimuleerde omgeving met inachtne-

ming van de meest relevante marktfricties. Naast het simulatie gedeelte bevat deze

studie ook een empirische toepassing voor het dynamisch alloceren van vermogen

over aandelen-, staatsobligatie- en goud-futures contracten.

In hoofdstuk 4 introduceren wij een nieuwe covariantie-matrix schatter die ge-

bruik maakt van hoge-frequentie koersdata. De meeste studies in de context van

multivariate schattingen van volatiliteit op basis van intradag koersdata, zijn niet

verder gekomen dan methoden te ontwikkelen die gebruikt kunnen worden voor por-

tefeuilles bestaande uit een zeer beperkt aantal instrumenten zoals veelal slechts twee

of hooguit dertig aandelen. Dit is te wijten aan de theoretische eigenschappen van

deze schatters die de maximale dimensie van een covariantie- of correlatie-matrix van

rendementen drastisch beperken.

Door het gebruik van intradag data te combineren met het gebruik van factor-

modellen ontwikkelen wij een zogenaamd Mixed-Frequency Factor Model. Dit model

combineert het gebruik van ultra-hoge frequentie data voor het zeer precies schat-

ten van de covariantie-matrix van factorrendementen, met het gebruik van dagelijkse

aandelen- en factorrendementen om de factorcoëfficiënten van aandelen te schatten.

Voor de factoren wordt gebruikgemaakt van relatief zeer liquide Exchange Traded

Funds (ETFs), waarvoor de impact van marktfricties in essentie verwaarloosbaar is.

Voor het schatten van de factorcoëfficiënten van individuele aandelen wordt gekozen

voor het gebruik van rendementen op lagere frequentie om zo de ongewenste effecten

van voor aandelen bestaande marktfricties en asynchroniteit te omzeilen. Dit resul-

teert in een statistisch gezien zeer efficiënte schatter voor de covariantie-matrix van

aandelenrendementen. Een belangrijk praktisch probleem dat vooralsnog onopgelost

was binnen de literatuur over het schatten van hoogdimensionale covariantie matrices

met behulp van intradag data wordt in de voorgestelde methodiek succesvol omzeild

door het gebruik van een factor model. De voordelen van deze nieuwe schatter worden

onderbouwd in theorie en in een uitgebreide simulatie-analyse waarin marktfricties in

acht worden genomen bestudeerd. Dit resulteert in bemoedigende resultaten, te meer
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de schatter ook empirisch succesvol is gëımplementeerd voor portefeuilles bestaande

uit honderden aandelen.
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l)MEASURING AND FORECASTING FINANCIAL MARKET VOLATILITY USING HIGH-
FREQUENCY DATA

My research on measuring, modeling and forecasting financial market volatility as a
doctoral student is presented in this dissertation in the form of three chapters. Chapter 2
of this dissertation introduces a novel heuristic bias-correction that aims at improving
realized range-based volatility estimates. The third chapter introduces an innovative
approach for estimating covariances using high-low price ranges sampled at intraday
frequencies. The fourth chapter introduces a new covariance matrix estimator that is
based on the idea of combining the merits of factor models and high-frequency data.
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