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1 Introduction

A mathematical program with equilibrium constraints (MPEC) is an optimization problem
including essentially a set of parametric variational inequality or complementarity type con-
straints [Harker and Pang, 1988]. The “inner problem” corresponding to the variational in-
equality or complementarity type constraints, suggested the word “equilibrium”, since in many
engineering and economic applications, these constraints refer to a certain equilibrium phe-
nomena. MPEC problems, which are known to be very difficult, arise in numerous areas such
as network design, regional science, transportation planning, and game theory. We refer the
interested reader to the extensive monograph by Luo et al. [1997].

There have been successful approaches to deal with this problem. One approach is based
on general penalization techniques. This approach has been widely used and many good results
have been reported [Ishizuka and Aiyoshi, 1992a,b]. Another approach is the application of
heuristics. These heuristics are fairly general and do not require strict assumptions in handling
MPEC problems [Suwansirikul et al., 1987, Friesz et al., 1992].

Outrata and Zowe [1995] reformulated the optimization problems with monotone varia-
tional inequalities. Their reformulation led to a nonsmooth Lipschitz optimization problem and
hence benefited from the well-developed theory of nonsmooth optimization [Clarke, 1983]. In
their paper, Outrata and Zowe successfully solved several academic problems and applied their
approach to compute the well-known Stackelberg-Cournot-Nash equilibria [Murphy et al.,
1982].

Recently, Kanzow and Jiang [1998] considered a continuation method for solving the
monotone variational inequality problems. Their idea was based on solving a sequence of
perturbed problems. The main tool for the perturbed problems was a specific smoothing func-
tion, which was also used by the authors in one of their earlier work [Kanzow, 1996]. They
reported promising results on variational inequality and convex optimization problems.

Along this line, Facchinei et al. [1999] made use of a smoothing function from Kanzow
and Jiang [1998] to solve MPEC problems. In addition to proposing an efficient algorithm,
they showed its global convergence. Furthermore, they composed a set of test problems from
the literature. Their numerical results on this set of problems demonstrated remarkable perfor-
mance.

The primary aim of this paper is to exploit the application of a regularization approach
to solve the MPEC problems. In particular, we are interested in using the entropy functions.
The paper starts with the reformulation of the MPEC problem with nonsmooth constraints. To
deal with the nonsmooth constraints, a regularization approach using the entropy function is
applied. We validate the proposed approach by conducting a numerical study on a set of test
problems collected from the literature. Our test results have shown that the proposed approach
is able to converge to the best known results. In some cases, even finds better solutions than
those reported in the literature.

The paper is organized as follows. Section 2 introduces an MPEC problem and a nons-
mooth reformulation. Section 3 describes the proposed regularization approach with a discus-
sion of its properties. The computational results over a set of test problems are reported in
Section 4. The paper is concluded in Section 5.
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2 Preliminaries

We adopt the notation<n to denote then-dimensional real vector space andk � k to denote the
Euclidean norm in this space. In the sequel, the vectors in a real vector space are viewed as
column vectors and the vector(xT ; yT ; zT ; �T )T 2 <n�<m�<l�<l is usually abbreviated
by (x; y; z; �).

Let us first define a variational inequality problem with variablesx 2 <n andy 2 <m.
Given a continuously differentiable functionF : <n+m ! <m and a set valued mapping

C(x) , fy 2 <m : gi(x; y) � 0; i = 1; 2; � � � ; lg (1)

with g : <n+m ! <l being twice continuously differentiable and concave in the second
variable, a variational inequality problem, VI(F , C) seeks for the solution setS(x) such that
y 2 S(x) if and only if y 2 C(x) and

(v � y)TF (x; y) � 0; for all v 2 C(x): (2)

Then, a typical MPEC becomes
min f(x; y)
s.t. x 2 X;

y 2 S(x);
(MPEC)

wheref : <n+m ! < is a continuously differentiable function andX is a nonempty set in<n

[Luo et al., 1997].
Before proceeding to the subsequent analysis, let us first recall several definitions and

results given by Harker and Pang [1990].

Definition 1 Givenx 2 X, let Fx denote the vector-valued functionF (x; �) : C(x) ! <n,
thenFx is

(a) monotone if

(y1 � y2)
T (Fx(y1)� Fx(y2)) � 0 for all y1; y2 2 C(x); (3)

(b) strongly monotone with modulus� > 0 if

(y1 � y2)
T (Fx(y1)� Fx(y2)) � �ky1 � y2k

2 for all y1; y2 2 C(x): (4)

Theorem 1 [Harker and Pang, 1990, Corollary 3.2] LetC(x) be a nonempty, closed convex
set andF (x; �) be a strongly monotone and continuous mapping. Then the solution set of the
variational inequalities VI(F ,C) consists of a unique point.
Furthermore, define the set ofactive constraints as

I(x; y) , fi : gi(x; y) = 0g: (5)

Then, the following definition facilitates an important assumption particularly for (KKT) opti-
mality conditions.

Definition 2 A vector y� satisfies the linear independence constraint qualification (LICQ) if
the gradients of the active inequality constraints are linearly independent.
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The following blanket assumptions similar to the ones in Outrata and Zowe [1995] are
made throughout the paper.

(A1) C(x) 6= ; for all x 2 A, whereA is an open bounded set in<n such thatX is contained
in A.

(A2) C(x) is uniformly compact onA, i.e., there exists an open bounded setB � <m such
thatC(x) � B for all x 2 A.

(A3) F (x; �) is strongly monotone.

(A4) X is nonempty and compact in<n.

(A5) At eachx 2 X and y 2 S(x), the partial gradientsrygi(x; y), i 2 I(x; y), satisfy
(LICQ).

As a consequence of Theorem 1, the above assumptions imply that for everyx in X, there
exists a unique solution to VI(F , C). More specifically, assumption (A5) implies that every
solutiony 2 S(x) satisfies the KKT conditions

F (x; y)�ryg(x; y)
T� = 0;

g(x; y) � 0; � � 0; �T g(x; y) = 0;
(6)

where the multiplier� 2 <l is uniquely determined. Moreover, (2) and (6) are equivalent
[Harker and Pang, 1990, Proposition 2.2]. Therefore, we can reformulate the problem (MPEC)
as a standard nonlinear complementarity constrained optimization problem

min f(x; y)
s.t. x 2 X;

F (x; y) �ryg(x; y)
T� = 0;

g(x; y) � 0; � � 0; �T g(x; y) = 0:

(NLC)

Though the problem (NLC) gives a smooth formulation, in general it does not satisfy any stan-
dard constraint qualification. In addition, the complementarity constraints are very difficult to
handle [Falk and Liu, 1995]. Thus, following Facchinei et al. [1999], we consider a nonsmooth
reformulation.

min f(x; y)
s.t. x 2 X;

F (x; y) �ryg(x; y)
T� = 0;

g(x; y) � z = 0;
min(z; �) = 0;

(7)

wherez 2 <l is added to simplify the notation and the “min” operator is applied component-
wise to the vectorsz and�. This problem can be further simplified to

min f(x; y)
s.t. x 2 X;

H(x; y; z; �) = 0;
(NSM)

whereH : <n+m+2l ! <m+2l is defined as

H(x; y; z; �) ,

0
@ F (x; y) �ryg(x; y)

T�

g(x; y) � z

min(z; �)

1
A : (8)
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The following proposition shows the equivalence of the problems (MPEC) and (NSM).

Theorem 2 [Facchinei et al., 1999](x�; y�) is a global (local) solution of the problem
(MPEC) if and only if there exists a vector(z�; ��), which is a global (local) solution of the
problem (NSM).

One major difficulty encountered in solving the problem (NSM) is the nondifferentiability
of the “min” function. One approach uses thesmoothing methods to approximate the “min”
function [Chen and Mangasarian, 1995, Qi and Chen, 1995]. In particular, Kanzow [1996]
used the following Chen-Harker-Kanzow-Smale (CHKS) smoothing function

��(a; b) = a+ b�
p

(a� b)2 + 4� (9)

where� is the real parameter. Kanzow [1996] applied this aprroach successfully for solv-
ing linear complementarity problems, and then for solving monotone variational inequalities
[Kanzow and Jiang, 1998]. Recently, Facchinei et al. [1999] benefited from this function in
handling MPEC problems.

Here, we exploit the use ofentropic regularization, since this particular approach has been
shown to have useful properties [Fang and Wu, 1996, Li and Fang, 1997, Fang et al., 1997].

3 Smoothing by Entropic Regularization

The smoothing function�p : <2 ! < is defined as

�p(a; b) , �
1

p
lnfe�pa + e�pbg (10)

wherep > 0 is the real parameter. Notice that, for eachp 6= 0, �p(a; b) is aC1 function.
Furthermore, the following fundamental result shows that (10) defines a smooth approximation
for the “min” function.

Lemma 1 Let a; b 2 < then for any� > 0, there existsP (�) > 0 such that

j �p(a; b)�min(a; b) j� � for all p: � P (�) (11)

Proof. Assume thatmin(a; b) = a, then

�p(a; b) = �
1

p
lnfe�pa + e�pbg (12)

= �
1

p
lnfe�pa[1 + e�p(b�a)]g (13)

= �
1

p
lnfe�pag �

1

p
lnf1 + e�p(b�a)g (14)

= a�
1

p
lnf1 + e�p(b�a)g (15)

By plugging this into (11) we have

j a�
1

p
lnf1 + e�p(b�a)g � a j=

1

p
lnf1 + e�p(b�a)g �

1

p
ln 2 (16)
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Therefore, the result follows withP (�) = ln 2
�

.

In nonlinear optimization, one of the desirable properties of a function is its convexity. Our
next result shows that proposed function,��p is convex.

Lemma 2 Given anyp > 0, �p is a concave function on<2.

Proof. For anyu = (a1; b1); v = (a2; b2) 2 <
2 and� 2 (0; 1), define

Tp(u; v) , �p(�a1 + (1� �)a2; �b1 + (1� �)b2) (17)

Then we have

Tp(u; v) = �
1

p
lnfe��pa1e�(1��)pa2 + e��pb1e�(1��)pb2g (18)

= �
1

p
lnf(e�pa1)�(e�pa2)1�� + (e�pb1)�(e�pb2)1��g: (19)

The Hölder Inequality [Kazarinoff, 1961, page 67] implies that

(e�pa1)�(e�pa2)1�� + (e�pb1)�(e�pb2)1�� � (e�pa1 + e�pb1)�(e�pa2 + e�pb2)1��: (20)

Consequently,

Tp(u; v) � �
�

p
lnfe�pa1 + e�pb1g �

1� �

p
lnfe�pa2 + e�pb2g (21)

= ��p(a1; b1) + (1� �)�p(a2; b2): (22)

Therefore,�p is a concave function on<2.

Remark 1.Notice that a locally Lipschitz function is said to be regular if the directional
derivative exists at all points and it is equal to its Clarke’s directional derivative
[Clarke, 1983]. As a consequence of Lemma 2,�p is a locally Lipschitz and
regular function. This remark will be recalled in the sequel.

We now give a smooth reformulation of the problem (NSM). Let us define a nonlinear
mappingHp : <

n+m+2l ! <m+2l,

Hp(x; y; z; �) ,

0
@ F (x; y)�ryg(x; y)

T�

g(x; y) � z

�p(z; �)

1
A (23)

where
�p(z; �) , (�p(z1; �1); � � � ; �p(zl; �l))

T 2 <l: (24)

Thus, for eachp 2 <, we have

min f(x; y)
s.t. x 2 X;

Hp(x; y; z; �) = 0:
(SMp)
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Notice that as a result of Lemma 1, problem (SMp) is a smooth perturbation of the problem
(NSM). Let the feasible set of problem (SMp) beFp 2 <

n+m+2l. To illustrate the formulation
with entropic regularization, the following example is given.

Example 1 Monotone quasi-variational inequality problem [Harker, 1991].

f(x; y) = 1
2((x1 � y1)

2 + (x2 � y2)
2)

X = [0; 10] � [0; 10]

F (x; y) =

�
�34 + 2y1 +

8
3y2

�24:25 + 1:25y1 + 2y2

�

g1(x; y) = �x2 � y1 + 15
g2(x; y) = �x1 � y2 + 15

(25)

The corresponding problems of (NLC) and (SMp) can be derived as

min 1
2((x1 � y1)

2 + (x2 � y2)
2)

s.t. 0 � x1; x2 � 10
�34 + 2y1 +

8
3y2 + �1 = 0

�24:25 + 1:25y1 + 2y2 + �2 = 0
�x2 � y1 + 15 � 0
�x1 � y2 + 15 � 0

�1; �2 � 0
�1(�x2 � y1 + 15) = 0

�2(�x1 � y2 + 15) = 0

(26)

and
min 1

2((x1 � y1)
2 + (x2 � y2)

2)
s.t. 0 � x1; x2 � 10

�34 + 2y1 +
8
3y2 + �1 = 0

�24:25 + 1:25y1 + 2y2 + �2 = 0
�x2 � y1 + 15� z1 = 0
�x1 � y2 + 15� z2 = 0
�1

p
lnfe�pz1 + e�p�1g = 0

�1
p
lnfe�pz2 + e�p�2g = 0;

(27)

respectively.

Theorem 3 Given anyp 6= 0 and(x; y; z; �) 2 Fp, the Jacobian ofHp with respect to the
variables(y; z; �) is nonsingular.

Proof. Since�p, p 6= 0, is continuously differentiable on<2, the operatorHp is also contin-
uously differentiable. Hence, its Jacobian is given by

rHp(x; y; z; �) =

0
@ Q 0 �AT

A �Il 0
0 D1 D2

1
A ; (28)
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where

Q , ryF (x; y)�
X
i2I

�ir
2
ygi(x; y) (29)

A , ryg(x; y) (30)

D1 , diag

�
@�p

@z1
(z1; �1); � � � ;

@�p

@zl
(zl; �l)

�
(31)

D2 , diag

�
@�p

@�1
(z1; �1); � � � ;

@�p

@�l
(zl; �l)

�
(32)

and Il is the l-dimensional identity matrix. Notice that sinceF (x; �) is strongly monotone,
ryF (x; �) is positive definite. Moreover since all functionsgi(x; �) are concave, their Hessian
matricesr2

ygi(x; �) are negative semidefinite fori 2 I. Therefore, the matrixQ is positive
definite. For alli = 1; 2; � � � ; l, since

@�p(zi; �i)

@zi
=

e�pzi

e�pzi + e�p�i

2 (0; 1) and (33)

@�p(zi; �i)

@�i
=

e�p�i

e�pzi + e�p�i

2 (0; 1); (34)

the diagonal matricesD1 andD2 are positive definite. To show the nonsingularity ofrHp,
assume thatrHpu = 0 for some vectoru = (u(1); u(2); u(3)) 2 <m �<l �<l. Then

Qu(1) �ATu(3) = 0 (35)

Au(1) � u(2) = 0 (36)

D1u
(2) +D2u

(3) = 0 (37)

Substitutingu(2) from (36) into (37) leads to

u(3) = �D�12 D1Au
(1): (38)

Pluggingu(3) into (35) yields

Qu(1) +ATD�12 D1Au
(1) = (Q+ATD�12 D1A)u

(1) = 0: (39)

Notice thatD�12 D1 andQ are positive definite, henceu(1) = 0. From (37) and (38), we have
u(3) = 0 andu(2) = 0. Therefore,rHp is nonsingular.

Remark 2.A vector function is said to be locally Lipschitz and regular if each of its com-
ponents is locally Lipschitz and regular. We have already mentioned in Remark
1 that�p satisfies this property. Since all the remaining components ofHp are
continuously differentiable, we can conclude thatHp is a locally Lipschitz and
regular function.

Note that locally Lipschitz and regular functions are useful for the application of implicit func-
tion theorem, which leads to the convergence properties of the nonlinear programming algo-
rithms [Outrata and Zowe, 1995, Kanzow, 1996].
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4 Numerical Results

Note that specific algorithms can be developed for the entropic regularization approach. How-
ever, we are interested in investigating the performance of the proposed approach by using
a publicly available software. In general, people tend to benefit from commercial or free-
ware software instead of creating their own tool. In this respect, we decided to use NEOS
server, which provides access to many optimization solvers through the internet. Especially,
the Kestrel interface enables the remote solution of optimization problems within the AMPL
and GAMS modeling languages [Dolan and Munson, 2001]. We used AMPL as our modeling
language, which is also available through the internet [AMPL, 2001].

SNOPT is one of the recently updated solvers on the NEOS server. It employs a sparse se-
quential quadratic programming algorithm with (quasi) Newton approximations. In particular,
SNOPT allows the nonlinear constraints to be violated (if necessary) and minimizes the sum of
such violations [Gill et al., 2000]. Therefore, we selected it to be the solver for our numerical
study. We remark that we did not seek for optimal parameter settings for SNOPT but used the
default parameters.

Recently, Facchinei et al. [1999] created a set of frequently cited problems, and reported
their results. They developed their own algorithms and conducted computations by using a
commercial package. We took advantage of their work and applied our approach to this set of
problems. For fair comparision, we solved all the test problems by using both their smoothing
approach and the proposed approach.

In Facchinei et al. [1999], the perturbation function (9) is used. We set the parameter,
� to be the initial choice of 1.0e-4, since they reported that their approach did not seem to
depend critically on this choice. However, our limited experience showed that reducing the
value of this parameter increases the precision at the cost of excessive iterations. Thus, we did
not adjust this parameter unless we observed radical differences between our results and the
results that they reported. We abbreviate their approach by FSA and entropic regularization
approach by ERA in the subsequent discussion.

In Table 1, the first column numbers the test problems in the same order as Facchinei et al.
reported. But, we initiated each problem with more different starting points than they did.
Thus, the second column includes their starting points as well as additional starting points
(which produced interesting results). Columns three and six give the best objective function
values (f�) reported by SNOPT. All the test problems are minimization problems, hence the
smaller objective function values mean the better solutions are obtained. Corresponding to
these objective function values, columns four and seven give the optimum solutions.

Notice that for both FSA and ERA, the required computational work at each iteration is
about the same. Therefore, the number of iterations given in columns five and eight shows
how quickly the solver converges to the reported objective function value. The last column
gives the parameterp for entropic regularization approach. In each problem we initially set
this parameter to 1.0e4.

Observe that, except for problem 11, FSA gave the same results as reported by Facchinei
et al. [1999]. Note that, ERA demonstrated a remarkable performance and was able to solve
each test problem in a reasonable number of iterations. For problems 1 to 5, FSA and ERA
produced the same results. However, for problem 6, ERA perfomed exceptionally well. In
fact, this result has never been reported in any work that we know of [Outrata and Zowe, 1995,

9



Riesz et al., 1990]. To make sure, we reduced the parameter of FSA down to 1.0e-12, but the
result did not change. For problem 7, although ERA was able to converge to the vicinity of the
reported optimum solution, the precision of the objective function value is not as good as FSA.

For problems 8.1 to 10 both approaches were able to converge to the same optimum so-
lutions. For problem 11, we reduced the parameter of FSA down to 1.0e-12. The optimum
value was reached with the first starting point, but FSA failed with the remaining two starting
points. ERA did not observe any difficulty in converging to the optimal solution with the first
two starting points, but stuck in the local optimum with the last starting point.

One more observation worth mentioning. ERA slows down when an initial starting point
is selected to be the 0 vector and the parameterp is not large enough (for problems 2, 9 and
11). Because in this case,�p(0; 0) = � ln 2

p
, and hence excessive iterations are spent to satisfy

the violated equality constraint.
In our computational study, we observed that overflow problems may arise due to the ex-

ponential function in (10). We experienced this phenomenon for problems 6,7, 9 and 10.
However, except problem 7, the results were not affected. Consequently, for this particular set
of problems, we did not tackle this issue explicitly.

To handle the overflow problem, the smoothing function (10) can be slightly modified
without changing its properties. For example, when we compute the exponential function
e�pa with pa < 0 and very largejpaj, the overflow problem occurs in the smoothing function.
This problem can be avoided by using the following equality:

�p(a; b) , �
1

p
lnfe�pa+pc + e�pb+pcg+ c (40)

wherec is any value satisfyingc � min(a; b). Notice that both�pa+pc � 0 and�pb+pc � 0,
hence the overflow problem is handled effectively.
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FSA ERA
No. Start f� x� It. f� x� It. p

1
0.0 3.2078 4.0605 26 3.2077 4.0604 32

1.0e4
10.0 3.2078 4.0605 29 3.2077 4.0604 29

2
0.0 3.4494 5.1536 28 3.4494 5.1536 33

1.0e4
10.0 3.4494 5.1536 27 3.4494 5.1536 19

3
0.0 4.6042 2.3894 21 4.6042 2.3894 29

1.0e4
10.0 4.6042 2.3894 21 4.6041 2.3894 28

4
0.0 6.5926 1.3731 30 6.5926 1.3731 23

1.0e4
10.0 6.5926 1.3731 22 6.5926 1.3731 28

5
(0.0, 0.0) -0.9999 (0.5010, 0.5010) 15 -0.9999 (0.5010, 0.5010) 13

1.0e4
(2.0, 2.0) -0.9999 (0.5010, 0.5010) 19 -0.9999 (0.5010, 0.5010) 21

6
0.0 -3266.6666 93.3333 7 -4512.5000 95.0000 10

1.0e2100.0 -3266.6666 93.3333 6 -4512.5000 95.0000 6
200.0 -3266.6666 93.3333 6 -4512.5000 95.0000 6

7
(25.0, 25.0) 4.9996 (25.0012, 30.0001) 44 5.0151 (24.9978, 30.01812) 35

1.0e2
(50.0, 50.0) 4.9996 (25.0012, 30.0001) 43 5.0151 (24.9978, 30.01812) 41

8.1
0.0 -343.3452 55.5513 19 -343.3452 55.5513 19

1.0e4
150.0 -343.3452 55.5513 23 -343.3452 55.5513 23

8.2
0.0 -203.1550 42.5383 25 -203.1550 42.5383 24

1.0e4
150.0 -203.1550 42.5383 22 -203.1550 42.5383 22

8.3
0.0 -68.1356 24.1451 22 -68.1356 24.1450 20

1.0e4
150.0 -68.1356 24.1451 22 -68.1356 24.1450 21

8.4
0.0 -19.1540 12.3726 22 -19.1540 12.3726 20

1.0e4
150.0 -19.1540 12.3726 21 -19.1540 12.3726 21

8.5
0.0 -3.1611 4.7536 22 -3.1611 4.7536 20

1.0e4
150.0 -3.1611 4.7536 21 -3.1611 4.7536 21

8.6
0.0 -346.8931 50.0000 16 -346.8932 50.0000 21

1.0e4
50.0 -346.8931 50.0000 17 -346.8931 50.0000 17

8.7
0.0 -224.0371 39.7915 21 -224.0371 39.7913 25

1.0e4
40.0 -224.0371 39.7915 17 -224.0372 39.7913 15

8.8
0.0 -80.7859 24.2571 21 -80.7859 24.2571 29

1.0e4
30.0 -80.7859 24.2571 19 -80.7859 24.2571 19

8.9
0.0 -22.8371 13.0196 21 -22.8371 13.0196 20

1.0e4
30.0 -22.8371 13.0196 19 -22.8371 13.0196 19

8.10
0.0 -5.3491 6.0023 20 -5.3491 6.0023 20

1.0e4
20.0 -5.3491 6.0023 19 -5.3491 6.0023 19

9
(0.0, 0.0) 4.19e-12 (5.0000, 9.0000) 16 6.34e-11 (5.0000, 9.0000) 15

1.0e2(5.0, 5.0) 4.20e-13 (5.0000, 8.9999) 11 7.20e-14 (5.0000, 8.9999) 11
(10.0, 10.0) 2.23e-10 (9.0004, 5.9995) 27 4.50e-11 (9.0976, 5.9023) 31
(10.0, 0.0) 2.38e-10 (9.0004, 5.9995) 24 8.32e-11 (9.0937, 5.9062) 32
(0.0, 10.0) 6.19e-12 (5.0000, 9.0000) 18 6.19e-12 (5.0000, 9.0000) 19

10

(0.0, 0.0, 0.0, 0.0) -6600.0000 (7.0, 3.0, 12.0, 18.0) 83 -6600.0000 (7.0, 3.0, 12.0, 18.0) 59

1.0e2
(0.0, 5.0, 0.0, 20.0) -6600.0000 (7.0, 3.0, 12.0, 18.0) 81 -6600.0000 (7.0, 3.0, 12.0, 18.0) 68
(5.0, 0.0, 15.0, 10.0) -6600.0000 (7.0, 3.0, 12.0, 18.0) 76 -6600.0000 (7.0, 3.0, 12.0, 18.0) 62
(5.0, 5.0, 15.0, 15.0) -6600.0000 (7.0, 3.0, 12.0, 18.0) 79 -6600.0000 (7.0, 3.0, 12.0, 18.0) 66
(10.0, 5.0, 15.0, 10.0) -6600.0000 (7.0, 3.0, 12.0, 18.0) 53 -6600.0000 (7.0, 3.0, 12.0, 18.0) 44

11
(0.0, 0.0) -12.6787 (0.0000, 2.0000) 40 -12.6787 (0.0000, 2.0000) 53

1.0e1(0.0, 2.0) -8.6364 (1.8003, 0.0371) 20 -12.6787 (0.0000, 2.0000) 21
(2.0, 0.0) -8.6364 (1.8003, 0.0371) 23 -10.3567 (2.0000, 0.0000) 38

Table 1: Comparison of the entropic regularization approach with Facchinei et al. [1999]
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5 Conclusion

We have proposed a regularization approach using an entropy function for solving mathemati-
cal programs with equilibrium constraints. The proposed approach has been shown that it can
be easily implemented. Instead of developing any specific software, we have used a publicly
available solver with default parameters to compare the proposed approach with recently re-
ported results of Facchinei et al. [1999] over a set of test problems. Our numerical results have
shown that proposed approach has a very promising performance and is able to converge to
the best known results. Moreover, the proposed approach has even found better solutions than
those reported in the literature.
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