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1 Introduction

LetRn be the space ofn-dimensional real column vectors andRm�n the space ofm� n real
matrices. We define an index setI := f1; 2; : : : ; ng. GivenNi 2 Rmi�n, qi 2 Rmi , and
si 2 Rmi , with m =

Pn
i=1mi � n, define

N :=

0
BBB@

N1

N2

...
Nn

1
CCCA 2 Rm�n; q :=

0
BBB@

q1

q2

...
qn

1
CCCA 2 Rm; and s :=

0
BBB@

s1

s2

...
sn

1
CCCA 2 Rm:

We sayN is a vertical block matrix of type(m1; : : : ;mn). The vertical linear complementarity
problem (VLCP) associated withN andq is to find a pair of vectorsx 2 Rn ands 2 Rm such
that

x � 0; si = N ix+ qi � 0; and xi

miY
j=1

sij = 0; 8i 2 I; (1)

wherexi and sij denote theith component ofx and thejth component ofsi, respectively.
This problem was first introduced by Cottle and Dantzig in name of thegeneralized linear
complementarity problem [5], since whenmi = 1 for all i 2 I, the problem reduces to an
ordinary linear complementarity problem [6]. VLCP has various applications in nonlinear
networks [13], game theory [16], control theory [31] and economics [9]. Good references can
be found in [8, 15, 22, 23, 25, 26, 27, 32].

Ebiefung [8] showed that VLCP is equivalent to a nonlinear complementarity problem
NCP(F ) with F = (F1; : : : ; Fn)

T andFj ; j = 1; : : : ; n, being piecewise linear and concave.
It can also be shown that VLCP is equivalent to a system of piecewise linear equations, or a
multi-objective program. By extending Lemke’s pivoting algorithm, Cottle and Dantzig pro-
posed the first algorithm for VLCP [5]. An interior point method for solving extended vertical
linear complementarity problems can be found in [34]. Peng and Lin [25] proposed a non-
interior continuation method for solving VLCP. They showed that their algorithm converges
locally with a Q-quadratic rate under the following assumptions:

� Non-singularity assumption, i.e., the Jacobian matrix involved in Newton equation is
nonsingular at the solution point, or the iteration matrices are uniformly nonsingular.

� Strict complementarity assumption, i.e., the solution of the problem concerned is strictly
complementary.

In this paper, we are interested in developing a smoothing Newton method for solving
VLCP with finite termination. Our approach is based on the entropic smoothing for the max-
type function. Letgi : Rn ! R, 8i 2 I, be differentiable and define a max-type function
g : Rn ! R by

g(x) := max
i2I

gi(x):

Although the functiong is piecewise smooth and locally Lipschitz continuous, it is not dif-
ferentiable. Given any� > 0, consider the following entropy-type function as a smoothing
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approximation function ofg,

g(x; �) := � ln

nX
i=1

exp(gi(x)=�): (2)

Note that, for� > 0,

g(x; �) = g(x) + � ln
nX
i=1

exp

�
gi(x)� g(x)

�

�
: (3)

Moreover,

g(x) � g(x; �) � g(x) + � ln(n); 8x 2 Rn and� > 0: (4)

Therefore,g(x; �) ! g(x) as� ! 0. This fact allows us to develop iterative methods based
on g(x; �) to solve the problem without facing the non-differentiability problem ofg(x). The
function (2) was introduced by Kort and Bertsekas [20] as a penalty function for constrained
minimization. Goldstein [14] studied this function intensively and attributed the basic approx-
imation formula (4) to his former student Chang [3]. Since the function (2) can be derived
from the dual problem of an entropy optimization problem [11], we call function (2) an en-
tropic smoothing approximation function. Independently, Li [21] discovered a few proper-
ties of this function and named it as theaggregate function. Related work can be found in
[1, 3, 14, 25, 26, 27, 37]. In particular, Peng and Lin [25] also use this function in developing
their non-interior continuation method for solving VLCP. Also note that since a lower bound
of the value ofg(x) is singled out in the representation (3), it can be used in computation to
avoid the potential overflow problem arising from any exponential function evaluation in (2).

The finite termination of iterative methods is an interesting and important research topic.
This property has been investigated for various cases including the interior point methods
[19, 24, 38], non-smooth Newton methods [12, 33], and smoothing methods [4, 7]. It is our
objective to develop a Newton-type method based on the entropic smoothing function for solv-
ing VLCP in a finite number of iterations.

It is well-known that many smoothing Newton methods need to use the non-singularity
assumption and the strict complementarity assumption to obtain the local superlinear conver-
gence of the methods [2, 25, 28]. The non-singularity assumption has recently been relaxed
in a few smoothing Newton methods [10, 18, 36]. However, in order to achieve finite ter-
mination for iterative methods, this assumption has been commonly adopted, for example,
see [4, 7, 12, 33]. In this paper, by using the entropic approximation function, we present a
smoothing Newton method for solving VLCP, in which a test procedure of finding a solution
point in the optimal face of the problem is embedded into each iteration. We show that for
N being a vertical blockP0 andR0 matrix, if either (i) the strict complementarity condition
holds, or (ii) the solution set of (1) is a singleton, then the proposed algorithm finds an exact
solution to VLCP in a finite number of iterations. It should be noted that the commonly used
non-singularity assumption implies that the solution set of the underlying problem is a single-
ton. Therefore, the hypothesis used in this paper is weaker than those used in finite termination
methods [4, 7, 12, 33] and in smoothing Newton methods [2, 25, 28, 29, 35].

The paper is organized as follows. Some basic concepts and properties for VLCP are in-
troduced in Section 2. Then we present in Section 3 a smoothing Newton method based on
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the entropic approximation function for solving VLCP. In Section 4, we show the finite termi-
nation property of the proposed algorithm. Some numerical results are presented in Section
5.

2 Basic Concepts and Properties

A square matrixM 2 Rn�n is said to be aP0-matrix, if for all non-zero vectorx 2 Rn, there
exists a componentxi 6= 0 such thatxi(Mx)i � 0. For the vertical block matrixN of type
(m1; : : : ;mn), a square submatrix ofN of ordern is said to be arepresentative submatrix, if
its ith row is drawn from theith blockNi of N for eachi 2 I. The following definition is
from [23]:

Definition 1 Let N 2 Rm�n be a vertical block matrix of type(m1; : : : ;mn). N is called a
vertical blockP0-matrix, if all its representative submatrices areP0-matrices. Moreover,N is
called a vertical blockR0-matrix, if0

B@
minfx1; N1

1x; : : : ; N
1
m1
xg

...
minfxn; Nn

1 x; : : : ; N
n
mn

xg

1
CA = 0 () x = 0;

whereN i
j denotes thejth row of ith block.

For a VLCP with givenN and q, we use the definition [25] for the piecewise smooth
functionH : Rn ! Rn with

H(x) :=

0
B@

minfx1; N1
1x+ q11 ; : : : ; N

1
m1
x+ q1m1

g
...

minfxn; Nn
1 x+ qn1 ; : : : ; N

n
mn

x+ qnmn
g

1
CA

= �

0
B@

maxf�x1;�(N1
1x+ q11); : : : ;�(N1

m1
x+ q1m1

)g
...

maxf�xn;�(Nn
1 x+ qn1 ); : : : ;�(Nn

mn
x+ qnmn

)g

1
CA : (5)

LetF be the feasible solution set of VLCP, i.e.,

F = f(x; s) 2 Rn �Rm : s = Nx+ q � 0 andx � 0g:

Also letS denote the solution set of VLCP, i.e.,

S = f(x; s) 2 Rn �Rm : (x; s) satisfies(1)g:

Then we know that

(x; s) 2 S if and only if x solvesH(x) = 0 ands = Nx+ q: (6)

4



By applying the entropic approximation toH(x), we can define a smooth function, for any
� > 0,

H(x; �) := �

0
BBB@

� ln
�
exp(�x1=�) +

Pm1

j=1 exp(�(N1
j x+ q1j )=�)

�
...

� ln
�
exp(�xn=�) +

Pmn

j=1 exp(�(Nn
j x+ qnj )=�)

�
1
CCCA : (7)

Consequently,H(x; �) ! H(x) as� ! 0. This fact and (6) indicate that one can solve
VLCP by taking the following steps: (i) start with a� > 0 and approximate VLCP by the
parameterized smooth equationsH(x; �) = 0 and s = Nx + q, (ii) solve H(x; �) = 0
and maintains = Nx + q at each iteration, and (iii) refine the approximation by reducing
the parameter� to zero. Since it is usually very difficult to solveH(x; �) = 0 in an exact
manner, for� > 0, like in other interior point and non-interior continuation methods, we use
the following definition of neighborhood:

N (�; �) := fx 2 Rn : kH(x; �)k � ��g; (8)

for � > 0 and� > 0.
The following lemma whose proof can be found in [25] summarizes some basic properties

of the functionsH(x) andH(x; �).

Lemma 1 Suppose thatN 2 Rm�n is a vertical block matrix of type(m1; : : : ;mn). Let
H(x) andH(x; �) be defined by (5) and (7), respectively. Then
(i) For eachi 2 I,�Hi(x; �) is convex and monotonically increasing with respect to� > 0
and

�Hi(x) � �Hi(x; �) � �Hi(x) + � ln(mi + 1);

whereHi(x) is theith component ofH(x) as defined in (5).
(ii) If N is a vertical blockP0-matrix, then, for any� > 0,�Hi(x; �) is an infinite order
differentiable convex function with respect tox 2 Rn, and5xH(x; �) is nonsingular for any
x 2 Rn with

5xH(x; �) =

0
BB@

�10(x; �)e
T
1 +

Pm1

j=1 �
1
j (x; �)N

1
j

�20(x; �)e
T
2 +

Pm2

j=1 �
2
j (x; �)N

2
j

� � �
�n0 (x; �)e

T
n +

Pmn

j=1 �
n
j (x; �)N

n
j

1
CCA ;
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whereei is theith column of then� n identity matrix,

�i0(x; �) =
exp

�
�xi

�

�
exp

�
�xi

�

�
+
Pmi

l=1 exp
�
�N i

l
x+qi

l

�

�

=
exp

��xi+Hi(x)
�

�
exp

��xi+Hi(x)
�

�
+
Pmi

l=1 exp
��N i

l
x�qi

l
+Hi(x)

�

� ; i = 1; 2; : : : ; n;

�ij(x; �) =

exp

�
�N i

jx+q
i
j

�

�

exp
�
�xi

�

�
+
Pmi

l=1 exp
�
�N i

l
x+qi

l

�

�

=

exp

�
�N i

jx�qij+Hi(x)

�

�

exp
��xi+Hi(x)

�

�
+
Pmi

l=1 exp
��N i

l x�qil+Hi(x)
�

� ; i = 1; 2; : : : ; n:

(iii) N is a vertical blockR0-matrix if and only if limkxk!1 kH(x)k=kxk � c0 holds for
some constantc0 > 0.
(iv) For anyx; y 2 Rn and� > 0, there exists a constantc1 > 0 such that

kH(y; �)�H(x; �)�5xH(x; �)(y � x)k �
p
nc1
�

ky � xk2:

(v) For any�1; �2 > 0,

kH(x; �1)�H(x; �2)k �
p
n(ln �m)j�1 � �2j;

where �m = maxfm1; : : : ;mng+ 1.
(vi) If N is a vertical blockR0-matrix andS 6= ;, then there exists a constantc2 > 0 such that

dist((x; s);S) := min
(y;s)2S

ky � xk � c2kH(x)k

for anyx 2 Rn.
Note that result (i) implies thatH(x; �) ! H(x) as�! 0. Hence, we defineH(x; 0) :=

H(x) for x 2 Rn.

3 Proposed Algorithm

Define an index setJ := f(i; j) : i 2 I; j = 1; 2; : : : ;mig. Thejth rowN i
j of N i is called

the (i; j) row of matrixN . Let K1 � I andK2 � J be two nonempty sets, thenxK1
and

sK2
denote the vectors obtained from all componentsxr in x with r 2 K1 and all components

sij in s with (i; j) 2 K2, respectively. Moreover,NK2K1
denotes the submatrix ofN induced

by those components ofN whose row indices belong toK2 and column indices belong toK1,
respectively. In what follows,k always denotes the iteration number.
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Algorithm 3.1 Given �1; �2 2 (0; 1), �1; �2 2 (0; 1), 
 2 (0; 1), p � 1, �0 > 0, and
x0 2 Rn, choose � > 0 such that kH(x0; �0)k � ��0. Set s0 := Nx0 + q, k := 0.

Step 1 If H(xk) = 0, then stop (output xk as a solution).

Step 2 If �k > 
, then go to Step 3; otherwise, define four sets

A := fi 2 I : xki >
p
�kg; C := fi 2 I : xki �

p
�kg;

B := f(i; j) 2 J : (sk)ij >
p
�kg D := f(i; j) 2 J : (sk)ij �

p
�kg: (9)

If one of the following four cases occurs, then stop (output xk+1 as a solution); otherwise,
go to Step 3.

Case (i) If A 6= ;; B 6= ; and for any i 2 A there exists at least one index (i; j) 2 J
such that (sk)ij �

p
�k, then solve the following system of equations:�

skB +�skB
0

�
=

�
NBA NBC

NDA NDC

��
xkA +�xkA

0

�
+

�
qB
qD

�
: (10)

If there exists a solution (�xkA;�s
k
B) such that xkA+�xkA � 0 and skB+�skB � 0;

then set

xk+1
i :=

�
xki +�xki if i 2 A
0 otherwise

; (sk+1)ij :=

�
(sk)ij + (�sk)ij if (i; j) 2 B

0 otherwise
;

Case (ii) If A 6= ; and B = ;, then solve the following system of equations:

0 = (NDA; NDC)

�
xkA +�xkA

0

�
+ qD:

If there exists a solution �xkA such that xkA +�xkA � 0; then set

xk+1
i :=

�
xki +�xki if i 2 A
0 otherwise

; sk+1 := 0:

Case (iii) If A = ;; B 6= ; and qB > 0, qD = 0, then set

xk+1 := 0; (sk+1)ij :=

�
qij if (i; j) 2 B

0 otherwise
:

Case (iv) If A = ;; B = ; and qD = 0, then set xk+1 := 0; sk+1 := 0.

Step 3 Find a Newton direction �xk by solving 5xH(xk; �k)�x
k = �H(xk; �k). Let �k be

the maximum value of the set f1; �1; �2
1; : : :g such that

kH(xk + �k�x
k; �k)k � (1� �1�k)��k:

Set xk+1 := xk+�k�x
k. Moreover, let �k be the maximum value of the set fmaxf1; 1

�2
(1�

�pk)g; �2; �2
2; : : :g such that

xk + �k�x
k 2 N (�; (1 � �2�k)�k):

Set �k+1 := (1� �2�k)�k.
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Step 4 Set sk+1 := Nxk+1 + q and k := k + 1. Go to Step 1.

Note that since the Jacobian matrix5xH(x; �) in Step 3 is guaranteed to be nonsingular
for any� > 0 andx 2 Rn by the result (ii) of Lemma 1, it is not difficult to see that Algorithm
3.1 is well-defined. The initial value of parameterp (� 1) can be selected to be a suitable
positive integer. The parameter
 in Step 2 is used to control the quality of final solution. In
the next section (see Lemma 4), we show that the four index sets (9) in Step 2 actually coincide
with the index sets of a solution to VLCP ask becomes sufficiently large.

Theorem 1 If Algorithm 3.1 terminates in either Step 1 or Step 2 for somek � 0, then
(xk; sk) or (xk+1; sk+1) is a solution to VLCP, respectively.

Proof. If Algorithm 3.1 terminates in Step 1, that is,

H(xk; sk) = 0 (11)

for somek � 0. From the algorithm, it is easy to see that

sk = Nxk + q (12)

for all k � 0. From (6), (11) and (12), it follows that(xk; sk) is a solution to VLCP.
If one stopping criterion in Step 2 is met. SinceA andC form a partition ofI, andB

andD form a partition ofJ , it is not difficult to check from cases (i)-(iv) thatxk+1 andsk+1

satisfy the non-negativity condition, feasibility condition, and complementarity condition of
the system (1). Consequently,(xk+1; sk+1) is a solution to VLCP.

A smoothing Newton method in general generates a sequence of infinitely many iterations.
In this case, only an approximate solution is generated. But if the proposed algorithm termi-
nates in either Step 1 or Step 2 for somek � 0, then Theorem 1 guarantees an exact solution
to VLCP.

4 Finite Termination

In this section we show that, under some milder conditions, the stopping criteria in Step 2
of the proposed algorithm must be met ask becomes sufficiently large. This implies that the
proposed algorithm terminates in a finite number of iterations.

Theorem 2 LetN be a vertical blockP0 andR0 matrix of type(m1; : : : ;mn) and
f(xk; sk; �k)g be the sequence generated by Algorithm 3.1. IfH(xk) 6= 0 for k = 0; 1; 2; :::,
then
(i) f(xk; sk; �k)g is a bounded infinite sequence,
(ii) each accumulation point of the sequencef(xk; sk)g is a solution to VLCP.

Proof. (i) If H(xk) 6= 0 for all k � 0, then the proposed algorithm will not terminate at Step
2. Otherwise, if the algorithm terminates at Step 2 ink0 � 0 iterations, then from Theorem 1,
we know that(xk0+1; sk0+1) 2 S, and henceH(xk0+1) = 0. Therefore an infinite sequence
f(xk; sk; �k)g is generated. From the algorithm itself, it is not difficult to see thatsk = Nxk+q

8



andxk 2 N (�; �k) for k = 0; 1; 2; :::. Now, for anyxk 2 N (�; �k), the result (i) of Lemma
1 implies that

kH(xk)k � kH(xk)�H(xk; �k)k+ kH(xk; �k)k � (
p
n ln �m+ �)�0;

where �m = maxfm1; : : : ;mng + 1. This inequality and the result (iii) of Lemma 1 further
imply that fxkg is bounded. Consequently,fskg is bounded becausesk = Nxk + q. Note
thatf�kg obtained in Step 3 is a monotonically decreasing non-negative sequence. Hence the
sequencef(xk; sk; �k)g is bounded.

(ii) Since the infinite sequencef(xk; sk; �k)g is bounded, there exists a convergent subse-
quence. We may assume without loss of generality thatlimk!1(xk; sk; �k) = (x�; s�; ��).
Becausesk = Nxk + q holds for allk � 0, we have

s� = Nx� + q: (13)

Noting thatf�kg is a monotonically decreasing non-negative sequence, we know�� � 0. If
�� = 0, the result (i) of Lemma 1 implies thatH(x�) = H(x�; ��). Moreover,xk 2 N (�; �k)
implies thatx� 2 N (�; ��). HencekH(x�; ��)k = 0 andH(x�) = 0. Together with (13),
we know that(x�; s�) 2 S, and the desired result follows. We now show that�� > 0 will
not occur. Assume that�� > 0, then the result (ii) of Lemma 1 implies that5xH(xk; �k) is
nonsingular and its norm is uniformly bounded below by a positive constant for allk � 0. In
other words, there exists a constantc3 > 0 such thatk[5xH(xk; �k)]

�1k � c3. By Step 3 of
the proposed algorithm, we have

k�xkk = k[5xH(xk; �k)]
�1H(xk; �k)k � c3kH(xk; �k)k � c3��k for k � 0: (14)

For� 2 (0; 1), define

rk(�) := H(xk + ��xk; �k)�H(xk; �k)� �5x H(xk; �k)�x
k: (15)

It follows from the result (iv) of Lemma 1 and (14) that

krk(�)k �
p
n�2c1
�k

k�xkk2 � p
n�2c1c

2
3�kH(xk; �k)k:

If we let �� = minf 1��1p
n�c1c23

; 1g, then

krk(�)k � (1� �1)�kH(xk; �k)k for any� 2 (0; ��): (16)

Combining (15) and (16), we see

kH(xk + ��xk; �k)k � (1� �1�)kH(xk; �k)k
� (1� �)kH(xk; �k)k+ krk(�)k � (1� �1�)kH(xk; �k)k
= (�1 � 1)�kH(xk ; �k)k+ krk(�)k
� 0: (17)

Let l1 be the minimum integer such that�l11 � ��, then�k � �l11 follows from the algorithm.
Hence there exists a constant�� > 0 such that�k � �� for all k � 0. It follows from (17) that

kH(xk+1; �k)k � (1� �1�k)kH(xk; �k)k � (1� �1��)kH(xk; �k)k:

9



Using the result (v) of Lemma 1 and the above inequality, we know that, for any� 2 (0; 1),

kH(xk+1; (1� �2�)�k)k
(1� �2�)�k

� kH(xk+1; �k)k+
p
n(ln �m)��2�k

(1� �2�)�k

� (1� �1��)kH(xk; �k)k+
p
n(ln �m)��2�k

(1� �2�)�k

� (1� �1��)� +
p
n(ln �m)��2

1� �2�
:

For (1��1��)�+
p
n(ln �m)��2

1��2� � �, � � �� := �1���p
n(ln �m)�2+�2�

. If we let l2 be the minimum integer

such that�l22 � minf��; 1g, then a similar argument assures that there exists a constant�� > 0
such that�k � �� for anyk � 0. In this case,�k+1 = (1 � �2�k)�k � (1� �2��)�k, which
further implies that�k ! 0 ask !1. This contradicts the hypothesis of�� > 0.

Lemma 2 LetN be a vertical blockP0 andR0 matrix of type(m1; : : : ;mn). Then the
solution setS of VLCP is nonempty and compact.

Proof. SinceN be a vertical blockP0 andR0 matrix of type(m1; : : : ;mn), Theorem 5.8 in
[25] implies thatS is nonempty. In addition, it is not difficult to see thatS is closed. Thus, it
suffices to show thatS is bounded. If not, then there exists an unbounded solution sequence
f(xr; sr)g 2 S for all r � 0. It follows from (6) that

H(xr) = 0 and sr = Nxr + q; for all r � 0:

Consequently,limr!1 kH(xr)k=kxrk = 0. However, the result (iii) of Lemma 1 shows that
there exists a constantc0 > 0 such thatlimr!1 kH(xr)k=kxrk � c0. This contradicts the
hypothesis.

WhenN is a vertical blockP0 andR0 matrix of type(m1; : : : ;mn), if H(xk) 6= 0 for
all k � 0, the result (i) of Theorem 2 says that Algorithm 3.1 generates a bounded infinite
sequencef(xk; sk; �k)g. Let f(x�k; s�k; ��k)g be a convergent subsequence with a limit point
(x�; s�; ��). Then the result (ii) of Theorem 2 says that�� = 0 and(x�; s�) 2 S. By making
use of the sequencef(x�k; s�k; ��k)g, for eachk � 0, we define four index sets:

�Ak := fi 2 I : x
�k
i >

p
��kg; �Ck := fi 2 I : x

�k
i � p

��kg;
�Bk := f(i; j) 2 J : (s

�k)ij >
p
��kg; �Dk := f(i; j) 2 J : (s

�k)ij � p
��kg:

(18)

Clearly, �Ak and �Ck partition the index setI and �Bk and �Dk partition the index setJ . In what
follows, we discuss the finite termination of Algorithm 3.1 in two cases.
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Case 1: Finite Termination under Strict Complementar-
ity

Assume that(x�; s�) satisfies the strict complementarity condition [25]. Define

B := fi 2 I : x�i = 0g;
N := fi 2 I : x�i > 0; (s�)iji0 = 0 for someji0 and(s�)ij > 0 for all j 6= ji0 ; 1 � j � mig:

Since(x�; s�) 2 S satisfies the strict complementarity condition, it follows thatB [ N = I
andB \N = ;.

For anyw = (x; s) 2 Rn�Rm, let sNN0
denote a vector withith component beingsiji0

for
i 2 N . Define

G(w) :=

0
@ s�Nx� q

xB
sNN0

1
A (19)

and
S0 := fw 2 Rn+m : G(w) = 0g: (20)

Similar to Lemma 5.1 in [18], we have the following result:

Lemma 3 Let

" = min

�
min
i2N

�
x�i ; min

1�j�mi; j 6=ji0
f(s�)ijg

�
; min
i2B; 1�j�mi

f(s�)ijg
�

and

� = fw = (x; s) 2 Rn �Rm : jxi � x�i j � "=3; jsij � (s�)ij j � "=3; i 2 I; (i; j) 2 J g:

Then for anyw 2 � \ F there exists a constant� > 0 such that

kH(x)k = kG(w)k � � � dist(w;S0); (21)

whereH(�) andG(�) are defined by (5) and (19), respectively.

Proof. Denote(x�; s�) by w�. SinceG(w�) = 0, G(w) = 0 is solvable andS0 6= ;. By
Hoffman’s result on error bound of linear systems [17], there exists a positive number� > 0
such that for anyw 2 Rn+m

jjG(w)jj � � � dist(w;S0): (22)

For anyw 2 �, if i 2 N , then

xi = x�i + xi � x�i � "� 1

3
" =

2

3
";

jsiji0 j � 1

3
";

sij = (s�)ij + sij � (s�)ij � "� 1

3
" =

2

3
" for 1 � j � mi; j 6= ji0 :
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If i 2 B, then

jxij � 1

3
";

sij = (s�)ij + sij � (s�)ij � "� 1

3
" =

2

3
" for 1 � j � mi:

These imply that for eachi 2 I,

minfxi; si1; si2; : : : ; simi
g =

�
xi; 8i 2 B
siji0 ; 8i 2 N :

Hence,
kH(x)k = kG(w)k for w 2 � \ F : (23)

(21) follows from (23) and (22).

Lemma 3 indicates that ifw 2 S0 for w being sufficiently close tow�, thenw solves (1),
i.e.,w 2 S. If we define

�S0 := � \ F \ S0;
then

�S0 � S;
which implies that�S0 is bounded by Lemma 2. Denotew�k := (x

�k; s
�k). It is not difficult to

see that, for each�k � 0, there exists a pointw
�k� = (x

�k� ; s
�k�) 2 �S0 such that

kw�k � w
�k�k = min

w2 �S0
kw�k � wk = dist(w

�k; �S0): (24)

Note that when�k is sufficiently large, the pointw�k� is also the projection of pointw�k on S0.
Therefore, from (21), there exists a constant�� > 0 such that

dist(w
�k; �S0) = dist(w

�k;S0) � ��kH(x
�k)k (25)

for any�k being sufficiently large.
Corresponding to the solution point(x�k

�

; s
�k�), we define four index sets:

�A�k := fi 2 I : x
�k�
i > 0g; �C�k := fi 2 I : x

�k�
i = 0g;

�B�k := f(i; j) 2 J : (s
�k�)ij > 0g; �D�

k := f(i; j) 2 J : (s
�k�)ij = 0g: (26)

Obviously, �A�k and �C�k form a partition of the index setI and �B�k and �D�
k form a partition of

the index setJ .
The following lemma presents a special property of the four index sets defined above.

Lemma 4 LetN be a vertical blockP0 andR0 matrix of type(m1; : : : ;mn) and the index
sets �Ak; �Bk; �Ck; �Dk and �A�k; �B

�
k;

�C�k ; �D
�
k be defined as in (18) and (26), respectively. Assume

12



that the strict complementarity condition holds. IfH(xk) 6= 0 for all k � 0, then �Ak = �A�k,
�Bk = �B�k, �Ck = �C�k , and �Dk = �D�

k, when�k becomes sufficiently large.

Proof. (i) We first show that�Ak � �A�k. For anyi0 2 �Ak, i.e., x�ki0 >
p
��k, by using

kH(x
�k; ��k)k � ���k and the result (i) of Lemma 1, we have

jHi(x
�k)j � jHi(x

�k; ��k)j+ ��k ln(mi + 1) � (� + ln(mi + 1))��k for i 2 I: (27)

Thus, for any�k being sufficiently large,

kx�k � x
�k�k � kw�k �w

�k�k = dist(w
�k; �S0) (by (24))

� ��kH(x
�k)k (by (25))

= ��

vuut nX
i=1

jHi(x
�k)j2

� c5��k; (by (27)) (28)

wherec5 := ��(
Pn

i=1[� + ln(mi + 1)]2)1=2. Remembering thatx�ki0 >
p
��k, we have

x
�k�

i0 � x
�k
i0 � c5��k >

p
��k � c5��k > 0; (29)

where the first inequality follows from (28) and the third inequality fromlim�k!1 ��k = 0.
Obviously, (29) impliesi0 2 �A�k and, consequently,�Ak � �A�k.

Next we show that�A�k � �Ak. For anyi0 2 �A�k, i.e.,x
�k�
i0

> 0, from the proof of Theorem
2, we know

lim
�k!1

��k = 0;

and, by (28),
kx�k � x

�k�k ! 0:

Consequently,
kx�k� � x�k � kx�k� � x

�kk+ kx�k � x�k ! 0

as �k ! 0. Sincex�i0 > 0, by the proof of Lemma 3, there is a constant� > 0 such that

x
�k�
i0
� � > 0, for �k being sufficiently large. Note that��k ! 0 as k ! 1. We know

x
�k
i0
>
p
��k for k being sufficiently large. This impliesi0 2 �Ak and hence�A�k � �Ak.

(ii) Since(s
�k)ij = N i

jx
�k + qij and(s

�k�)ij = N i
jx

�k� + qij, it follows that

j(s�k)ij � (s
�k�)ijj = jN i

jx
�k �N i

jx
�k� j � kNkkx�k � x

�k�k � c5kNk��k:
Thus, similar to the proof of (i), we can show that�Bk = �B�k for �k being sufficiently large.

(iii) From (i), (ii) and

�Ak [ �Ck = I = �A�k [ �C�k ; �Ak \ �Ck = ; = �A�k \ �C�k ;
�Bk [ �Dk = J = �B�k [ �D�

k;
�Bk \ �Dk = ; = �B�k \ �D�

k;

it is easy to see that�Ck = �C�k and �Dk = �D�
k.

The following result is a direct consequence of Lemma 4:

13



Corollary 1 In the same setting of Lemma 4, there exists a constantc6 > 0 such that, for any
�k being sufficiently large,

x
�k
i � c6 for all i 2 �Ak and (s

�k)ij � c6 for all (i; j) 2 �Bk:

The following lemma characterizes a solution to VLCP in terms of the index sets. Since
the proof is simple, we omit it.

Lemma 5 (x
�k� ; s

�k�) 2 S if and only if x
�k� � 0, s

�k� = Nx
�k� + q � 0 and one of the

following conditions is satisfied:
(i) If �A�k 6= ;, then for anyi 2 �A�k there exists at least one index(i; j) 2 J such that
(s

�k�)ij = 0. In this case,�B�k can be either empty or nonempty.
(ii) If �A�k = ;, thenq �B�

k
> 0 andq �D�

k
= 0 when �B�k 6= ;, andq �D�

k
= 0 when �B�k = ;.

Now we are ready to show the following main result:

Theorem 3 LetN be a vertical blockP0 andR0 matrix of type(m1; : : : ;mn). Assume that
the strict complementarity condition holds. Then Algorithm 3.1 terminates with an exact
solution to VLCP in a finite number of iterations.

Proof. Suppose that Algorithm 3.1 does not terminate in a finite number of generation, but
instead generates an infinite sequencef(xk; sk; �k)g. Then we knowH(xk) 6= 0 for all k � 0
and the stopping criteria in Step 2 are inactive all the time. Otherwise, ifH(xk0) = 0 for
somek0 � 0, then, by noting thatsk = Nxk + q for all k � 0, we have(xk0 ; sk0) 2 S and
the algorithm terminates here. From Theorem 2, the sequencef(xk; sk; �k)g is bounded and
hence has a convergent subsequence byf(x�k; s�k; ��k)g. Let the index sets�Ak; �Bk; �Ck, and �Dk

be defined as in (18). Then one of the following three cases will happen:
(i) �Ak 6= ;; �Bk 6= ;.
(ii) �Ak 6= ;; �Bk = ;.
(iii) Either �Ak = ;; �Bk 6= ; or �Ak = ; = �Bk.

From Lemmas 4 and 5, if case (i) happens, then, for anyi 2 �Ak, we havei 2 �A�k, i.e.,x�k
�

i > 0.
Since(x�k

�

; s
�k�) 2 S when�k is sufficiently large, there exists an index(i; j) 2 J such that

(s
�k�)ij = 0. Consequently,(i; j) 2 �D�

k. Therefore,(i; j) 2 �Dk, i.e.,(s
�k)ij � p

��k holds for all
�k being sufficiently large.

Suppose that case (i) indeed happens at infinitely many�k. Since �Ak; �Ck form a partition
of the index setI, and �Bk; �Dk form a partition of the index setJ , the equations�k = Nx

�k + q
can be written as 

s
�k
�Bk

s
�k
�Dk

!
=

�
N �Bk

�Ak
N �Bk

�Ck

N �Dk
�Ak

N �Dk
�Ck

� 
x
�k
�Ak

x
�k
�Ck

!
+

�
q �Bk

q �Dk

�
: (30)

Consider the subsequencef(x�k; s�k; ��k)g, (10) becomes 
s
�k
�Bk

+�s
�k
�Bk

0

!
=

�
N �Bk

�Ak
N �Bk

�Ck

N �Dk
�Ak

N �Dk
�Ck

� 
x
�k
�Ak

+�x
�k
�Ak

0

!
+

�
q �B
q �D

�
: (31)
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Subtracting (30) from (31) yields 
�s

�k
�Bk

�s�k�Dk

!
=

�
N �Bk

�Ak
N �Bk

�Ck

N �Dk
�Ak

N �Dk
�Ck

� 
�x

�k
�Ak

�x�k�Ck

!
: (32)

Let I and0 denote the identity matrix and zero matrix with appropriate dimensionality, respec-
tively. Define

y
�k := ((�x

�k
�Ak
)T ; (�s

�k
�Bk
)T )T ; z

�k := ((x
�k
�Ck
)T ; (s

�k
�Dk
)T ;

P :=

� �N �Bk
�Ak

I

�N �Dk
�Ak

0

�
; Q :=

� �N �Bk
�Ck

0

�N �Dk
�Ck

I:

�
Then (32) becomes

Py
�k = Qz

�k: (33)

Therefore, when�k is sufficiently large, the system (33) is solvable fory
�k. By applying Gaus-

sian elimination on (33), the linearly dependent rows and columns ofP can be eliminated. Let
�P be a largest possible nonsingular submatrix ofP and�y

�k be the corresponding variable. Then
we need to solve

�P �y
�k = �Q�z

�k;

where the rows of�Q correspond to the rows of�P . Since �P is nonsingular, we have

k�y�kk = k �P�1 �Q�z
�kk � k �P�1kk �Qkk�z�kk: (34)

Noting that the definitions of�Ck; �Dk; z
�k and the fact that�z

�k is a subvector ofz
�k, it is not

difficult to see that there exists a constantc7 > 0 such thatk�z�kk � c7
p
��k. Moreover,k �P�1k

is bounded above (see [24, 30]). It follows from (34) that there exists a constantc8 > 0 such
thatk�y�kk � c8

p
��k. Let the components ofy�k that were removed during Gaussian elimination

be zero. Then there exists a solution to (33), denoted by((�x
�k
�Ak
)T ; (�s

�k
�Bk
)T )T , such that(

j�x�ki j � c9
p
��k 8i 2 �Ak

j�(s
�k)ijj � c9

p
��k 8(i; j) 2 �Bk;

(35)

wherec9 > 0 is a constant. By using Corollary 1 and the definitions of�Ak; �Bk, we know that(
x
�k
i > c6 8i 2 �Ak

(s
�k)ij > c6 8(i; j) 2 �Bk:

(36)

Combining (35), (36), and the fact thatlim�k!1 ��k = 0, we know

x
�k
�Ak

+�x
�k
�Ak
> 0 and x

�k
�Bk

+�x
�k
�Bk
> 0

for all �k being sufficiently large. This indicates that one of the stopping criteria in Step 2 is met
for some sufficiently large�k. This is a contradiction. HenceH(xk0) = 0 for somek0 � 0.

Similar arguments can be developed for cases (ii) and (iii). Hence Algorithm 3.1 terminates
in a finite number of iterations.

Following Theorem 3.1, the proposed algorithm finds an exact solution to VLCP when it
terminates.
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Case 2: Finite Termination under Singleton Assumption

This time let us assume that the solution setS of (1) is a singleton, say,

S = f(x�; s�)g:

We will show that Algorithm 3.1 terminates with the unique solution even without the strict
complementarity assumption.

Using(x�; s�), we define four index sets:

A� := fi 2 I : x�i > 0g; C� := fi 2 I : x�i = 0g;
B� := f(i; j) 2 J : (s�)ij > 0g; D� := f(i; j) 2 J : (s�)ij = 0g: (37)

Again,A� andC� form a partition of the index setI, andB� andD� form a partition of the
index setJ .

SinceS = f(x�; s�)g, the result (vi) of Lemma 1 assures that there is constantc10 > 0
such that

kx�k � x�k � c10kH(x
�k)k:

Following a similar proof of Lemma 4, we can show the following result:

Lemma 6 LetN be a vertical blockP0 andR0 matrix of type(m1; : : : ;mn) and the index
sets �Ak; �Bk; �Ck; �Dk andA�; B�; C�;D� be defined by (18) and (37), respectively. Assume
that the solution set of (1) is a singleton. IfH(xk) 6= 0 for all k � 0, then �Ak = A�,
�Bk = B�, �Ck = C�, and �Dk = D�, when�k becomes sufficiently large.

Furthermore, using a similar proof of Theorem 3, we have the following main theorem:

Theorem 4 LetN be a vertical blockP0 andR0 matrix of type(m1; : : : ;mn). Assume that
the solution set of (1) is a singleton. Then Algorithm 3.1 terminates at the unique solution of
VLCP in a finite number of iterations.

5 Numerical Results

To test the performance and illustrate the potential of the proposed method, we have imple-
mented Algorithm 3.1 in MATLAB on a 1000 MHz Pentium III personal computer running
Linux. The eight test problems found in Peng and Lin [25] (some of them are from the lit-
erature [8, 26]) were used in our computational experiment. For easy comparison, the order
of these eight problems is kept the same as in Peng and Lin’s paper. For all test problems,
the vertical block matrices areP0-matrices. Moreover, Problems 1 to 5 hold the strict com-
plementarity assumption. Problems 6, 7, and 8 were modified so that they may not be strictly
complementary, but they do satisfy the singleton assumption.

The following parameters were chosen for all test problems:�1 = 0:005, �2 = 0:001,
�1 = 0:9, �2 = 0:85, 
 = 1:0e-3, p = 1:0, �0 = 0:0005, and� = kH(x0; �0)k=�0 +
1:0e-5. An initial point x0 was set to be a contact vector(a; � � � ; a)T 2 Rn. We used the
criterionkH(xk)k1 � 1:0e-20, wherek � k1 denotesl1-norm, to stop the algorithm.
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Table 1 shows our test results of Algorithm 3.1. The second and the third columns indicate
the dimension of the problem and the constant used for the initial point, respectively. Thel1-
norm ofH(�) at the initial point is given in column 4. Then,k� in column 5 denotes the number
of iterations required to achieve the result given in column 6. Last column shows under which
conditions each run is terminated.

Several observations can be made here:

1. For every test problem, the proposed method indeed finds a solution point meeting the
desired accuracy in very few iterations. In particular, the exact solutions have been found
in many cases, whenkH(xk)k1 = 0. Compared with other known methods as reported
in [8, 25, 26], our method converges in fewer iterations to achieve the known results.

2. Problems 6 and 8 were studied by Peng and Lin [25] only, but but they were not able to
solve these two problems effectively. Our results are much better. Exact solutions have
been found in less than four iterations.

3. The last column of Table 5.1 shows that the algorithm terminates either by satisfying the
condition at Case (i) of Step 2 or by meeting the stopping criterion. Furthermore, when-
ever the stopping criterion is met, the algorithm finds an exact solution. This supports
the finite termination results proved in Section 4.

4. In our experiments, we see an overflow problem may occur in (7) when the exponential
functionexp(�xi=�) or exp(�(N i

jx+ qij)=�) is computed with a very large (negative)
argument. But this potential problem can be handled effectively by using the following
equality:

Hi(x; �) = �� ln

0
@exp(�xi + hi

�
) +

miX
j=1

exp(�(N i
jx+ qij) + hi

�
)

1
A+ hi; (38)

wherehi � minfxi; N i
1x+ qi1; � � � ; N i

mi
x+ qimi

g.
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Problem n a kH(x0)k1 k
� kH(xk

�

)k1 Termination

1.0 1.0 2 0.0 Step 2 Case (i)
1 2 10.0 10.0 2 0.0 Step 2 Case (i)

-10.0 22.0 3 0.0 Step 2 Case (i)
1.0 9.0 2 0.0 Stopping criterion

2 6 10.0 18.0 3 0.0 Stopping criterion
-10.0 215.0 3 0.0 Stopping criterion

50 5.0 86.5 2 2.2e-16 Step 2 Case (i)
100 5.0 171.5 2 1.1e-15 Step 2 Case (i)

3 200 5.0 341.5 2 3.4e-15 Step 2 Case (i)
100 -5.0 1506 4 1.3e-15 Step 2 Case (i)
200 -5.0 3005.9 4 2.9e-15 Step 2 Case (i)
50 5.0 56.0 2 1.8e-12 Step 2 Case (i)
100 5.0 106.0 2 7.8e-12 Step 2 Case (i)

4 200 5.0 206.0 2 7.3e-11 Step 2 Case (i)
100 -5.0 2080.0 4 0.0 Stopping criterion
200 -5.0 4180.0 4 0.0 Stopping criterion
50 5.0 52.9 3 0.0 Stopping criterion
100 5.0 102.95 4 0.0 Step 2 Case (i)

5 200 5.0 202.97 3 0.0 Stopping criterion
100 -5.0 2095.0 5 0.0 Step 2 Case (i)
200 -5.0 4195.0 5 0.0 Step 2 Case (i)

1.0 10.0 2 0.0 Step 2 Case (i)
6 6 10.0 16.0 3 0.0 Step 2 Case (i)

-10.0 215.0 4 0.0 Step 2 Case (i)
1.0 10.0 2 0.0 Step 2 Case (i)

7 6 10.0 16.0 1 0.0 Stopping criterion
-10.0 215.0 3 0.0 Step 2 Case (i)
1.0 9.0 3 0.0 Step 2 Case (i)

8 6 10.0 18.0 3 0.0 Step 2 Case (i)
-10.0 223.0 2 0.0 Step 2 Case (i)

Table 1: The performance of the proposed method for the test problems in [25].
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6 Conclusion

In this paper we have proposed an entropy function based smoothing Newton method for solv-
ing vertical linear complementarity problems. It has been shown that the proposed method
finds an exact solution in a finite number of iterations under either the strict complementar-
ity assumption or singleton assumption. This result is more general than those reported. The
computational results we obtained can also confirm the theoretic findings and illustrated its
potential.
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