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July 24, 2002

Abstract

We study a variational inequality problem whose domain is defined by infinitely many
linear inequalities. A discretization method and an analytic center based inexact cutting plane
method are proposed. Under proper assumptions, the convergence results for both methods are
given. We also provide numerical examples for the proposed methods.

Keywords Variational inequality problem, analytic center, cutting plane method, discretiza-
tion method, inexact approach.

�Industrial Engineering and Operations Research, North Carolina State University, Raleigh, NC
26695-7906, USA. E-mail: fang@eos.ncsu.edu

yInstitute of Applied Mathematics, National Cheng Kung University, Tainan, Taiwan 700, R.O.C.
E-mail: soonyi@mail.ncku.edu.tw

zErasmus Research Institute of Management (ERIM), Erasmus University, Postbus 1738, 3000 DR
Rotterdam, The Netherlands. E-mail: sibirbil@few.eur.nl

xThis author’s work was partially supported by the National Science Council, Taiwan, R.O.C.(Grant
No. 19731001)



1 Introduction

Let X be a nonempty subset of Rn and F be a function from Rn to itself. The finite dimen-
sional variational inequality problem, denoted by VI(X;F ), is to find a vector x� 2 X such
that

F (x�)T (x� x�) � 0 for all x 2 X: (1)

The development of the theory, algorithms and applications of finite dimensional varia-
tional inequalities can be found in [Harker and Pang, 1990]. Although the theory is very rich,
the history of designing algorithms for finite dimensional variational inequalities is relatively
short. Moreover in practice, most algorithms work only when X exhibits a certain special
geometric structure (such as the positive orthant of Rn or a polyhedral set).

Like in [S.-C. Fang and Sun, 2002], in this paper we consider a setting for which X is a
nonempty, bounded set defined by

X = fx 2 Rnj
u(t); x�� �(t) � 0 for all t 2 Tg; (2)

where T is a nonempty compact subset of R, u(t) : T ! Rn and �(t) : T ! R are continuous
on T . Since there may be infinitely many linear inequalities involved in defining X , we call
this setting a linear semi-infinite variational inequality problem, or LSIVI(X;F ) in short.

Notice that when F is a continuous pseudomonotone mapping (to be defined in later sec-
tions) from X to Rn, it is not difficult to prove that x� 2 X solves LSIVI(X;F ) if and only if
it solves the following problem:

F (x)T (x� x�) � 0 for all x 2 X; (3)

which we denote as DLSIVI(X;F ). Also notice that DLSIVI(X;F ) is equivalent to a convex
feasibility problem [J.-L. Goffin and Ye, 1993, 1996, J.-L. Goffin and Zhu, 1997, Goffin and
Vial, 1999, Luo and Sun, 1999, 2000], i.e., finding a point x� in a convex set defined by an
infinite number of linear inequalities

S = fx� 2 XjF (x)Tx� � F (x)Tx for all x 2 Xg: (4)

A new development is using analytic center based cutting plane methods to solve varia-
tional inequalities [J.-L. Goffin and Zhu, 1997, Lüthi and Bueler, 2000, Magnanti and Perakis,
1995, Marcotte and Zhu, 2001]. This approach combines the feature of interior point methods
with the classical cutting plane scheme. Recently, the authors in [S.-C. Fang and Sun, 2002]
presented an analytic center based cutting plane method for solving a general semi-infinite
variational inequality problem.

In this paper, we focus on the semi-infinite variational inequality problems whose domains
are defined by infinitely many linear constraints. We first study a discretization approach for
solving LSIVI(X;F ) and show a convergence result under proper assumptions. The quality
of solutions obtained by the discretization approach depends on the expansive sequence used.
It is hard to provide any quantitative statement. Then, we propose an analytic center based
“inexact” cutting plane method and give its convergence proof. Unlike other cutting plane
methods, such as the one used in [S.-C. Fang and Sun, 2002], the proposed method requires
only an “inexact” solution to a variational inequality problem at each iteration. Also, the
quality of solutions obtained by the proposed inexact method can be carefully analyzed.
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This paper is organized as follows. Some preliminaries are given in Section 2. We discuss
the discretization method for LSIVI(X;F ) and show a convergence result in Section 3. An
analytic center based inexact cutting plane method is proposed with a convergence proof in
Section 4. The computational results over a set of problems are reported in Section 5. The
paper is concluded in Section 6.

2 Preliminaries

Since an analytic center is usually defined at an interior point of a given region, we make the
following “interior point” assumption throughout this paper:
There exists an x̂ 2 Rn such that



u(t); x̂

�� �(t) < 0 for all t 2 T: (5)

The interior point assumption assures that X has a nonempty interior. It is easy to see that
X is a convex set. Moreover, the continuity of



u(t); x

�� �(t) on Rn� T implies that X is a
closed set. Remember that in our setting, X is assumed to be bounded. Consequently, X is a
nonempty, convex, and compact subset of Rn and the next result follows:

Proposition 1 [S.-C. Fang and Sun, 2002] Under the interior point assumption, if F is a
continuous mapping from X to Rn, then there exists a solution to LSIVI(X;F ).
Let us recall some definitions on the mappings commonly used for a variational inequality
problem VI(X;F ).

Definition 1 [J.-L. Goffin and Zhu, 1997, Marcotte and Zhu, 2001] A mapping F is said to be

� monotone on X if for every pair of points x; y 2 X ,

(F (x) � F (y))T (x� y) � 0: (6)

� strongly monotone on X if there exists � > 0 such that for every pair of points x; y 2 X ,

(F (x) � F (y))T (x� y) � �kx� yk2: (7)

� pseudomonotone on X if for every pair of points x; y 2 X ,

F (x)T (y � x) � 0 implies F (y)T (y � x) � 0: (8)

� pseudomonotone-plus on X if it is pseudomonotone on X and for every pair of points

F (x)T (y � x) = 0 and F (y)T (y � x) = 0 imply F (x) = F (y): (9)

� pseudo-co-coercive with modulus � > 0 on X if for every pair of points x; y 2 X ,

F (x)T (y � x) � 0 implies F (y)T (y � x) � �kF (x) � F (y)k2: (10)

It is not difficult to see that a monotone mapping is pseudomonotone and a strongly monotone
mapping is pseudo-co-coercive. Moreover, the following result can be found in [S.-C. Fang
and Sun, 2002].
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Proposition 2 Let F be a continuous pseudomonotone mapping over X . Under the interior
point assumption, x� 2 X is a solution to LSIVI(X;F ) if and only if x� solves
DLSIVI(X;F ).

The following concept of gap function g(x) associated with a general VI(X;F ) will be
utilized in this paper:

Definition 2 Given a problem VI(X;F ), the gap function is defined to be

g(x) = max
y2X
fF (x)T (x� y)g for each x 2 X: (11)

Note that g(x) � 0 for each x 2 X and g(x�) = 0 if and only if x� is a solution to
VI(X;F ). In general, g(x) may be nonconvex and nonsmooth. However, in our setting the
value of g(x) can be computed by some semi-infinite programming algorithms [S.-C. Fang
and Tsao, 1997, Reemtsen and Ruckmann, 1998, S.-Y. Wu and Lin, 1998].
Also note the following definition for any " > 0:

Definition 3 A point �x 2 X is called an "-solution of the problem VI(X;F ), if the gap
function g(�x) � ".

It is not difficult to see that, in this case, F (�x)T (x� �x) � �" for all x 2 X .

3 Discretization approach for LSIVI(X;F )

We first introduce a discretization approach for solving LSIVI(X;F ). Since T is a compact
subset of R, there exists a positive-valued, strictly monotone decreasing function � from the
natural numbers N to the positive orthant R+ such that �(n)! 0 as n!1 and an expansive
sequence fTig of finite subsets of T with the property that for each t 2 T , there exists an
n0 2 N such that, for n � n0, there exists t0 2 Tn with kt� t0k � �(n). Using Ti, we define

�Xi = fx 2 Rnj
u(t); x�� �(t) � 0 for all t 2 Tig (12)

Note that Ti is a finite subset of T and Ti � Ti+1 for each i. Consequently, X � �Xi+1 � �Xi.
Now consider the following variational inequality problem:

VI( �Xi; F ): Find xi 2 �Xi such that

F (xi)T (x� xi) � 0 for all x 2 �Xi: (13)

The next result immediately follows:

Lemma 1 If �Xi is bounded and F is continuous on �Xi, then there exists a solution to VI
( �Xi; F ).

Proof. It is not difficult to see that �Xi is a closed convex set. If �Xi is a bounded set, then �Xi is
a compact convex set. Since F is continuous from �Xi to Rn, the result follows from [Holmes,
1975].

In this case, we let xi be a solution of VI( �Xi; F ). Next we show that there exists a subse-
quence of fxig converging to a solution of LSIVI(X;F ).
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Theorem 1 If there exists an M > 0 such that kxik �M for each i, then there exists a
subsequence fxkig of fxig converging to the solution of LSIVI(X;F ).

Proof. Since kxik � M , there exists a subsequence fxkig converging to x�. We claim that

u(t); x�

� � �(t) � 0;8t 2 T . If not, there exists at least one �t 2 T such that


u(�t); x�

� �
�(�t) > 0. Hence there exists an n1 2 fkig such that



u(�t); xn

�� �(�t) > 0 for each n 2 fkig and n � n1: (14)

From the definition of Ti, there exists ti 2 Ti such that ti ! �t as i!1: Consequently, there
exists n2 such that, for i � n2,



u(ti); x

n
�� �(ti) � 0 for each n 2 fkig and n � n1: (15)

Choose n3 � maxfn1; n2g, then



u(tn2); x

n3
�� �(tn2) > 0: (16)

Since xn3 is a solution of VI( �Xn3 ; F ),



u(t); xn3

�� �(t) � 0 for each t 2 Tn3 : (17)

For tn2 2 Tn2 � Tn3 , we know


u(tn2); x

n3
� � �(tn2) � 0. This contradicts (16). Hence


u(t); x�
���(t) � 0 for any t 2 T . Now we show that F (x�)T (x�x�) � 0 for each x 2 X .

If not, we assume there exists at least one �x 2 X such that F (x�)T (�x � x�) < 0. Since F is
continuous, there exists �n 2 fkig such that

F (x�n)T (�x� x�n) < 0: (18)

On the other hand, since �x 2 X � �X�n, we have

F (x�n)T (�x� x�n) � 0: (19)

This contradicts (18). Thus, for all x 2 X , F (x�)T (x� x�) � 0:

Note that although Theorem 1 assures the convergence of the discretization approach, the
quality of solutions obtained by this approach depends on the choice of the expansive sequence
fTig. Usually finer discretization results in better approximation, however it is hard to provide
a quantitative statement.

4 Inexact cutting plane approach for LSIVI(X;F )

In this section, we present an analytic center based inexact cutting plane method for solving
LSIVI(X;F ).
Given t1; :::; tm be m points in T , define

T1 = ft1; :::; tmg � T (20)
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and
X1 = fx 2 Rnj
u(t); x�� �(t) � 0 for all t 2 T1g: (21)

Since u : T1 � T ! Rn, we can define an m� n matrix A with Ai = u(ti) being its ith row
for i = 1; :::;m. Similarly, since � : T1 ! R, we define b to be an m vector with bi = �(ti)
being the ith component of b for i = 1; :::;m. Then X1 can be rewritten as a polyhedral set
fx 2 RnjAx � bg.

For a variational inequality problem like VI(X1; F ), J.-L. Goffin and Zhu presented an
analytic center based cutting plane method to solve it [1997]. They showed that under some
technical conditions such as F being pseudomonotone-plus and Lipschitz continuous on X1,
and the inequalities 0 � x � e (where e is the vector of all 1’s) are included in the system
Ax � b, their algorithm either terminates with an exact solution of VI(X1; F ) in a finite
number of iterations, or generates an infinite sequence fxkg that has a subsequence converging
to a solution of VI(X1; F ). In the latter case, when k is sufficiently large, xk becomes an "-
solution to VI(X1; F ), for any given " > 0.

Following this idea, we present an inexact cutting plane algorithm for solving LSIVI(X;F ).

Algorithm 4.1 Given �" > 0, �Æ 2 (0; 1), T1 = ft1; :::tmg, and X1 = fx 2 Rnj
u(t); x� �
�(t) � 0 for all t 2 T1g, set k = 1.

Step 1. Find an �"(1� �Æ)k-solution xk to VI(Xk; F ).

Step 2. Let tm+k be a maximizer of


u(t); xk

�� �(t) over T .

If


u(tm+k); x

k
�� �(tm+k) > 0, then go to Step 3.

Otherwise, if xk is an exact solution to VI(Xk; F ), then stop and output xk.

Otherwise, set Xk+1  Xk, k  k + 1; then go to Step 1.

Step 3. Let Tk+1 = Tk [ ftm+kg and Xk+1 = fx 2 Rnj
u(t); x� � �(t) � 0 for all t 2
Tk+1g. Update k  k + 1, go to Step 1.

Note that in Step 1, only an inexact solution to a subprogram VI(Xk; F ) is needed at each iter-
ation. This task can be carried out by using the analytic center cutting plane method proposed
in [J.-L. Goffin and Zhu, 1997]. Also in Step 3, only one cutting plane is added in each time.
Hence we say this is an analytic center based inexact cutting plane approach. Next we show a
convergence result.

Theorem 2 Algorithm 4.1 either (i) terminates with a solution to LSIVI(X;F ) in a finite
number of iterations at Step 2, or (ii) generates an infinite sequence that has a subsequence
converging to a solution to LSIVI(X;F ).

Proof. (i) Suppose that the Algorithm 4.1 terminates in �n iterations. To meet the stopping
criterion in Step 2, we know



u(t); x�n

�� �(t) � 0 for all t 2 T; (22)

and
F (x�n)T (x� x�n) � 0 for all x 2 X�n: (23)
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Since X � X�n, from (23), we have

F (x�n)T (x� x�n) � 0 for all x 2 X: (24)

From (22), we know x�n 2 X . Thus x�n is a solution to LSIVI(X;F ).
(ii) Assume that Algorithm 4.1 does not terminate in a finite number of iterations. Consider
the sequence fxnig, where each index ni is obtained from Step 3 only. Like in [J.-L. Goffin
and Zhu, 1997], the linear inequality system X1 = fx 2 RnjAx � bg is assumed to include
the inequalities 0 � x � e. Hence it is a compact set.
Since xni 2 Xni � X1 and tm+ni 2 T , there exist subsequences fxnkig of fxnig converging
to x� 2 X1, and ftm+nki

g of ftm+nig converging to t� 2 T . We claim that



u(tm+ni); x

��� �(tm+ni) � 0 for i = 1; 2; � � � (25)

If not, then there exists a p 2 N such that



u(tm+np); x

��� �(tm+np) > 0 (26)

Since fxnkig ! x�, there exists a sufficiently large q 2 N such that nq > m+ np and



u(tm+np); x

nq
�� �(tm+np) > 0 (27)

Moreover, xnq is an �"(1� �Æ)nq solution of VI(Xnq ; F ), we know



u(tm+np); x

nq
�� �(tm+np) � 0: (28)

Notice that (28) contradicts (27), we know (25) holds.
Let �t be a maximizer of the function



u(t); x�

�� �(t) over T. Since tm+nki
is a maximizer of


u(t); xnki
�� �(t) over T ,



u(�t); xnki

�� �(�t) � 
u(tm+nki
); xnki

�� �(tm+nki
): (29)

Let i!1 in (29), we see



u(�t); x�

�� �(�t) � 
u(t�); x�
�� �(t�): (30)

It follows from (25) that 

u(t�); x

��� �(t�) � 0: (31)

Therefore, 

u(�t); x�

�� �(�t) � 
u(t�); x�
�� �(t�) � 0; (32)

and hence x� 2 X .
Now we show that

F (x�)T (x� x�) � 0 for all x 2 X: (33)

For each i, since xnki is an �"(1� �Æ)nki solution of VI(Xnki
; F ), we know

F (xnki )T (x� xnki ) � ��"(1� �Æ)nki for all x 2 X � Xnki
: (34)
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When i!1, we have
F (x�)T (x� x�) � 0 for all x 2 X: (35)

Thus x� is a solution to LSIVI(X;F ).

Suppose that Algorithm 4.1 does not terminate in a finite number of iterations, but after
s-th iteration we have a �"(1� �Æ)s-solution xs for VI(Xs; F ). Assume that there exists a small
Æ0 > 0 such that 


u(t); xs
�� �(t) � Æ0 for all t 2 T: (36)

From Theorem 2, xs can be viewed as an approximate solution of LSIVI(X;F ), if Æ0 > 0 is
sufficiently small. An interesting, yet important, question is “how good such an approximate
solution can be?” The following theorem addresses this issue under some technical conditions.

Theorem 3 If there exists an �x 2 Rn such that (i)


u(t); �x

� � 1 for all t 2 T and (ii)
F (x)T �x � 1 for all x 2 X , then xs � Æ��x, where Æ� =maxfÆ0; �"(1� �Æ)sg, is a solution of
LSIVI(X;F ).

Proof. Since for every t 2 T 

u(t); xs

�� �(t) � Æ0 (37)

and 

u(t); Æ��x

� � Æ�; (38)

we know


u(t); xs � Æ��x

�� �(t) =


u(t); xs

�� �(t)� 
u(t); Æ��x� � Æ0 � Æ� � 0: (39)

Consequently, xs � Æ��x 2 X .
Since for every x 2 X

F (x)T (x� xs) � ��"(1� �Æ)s (40)

and
F (x)T (Æ��x) � Æ�; (41)

we know
F (x)T (x� (xs � Æ��x)) = F (x)T (x� xs) + F (x)T (Æ��x)

� ��"(1� �Æ)s + Æ� � 0:
(42)

Therefore, xs � Æ��x is a solution of DLSIVI(X;F ). From Proposition 2, we know xs � Æ��x
is also a solution of LSIVI(X;F ).

Notice that the condition assumed in Theorem 3 is a technical condition that may be dif-
ficult to check in general. But when it is satisfied, we know how close xs can be a solution
to LSIVI(X;F ). In some special cases, this technical condition can be verified easily. For
example, if u(t) = (u1(t); :::; un(t)) > 0 for t 2 T and F (x) = (F1(x); :::; Fn(x)) > 0 for
x 2 X , then the condition is clearly satisfied. Also notice that when the analytic center cutting
plane algorithm of [J.-L. Goffin and Zhu, 1997] is used, under the assumption that F is pseudo
co-coercive and Lipschitz continuous on Xi, an approximation solution xi to VI(Xi; F ) can
be found in polynomial time. Therefore, in this case, an "-solution of LSIVI(X;F ) can be
achieved in polynomial time.

8



5 Numerical Examples

In this section we provide numerical examples to illustrate the potentials of discretization and
inexact cutting plane approaches. We have implemented both approaches in MATLAB on a
1000 MHz Pentium III personal computer running Linux. Recall that for both approaches,
a finite dimensional variational inequality subproblem needs to be solved. For this purpose,
we have implemented the method proposed by [J.-L. Goffin and Zhu, 1997]. To compute the
approximate analytic center in Goffin’s method, we have used Newton’s linear approximation
along with a dual scaling procedure [J.-L. Goffin and Ye, 1996]. We have assumed that an exact
solution is found at this step, if the solution is within the accuracy of 1.0e-8. The following
examples are studied in the sequel:

Example 1 n = 7, T = [0; 1], and

X = fx 2 R7 j
7P

j=1

tj�1xj �
4P

l=1

t2l + 1; t 2 T and 0 � xj � 1; j = 1; � � � ; 7g;
F = (F1; � � � ; F7) with Fj = xj � 1p

xj
; j = 1; � � � ; 7:

Example 2 n = 7, T = [0; 1], and

X = fx 2 R7 j
7P

j=1

tj�1xj � 4t5 + 1; t 2 T and 0 � xj � 1; j = 1; � � � ; 7g;
F = (F1; � � � ; F7) with Fj = 1 + 3xj � 1

x2j
; j = 1; � � � ; 7:

Example 3 n = 7, T = [0; 1], and

X = fx 2 R7 j
7P

j=1

tj�1xj � 3t5 + 2t2 + 1

3
; t 2 T and 0 � xj � 1; j = 1; � � � ; 7g;

F = (F1; � � � ; F7) with Fj =
p
xj � 1

x2j
; j = 1; � � � ; 7:

Notice that, for the above examples the “interior point” assumption (5) is satisfied when we
set x̂ to 0:1e (e is the vector of all 1’s). To apply Goffin’s method, the inequalities 0 � x � e

are included in the system of linear inequalities. Hence, the set X has become nonempty,
convex and compact for each example.

First we have solved the examples using the inexact cutting plane approach (Algorithm
4.1). For all the examples, �" and �Æ are set to 0.1 and 0.5, respectively. Also, the initial set
T1 is taken as f0:0; 1:0g. The second column of Table 1 gives the number of iterations for
finding the solution x�. The third column shows x� and the final partition Tk reported by the
algorithm. Recall that in Step 2 of Algorithm 4.1 if xk is not an exact solution, at the next
iteration the algorithm moves back to Step 1 without adding a new cutting plane. Therefore,
the number of iterations in the second column are higher than the number of partitions in the
third column.
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Ex. k x� and Tk

1 12
x� = (0:4999; 0:5662; 0:6297; 0:6853; 0:7344; 0:7769; 0:8123)T

T12 = f0:0; 0:8136; 0:8270; 0:8287; 0:8299; 0:8335; 1:0g

2 11
x� = (0:5080; 0:5361; 0:5564; 0:5699; 0:5797; 0:5862; 0:5902)T

T11 = f0:0; 0:6468; 0:6482; 0:6733; 1:0g

3 15
x� = (0:2764; 0:4799; 0:7236; 0:8933; 0:9662; 0:9899; 0:9968)T

T15 = f0:0; 0:2890; 0:2903; 0:2906; 0:2914; 0:3074; 0:6045; 1:0g

Table 1: Solutions using the inexact cutting plane approach.

Ex. NOP x�

1

10 x� = (0:4782; 0:5594; 0:6316; 0:6986; 0:7537; 0:8027; 0:8399)
20 x� = (0:5058; 0:5715; 0:6301; 0:6839; 0:7305; 0:7712; 0:8055)
40 x� = (0:4958; 0:5659; 0:6306; 0:6867; 0:7364; 0:7793; 0:8158)
80 x� = (0:4987; 0:5663; 0:6303; 0:6856; 0:7340; 0:7781; 0:8128)

2

10 x� = (0:5100; 0:5413; 0:5623; 0:5763; 0:5845; 0:5899; 0:5933)
20 x� = (0:5084; 0:5360; 0:5559; 0:5699; 0:5795; 0:5858; 0:5901)
40 x� = (0:5084; 0:5359; 0:5560; 0:5698; 0:5796; 0:5857; 0:5901)
80 x� = (0:5082; 0:5360; 0:5560; 0:5700; 0:5797; 0:5859; 0:5901)

3

10 x� = (0:2785; 0:4767; 0:7145; 0:8860; 0:9603; 0:9874; 0:9963)
20 x� = (0:2785; 0:4766; 0:7143; 0:8852; 0:9623; 0:9880; 0:9970)
40 x� = (0:2769; 0:4793; 0:7214; 0:8914; 0:9645; 0:9892; 0:9969)
80 x� = (0:2760; 0:4802; 0:7246; 0:8930; 0:9664; 0:9902; 0:9970)

Table 2: Solutions using the discretization approach.

Table 2 shows the solutions found by the discretization approach. The set T has been
divided into equally spaced partitions, and to analyze the effect of finer discretization, the
number of partitions (NOP) has been varied from 10 to 80. The second column gives the NOP
required to achieve x� in the last column.

From Table 1, we see that the inexact cutting plane approach converges to the solutions of
the three examples with only 6, 4, and 7 partitions, respectively. In the meanwhile, the third
column in Table 2 shows that the discretization approach converges to the corresponding solu-
tions at the expense of more partitions. Also note that, finer partitioning for the discretization
approach leads to solutions that are closer to the solutions confirmed by the inexact cutting
plane approach.

6 Conclusion

In this paper, we have studied a special class of variational inequalities over a domain defined
by infinitely many linear inequalities. A discretization approach for solving such problems
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is introduced with a convergence proof. We also propose an “inexact” cutting plane method
based on analytic centers. A convergence proof and several numerical examples are included.
Under proper conditions, we can examine the quality of solutions obtained. In particular, an
"-optimal solution can be generated by the proposed algorithm in polynomial time.
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