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Abstract: 

We describe an algorithmic approach to determine an efficient railway rolling stock circulation on a 

single line or on a set of interacting lines. Given the timetable and the passengers’ seat demand, we 

develop a branch-and-price algorithm that results in an allocation of rolling stock material to the daily 

trips. In order to efficiently utilize the train units, they can be added to or removed from the trains at 

some stations along the line. These changes in train composition are subject to several constraints, for 

example corresponding to the order of the train units within a train. A solution is evaluated based on 

three criteria, i.e. the service to passengers, the robustness, and the cost of the circulation. The branch-

and-price algorithm that we developed is tested on real-life instances from NS Reizigers, the main 

Dutch operator of passenger trains. 

 

Subject classification: Transportation, scheduling, vehicle: circulation of rolling stock. Programming, 

Integer, Applications. 
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1 Introduction 

1.1 The Rolling Stock Circulation Problem 

The efficient circulation of railway rolling stock is an important problem for operators of passenger 

trains, since the rolling stock represents a huge capital investment. The rolling stock is als o an 

investment that cannot be changed frequently, because it usually has an economic life cycle of several 

decades. For these reasons, it has to be decided carefully how many carriages or train units are 

necessary per scheduled train in order to attain a certain quality level for the passenger.  

In this paper we focus on the efficient circulation of train units on a single line or train series, 

or on a set of interacting lines. A train series is defined by two endpoints between which several trains 

run up and down according to the timetable. A large part of the rolling stock is assigned to a fixed train 

series or a set of interacting train series. Train series interact if they have a common endpoint and if the 

same train units carry out trips on several of these train series sequentially. Therefore, rolling stock 

circulations are planned for a train series, if there is no interaction with other train series, and for a set 

of interacting train series otherwise. The primary objective pursued in the planning process of the 

rolling stock circulation is the maximization of service to the passengers by minimizing the seat 

shortages. Given the current timetable and the expected number of passengers, some shortages may be 

unavoidable, because of a limitation on the train length or because of the limited number or rolling 

stock material dedicated to the line. Other concerns are the robustness, as far as the allocation of rolling 

stock influences this, and the cost of the rolling stock circulation.  

In order to obtain a better match between the available rolling stock and the passengers’ seat 

demand, the compositions of the trains can be changed at some stations by adding or removing train 

units to or from the trains. For example, train units may be uncoupled from a train after the morning 

rush hours, and they may be coupled again before the afternoon rush, possibly onto another train. These 

shunting operations, which are carried out in the short time interval between the arrival of a train at a 

station and its subsequent departure, is subject to several practical rules related to the feasibility of the 

transition of the train composition. 

Our approach is tested on several real-life instances of NS Reizigers, the main Dutch operator 

of passenger trains. The rolling stock of the train series of these instances consists of train units. Train 

units differ from train carriages, because they can move individually in both directions without a 
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locomotive. Figure 1a presents a double deck train unit with four carriages and Figure 1b presents a 

double deck carriage. There exist other train units of this double deck type with a different number of 

carriages (three carriages or six carriages), subsequently called subtypes. Such a train unit is indivisible 

and a train can be composed of several of those subtypes of train units. Different types of train units 

(e.g. double deck versus single deck), however, cannot be combined with each other in one train. It is 

preferable to assign only one material type to a train series or set of related train series, since in case of 

disruption of operations (e.g. switch or electricity breakdown), the circulation will not be completely 

disorganized, and it will be much easier to return to the regular situation.  

Figure 1a: Double deck train unit. 

 
 

 
Figure 1b: Double deck carriage. 

 
 
In this paper, we describe a branch-and-price approach for solving the rolling stock circulation problem 

for a single train series or a set of interacting train series on a single day. Although the model is also 

valid for supporting operational decisions related to the rolling stock circulation, the primary objective 

of the model is to investigate the effect of changes in some input parameters of the problem on the 

objectives, e.g. the number of train units assigned to a line, an additional station where units can be 

(un)coupled, a change in the allowable train length on some trips, etc. 

1.2 Literature Review 

In the literature, several related problems have been treated. Schrijver (1993) considers the problem of 

minimizing the number of train units of different subtypes for an hourly train series in the Netherlands, 

given that passengers’ seat demand must be satisfied. The only restriction on the transition between 

two compositions on two consecutive trips is that the number of train units must be available at the 

right time and station. Other (un)coupling restrictions are ignored. Brucker, Hurink and Rolfes (1998) 

study the problem of finding a routing of railway carriages through a network, given a timetable. They 

focus on the repositioning trips of carriages from one station to another. Their solution approach is 

based on local search techniques like simulated annealing. Ben-Khedher, Kintanar, Queille and 

Stripling (1998) study the problem of allocating train units to the French High Speed Trains. Their 

rolling stock allocation system is based on a capacity adjustment model that is linked to the seat 
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reservation system and seeks to maximize the expected profit. Cordeau, Soumis and Desrosiers (2000) 

present a Benders decomposition approach for the locomotive and car assignment problem. Their 

approach is based on the concept of train consists, i.e. a group of compatible units of equipment 

(locomotive(s), first and second class cars) that travel along some part of the rail network. 

Computational experiments show that optimal solutions can be found in short computation times. In a 

subsequent paper, Cordeau, Soumis and Desrosiers (2001) extend their model with various real-life 

constraints, as for example maintenance constraints. Lingaya, Cordeau, Desaulniers, Desrosiers and 

Soumis (2002) deal with the problem of assigning carriages to trains at VIA Rail in Canada. They 

present a model to adapt a master plan to additional information concerning the expected numbers of 

passengers. They allow for coupling and uncoupling of carriages at various locations in the network 

and explicitly take the order of the carriages in the trains into account. Several other real-life 

constraints, such as maintenance requirements, are considered as well. The solution approach is based 

on a Dantzig -Wolfe reformulation solved by column generation. Next, branch-and-bound is applied 

heuristically to obtain good integer solutions. Alfieri et al. (2002) describe a model to determine the 

circulation of rolling stock on a single line and day. Their approach is based on an Integer 

Programming formulation solved with a commercial IP solver and tested on real-life case-studies of the 

Dutch railway company. Abbink et al. (2003) present a model to allocate different material types of 

rolling stock to the different train series. They present an IP model, that minimizes the seat shortages 

during the morning rush hours by allocating material types and possibly subtypes with different 

capacities to all the trains running simultaneously at 8 o’clock, the busiest moment of the day. Their 

approach is applied to the Dutch railways for several scenarios that differ in the number of material 

types and subtypes that can be allocated to a line. For an excellent survey on optimization models for 

train routing and scheduling, we further refer to Cordeau, Toth and Vigo (1998). 

In this paper, we present a branch-and-price algorithm for solving the Rolling Stock 

Circulation Problem. During the last decade, many hard integer programming problems have been 

successfully solved exactly with branch-and-price. The first papers on branch-and-price or integer 

programming column generation are Desrosiers, Soumis and Desrochers (1984) and Desrosiers and 

Soumis (1989) on routing problems. Savelsbergh (1997) presents an efficient branch-and-price 

algorithm for the Generalized Assignment Problem. For a general exposition on branch-and-price, we 

refer to Vanderbeck and Wolsey (1996), Barnhart et al. (1998) and Vanderbeck (2000).  
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The Rolling Stock Circulation Problem has similarities with the Multicommodity Flow 

Problem (MCFP), where the flows of different commodities must be routed through a graph from 

supply to demand nodes without exceeding the capacities of the arcs (see e.g. Ahuja, Magnanti and 

Orlin, 1993). In our problem, the commodities correspond to the material subtypes, whereas the graph 

is determined by the different trips that must be served. The capacity of an arc corresponds to the 

maximum number of carriages that can be deployed on a trip, because of the limitation of the train 

length. Column generation approaches and branch-and-price algorithms have been proposed to tackle 

variants of the MCFP. For example, Barnhart, Hane and Vance (2000) present a branch-and-price-and-

cut algorithm to solve an origin-destination integer MCFP. Holmberg and Yuan (2003) present a 

column generation approach for a MCFP with side constraints. Usually, for every commodity paths 

through a network are generated, where the Master Problem contains arc capacity constraints. As will 

be explained later, we will generate paths corresponding to joint flows of several commodities through 

a network that meet the capacity constraints.  

This paper is organized as follows. Section 2 describes the problem in more detail. Section 3 

presents the model and an IP formulation, that will be used as a benchmark for our branch-and-price 

approach. In Section 4, we present a Dantzig-Wolfe reformulation for the problem. Section 5 outlines 

the branch-and-price procedure. Section 6 discusses the numerical experiments and, finally, in section 

7 we conclude. 

2 Problem Description 

In this Section, we describe the problem in more detail. Section 2.1 discusses the concept of a train 

series and gives an example. Section 2.2 describes the feasible changes in the train compositions at the 

stations and Section 2.3 discusses the inventory positions of train units at the stations. Finally, section 

2.4 gives the criteria on which a rolling stock circulation is evaluated. 

2.1 Train Series 

A train series is defined by two endpoints between which several trains run up and down according to 

the timetable. A fixed number of trains is required to run all trips of the timetable. This number is 

determined by the circulation time of the train series, including the return times at the endpoints, and its 

frequency. For example, Figure 2 presents the railway map of the Netherlands. The bold line presents 

the intercity 2100 train series running between Amsterdam (Asd) and Vlissingen (Vs), the 2400 
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between Asd and Dordrecht (Ddr), and the 2600 between Asd and The Hague (Gvc). They interact 

with each other, because, after a 2600 train has made his journey from Asd to Gvc and back, its train 

number changes and it will perform a roundtrip to Vs (2100) or Ddr (2400). The sequence is not 

arbitrary. In fact, if a 2100, 2400 or 2600 train arrives in Asd, its next journey will be the first 2100, 

2400 or 2600 roundtrip that leaves Asd after its arrival. The cyclic nature of the timetable results in the 

same sequence of roundtrips, presented in Table 1. The last two columns present the arrival and 

departure time for the trips from and to Asd. After the fourth roundtrip, a train will carry out the first 

roundtrip again. The total time, including the waiting time, for the four roundtrips is 14 hours. 

Therefore, at least 14 trains are required to run the timetable for the 2100, 2400 and 2600 train series. 

As illustrated by Table 1, we see that after 14 hours the train is back in Amsterdam and ready to carry 

out the first roundtrip again. Due to some deviations from the regular pattern during the morning rush 

hour, even 15 trains are required. 

Figure 2: Train series 2100, 2400, 2600. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Table 1: Train series 2100, 2400 and 2600. 

 Roundtrip Trainnumber Asd - Xyz Xyz - Asd 
1 Asd- Gvc-Asd 2600 xh13 - (x+1)h03 (x+1)h29 - (x+2)h20 
2 Asd-Ddr-Asd 2400 (x+2)h29 - (x+3)h47 (x+4)h13 - (x+5)h33 
3 Asd-Gvc-Asd 2600 (x+5)h43 - (x+6)h33 (x+6)h59 - (x+7)h50 
4 Asd-Vs-Asd 2100 (x+7)h59 - (x+10)h36 (x+11)h26 - (x+14)h03 
 
As is illustrated by the example, a train makes several consecutive trips during the day. In the dense 

Dutch railway timetable, the sequence of the trips is fixed and input to the model. A trip is 

 

Asd  

 
Gvc 

Ddr 

Rsd  
Vs  
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characterized by a departure/arrival time/station. In both the arrival and departure station, coupling and 

uncoupling can take place. On a trip, the train can make intermediate stops at other stations, but those 

are only relevant if the train composition can be changed. In the above example, the train composition 

can be changed at the intermediate station Roosendaal (Rsd) on the trip Asd-Vs and Vs -Asd. Therefore 

those trips are divided in two trips Asd-Rsd and Rsd-Vs or Vs -Rsd and Rsd-Asd. On the contrary, a 

stop in Rotterdam is not relevant, since a change in train composition is not allowed here. Table 2 

presents the consecutive trips that one of the 15 trains must make during a single day. The first two 

columns give the departure and arrival time, next the train number, the departure and arrival station.  

Finally, for every trip, the required capacity of first and second class passengers seats is 

determined as follows. Every trip is divided in subtrips, corresponding to the intermediate stops that the 

train makes. For example, between Asd and Gvc, the 2600 train stops at Schiphol (Shl) and Leiden 

(Ledn), resulting in three subtrips, i.e. Asd-Shl, Shl-Ledn, Ledn-Gvc. For these subtrips, first and 

second class passengers’ counts of the conductors are known. Those counts are then changed into the 

required capacity by a statistical procedure, which falls outside the scope of this paper.  

Table 2: Consecutive trips of a 2100-2400-2600 train. 

ts ta Nr ds as
7h26 8h17 2122 Vs Rsd
8h20 10h03 2122 Rsd Asd

10h13 11h03 2641 Asd Gvc
11h29 12h20 2630 Gvc Asd
12h29 13h47 2449 Asd Ddr
14h13 15h33 2444 Ddr Asd
15h43 16h33 2663 Asd Gvc
16h59 17h50 2652 Gvc Asd
17h59 19h42 2171 Asd Rsd
19h45 20h36 2171 Rsd Vs
21h26 22h17 2178 Vs Rsd
22h20 0h03 2178 Rsd Asd
0h13 1h03 2697 Asd Gvc

2.2 Train Compositions  

The available rolling stock for a train series usually consists of the same material type with different 

subtypes. A train can be composed of several train units of different subtypes, subsequently called a 

composition. Those subtypes differ in number of carriages and, as a res ult, in capacity, measured in 

numbers of first and second class passengers’ seats. A train unit can be coupled to or uncoupled from a 

composition at the end of a trip. The position where units can be coupled to or uncoupled from the train 

is fixed for every station, i.e. at the rear or the front side of a train. In a terminal station, i.e. a station 
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where trains arrive from and leave to the same direction (e.g. Vs) coupling and uncoupling usually 

occurs at the station side of the train. In the station Rsd, where a train comes from the direction Vs and 

leaves in the direction Asd (or vice versa) a unit is coupled onto the front of an incoming train and 

uncoupled from the rear of an outgoing train. Therefore, not only the number of train units of each 

subtype, or the combination, is important, so is the order of the units in the composition, or the 

permutation . In addition, only one shunting operation for the same train can be performed at a station, 

i.e. coupling units to or uncoupling units from the train but not both, because the time that a train stays 

at a station is too short to allow for several shunting operations. Therefore, it is not possible to remove 

a unit in the middle of the composition from the train. Finally, the model must also take into account 

that if a train enters and leaves the station in the same direction, the composition of the train is turned 

around, i.e. the front unit becomes the rear one and vice versa. This occurs at the endpoints Asd, Ddr, 

Gvc and Vs. 

2.3 Inventory of Train Units at the Stations  

The limited availability of rolling stock causes interaction between the different trains. The initial 

inventory of train units must be divided over the stations. A train unit can only be coupled onto an 

incoming train, if it is available in the right station and at the right moment in time. If a train unit is 

uncoupled, it is not immediately available to be coupled onto another train. A certain amount of 

“shunting time” must be taken into account. We further assume that a train unit is uncoupled at the 

moment that the train arrives in the station and a unit is coupled at the moment that the train departs 

from the station. Therefore, we determine the local shunting time at a station such that the arrival time 

increased with the shunting time of train A at the station is smaller than the departure time of train B at 

the station, if train B is the first train after the arrival of train A to which uncoupled train units from 

train A can be coupled. On the other hand, the arrival time of train A increased with the shunting time 

must be greater than the departure times of all trains leaving the station earlier than train B.  

Figure 3 presents the Time-Space Diagram for the time window from 9h00 to 12h00, focusing 

on the trips arriving in and leaving from Rsd. The straight lines represent the trips, whereas the dotted 

arrows present the shunting time and indicate the moment in time that an uncoupled train unit becomes 

available to be coupled onto another train. The 2101 train for example leaves Vs at 9h26 and arrives in 

Rsd at 10h17. It proceeds its journey to Asd 3 minutes later at 10h20. Between 10h17 and 10h20, train 

units can be uncoupled from the train, but they are not immediately available to be coupled onto 
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another train, due to the shunting time of 30 minutes in this example. This is reflected by the dotted 

arrow. Therefore, an uncoupled unit from the 2101 train cannot be coupled to the 2102 train, coming 

from Asd and going to Vs at 10h45. 

Figure 3: Time-space diagram: Vs -Rsd-Asd. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Finally, it is often assumed that the rolling stock circulation must be cyclic over a certain period of 

time. A way of taking care of the cyclicity requirement, is imposing that the begin inventory at all 

stations for every material subtype must equal the end inventory. However, this requirement is not very 

stringent, certainly not if the time period is short (e.g. one day). In fact, a good circulation should be 

such that at the end of the day, the train units end in such stations that the trips on the next day can be 

served appropriately, and therefore exact cyclicity is not required.  

2.4 Evaluation Criteria 

A circulation is evaluated based on three criteria, the kilometer-shortages, the number of shunting 

operations, and the carriage-kilometers. Given the capacity of first and second class passengers of the 

various subtypes of rolling stock and the composition of the train, the shortages on each subtrip can be 

computed. Those are multiplied by the length of the subtrip, and taking the sum over all subtrips results 

in kilometer-shortages for the entire trip. The second objective is minimizing the shunting operations, 

i.e. the number of times units must be (un)coupled to (from) the train. Those operations can cause 

delays, and since punctuality or robustness is an important concern, their number should be controlled. 

The third objective is minimizing the total number of carriage-kilometers, which are used as an 

approximation for the variable rolling stock cost. Carriage-kilometers are positively correlated to power 

supply (electricity or diesel), but also to the maintenance of the rolling stock. After a certain number of 

kilometers, each train unit is directed to a maintenance station for a preventive check-up and possibly 

for a repair. Therefore, the maintenance cost is correlated with the number of train unit or carriage-

9h20 9h45 

Vs 

Rsd 

Asd 

10h00 9h00 12h00 11h00 

2101 

2101 2102 

2102 

9h20 10h20 10h45 11h20 11h45 

9h47 10h12 10h47 11h12 11h47 
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kilometers. Moreover, a decrease in the number of train unit or carriage-kilometers does not only lead 

to a decrease in maintenance cost, but also to a decrease in the maintenance requirements. Less 

maintenance may lead to an increase in the effectively available rolling stock capacity. 

Since especially the first and second criterion cannot be expressed in an amount of money, we 

use weighting factors for the three criteria. By varying these weights, we obtain alternative solutions, 

which can be evaluated by the management of the railway operator or by the planners. 

3 Model Description 

3.1 Transition Graph 

For each train, the possible changes in its composition at a station can be represented by a so-called 

transition graph, where the nodes represent the feasible train compositions on a trip and the arcs 

represent the feasible transitions between compositions at a station. Transition graphs were used also 

by  Alfieri et al. (2002). Each train starts with an artificial trip from the depot at the departure station to 

the platform and ends with a trip to the depot at the arrival station of its last trip. The composition on 

these trips is the “0”-composition, i.e. all train units deployed on the first trip must be coupled to the 

train and removed from the inventory at the departure station, and all units deployed on the last trip 

must be added to the inventory at the final arrival station. For each trip, the expected numbers of first 

and second class passengers are given. Due to safety regulations, the expected shortage of passengers’ 

seats should not exceed a certain percentage of the available seats. In addition, there is a limit on the 

total length of the train due to the platform lengths of the stations where the train makes intermediate 

stops. Therefore, many possible compositions can be excluded a priori.  

Figure 4 presents a transition graph of five trips for a train of the 2100-2400-2600 train series. 

The train compositions are presented in the format “UrUr-1...U1”, where Ur is the train unit at the rear of 

the train, Ur-1...U2 are the train units in the middle of the train, and U1 is the train unit in front of the 

train. In this example, we assume that only train units of 4 and 6 carriages are available. The total 

length of the train cannot exceed 12 carriages and between Rsd and Vs the limit is just 9 carriages. The 

first real trip runs from Gvc to Asd and the possible compositions are given in Figure 4. If composition 

“4” is used on this trip, then in Asd the composition can change to “44”, “64” or “444”. The 

compositions “4” and “6” are not allowed on the next trip between Asd and Rsd, because it does not 

have the required number of seats. Observe that the train composition is turned around in Asd such that 



CIRCULATION OF RAILWAY ROLLING STO CK  M. PEETERS AND L. KROON 

 
11

 

composition “64” becomes “46”. On the trip Rsd-Vs, only three compositions are possible, i.e. “4”,”6” 

and “44”, because the total length may not exceed 9 carriages. Suppose now that on this last trip 

composition “4” cannot be used, because the expected number of passengers is too high, then the 

composition “64” on the trip Asd-Rsd can be excluded as well, since it has no follower. The same 

holds then for composition “46” on Gvc-Asd. Next the train returns to Rsd and then to Asd, where 

composition “4” cannot be used because the expected number of passengers is too high. 

Figure 4: Transition graph. 
 Gvc  Asd  Rsd  Vs  Rsd  Asd  

  4    4  4     
  6    6  6  6   
  44  44  44  44  44   
0  46  46      46  0 
  64  64      64   
  444  444      444   
  66  66      66   

3.2 Inventory of Train Units  

For each train, the model must select a composition for every trip. This can be considered as selecting a 

path in the transition graph from the “0”-node of the artificial first trip to the “0”-node of the artificial 

last trip. Since a train unit can only be coupled onto a train if it is available at the right time and station, 

the interaction between the different trains that run simultaneously is modeled by keeping track of the 

“inventory” position of each material subtype at all relevant events at the stations during the considered 

time period. The inventory position at an event e equals the initial allocation of rolling stock material to 

the station augmented with the uncoupled train units and decreased with the coupled units before event 

e. The model must make sure that at any time, in all stations, the inventory positions of all material 

subtypes are non-negative. To this end, we determine the set of relevant events at the stations as 

follows. For every trip, we distinguish two events at the arrival station: 

(i) A −∆ -event, corresponding to a potential decrease in the inventory position at the arrival 

station, and with the departure time of the following trip as realisation time.  

(ii) A +∆ -event, corresponding to a potential increase in the inventory position at a station 

and thus with the arrival time increased with the local shunting time as realisation time. 

The latter is required, because during the shunting operation the train unit can not be coupled onto 

another train and should not immediately be added to the inventory at the station. After enumerating all 

events at a station, we sort them in increasing order of realisation time. The relevant events are then the 

−∆ -events that are immediately followed by a +∆ -event. A +∆ -event as such is not relevant, since the 
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previous inventory position must be non-negative and a +∆ -event can only increase the available 

rolling stock. As a result, it can never violate the condition that the inventory must be non-negative. If 

several −∆ -events follow each other, then only the last −∆ -event is relevant. If after the last −∆ -event 

the inventory position is still non-negative, the latter holds for the −∆ -events immediately preceding 

the last −∆ -event as well. In the Time-Space Diagram of Figure 3, the realisation times of the −∆ -

events are indicated below the diagram (9h20, 9h45,...,11h45) and of the +∆ -event above the diagram 

(9h47, 10h12,... ). The relevant events are then the −∆ -events at 9h45, 10h45 and 11h45.  

Finally, we note that train units, entering and leaving a station being part of the same train, are 

not added to, nor removed from the inventory at the station at any time. We could add them upon 

arrival of the train and remove the same units when leaving again from the station. However, since 

these units do really not affect the inventory position, we ignore this temporary increase in inventory. 

3.3 Mathematical Formulation 

In order to formulate the rolling stock circulation problem, we use the following notation: 

T:  set of trips, index t;  

:0T  set of trips leaving from a depot, i.e. trips without a predecessor;  

)(tp : trip preceding trip 0\ TTt ∈  

MT: set of different material subtypes, index l; 

Nl: the available stock of subtype MTl ∈ ; 

Kt: set of possible compositions for trip Tt ∈ , indices  j or k ; 

Pt,k: set of possible preceding compositions if composition tKk ∈  is used on trip Tt ∈ ; 

Ft,k: set of possible following compositions if composition tKk ∈  is used on trip Tt ∈ ; 

S: set of stations, index s; 

sE : set of relevant events at station s, i.e. the initial state “0”, a −∆ -event, if it is immediately 

followed by a +∆ -event, and the final state “f”, index e; 

)(eq :  relevant event at station s immediately preceding event sEe ∈ . 

In our model, we use two types of variables. First, we associate a variable with every arc in the 

transition graphs of the trains, indicating whether or not the arc is used. More specifically, for every 

trip t, composition tKk ∈  and following composition ktFj ,∈ , a variable jktx ,,  is defined, which 
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equals 1, if composition k  is used on trip t and j on the next trip, and 0 otherwise. With every variable, a 

cost parameter jktc ,,  is associated, which equals the weighted kilometer-shortage cost, carriage-

kilometer cost if composition k is used on trip t, and the shunting cost if composition k  differs from 

composition j on the next trip. The shortage cost and kilometer cost of using composition j on the next 

trip are not included in the cost jktc ,, , but in the cost associated with the arcs leaving nodes 

corresponding to the next trip. Finally, in order to establish the link between the arc variables and the 

inventory positions at the stations, we associate with every variable two parameters, indicating the 

number of units of a material type that is (un)coupled: 

l
jkta ,, :  the number of uncoupled units of material subtype l at the end of trip t, given that 

composition k  changes to composition j; 

l
jktb ,, :  the number of coupled units of material subtype l at the end of trip t, given that composition 

k  changes to composition j. 

For the trips 0Tt ∈ , the number of coupled train units l
jktb ,,  of material subtype l equals all the units of 

the composition j, because the composition k on the artificial trip is the “0”-composition (see Figure 4). 

The number of uncoupled units for every material subtype l of a final trip t to the depot l
jkta ,,  equals 

all units of composition k , since composition j is again the “0”-composition. 

A second type of variables consist of inventory variables at the stations. With every relevant 

event sEe ∈  at station s and for every material type MTl ∈ , we associate a decision variable l
seINV , , 

indicating the number of units of type l at station s after event e. In order to model the changes in the 

inventories of the material subtypes at a station s between two relevant events, q(e) and sEe ∈ , we 

must determine the set of trips corresponding to a −∆ -event, causing a decrease in the inventory, and 

the set of trips corresponding to a +∆ -event, causing an increase in the inventory. Therefore, let ert  be 

the realisation time of relevant event e, then we can define both sets, as follows: 

Ae,s: set of trips, arriving in s, for which the arrival time increased with the shunting time at 

station s belongs to the interval ],( )( eeq rtrt  with sEe ∈ ; 

De,s: set of trips, arriving in s, for which the departure time of the following trip at station s 

belongs to the interval ],( )( eeq rtrt  with sEe ∈ ; 
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Observe that the set De,s does not contain the departing trips from station s, but trips arriving in station 

s. In order to determine whether or not a particular trip belongs to the set, however, we use the 

departure time of the next trip, since this is the realisation time of a −∆ -event.  

In the example of Figure 3, we recall that the relevant events at the station Rsd occur at 9h45, 

10h45 and 11h45, and we consider the time interval (10h45,11h45]. Then, the set De,s consists of two 

trips: (1) Vs -Rsd arriving in Rsd at 11h17 and (2) Asd-Rsd, arriving in Rsd at 11h42. The set Ae,s 

consists of two trips as well: (1) Vs -Rsd arriving in Rsd at 10h17 and (2) Asd-Rsd, arriving in Rsd at 

10h42. Now, we can formulate the problem as follows: 

(i) Minimize the cost; 

∑ ∑ ∑
∈ ∈ ∈Tt Kk Fj

jktjkt

t kt

xcMin
,

,,,,   (1) 

Subject to 

(ii) Flow conservation constraints; 

∑ ∑
∈ ∈

=
t tkKk Fj

jktx 1,,  0Tt ∈∀  (2) 

∑∑
∈∈

=
ktkt Fj

jkt
Pj

kjtp xx
,,

,,,),(  tKkTTt ∈∀∈∀ ,\ 0  (3) 

(iii) Initial inventory; 

l

Ss

l
s NINV =∑

∈
,0  MTl ∈∀  (4) 

(iv) Inventory constraints; 

0,,,,,,,,,),(

, ,, ,

=−−+ ∑ ∑ ∑∑ ∑ ∑
∈ ∈ ∈∈ ∈ ∈

l
se

Dt Kk Fj
jkt

l
jkt

At Kk Fj
jkt

l
jkt

l
seq INVxbxaINV

se t ktse t kt

 

 }0{\,, sEeMTlSs ∈∀∈∀∈∀  (5) 

(v) Cyclicity constraints; 

l
sf

l
s INVINV ,,0 =  MTlSs ∈∀∈∀ ,  (6) 

(vi) Non-negativity and integrality; 

}1,0{,, ∈jktx  ktt FjKkTt ,,, ∈∀∈∀∈∀  (7) 

0, ≥l
seINV  sEeMTlSs ∈∀∈∀∈∀ ,,  (8) 
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Constraints (2) impose that for every trip without a predecessor exactly one arc must be chosen, 

resulting in a composition for the first trip and the transition in composition at the arrival station of the 

first trip. Constraints (3) are flow conservation constraints, i.e. for a node in the transition graph 

characterized by a trip t and a composition tKk ∈ , the incoming flow, which equals the sum of the 

flows of the arcs arriving in the node, must be equal to the outgoing flow. Constraints (4) impose that 

the sum of the initial inventories at the stations must be equal to the total availability Nl for each 

material subtype MTl ∈ . Constraints (5) are the balancing constraints, stating that the inventory of 

material subtype MTl ∈  at station Ss ∈  of the previous event increased with the number of 

uncoupled train units in the time period between event q(e) and event e and decreased with the number 

of coupled train units of subtype l in the time period between event q(e) and event e must be equal to 

the inventory at event e. The cyclicity constraints (6) impose that the initial inventory at a station must 

be equal to the end inventory for every material subtype. Finally, constraints (7) specify the integrality 

condition on the arc variables, whereas constraints (8) reflect the non-negativity condition for the 

inventory positions at the stations.  

4 Dantzig-Wolfe Decomposition 

4.1 Formulation 

The rolling stock circulation problem (1)-(8) is suitable to apply Dantzig-Wolfe decomposition 

(Dantzig and Wolfe, 1960). In contrast to multicommodity flow decomposition approaches in the 

literature (e.g. Barnhart et al., 2000, or Holmberg and Yuan, 2003), where paths through the network 

are generated for each commodity and the capacity constraints are considered in the master problem, 

we decompose the problem based on the trains. Each train can be composed of several commodities, 

i.e. the material subtypes. In the Dantzig-Wolfe reformulation, we associate a variable with each path 

through the transition graph of all trains. The number of trains equals the number of trips without 

predecessor, or in the set T0. To state the Dantzig-Wolfe reformulation, we need the following 

additional notation: 

R: set of trains, index i;  

iΩ : set of paths through the transition graph of train Ri ∈ , index ω ; 

Ti: set of trips corresponding to train i. 
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Again, we introduce two types of variables, i.e. (i) the inventory variable l
seINV ,  for every relevant 

event sEe ∈  at station s and for every material type MTl ∈  as defined before, and (ii) the path 

variable i
ωλ , which equals 1, if path iΩ∈ω  is selected in the solution, and 0 otherwise. The cost 

associated with path iΩ∈ω , denoted as i
ωχ , equals the cost of the arcs used by the path. Finally, with 

every path iΩ∈ω , we associate a set of parameters ω
jktq ,,  for every trip iTt ∈  and for every 

composition tKk ∈  and following composition ktFj ,∈ . These parameters are associated with the arcs 

in the transition graph for the train i(t) covering trip t, and describe the path iΩ∈ω . Therefore, the 

parameter ω
jktq ,,  equals 1, if path ω  uses the corresponding arc in the transition graph, and 0 

otherwise. Now the Dantzig-Wolfe reformulation can be stated as follows: 

(i) Minimize the cost; 

∑ ∑
∈ Ω∈Ri

ii

i

Min
ω

ωω λχ   (9) 

 Subject to 

(ii) Select a path for every train; 

∑
Ω∈

=
i

i

ω
ωλ 1  Ri ∈∀  (10) 

(iii) Initial inventory constraints (4); 

(iv) Inventory constraints; 

0,
)(

,,,,
)(

,,,,),(

,
)(

,,
)(

,

=−−+ ∑ ∑ ∑ ∑∑ ∑ ∑ ∑
∈ Ω∈ ∈ ∈∈ Ω∈ ∈ ∈

l
se

Dt Kk Fj

ti
jkt

l
jkt

At Kk Fj

ti
jkt

l
jkt

l
seq INVqbqaINV

se
ti

t ktse
ti

t kt ω
ω

ω

ω
ω

ω λλ

 

 }0{\,, sEeMTlSs ∈∀∈∀∈∀  (11) 

(v) Cyclicity constraints (6); 

(vi) Non-negativity and integrality (8);  

}1,0{∈i
ωλ  iRi Ω∈∀∈∀ ω,  (12) 

Constraints (10) impose that for every train a path must be selected and are known as the convexity 

constraints. Constraints (11) replace the original inventory constraints (5). In general, this formulation 

has a huge number of path variables, and it is impossible to enumerate them all. Therefore, we solve 

the LP relaxation of problem (4), (6), (9)-(12) using column generation as explained in the next section.  
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4.2 Solving the LP Relaxation 

The problem (4), (6), (9)-(11) is initialized with a small subset of the columns from the sets Rii ∈Ω ,  

and is called the restricted master problem. This problem is then solved using the simplex algorithm. 

Based on the dual prices corresponding to constraints (11), denoted as l
se ,π , new columns are 

generated from the sets of paths iΩ , Ri∈ . Our goal is to find a path with minimum reduced cost, for 

each train Ri∈ . The reduced cost consists of four components, namely (i) the shortage cost, (ii) the 

shunting cost and (iii) the carriages kilometer cost, as explained before, and (iv) the material cost or 

revenue. Indeed, the dual prices l
se ,π  can be interpreted as the value of a unit of material subtype l in 

station s during the time interval ],( )( eeq rtrt , i.e. if for a train that departs from station s during the time 

interval ],( )( eeq rtrt , b units of material type l are coupled to the train, then an additional cost of 

l
seb ,π×  is incurred. On the other hand, if a units of material type l are uncoupled from the train and 

added to the inventory during the period ],( )( eeq rtrt , then a revenue is received of l
sea ,π× .  

More formally, for train i, the pricing problem consists of finding the shortest path through the 

transition graph of train i. The costs of the arcs are modified based on dual price information of the last 

solved restricted master problem. Let )(tsa  be the arrival station of trip t, and )(tea  the first relevant 

event after the +∆ -event of the trip in the station, i.e. )(),( tsateaAt ∈ . Similarly let )(ted  be the relevant 

event at the arrival station of the trip after or corresponding to the −∆ -event of the trip, i.e. 

)(),( tsatedDt ∈ . Then the pricing problem for train i can be stated as follows:  

Minimize the reduced cost; 

∑ ∑ ∑ ∑
∈ ∈ ∈ ∈

−−=
i

t ktTt Kk Fj
jkt

MTl

l
jkt

l
tsated

l
tkj

l
tsateajkt

i
PP xbacMinz

,

,,,,)(),()(),(,, ))(( ππ  (13) 

 Subject to 

∑ ∑
∈ ∈

=
t ktKk Fj

jktx 1
,

,,  iTTt ∩∈∀ 0  (14) 

∑∑
∈∈

=
ktkt Fj

tkj
Pj

jktp xx
,,

)(  t
i KkTTt ∈∀∈∀ ,\ 0  (15) 

Observe that problem (13)-(15) is a shortest path problem. As a result, it can be solved in polynomial 

time. Columns are added to the master problem as long as columns with negative reduced cost exist, 
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i.e. 0<− i
i
PPz ρ , where Rii ∈  ,ρ  denotes the dual price of the convexity constraint (10). However due 

to numerical instability, it may occur that columns price out, i.e. have a negative reduced cost, although 

they are already included in the restricted master problem and as a result convergence is not assured. 

To cope with this problem, we use a somewhat different stopping criterion. At each column generation 

iteration, we solve the pricing problem (13)-(15) for every train. Let LPZ  be the optimal LP objective 

function value of the restricted master problem, and ZLP the optimal LP value of model (4), (6), (9)-

(11), then the following inequality holds (see e.g. Wolsey, 1998), 

∑
∈

−+≥≥
Ri

i
i
PPLPLPLP zZZZ )( ρ  (16) 

As a result, at each iteration, we have a lower and upper bound on the optimal LP objective function 

value ZLP. We stop generating columns, if the relative difference between the lower and upper bound is 

smaller than ε , where 5105 −×=ε  or 

ερρ ≤−+− ∑∑
∈∈

))(/()(
Ri

i
i
ppLP

Ri
i

i
pp zZz  (17) 

As long as condition (17) is not met, the pricing problem is solved for every train and we look for the 

generated column with the most negative reduced cost over all trains, denoted as rc*. Next, we add all 

generated columns to the restricted master for which *rcz i
i
PP ×<− δρ , where δ  has the value 0.01. 

We do this in order to avoid the possibility that columns with a slightly negative reduced cost are added 

to the restricted master problem, if stopping criterion (17) is not met yet, because for other trains new 

columns with a relatively high negative reduced cost still price out. As a result, the procedure is not 

sensitive to the choice of the parameter δ .  

Finally, it is well-known that columns generated in earlier stages of the column generation 

procedure are often of poor quality, i.e. although their reduced cost is low, their true cost is high. This 

is because the initial dual prices are far from the optimal dual prices. Therefore, a “good” initialization 

of the restricted master problem is useful. However, we propose a two phase procedure to cope with 

this issue. In a first phase, we restrict the solution space of the pricing problems using problem specific 

knowledge. In our problem, it seems unlikely that in an optimal solution train units are coupled to 

(uncoupled from) the train, if on the next trip the expected number of passengers is lower (higher). 

Therefore, we initially forbid those transitions in the transition graphs of the trains. Next we apply the 

column generation procedure, until condition (17) is met. In a second phase, we allow all feasible 
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transitions and apply the column generation procedure again. This two phase procedure considerably 

speeds up the convergence of the column generation algorithm. In our computational experiments, we 

observe a decrease in computation time for the LP relaxation of a factor 5 to 7 on average for larger 

instances compared to a single phase procedure. 

5 Branch-and-Price 

After solving the LP relaxation, branching is needed to obtain a proven optimal integer solution. Since 

only a subset of paths from iΩ , Ri∈  is inserted in the master problem after solving the LP relaxation, 

and not necessarily all paths required for the optimal integer solution, the column generation procedure 

must be applied at every node of the branch-and-price tree with an appropriately modified pricing 

problem. These modifications to the pricing problem reflect the branching decisions taken at the 

current node, and the nodes higher in the tree on the path from the root node to the current node. 

Our branching scheme consists of imposing and forbidding the deployment of a set of 

compositions on certain trips. More specifically, we build a binary search tree, where at the first node 

we impose that for a trip t a composition must be chosen from a certain subset Ct of the compositions 

Kt, whereas at the twin node a composition from tt CK \  must be selected. Let ∑ ∈
=

ktFj jktkt qq
,

,,,
ωω

. , as 

a result ω
.ktq ,  equals 1, if trip t uses composition k in path ω , and 0 otherwise, then the branching 

constraints are given by the following expression: 

∑ ∑
Ω∈ ∈

=
)(

1)(
,

ti
tCk

ti
ktq

ω
ω

ω λ.  and ∑ ∑
Ω∈ ∈

=
)(

0)(
,

ti
tCk

ti
ktq

ω
ω

ω λ.  (18) 

The branching constraints (18) need not be added explicitly to the master program, but can be 

implemented by deleting the appropriate columns from the master program (4), (6), (9)-(11) and by 

avoiding that these columns price out again by deleting nodes corresponding to forbidden compositions 

from the transition graph. We use a best first search strategy, i.e. we always branch from the node with 

the lowest lower bound. We now discuss the sufficient conditions to have an integer solution and next 

how we select the branching constraints. 

Next, we argue that it is sufficient to impose that a combination, i.e. the number of train units 

of each material subtype, neglecting the order, is selected for each trip, and not necessarily a 

permutation in order to obtain an integer solution. Suppose for example that in the transition graph of 
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Figure 4, we have imposed that on the trip between Asd and Rsd, the combination consisting of one 

unit of type “4” and one unit of type “6” must be used, corresponding to the compositions or 

permutations “46” and “64”. Then, on the next trip between Rsd and Vs only two combinations and 

permutations can be used, i.e the composition that follows “64” namely “4” and the follower of “46”, 

namely “6”. As a result, imposing a branching constraint for this following trip, e.g. use combination 

“4”, has the consequence that for the previous trip permutation “64” must be used. On the other hand, 

at the twin node, i.e. forbid combination “4”, combination “6” must be used on the Rsd-Vs trip and as a 

result permutation “46” between Asd and Rsd. In general, by branching on the combinations, all 

fractional permutations can be eliminated as well, and, as a consequence, the path through the 

transition graph is uniquely determined. However, there is one exception. It can happen, that there exist 

distinct paths through the transition graph of a train, although the combination is fixed for every trip. 

This is the case, if a train consists of a core component of at least two units of a different material 

subtype, that is deployed on all trips of the train during the day. Suppose, for instance, that a train 

consists of at least one unit of type “3” and one unit of type “4”. During the day, other units can be 

coupled to and later uncoupled from this core component, to which two permutations correspond, i.e. 

“34” and “43”. As a result, whatever train units are coupled or uncoupled, two paths through the 

transition graph do exist. Consequently, the composition is not uniquely defined. However, in this case, 

we can arbitrarily select one of those paths, and consider it as integer, since both are feasible and the 

relation with the other trains is identical for both paths, because the same units are (un)coupled after 

every trip. This insight allows to branch by imposing that a combination must be used for each trip 

rather than a permutation, which results in a smaller search tree and avoids symmetry. 

The selection of the trip, for which we impose a branching constraint, is crucial in order to 

obtain an integer solution quickly. Based on the current master solution, we determine the fraction that 

a particular combination is used for each trip. From the set of trips for which there exists a fractional 

combination, we select the trip with the highest number of passengers and the combination with the 

largest fraction. The set of compositions Ct of branching constraint (18) are then all permutations that 

correspond to the selected combination. 

Finally, throughout the branch-and-price tree, we compute at every column generation 

iteration the lower bound on the LP value of equation (16). If this is greater than the best IP solution 

found, we can stop generating columns and prune the current node in our branch-and-price tree. 
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6 Numerical Experiments 

In order to test the described procedure, we carried out several computational experiments. The 

experiments are performed on an IBM NetVista 6343-25G Pentium 4 1.6 Ghz PC, using the 

Windows98 operating system. Our algorithm is coded in C++ and linked with the Extended 

LINDO/PC optimization library release 6.1 for solving the LPs. 

6.1 Description of the Data Sets 

Our procedure is tested on two cases, i.e. the 2100-2400-2600 train series presented in Table 1 and 

depicted in Figure 2, and the 3000 train series, that runs between Nijmegen (Nm) and Den Helder (Hdr) 

and is depicted in Figure 5. A 3000 train goes from Hdr to Alkmaar (Amr), where train units can be 

coupled or uncoupled. Then the train continues to Amsterdam (Asd), Utrecht (Ut), Arnhem (Ah) and 

Nijmegen. In Arnhem the train leaves the station in the same direction as it arrives. As a result, the 

composition is turned around such that the first train unit becomes the last and vice versa. This can be 

taken into account in the transition graphs, as explained earlier. In the terminal station Nm, train units 

can be coupled or uncoupled as well. As a result, there are two stations where shunting operations can 

occur, i.e. Nm and Amr. Table 3 gives the number of trains, the number of trips during one day that 

must be performed, and the number of stations where (un)coupling can occur during the day.  

Table 3: Data sets 
Train series Trips Trains Stations 

2100-2400-2600 182 15 5 
3000 115 12 2 

 
There exist three subtypes of train units, i.e. double deck units of three, four or six carriage, 

subsequently called DD3, DD4 and DD6. The maximum number of cars on each trip is 12, except for 

the trip Rsd-Vs where it is 10, and between Vs -Rsd, Amr -Hdr, and Hdr-Amr, where it is 9. For both 

series, we solve several instances by varying the availabilities of material subtypes of the train units 

and by varying the weights of the objective function.  

6.2 Computational Results  

Table 4 and Table 5 present the computational results. In Table 4, the weight given to a shunting 

operation, denoted as ws, equals 0, whereas in Table 5, the weight equals 5. The weight given to a 

kilometer-shortage is equal to 1 for a kilometer-shortage in second class (w2) and to 2 for a kilometer-

shortage in first class (w1). The weight of a carriage-kilometer (wcar) equals 0.01. In our experiments, 

we relax the cyclicity constraint (6) and impose that the sum over the initial inventories of material 



CIRCULATION OF RAILWAY ROLLING STO CK  M. PEETERS AND L. KROON 

 
22

 

subtypes in related station must be equal to the end inventory in those stations. We do this because the 

constraint (6) is too stringent, as explained earlier. In addition, in practice, there exist many ad hoc 

solutions to guarantee that the end inventory equals the initial inventory, which fall outside the scope of 

the current paper.  

Figure 5: The 3000 Train Series 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The column labelled “2000” (“3000”) gives the results for the train series 2100-2400-2600 (3000). The 

second row presents the number of material subtypes, i.e. 2 or 3, and the number in brackets gives the 

number of instances solved for this data class, e.g. for the 3000 train series and three material subtypes, 

we solve 58 instances, by varying the availabilities of the different material subtypes. The remaining 

rows have the following meaning: 

TIP: Average CPU time to find the optimal integer solution (in seconds);   

TLP: Average CPU time to find the LP relaxation at the root node (in seconds);   

nds: Average number of nodes in the branch-and-price tree; 

KLP: Average number of generated columns at the root node; 

KIP: Average total number of generated columns; 

nc: Average number of carriages; 

gap: Average relative gap between the LP bound at the root node and the optimal solution, or the 

difference in IP solution and LP relaxation at the root node divided by the latter;  
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CKM: Average number of carriage-kilometers; 

S1: Average number of first class kilometer-shortages; 

S2: Average number of second class kilometer-shortages; 

SHT: Average number of shunting operations (i.e. coupling and uncoupling). 

Based on Table 4 and 5, we can conclude that our procedure can solve all instances to optimality in 

reasonably short computation times. If the number of material subtypes equals 2, our algorithm does 

not require more than 6 seconds on the average to obtain proven optimal solutions for the 2100-2400-

2600 train series and less than a second for the 3000 train series. If the number of material subtypes 

equals 3, then the required CPU seconds increases to about one and a half minute for the 2100-2400-

2600 train series and to about 10 seconds for the 3000 train series. The low average gap indicates that 

the LP lower bound is close to the optimal integer solution and, therefore, only few nodes must be 

investigated to obtain a proven optimal solution. We also did experiments with different weights 

assigned to the cost components. Since the computation time turned out to be insensitive to these 

changes, we opt for not reporting these results. 

Table 4: Computational results. Table 5: Computational results. 

ws=0 2000  3000 ws=5 2000  3000 
 2 (62) 3 (82)  2 (45) 3 (58)  2 (62) 3 (82)  2 (45) 3 (58) 

TIP 5.86 91.27  0.70 10.04 TIP 4.49 87.69  0.60 9.84 
TLP  1.32 14.21  0.35 1.13 TLP  1.19 13.02  0.36 1.17 
nds 11.10 9.88  10.89 17.52 nds 9.81 12.93  5.07 17.69 
KLP 304.61 574.34  153.67 263.48 KLP 305.11 566.82  166.82 279.88 
KIP 401.32 860.74  184.11 443.69 KIP 398.06 870.70  197.44 462.24 
nc 145.47 155.49  124.24 127.69 nc 145.47 155.49  124.24 127.69 

gap 0.92% 0.68%  0.34% 0.86% gap 0.90% 0.67%  0.34% 0.86% 
CKM 127171 133393  113671 118617 CKM 133231 138878  117074 120520 

S1 14.61 0.00  104.49 24.21 S1 11.81 0.00  104.49 24.21 
S2 49095 23980  142962 143120 S2 49101 23980  142962 143120 

SHT 78.68 77.12  70.71 68.10 SHT 53.39 55.39  53.18 56.69 
 

6.3 Comparison with CPLEX and with practice  

We compare the computation time of our branch-and-price procedure to formulation (1)-(8) solved by 

commercial software, in casu the modeling language OPL studio 3.6 using the CPLEX 7.0 solver. We 

compare our branch-and-price procedure for the same 58 instances of the 3000 train series with 

shunting weight equal to 0 and with three different material subtypes. The IP solution of both models is 

the same for all instances. The average CPU-time, however, is about 10 seconds for the branch-and-

price algorithm (see Table 4) versus 227 seconds for CPLEX. We note that in CPLEX, we have 
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imposed that the same branching priority is used as in the branch-and-price algorithm, and that 

integrality is enforced on the comb inations by introducing auxiliary variables. 

For the 2100-2400-2600 train series, we were able to compare the circulation currently used in 

practice, with the circulation of our model. Actually, one DD3, 16 DD4’s and 12 DD6’s are deployed 

on the 2100-2400-2600 train series. Table 6 compares the circulation in practice with circulations 

proposed by the model for four scenarios. In the first two scenarios, we emphasize the minimization of 

the shortage-kilometers and use the same weights as for the experiments of Table 4 and 5. In the next 

two scenarios, we give a relative higher weight to the carriage kilometers. We observe that the second 

class kilometer-shortages in practice are much higher than in the circulations proposed by our model. If 

we emphasize the carriage-kilometers, we are able to find circulations, with less carriages kilometers 

and a decrease in second class kilometer-shortages of about 65%. 

Table 6: Comparison between circulation in practice and solution of the model. 
  emphasis:  shortages (1)  carriage km(2) 

  Practice  ws =0 ws = 5  ws =0 ws = 5 
CKM  127521  130906 135084  125321 127860 
S1  0  0 0  0 0 
S2  90572  23583 23583  29981 27737 
SHT  60  77 58  76 62 
(1) w1=2, w2= w1/2, wcar=0.01 
(2) w1=1/30, w2= w1/2, wcar=w1 
 
We can conclude that our procedure is reasonably fast to perform several kinds of what-if analyses. As 

an illustration, we present two what-if studies in the next section. 

6.4 What-if Analyses 

For the 2100-2400-2600 train series, we investigate the effect of only using DD4 and DD6 on this line. 

We solve the circulation problem for every combination of DD4 and DD6 for which the total number 

of carriages is at least 120 and at most 180. A lower availability of carriages results in an infeasible 

solution and a higher availability in excess capacity. Figure 6 presents the results. On the Y-axis the 

total cost is given and on the X-axis the number of available DD6’s. Every line on the chart presents 

the changes in the cost for a fixed number of DD4. We clearly observe that the marginal profit of an 

additional DD6 sharply decreases and quickly becomes 0. For example, for 3 DD4’s, more than 26 

units of DD6 cannot be deployed efficiently. We also observe that for the same number of carriages, 

the solution becomes more efficient if the share of DD4’s increases. For example for 160 carriages, the 

total cost for 4 units of DD4 and 24 of DD6 is around 40,000, whereas the cost for 7 units of DD4 and 
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22 units of DD6 is about 30,000 and even less than 20,000 for 10 units of DD4 and 20 of DD6. 

Obviously, such results could have been guessed a priori, since units of DD4 are more flexible than 

units of DD6, due to their shorter length. 

Figure 6: Circulation cost for the 2100-2400-2600 line (only units of 4 and 6 carriages) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

For the 3000 train series, we investigate the influence on the solution for two cases: (i) allowing 

coupling and uncoupling in Den Helder and (ii) increasing in the maximum train length from 9 to 12 

carriages, between Amr and Hdr and vice versa. In case (i), the number of trips increases then from 115 

to 148. Table 7 presents a comparison for both cases with the original situation, called “baseline”. The 

column labelled “mt” gives the number of material subtypes. The entries in the Table are the averages 

over the same instances as in Tables 4 and 5. The average computation time for case (i) increases to 

about 1 minute for the instances with 3 material subtypes, due to the higher number of trips. We 

observe that there is no effect on the average first class kilometer-shortages and that the effect on the 

second class kilometer-shortages is insignificant, i.e. about 0.02% for mt=2 and 0.05% for mt=3. The 

reductions in carriage-kilometers is very small, if a positive weight is given to the shunting operations. 

If not, a reduction of 1% can be achieved if two material subtypes are used and 0.5% if three subtypes 

are used. As a result, an additional shunting possibility in Hdr does not seem to have a big impact on 

the solution quality. Increasing the maximum train length to 12 carriages, however, results in a 
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decrease of the kilometer-shortages with about 10% and an increase in carriage-kilometers with about 

2%. It can be concluded that the limited maximum train length of 9 carriages is indeed a bottleneck. 

Table 7: Cases for the 3000 Train series 

 mt case CKM S1 S2 SHT TIP 

ws=0 2 baseline 113671 104.5 142962 70.7 0.70 
  (i) Sht in Hdr 112526 104.5 142933 79.0 2.29 
  (ii) max 12 114084 97.5 125505 65.6 0.73 
 3 baseline 118617 24.2 143120 68.1 10.04 
  (i) Sht in Hd r 117934 24.2 143044 71.5 62.46 
  (ii) max 12 120123 28.6 125206 61.7 12.27 
ws=5 2 baseline 117074 104.5 142962 53.2 0.60 
  (i) Sht in Hdr 116944 104.5 142933 53.3 1.64 
  (ii) max 12 119048 97.5 125505 42.4 0.67 
 3 baseline 120521 24.2 143120 56.7 9.84 
  (i) Sht in Hdr 120462 24.2 143044 56.8 61.13 
  (ii) max 12 123722 28.6 125206 43.7 16.95 

7 Conclusions and Future Research 

We have presented a model to determine an efficient rolling stock circulation for a set of interacting 

train series. We have developed a branch-and-price algorithm to solve the problem to a proven optimal 

solution. The algorithm is tested on real life instances from NS Reizigers, the main Dutch operator of 

passenger trains. The required CPU time is short, as follows from a comparis on with CPLEX. 

Therefore, what-if analyses can be performed easily. The model can be a useful tool for planners to 

determine the number of material subtypes allocated to a line. In addition, the circulation proposed by 

the model can be a good starting point to make the real circulation plan. However, this will require the 

availability of a user-friendly graphical user-interface in addition to our algorithmic approach. 

In our future research, we will focus on the application of the proposed procedure to the 

splitting and combining of trains. Indeed, it may happen that a train is split into two trains at a station, 

leaving in different directions, and that two trains coming from different directions arrive in a station 

and are combined into one train. We will investigate how the model and the algorithmic approach can 

be adapted to include this issue. Also other complicating issues, such as a larger number of material 

types and subtypes per train series, will be a subject for our future research. 
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