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Abstract 

The Operational Fixed Interval Scheduling Problem (OFISP) is characterized as the problem of scheduling a 
number of jobs, each with a fixed starting time, a fixed finishing time, a priority index, and a job class. The objective 
is to find an assignment of jobs to machines with maximal total priority. The problem is complicated by the 
restrictions that: (i) each machine can handle only one job at a time, (ii) each machine can handle only jobs from a 
prespecified subset of all possibl e job classes, and (iii) preemption is not allowed. It follows from the above that 
OFISP has both the character of a job scheduling problem and the character of an assignment problem. In this 
paper we discuss the occurrence of the problem in practice, and we present newly developed exact and approxima- 
tion algorithms for solving OFISP. Finally, some computational results are shown. 

Keywords: Job scheduling; Integer programming; Lagrangean relaxation; Heuristics 

1. Introduct ion  

The authors were first confronted with the Operational Fixed Interval Scheduling Problem (OFISP) 
during the development of a decision support system for the maintenance department of the major dutch 
airline company KLM at Schiphol Airport (Dijkstra et al., 1990). Planes arriving at the airport may 
require a number of maintenance jobs. The processing times as well as the order in which these jobs have 
to be carried out are specified by strict maintenance norms. As a consequence, the maintenance norms 
and the time-table determine the fixed intervals in which the jobs have to be carried out in order not to 
delay the departure of the airplanes on their next flights. The problem is further complicated by the 
safety rule that each of the available engineers is licensed to carry out jobs on at most two different 
aircraft types. 

One of the problems to be solved by the decision support system is to develop maintenance schedules, 
such that in principle all jobs are carried out. However, jobs with low priority that cannot be carried out 
within their required interval might be postponed until the next stop of the airplane at an airport. 
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Later  on, the authors became aware of, or involved in several other projects in which OFISP plays an 
important role. These projects are briefly discussed below: 
• The assignment of  airplanes to gates (Hagdorn-van der Meijden and Kroon, 1990, and de Wit, 1991). 

This problem also occurs at Schiphol Airport, where airplanes of different types have to be assigned to 
gates during fixed intervals. However, each gate can only handle a limited set of aircraft types, due to 
technical restrictions. The problem here is to find an assignment of airplanes to gates where the 
number of unassigned airplanes - whose passengers have to be transported to the terminal by bus - is 
minimized. 

• The scheduling o f  operating rooms in a hospital. In most hospitals a limited number of operating rooms 
is available. Some of these operating rooms may be general purpose, but others may be suitable for 
only a subset of the various types Of operations. In general the time slot for an operation is fixed some 
time ahead. Now the problem to be solved in this context is to find a feasible schedule for as many as 
possible of the planned operations, taking into account the restricted suitability of the operating 
rooms. 

• The assignment of  holiday bungalows to vacationists (Kolen et al., 1987). Usually holiday bungalows are 
booked a long time in advance for a period of one or more weeks. The holiday bungalows may differ in 
several aspects, like size, location, accommodation, quality, and price. Each season the booking office 
is faced with the problem of finding an assignment of holiday bungalows to vacationists, such that 
there is a matching between the desires of the vacationists with respect to e.g. comfort, and the 
available accommodation. 
Also the classroom assignment problem (CAP) considered by Carter (1989) is closely related to 

OFISP. These examples illustrate that OFISP is an interesting problem from a practical point of view. 
However, the number of algorithms that is available for solving OFISP is quite limited. The research 
reported here is conducted in an attempt to fill this gap. This paper is organized as follows. In Section 2 
we consider the special case of OFISP, where all machines are identical and where all jobs belong to the 
same job class. Section 3 proceeds with the general case, in which several machineclasses and job classes 
exist. We formulate OFISP as an integer linear program, and present an approximation algorithm based 
on Lagrangean relaxation and decomposition. In Section 4 we compare the computational results of our 
heuristic with the results obtained from the integer linear program and with the results obtained from 
the linear programming relaxation thereof. We make some final remarks in Section 5. In this paper  we 
follow the literature on job scheduling. Therefore  we address the maintenance engineers (gates, 
operating rooms, holiday bungalows, classroom) as 'machines', and the inspections (airplanes, operations, 
holiday periods, classes) as 'jobs'. 

2. Identical machines and one job class 

OFISP is a generalization of the Fixed Job Scheduling Problem (FSP) and the Maximum Fixed Job 
Scheduling Problem (Max.FSP). In these problems all jobs have a fixed starting time and a fixed finishing 
time a n d  belong to the same job class. Furthermore,  the machines are identical. We will discuss the 
problems FSP and Max.FSP first. Thereaf ter  we will consider the case with several machine classes and 
several job classes. 

Suppose there are J jobs to be carried out in the time-interval [0, T], where each job j is represented 
by the triple (sj, fj, pj). Here  sj and fj  are the fixed starting and finishing time of job j, respectively, and 
pj represents the priority of job j. For carrying out these jobs M identical machines are available. FSP is 
the feasibility problem of determining whether there exists a feasible non-preemptive schedule for all 
jobs. A necessary and sufficient condition for the existence of a feasible schedule for all jobs is given by 
the following lemma. 
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Fig. 1. Instance of FSP with J = 10 and L = 4. 

Lemma 1. A feasible non-preemptive schedule for  all jobs exists i f  and only i f  the maximum job overlap is 
less than or equal to the number o f  available machines. 

Here  the job overlap at time t, denoted by L t ,  and the maximum job overlap, denoted by L, are defined 
as follows. 

L , = l { j l s j < t < f ; } , ,  L = m a x { L ,  O < t < _ T } .  

Lemma 1 is a direct consequence of Dilworth's theorem on partially ordered sets, stating that in any 
partially ordered set the minimum number  of chains required for covering all elements is equal to the 
size of a maximum antichain (Dilworth, 1950). An O(J  log(J))  algorithm for determining the maximum 
job overlap of the jobs is described by Hashimoto and Stevens (1971) and Gupta,  Lee and Leung (1979). 
Note that  a feasible preemptive schedule also exists if and only if the maximum job overlap is less than or 
equal to the number  of available machines. So in this case nothing can be gained by allowing preemption.  

Fig. 1 gives an example of an instance of FSP. In this figure the bars indicate the jobs to be carried 
out. In this example the maximum job overlap L equals 4. Hence the minimum number  of machines 
required for carrying out all jobs equals 4 as well. 

I f  the maximum job overlap exceeds the number  of  available machines, then Max.FSP becomes 
interesting. Max.FSP is the problem of finding a subset of jobs with maximum total value that can be 
processed by the available machines. Max.FSP is considered by Arkin and Silverberg (1987), Kolen et al. 
(1987), and Kolen and Kroon (1991). They show that Max.FSP can be solved in polynomial time by a 
minimum cost flow algorithm. Arkin and Silverberg and Kolen et al. first construct a clique-graph. 
Thereafter ,  this graph is used as the underlying graph of a minimum cost flow problem with M units of 
flow. 

The  construction of the underlying directed graph G that we use in this paper  is more direct than 
those constructions, and can be described as follows. The set {t r I r = 0, 1 . . . . .  R} is used to represent  all 
starting and finishing times of the jobs in chronological order. That  is, {t, [ r = 0, 1 . . . . .  R} = {sj, f j  I J = 
1 . . . . .  J}, and t r_ ~ < t r for r = 1 , . . . ,  R. The set of  nodes of the graph G is in one-to-one correspondence 
with the set {t, I r = 0, 1 , . . . ,R} .  A particular job j is represented in G by an arc from the node 
corresponding to s i to the node corresponding to fj. This arc has an upper  capacity of one on the 
amount  of flow that  can be transported,  and associated costs of pj per  unit of flow transported. 
Furthermore,  for r = 1 . . . . .  R, there is an arc from t,_ ~ to t r with zero costs and unlimited capacity. 
Obviously, a feasible schedule for a subset of jobs of maximum total value corresponds to a minimum 
cost flow of M units of  flow from t o to t R in the graph G. Fig. 2 shows t h e g r a p h  G corresponding to the 
set of jobs represented in Fig. 1. A job is carried out if and only if in the solution to the minimum cost 
flow problem one unit of flow passes through the corresponding arc. The minimum cost flow problem on 

Fig. 2. The graph G corresponding to the set of jobs represented in Fig. I. 
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the graph G can be solved e.g. by the strongly polynomial time algorithm of Orlin (1988). In order  to 
speed up the algorithm and to save storage space the following graph compression procedure can be 
applied to G: 

Graph compression procedure: 
Step 1. Search for a pair of nodes ( t r _ l ,  t r) in G such that node tr_ 1 does not have any outgoing job arcs 

or node t r does not have any incoming job arcs. I f  such a pair  (tr_l, tr) does not exist, then 
STOP else Goto Step 2. 

Step 2. Replace the pair (tr_~, t~) by one single node and update the incoming and the outgoing arcs 
accordingly. Repeat Step 1. 

Lemma 2. There is a one-to-one correspondence between the feasible flows of  M units of  f low in G, and the 
feasible flows of  M units o f  flow in the graph obtained after applying the graph compression procedure to G. 

Proofi Two consecutive nodes ( t  r_ 1, tr) are replaced by one single node in the following cases: Case 1. 
Node t r_ 1 does not have any outgoing job arcs. If a job finishing at tr_ 1 is carried out by one of the 
machines, then this machine will be idle during the interval ( t r _ l ,  tr). Therefore  it may be assumed as 
well that the finishing time of such a job equals t r. Thus node t r_ 1 is superfluous. Case 2. Node tr does 
not have any incoming job arcs. If a job starting at t r is carried out by one of the machines, then this 
machine must have been idle during the interval (L-~,  tr)" Therefore  it may be assumed as well that the 
starting time of such a job equals t r_ 1. Thus node t r is superfluous. [] 

Application of the Graph Compression Procedure to the graph of Fig. 2 yields the reduced graph of 
Fig. 3. 

3. Several machine and job classes 

Here  we assume that there are C different machine classes, and A different job classes, where each 
machine class is allowed to handle jobs from a limited number of job classes. Each job j belongs to a 
certain job class a i. For c = 1 , . . . ,  C, the integer M c represents the predetermined number of machines 
in machine class c. Furthermore,  5g c is the set of job classes that can be carried out by machines in 
machine class c. For j = 1 ; . . . ,  J, the set ~ consists of all machine classes that can be used for carrying 
out job j. Mathematically, OFISP can be formulated as: 

OFISP: 

J 

ZOFIS P = max ~ ~ piXj,c 
j = l  c ~  

(1) 
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subject to 

E (2) 
{j l ajE,~fcASj <---tr <f  j} 

E Xj,c<-l, 1=1,'",  J, (3) 
c ~  

xi, c ~ {0, 1}, ] =  1 , . . . , J ;  c e ~/, (4) 

where xi, c is a binary decision variable, indicating whether job j is assigned to a machine in machine 
class c ( j  = 1 . . . . .  J, a n d c  ~ ~.). The objective function (1) states that we look for a feasible schedule for 
a subset of jobs with maximum total value. 

Xi , c<Mc,  c =  l , . . . , C ;  r = O , . . . , R ,  

Lemma 3. Each solution satisfying constraints (2)-(4) can be interpreted as a feasible non-preemptive 
schedule. 

Proof. Constraints (3) and (4) guarantee that each job is assigned to at most one machine class. 
Furthermore,  constraints (2) ensure that at any point in time the total number of jobs assigned to 
machine class c does not exceed the number of machines available in machine class c. Thus Lemma 1 
assures that there exists a feasible non-preemptive schedule for all jobs that are assigned to machine 
class c. The latter holds for each machine class c. [] 

Remark 1. The restrictions corresponding to values of r for which tr is not a starting time of any job j 
with aj ~ ¢ c  are in fact redundant,  and can be eliminated from the model formulation. 

Remark 2. Another  problem closely related to OFISP is the Tactical Fixed Interval Scheduling Problem 
(TFISP), where the objective is to carry out all jobs against minimum total machine costs. The complexity 
of several variants of this problem is studied extensively by Kolen and Kroon (1992). The case of TFISP 
with identical machines and one job class is considered by Hashimoto and Stevens (1971), Gertsbakh and 
Stern (1978), and Gupta, Lee and Leung (1979). This problem is equivalent to FSP and can be solved in 
O(J  log(J)) time. Dondeti  and Emmons (1992) study a generalization Of this problem, with 3 job classes 
and 2 machine classes. The machines in machine class c (c = 1, 2) are allowed to carry out jobs in the job 
classes c and 3. It is shown that this variant of TFISP can be solved in polynomial time by repeatedly 
solving a Max Flow problem. Another  algorithm for solving this variant of TFISP, based on Linear 
Programming and a Max Flow algorithm, is presented by Kolen  and Kroon (1992). Fischetti, Martello 
and Toth (1987, 1989, 1992) describe variants of TFISP with side constraints either on the total workload 
per machine or on the spread time per machine (i.e. the difference between the finishing time of the last 
assigned job and the starting time of the first assigned job). It is shown tha t  these variants of TFISP, 
which a r e  related to the bus driver scheduling problem, are NP-hard. Kroon, Salomon and Van 
Wassenhove (1993) present an approximation algorithm for solving the general variant of TFISP with 
several machine classes and several job classes. Their  algorithm is based on Lagrangean relaxation and 
decomposition. It is very similar to the algorithm for solving OFISP in the present paper. 

Kolen and Kroon (1991) show that OFISP is NP-hard when C > 1, except for some trivial cases. As a 
consequence, solving OFISP to optimality when C > 1 requires the use of (potentially very) time-consum- 
ing algorithms. An example of such an algorithm is given by Arkin and Silverberg (1987). Their  algorithm 
is based on dynamic programming. Unfortunately, since the number of nodes of the corresponding 
network is O( J  M) and the number of arcs is o(JM+I) ,  the practical applicability of this approach is 
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Fig. 4. Instance of OFISP with A = 3 and C = 2. The jobs in job class 1 can be carried out by the machines in machine class 1, the 
jobs in job class 2 can be carried out by the machines in machine class 2, and the jobs in job class 3 can be carried out by all 
machines. 

small. Since OFISP must be solved routinely in practice, we concentrate on fast procedures that yield 
satisfactory (and not necessarily optimal) solutions. The number of available approximation algorithms 
for solving OFISP is still quite limited. One example is provided by Carter (1989), who presents an 
approximation algorithm based on Lagrangean relaxation for the classroom assignment problem, which is 
a problem closely related to OFISP. In the Lagrangean subproblems the restriction that the jobs must be 
processed in a non-preemptive way is relaxed. Also a heuristic for constructing feasible solutions is 
provided. 

The algorithm described in the present pape r  exploits the observation that OFISP can be modelled as 
a minimum cost flow problem if all machines are identical. In our algorithm the restriction that each job 
must be processed at most once is relaxed. If  the number of machine classes is greater than 1, then we 
construct for each machine class c a corresponding graph Go, representing all jobs j for which aj ~ d  c. 
Although the problem obtained in this way is still related to the minimum cost flow problem, it is 
complicated by the set of restrictions (3), which state that each job may be processed at most once. As a 
consequence, t h e  graphs Gc are coupled by a set of constraints. These constraints must ensure that the 
total amount of flow that passes through the arcs corresponding to job j ( j  = 1 . . . .  , J )  is at most one. An  
instance of OFISP is shown in Fig. 4, and the corresponding graphs G~ and their coupling constraints are 
shown in Fig. 5. The dual-cost heuristic we propose can be summarized as follows: 

Dual-cost heuristic: 
Repeat  

Apply upper bounding procedure; 
Apply lower bounding procedure; 
Update dual-cost multipliers 

Until Stop Criterion is fulfilled 

The upper (lower) bounding procedure is described in Section 3.1 (Section 3.2). To update the 
dual-cost multipliers (introduced below), we use the standard subgradient optimization procedure as 

3 5 ' 

i i • i : 

• i 

Fig. 5. The graphs G 1 and  G 2 corresponding to the instance of OFISP shown in Fig. 4. The coupling constraints are indicated by 
dotted boxes. Note that, for ease of representation, we did not apply the Graph Compression Procedure here. 
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described by Fisher (1981) as well as a dual-descent procedure. The dual-cost multiplier updating 
procedure is described in Section 3.3. Finally, the stop criterion is based upon (i) the gap between upper 
and lower bound, (ii) the computation time, and (iii) the number of iterations. 

3.1. Upper bounding procedure 

Upper  bounds to Zovis e are obtained by Lagrangean relaxation of the linking constraints (3), using 
non-negative multipliers u = ( u l , . . . ,  u j). The resulting Lagrangean problem LR(OFISP) is formulated 
as follows. 

LR(OFISP): 
J J 

ZLR(OFISP)(U) = m a x  E E ( & - u j ) x j . ~ +  E uj (1') 
j = l  c E ~  j = l  

subject to (2) and (4) 

LR(OFISP) decomposes into C minimum cost flow problems with M c units of flow on the graphs G c, 
where the transportation costs per unit of flow are now equal to u j - &  for job j. It follows that 

y 
ZLR(OFIsm(U) = --EcC=IZ(G~)+ Ej=luj  where Z(G c) is the solution to the minimum cost flow problem 
on the graph G c. Since it is a well known result (Fisher, 1981) that min u >_0ZLR(OFIsm(U)> Zovts e, it 
follows that ZLR(OFmm(U) yields an upper bound to Zovis e for all u > 0. 

Furthermore,  an alternative upper  bound - not exploited in our heuristic, but used in Section 4 to 
compare the computational results with - is obtained by solving the linear programming relaxation of 
OFISP (or LP(OFISP) for short). Note that this bound equals minu>_oZLi:(ovism(U), since the La- 
grangean problem satisfies the integrality property (Geoffrion, 1974). Finally, a third upper  bound is 
obtained by relaxation of the restriction that each job j can only be carried out by a machine in machine 
class c when j E J  c. Upon relaxation of this set restriction a single class problem with EcC= lMc machines 
remains. This 'set relaxed' problem, denoted by SR(OFISP), can be solved by the procedure described in 
Section 2. 

3.2. Lower bounding procedure 

The lower bounding procedure - which generates feasible solutions to OFISP - can be described as 
follows: at each iteration we start out with a tentative schedule with some jobs that have been assigned to 
a machine, while others are still unassigned. As long as there are idle machines, we search in a greedy 
fashion for an idle machine with the highest potential profit in terms of the unassigned jobs that can be 
processed by that machine. The latter is accomplished by repetitively solving a shortest path problem on 
the graphs Go, from which all arcs corresponding to already assigned jobs have been eliminated. More 
formally, the lower bounding procedure is stated as follows: 

Lower bounding procedure: 
M := Ec= 1Me; 
f := {all jobs}; 
Repeat  

Search for a 'locally best' machine class c* with Me. > 0; 
Mc.==Mc.- 1; 
M : = M -  1: 
f : = f \ { a l l  jobs that can be carried out by one machine of c*}; 

Until M = 0 or J = ¢; 
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As already stated, the greedy search for a 'locally best' machine class c* is done by solving for each 
c = 1 . . . . .  C, a shortest path problem on the graph G c, where all job arcs corresponding to jobs not in f 
have been deleted. In this problem the length of each job arc corresponding to job j equals uj -p:. .  Let  
the value of the resulting solution be equal to Pc. Then the locally best machine class c* is taken as 
argmin {Pc I c = 1 , . . . ,  C}. As can be seen easily, this procedure results in a feasible solution to OFISP, 
since it is ensured that (i) each job is processed at most once, and (ii) each machine processes at most 
one job at the same time. Consequently,  the total value corresponding to the obtained schedule yields a 
lower bound to Zo~is e. During the course of the heuristic the lower bounding procedure is executed 
every LBfreq iterations. 

3.3. Dual-cost adaptation procedure 

Our heuristic subsequently iterates between the upper  bounding procedure and the lower bounding 
procedure,  updating the dual-cost multipliers u each round, until some prespecified stop-criterion is 
satisfied. To update the dual-cost multipliers we apply the well-known subgradient optimization proce- 
dure (Fisher, 1981) in our first heuristic (H1): 

where A is a positive scalar step size, determined as: 

Ix( Zumi_n ) - zL~(m)) 

±(1_ xj, ) 
j= l  c ~ j  

Here  ZUB(m)(ZLB(m )) is the upper  (lower) bound value obtained by heuristic HI.  The dualcost 
multipliers are initialized at uj = 0 for j = 1 . . . . .  J. The  scalar/~ has an initial value/.% which is halved 
whenever the upper  bound has failed to decrease during Hlhalf iterations. 

As an alternative to HI we have also developed a second heuristic (H2), in which the subgradient 
optimization procedure is combined with a dual-descent procedure. In H2 the dual-descent procedure 
starts (with the multipliers obtained by the upper  bounding procedure)  when the upper bound has failed 
to decrease during H2decrease subgradient iterations. It modifies the dual-costs of a job assigned more 
than once in such a way that this job will be assigned to at most one machine class in the next iteration of 
the upper  bounding procedure.  This implies a non-negative improvement of the upper bound in the next 
iteration of the upper  bounding procedure. The number of dual-descent iterations is set equal to H2iter. 
Thereaf ter  the subgradient procedure is called again. More formally, the dual-descent procedure is 
described as follows: 

Dual-descent procedure: 
Initialization. Solve a minimum cost flow problem on Gc, c = 1 . . . .  , C; 

Let the corresponding objective value be Z(G¢), c = 1 . . . . .  C; 
Step 1. Search for a job j* which is assigned to more than one machine class; I f  no such job 

exists then STOP else pick the first one and goto Step 2; 
Step 2. Remove all arcs corresponding to job j* from the graphs Go, c ~ ~. . ,  and denote the 

remaining graphs by He; 
Step 3. Solve a minimum cost flow problem on He, c ~ ~. . ,  and let the corresponding objective 

value be Z(Hc), c ~ ~ . ;  
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Step 4. Define A 1 := maxc ~ ~j.{Z(H ~) , Z(Gc)} and let this maximum be obtained for c = c*; 
Define k 2 := max c ~ g,:.\{c.l{Z(H¢) - Z(G~)}; 
Update uj. := uj. + ½(a I + k2); 

Remark 3. Note that, for the reader's convenience, we have included the initialization step in our 
description of the dual-descent procedure. However, the minimum cost flow problem has already been 
solved in the upper bounding procedure. Note further that in the dual-descent procedure both A 1 and 
a 2 are non-negative. 

Lemma 4. I f  A 2 <A1,  then job j* is assigned to exactly one machine class in the next iteration of the upper 
bounding procedure. The improvement of  the upper bound in the next iteration equals ~¢ ~ ~i.,{~.}( Z(  Hc) - 
Z(Gc)). 

1 Proof .  Note that A 2 < $(A 1 q- A2) < A 1. If job j* is assigned to machine class c* in the next iteration, 
then Z(G~.) increases by½(A 1 + A2). If  job j* is not assigned to machine class c* in the next iteration, 
then Z(G~.) increases by k 1. As we want to minimize Z(Gc.), job j* is assigned to machine class c* in 
the next iteration. Now let c be different from c*. If job j* is assigned to machine class c in the next 

1 iteration, then Z(G¢) increases by y(A 1 + A2). If job j* is not assigned to machine class c in the next 
iteration, then Z(G¢) increases by Z(H~) - Z(G~), which is less than or equal to A 2. Therefore job j* is 
not assigned to machine class c in the next iteration. The objective function of LR(OFISP) equals 
Y'.J_lEce~.j(pj -- Uj)Xj, c J _ + F~j= lUj. This implies that the objective function changes by 

E al+a2] &+a2 - -  -31- - -  

c ~ . \ { c  } 2 2 ' 

~ ' ( a  1 + a 2 ) .  [ ]  if uj. increases by 1 

Note that the improvement of the upper bound in the next iteration also equals Ec ~ ~.,@.}(Z(Hc) - 
Z(G~)) if A 1 = A 2. However, in this case job j* may be assigned to more than one machine class in the 
next iteration. 

4. C o m p u t a t i o n a l  r e su l t s  

Heuristics HI and H2 have been implemented with Borland's Turbo Pascal 5.0 on an Olivetti M380 
with 80386 processor and 80387 mathematical co-processor 1. Two different sets of problem instances are 
considered. The first set of instances contains a number of randomly generated instances, whereas the 
second set of instances comes from the real-life situation of the maintenance department at Schiphol 
Airport. 

4.1. Randomly generated problem instances (Set I) 

The first set of instances that we created to test our heuristics was generated randomly. In order to 
obtain information on the robustness of our heuristics, a number of problem parameters have been 

As the developed DSS had to run on a personal computer, we have obtained our computational results, as far as possible, on a 
personal computer. 
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varied: 
- the  number  of  jobs J, 
- the n u m b e r  of  job classes A,  
- the a priori  utilization rate  p. 
H e r e  the a priori utilization rate p of  the system is an indicator  of  the expected workload per  capacity 
unit  of  the  workforce.  More  formally, the util ization rate is def ined as follows: 

1 expected total workload  (in time-units) J × 7D 

P = total workforce  (in time-units) T × M 

where  D indicates the  max imum job durat ion,  T represents  the length of  the p lanning horizon, and M 
denotes  the total n u m b e r  of  machines.  W e  consider  instances with low utilization rate (p = 0.8), medium 
util ization rate  (p  = 1.0), and high utilization rate  (p = 1.2). With  respect  to the machine  classes it is 
assumed that  each machine  can process  jobs f rom two different  job classes, which results in the relat ion 
C = (2A). R e m e m b e r  tha t  this reflects the si tuation at the main tenance  depa r tmen t  of  K L M  at Schiphol 
Airpor t ,  where  each engineer  is al lowed to carry out  jobs on at most  two different  aircraft  types. As we 
consider  instances with A = 3, A = 4, and A -- 5, this results in instances with C = 3, C = 6, and C = 10. 
Fur the rmore ,  based  u p o n  the si tuation at Schiphol Ai rpor t  we set the total number  of  machines  to 
M =  18 or  M =  20. The  machines  were  equally divided over the different  machine  classes 2. The  
pa rame te r  D was set in such a way that  the required values for  the utilization rate p were  obtained.  

The  p rocedure  for genera t ing  the jobs is as follows. W e  consider  a planning hor izon of  T = 1000 
t ime-units  and instances with J = 100, J = 200 and J = 300. For  each job j the class aj is chosen 
randomly  f rom the  set {1 . . . . .  A} and the processing t ime dj is genera ted  randomly  f rom the U(0, D)-dis-  
tribution. The  start ing t ime sj is genera ted  randomly  f rom the U(0, T -  di)-distr ibution , and the finishing 
t ime f j  is set equal  to sj + dj. The  priorities pj  of  the jobs are de te rmined  in such a way that  the total 
amount o f  work tha t  is carr ied out  is maximized, which is achieved by put t ing pj  = dj. For  each (J, A ,  
p)-combina t ion  obta ined  in this way we have genera ted  10 instances, which yields a total of  270 
instances 3. Table  1 shows some o ther  pa rame te r  settings and stop-criteria used for H1 and H2 4 

Table  2 shows the average relative quality A §  and the average absolute quality A A for heuristic H.  
Here ,  and in the remainder  o f  this paper ,  a pe r fo rmance  measure  with a bar  is the average performance ,  
c o m p u t e d  over 10 instances per  cell. The  above quality measures  are defined as: 

A~ = ZUB(H) -- ZLB(H) a n d  A A = ZOFISP -- ZLB(H) 

ZUB(H) ZOFISP 

O F I S P  and L P ( O F I S P )  were,  as far as possible, solved by L I N D O  (Schrage, 1987) on the personal  
compu te r  5. For  instances tha t  were  too large to be handled  by L I N D O  on the personal  compute r  we 
used O S L  (IBM, 1991) on an I B M  R S / 6 0 0 0 .  So, all instances were  solved to optimality, ei ther  by 
L I N D O  or  by OSL. Results  in Tables  2 and 3 obta ined  by O S L  on the IBM R S / 6 0 0 0  are placed in 
brackets.  

2For C = 3 w e s e t  M c=6,for  C=6wese t  M c=3,andfor  C=10weset  M c = 2 ( c = 1  .... ,C). 
3 The problem generator is available from the authors on request. 
4 The parameter settings are determined based on a small preliminary study. 
5 As an alternative to LINDO we experimented with NETSIDE (Kennington and Wishman, 1988) to solve LP(OFISP). NETSIDE 
is a specialized code for solving network problems with a number of linear side constraints. However, for our instances the 
computation times of NETSIDE were even higher than the ones required by LINDO. The latter may be caused by the fact that, 
although OFISP has clearly a network structure, the number of side constraints (3) is too high. 
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Table 1 
Parameter settings and stop-criteria for heuristics 

parameter setting numerical value 

subgradient procedure /z 0 = 1.0 when p = 0.8 
/z 0 = 1.5 when p = 1.0 
/z 0 = 2.0 when p = 1.2 
H/half = 6 

n2decrease = 6 
n2iter = 12 

dual-descent procedure 

lower bounding frequency LBfreq = 5 

stop criterion numerical value 

optimal solution 

maximum no. of iterations 
maximum CPU-time 

ZUB(H ) -- ZLB(H ) 
< 0.005 

ZUB(H) 

J (number of jobs) 
2J  seconds 

T a b l e  3 shows  t h e  a v e r a g e  qua l i t y  (AAp) a n d  t h e  a v e r a g e  C P U - t i m e  L(L-~t , in s e c o n d s )  r e q u i r e d  to  solve  

L P ( O F I S P )  6. I n  a d d i t i o n ,  t h e  n u m b e r  o f  t i m e s  t h e  L P - r e l a x a t i o n  y ie lds  a f r a c t i o n a l  so lu t i on  is d e n o t e d  

by LPf ,  w h i l e  t h e  n u m b e r  o f  t i m e s  t h e  b o u n d  o b t a i n e d  by so lv ing  S R ( O F I S P )  is b e t t e r  t h a n  t h e  b o u n d  

o b t a i n e d  by  t h e  s u b g r a d i e n t  ( d u a l - d e s c e n t )  p r o c e d u r e  is f o u n d  in t h e  c o l u m n s  c o r r e s p o n d i n g  to  d m 

(d/4z).  F r o m  t h e  c o m p u t a t i o n a l  r e su l t s  o f  T a b l e s  2 a n d  3 it c a n  b e  c o n c l u d e d  t h a t  t h e  heu r i s t i c s  H1 a n d  

H 2  p e r f o r m  a l m o s t  e q u a l l y  we l l  w i t h  r e s p e c t  to  a b s o l u t e  a n d  r e l a t i v e  d e v i a t i o n  f r o m  op t ima l i ty .  T h e  fac t  

t h a t  142 d o e s  n o t  p e r f o r m  s ign i f i can t ly  b e t t e r  t h a n  H I  m a y  b e  c a u s e d  by t h e  w a y  w e  i m p l e m e n t e d  142. In  
t h e  c u r r e n t  i m p l e m e n t a t i o n  o f  112 w e  do  n o t  u se  sens i t iv i ty  analysis  to  o b t a i n  t h e  d i f f e r e n c e  b e t w e e n  

Z ( H  c) a n d  Z(Gc) .  H e n c e  in an  a l t e r n a t i v e  i m p l e m e n t a t i o n  o f  112 t h e  t i m e  s p e n t  in t h e  d u a l - d e s c e n t  

p r o c e d u r e  m a y  poss ib ly  b e  r e d u c e d  in f a v o u r  o f  t h e  n u m b e r  o f  i t e r a t ions ,  w h i c h  m a y  l e a d  to a b e t t e r  

Table 2 
Quality of the heuristics 

p = 0.8 p = 1.0 p = 1.2 

A J /IR I AA 1 AR 2 AAH2 AR 1 AA 1 ARHI z~A2 AR 1 AA 1 AR 2 z~A2 

3 100 0.02 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.02 0.00 0.02 0.00 
200 0.03 0.01 0.03 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.01 0.01 
300 0.04 0.02 0.04 0.02 0.02 0.02 0.03 0.02 0.01 0.01 0.01 0.01 

4 100 0.02 0.02 0.03 0.02 0.01 0.01 0.01 0.01 0.02 0.00 0.02 0.00 
200 0.05 0.03 0.05 0.03 0.02 0.02 0.03 0.02 0.01 0.01 0.02 0.01 
300 0.06 (0.02) 0.06 (0.02) 0.04 (0.02) 0.04 (0.02) 0.02 (0.02) 0.02 (0.02) 

5 100 0.03 0.02 0.03 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 
200 0.05 (0.03) 0.06 (0.03) 0.03 (0.02) 0.03 (0.02) 0.02 (0.01) 0.02 (0.01) 
300 0.06 (0.03) 0.06 (0.03) 0.03 (0.02) 0.03 (0.02) 0.02 (0.02) 0.02 (0.02) 

6 In case the problem was solved by OSL no CPU-times are reported in the table. 
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Table 3 
Quality of upper bounding procedures 

201 

p = 0 . 8  p = 1 . 0  p = 1.2 

A J AAp LP t LPf dH1 dH2 AAp -Lett LP I dH1 dH2 AAp L~ LPf dH1 dH2 

3 100 < 0.01 40 2 9 10 < 0.01 57 1 4 5 < 0.01 52 2 7 7 
200 < 0.01 130 3 10 10 < 0.01 416 4 9 10 < 0.01 492 6 4 8 
300 < 0.01 181 3 10 10 < 0.01 1012 7 9 10 < 0.01 1583 7 1 4 

4 100 < 0.01 199 6 8 9 < 0.01 211 4 0 0 < 0.01 140 5 3 4 
200 < 0.01 1080 8 10 10 < 0.01 1955 10 3 7 < 0.01 2193 10 0 0 
300 (<0.01) - (7) 10 10 (<0.01) - (10) 7 9 (<0.01) - (10) 0 1 

5 100 < 0.01 566 5 6 7 < 0.01 428 5 1 2 < 0.01 288 4 1 2 
200 (<0.01) - (10) 10 10 (<0.01) - (10) 1 2 (<0.01) - (10) 0 0 
300 (<0.01) - (10) 10 10 (<0.01) - (10) 1 ~2 (<0.01) - (10) 0 1 

u p p e r  bound.  T h e  average  re la t ive  d i f fe rence  (af ter  2 J  seconds  o f  compu ta t i on  t ime 7) b e t w e e n  lower-  

and u p p e r  b o u n d  ranges  (on average)  f rom 1% for instances  with high u t i l i za t ion  ra te  and A = 3 to 6% 

for ins tances  with low ut i l izat ion ra te  and A - - - 5 .  T h e  small  absolute  d i f fe rences  ( f rom 0 to 3% on 

average)  b e t w e e n  the  heur is t ic  lower  b o u n d  and the  op t imal  solut ion indicates  that  the  lower  bound ing  

rou t ine  is r a the r  effect ive  in f inding good  solut ions to OFISP .  In  genera l ,  bo th  the  lower  bound ing  

p r o c e d u r e  and the u p p e r  bound ing  p rocedu re s  p e r f o r m  best  for instances  with high ut i l izat ion rate.  

F u r t h e r m o r e ,  for  ins tances  wi th  low ut i l izat ion ra te  the  a l te rna t ive  uppe r  bound  ob ta ined  f rom 

S R ( O F I S P )  is o f ten  b e t t e r  than  the  subgrad ien t  and dua l -descen t  u p p e r  bound.  However ,  for  ins tances  
wi th  high ut i l iza t ion ra te  this b o u n d  is o f ten  o u t p e r f o r m e d  by these  uppe r  bounds.  

Tab le  3 shows fu r the r  that  the  u p p e r  bound  ob ta ined  f rom L P ( O F I S P )  is r emarkab ly  tight. Fo r  some 

ins tances  the  solut ion to L P ( O F I S P )  turns  out  to be  all in teger ,  whereas  for  o thers  the  va lue  ob ta ined  

f rom L P ( O F I S P )  equa ls  ZOFIS e, a l though  the  co r respond ing  solut ion is fract ional .  Unfor tuna te ly ,  the 

C P U - t i m e  r equ i r ed  to c o m p u t e  this uppe r  bound  increases  strongly in the  n u m b e r  of  jobs and in the  

n u m b e r  of  m a c h i n e  classes. F u r t h e r m o r e ,  the  n u m b e r  o f  instances  for which an opt imal  in teger  solut ion 

is ob ta ined  by solving L P ( O F I S P )  is h igh for the  set of  instances  with low ut i l izat ion ra te  and a small  

n u m b e r  of  m a c h i n e  classes and jobs, but  decreases  fast w h e n  the  u t i l iza t ion rate,  the  n u m b e r  of  m ach ine  

classes, or  the  n u m b e r  o f  jobs increases.  A f rac t ional  solut ion to L P ( O F I S P )  for  an ins tance  with a small  

n u m b e r  of  mach ine  classes genera l ly  conta ins  only a small n u m b e r  of  f ract ional  variables.  O n  the  o the r  

Table 4 
Overview of workload and number of jobs 

Mon Tue Wed Thu Fri Sat Sun Total 

hrs. jobs hrs. jobs hrs. jobs hrs. jobs hrs. jobs hrs. jobs hrs. jobs hrs. jobs 

A310 31.2 37 33.1 42 36.8 47 29.8 41 48.1 58 35.8 48 41.4 55 251.2 328 
B737 68.1 120 69.3 122 68.1 115 64.4 115 71.2 123 61.3 103 67.2 116 469.6 814 
B747 83.7 48 99.8 67 96.5 64 102.7 63 69.3 50 122.5 84 80.9 56 655.4 432 
DCIO 19.4 15 31.6 21 16.0 12 22.6 15 13.9 12 30.9 21 18.7 14 153.1 110 

Total 202.4 220 233.8 252 217.4 238 219.5 234 197.5 243 250.5 256 208.2 241 1529.3 1684 

7 HI (H2) stopped for 22 (17) out of 270 instances before 2/seconds of CPU-time because of the optimality criterion, and for 4 (2) 
out of 270 instances because of having reached the maximum number of J iterations. 
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Table 5 
License combinations in each scenario 

scenario 

license combination No. 1 No. 2 No. 3 No. 4 No. 5 No. 6 No. 7 

A310 / B737 3 4 5 4 4 3 3 
A310/B747  3 4 5 4 4 3 3 
A310/DCIO 3 4 5 2 6 1 5 
B737 / B747 3 4 5 6 2 5 1 
B737 / DC10 3 4 5 4 4 3 3 
B747/DClO 3 4 5 4 4 3 3 
Total teamsize 18 24 30 24 24 18 18 

h a n d ,  a f r a c t i o n a l  s o l u t i o n  f o r  a n  i n s t a n c e  w i t h  a h i g h  n u m b e r  o f  m a c h i n e  c l a s se s  c a n  b e  a l m o s t  

c o m p l e t e l y  f r a c t i o n a l .  I n  s u c h  c a s e s  r o u n d i n g  d o w n  t h e  f r a c t i o n a l  s o l u t i o n  d o e s  n o t  l e a d  t o  a u s e f u l  

i n t e g e r  s o l u t i o n .  O n e  is t h e n  c o m m i t t e d  to  a n  e n u m e r a t i o n  s c h e m e  in  o r d e r  to  o b t a i n  a g o o d  i n t e g e r  

s o l u t i o n .  I t  a p p e a r s  f r o m  o u r  e x p e r i m e n t s  t h a t  - n o t w i t h s t a n d i n g  t h e  s m a l l  g a p  b e t w e e n  Z o r i s  P a n d  

ZLe(OFmp)-f inding  a n  o p t i m a l  i n t e g e r  s o l u t i o n  m a y  b e  a n  e n o r m o u s  t a sk ,  n o t  o n l y  fo r  L I N D O  o n  t h e  

p e r s o n a l  c o m p u t e r ,  b u t  a l so  f o r  O S L  o n  t h e  I B M  R S / 6 0 0 0 .  F o r  e x a m p l e ,  so lv ing  t h e  l a r g e s t  i n s t a n c e s  o f  

o u r  e x p e r i m e n t s  to  o p t i m a l i t y  t a k e s  a C P U - t i m e  w h i c h  v a r i e s  f r o m  10 m i n u t e s  t o  8 h o u r s  o n  t h e  

R S / 6 0 0 0 .  T h e  l a t t e r  m a k e s  a n  e n u m e r a t i o n  a p p r o a c h  i n t e r e s t i n g  f r o m  a t h e o r e t i c a l  p o i n t  o f  v i e w  8, b u t  

in  p r a c t i c e ,  w h e r e  O F I S P  h a s  t o  b e  s o l v e d  o n  a p e r s o n a l  c o m p u t e r  q u i c k l y  a n d  r o u t i n e l y  in  a d y n a m i c  

e n v i r o n m e n t ,  t h i s  a p p r o a c h  h a s  o n l y  a l i m i t e d  v a l u e .  

4.2. Rea l - l i f e  i n s tances  (Se t  I1) 

A p a r t  f r o m  t h e  r a n d o m l y  g e n e r a t e d  i n s t a n c e s  o f  O F I S P ,  w e  a l so  a n a l y z e  a n u m b e r  o f  i n s t a n c e s  o f  

O F I S P  t h a t  c o m e  f r o m  a s t u d y  f o r  t h e  m a i n t e n a n c e  d e p a r t m e n t  o f  K L M  a t  S c h i p h o l  A i r p o r t .  I n  t h e s e  

Table 6 
Day-by-day results for scenario No. 4 

Quality of heuristics Upper bounding procedures 

Mon 0.07 0.06 0.08 0.06 < 0.01 n n n 
Tue 0.07 0.06 0.08 0.06 < 0.01 y n n 
Wed 0.06 0.04 0.06 0.04 < 0.01 n y y 
Thu 0.06 0.05 0.06 0.05 < 0.01 n n n 
Fri 0.08 0.06 0.09 0.06 < 0.01 n n n 
Sat 0.08 0.07 0.05 0.04 < 0.01 n n n 
Sun 0.03 0.02 0.03 0.02 < 0.01 n n n 

8 Research is in progress (Kroon 1990) to develop polyhedral approaches for solving OFISP. This research is based on a slightly 
different formulation of OFISP as a Node Packing problem. In this formulation (aggregated) decision variables x j. c ate replaced by 
(disaggregated) decision variables X~,m, reflecting the 0-1 decision on processing job j at machine m (instead of processing job j on 
a machine from class c). This approach has the advantage that the corresponding coefficient matrix is a clique matrix and that the 
lifted odd-hole inequalities of Padberg (1974) can sometimes be used to turn a fractional solution into an integer one. Unfortunately, 
the size of this alternative formulation grows very fast in the number of machines, making this formulation not useful on a personal 
computer for the problem dimensions studied here. For the aggregated formulation of OFISP given in Section 3 we did not yet 
succeed in finding useful valid inequalities. Furthermore, we are currently looking for specialized branch-and-bound procedures for 
solving OFISP. 
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Table 7 
Weekly results for all scenarios 
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Quality of heuristics Upper  bounding procedures 

A~I a~l A~2 a~2 a~t, LPf dill dH2 
Scen. No. 1 0.06 0.05 0.06 0.05 < 0.01 y n n 

Scen. No. 2 0.07 0.05 0.08 0.05 < 0.01 y y y 
Scen. No. 3 0.08 0.03 0.08 0.03 < 0.01 y y y 
Scen. No. 4 0.06 0.03 0.06 0.03 < 0.01 y y y 
Scen. No. 5 0.07 0.06 0.07 0.05 < 0.01 y n n 
Scen. No. 6 0.05 0.03 0.05 0.03 < 0.01 y y y 
Scen. No. 7 0.08 0.07 0.05 0.04 < 0.01 y n n 

instances of OFISP four different aircraft types are present: A310, B737, B747, and DCIO. For each of 
these aircraft types the workload per day (in hours) and the number of jobs per day are represented in 
Table 4. For  example, on Monday for the A310 the total workload is 31.2 hours, generated by 37 jobs. 
Each engineer has a license for two aircraft types. KLM's management  is interested in the best size and 
composition of her workforce. In order to obtain this information, seven different scenarios have been 
generated, as shown in Table 5. Each scenario represents one composition of the workforce. For 
example, in scenario No. 1 all license combinations are obtained by three engineers, and the total 
teamsize is 18 people. For each scenario we obtain day-by-day and weekly results. The results for our 
heuristics have been obtained on a personal computer, whereas the solutions to OFISP and LP(OFISP) 
were obtained by OSL on an IBM RS/6000.  All instances were solved to proven optimality. In Table 6 
some of the day-by-day results are shown for scenario No. 4. In the Tables 6 and 7 LPf shows whether or 
not LP(OFISP) has a fractional solution, and dill and dH2 indicate if the upper  bound obtained from 
SR(OFISP) was bet ter  than the upper bound obtained by the heuristics 141 and H2. In the correspond- 
ing columns 'y' indicates 'yes', and 'n'  indicates 'no'. The weekly results have been obtained for all 
scenarios by aggregating the day-by-day results. These results are shown in Table  7. The results obta ined 
for these real-life instances are a little worse (1-2%)  than the results obtained for the randomly 
generated ones. However, the absolute deviation from optimality is still quite acceptable. Furthermore,  
for a given scenario the upper  bounding procedures perform best on days with a relatively low utilization 
rate (workload). The weekly results, which all correspond to the same workload, show the same trend. 
That  is, the upper bounds are strong if the total number of engineers in the scenario is relatively low. 

As before, the upper  bound obtained from LP(OFISP) is excellent. In many cases this upper bound 
equals Zovmp, although the corresponding solution is fractional. In general, solving these real-life 
instances to optimality requires less computational effort than solving the (equally sized) randomly 
generated instances. For  most of the real-life instances OSL finds an optimal integer solution after a 
search through a limited number of nodes of the branch-and-bound tree, whereas for some of the 
randomly generated instances OSL has to search through well over five thousand nodes. Still, on a 
personal computer  the enumeration approach has only a limited value, even for these real-life instances. 

5. Final remarks 

In this paper  we consider the Operational Fixed Interval Scheduling Problem (OFISP) and its 
appearance in practice. We suggest an exact algorithm for the single machine class variant. This 
algorithm is a simplification of the algorithms of Arkin and Silverberg (1987) and Kolen et al. (1987). 
Furthermore,  we formulate the multiple machine class variant as an integer program, and we present two 
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dua l -cos t  heur is t ics  for  solving this gene ra l  p rob l em.  Final ly ,  we c o m p a r e  the  p e r f o r m a n c e  of  our  
heur is t ics  wi th  the  p e r f o r m a n c e  o f  solving L P ( O F I S P )  fo l lowed by a s t a n d a r d  e n u m e r a t i o n  scheme.  
A l t h o u g h  L P ( O F I S P )  yie lds  exce l len t  u p p e r  bounds ,  this  a p p r o a c h  has  as a ser ious  d raw-back  assoc ia ted  
wi th  it tha t  for  l a rge r  s ized ins tances  it r equ i r e s  too  much  t ime  and  memory ,  bo th  on  a pe r sona l  
c o m p u t e r  and  on  a works ta t ion .  This  d raw-back  t o g e t h e r  wi th  the  obse rva t ion  tha t  our  heur is t ics  yield 
-within  an  accep t ab l e  a m o u n t  of  C P U - t i m e  on  a p e r s o n a l  c o m p u t e r -  feas ib le  so lu t ions  tha t  a re  on 
average  only 0 - 7 %  f rom op t ima l i ty  m a k e s  our  heur is t ics  b e t t e r  su i tab le  for  use  in p rac t ice  than  the  
e n u m e r a t i o n  app roach .  Never the less ,  fu tu re  r e sea rch  has  to focus on  po lyhed ra l  m e t h o d s  a n d / o r  ta i lor  
m a d e  e n u m e r a t i o n  schemes  which  hopefu l ly  improve  the  p e r f o r m a n c e  of  the  e n u m e r a t i o n  approach .  
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