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We calculate the fluorescence spectra of a driven lattice of coupled cavities. To do this, we
extend methods of evaluating two-time correlations in infinite lattices to open quantum systems;
this allows access to momentum resolved fluorescence spectrum. We illustrate this for a driven-
dissipative transverse field anisotropic XY model. By studying the fluctuation dissipation theorem,
we find the emergence of a quasi-thermalized steady state with a temperature dependent on system
parameters; for blue detuned driving, we show this effective temperature is negative. In the low
excitation density limit, we compare these numerical results to analytical spin-wave theory, providing
an understanding of the form of the distribution function and the origin of quasi-thermalization.

By driving a system out of equilibrium, it is possible
to stabilize states of matter that are either not known
or are hard to achieve in thermal equilibrium. Classi-
cally, driven systems have been extensively studied in the
framework of pattern formation and dynamics [1]. The
study of quantum systems driven far from equilibrium
is currently very active, in fields ranging from ultracold
atoms [2–5] to optically induced superconductivity [6],
and hybrid matter-light systems [7]. One such class of
system is driven dissipative lattices [8–10]. This is mo-
tivated by a variety of experimental platforms, includ-
ing photonic crystal devices with quantum dots [11], mi-
cropillar structures in semiconductor microcavities [12],
trapped ions [13], and microwave cavities and supercon-
ducting qubits [14, 15]. Depending on the combination of
couplings and driving used, many different models can be
realized, and for many of these models, driving and dis-
sipation allow one to induce a wider variety of collective
states than occur in thermal equilibrium [16–25].

Most theoretical work on driven-dissipative lattices has
focused on using order parameters or equal-time correla-
tion functions to identify the phase diagram. For co-
herent driving, such observables correspond to measur-
ing the elastically scattered light. Less attention has
been paid to the properties of the incoherent fluores-
cence from such lattices. From the quantum optics per-
spective, incoherent fluorescence of a coherently driven
system can reveal interactions and coherence times, as
known for the Mollow triplet fluorescence [26], which has
been seen in candidate systems for coupled cavity arrays
such as quantum dots [27] and superconducting qubits
coupled to microwave cavities [28]. In extended systems,
one can also access momentum-resolved spectra, e.g. by
measuring the interference of light emitted from different
cavities. Moreover, second order correlations distinguish
bunching or antibunching of photons — as studied the-
oretically for a pair of coupled cavities [29, 30]. Applied
to extended systems, such measurements can make con-
tact with quantities typically seen with condensed matter
probes such as angle resolved photon emission, spectro-
scopic scanning tunneling microscopy, or neutron scat-
tering. i.e. they measure the excitation and fluctuation

spectrum of a correlated state, revealing the nature of
correlated states.

There are other reasons to anticipate that calculations
of two-point and two-time correlations can provide un-
derstanding beyond single-time observables. Firstly, for
any correct treatment of a finite size system, symme-
try breaking should not occur. This can also be true
for certain numerical approaches in infinite systems: un-
less one uses the non-commuting limits of symmetry-
breaking fields and system size, one finds a steady state
density matrix with equal mixtures of symmetry-broken
states [31, 32]. Two-time correlations allow one to in-
stead ask how long symmetry breaking persists in re-
sponse to a probe — i.e., long time correlations cor-
respond to divergences of the zero frequency response
of a system. For driven systems, similar results may
be extended to the treatment of limit cycles and ‘non-
equilibrium time crystals’ [24, 33, 34]. The density ma-
trix, as an ensemble averaged quantity, involves averag-
ing over the phase (or equivalently origin in time) of any
limit cycle, washing out any time dependence in the den-
sity matrix. In contrast two-time correlations reveal such
cycles as a diverging response at non-zero frequency.

Another motivation for studying two-time correlations
is to investigate thermalization. Thermalization in driven
systems has been studied in a number of contexts, includ-
ing the ‘low energy effective temperature’ in the Keldysh
field theory of driven atom-photon systems [35–41] and
the mode populations in photon [42, 43] and polari-
ton condensates [44–46]. This steady state behavior in
a continuously driven system can also be connected to
the emergence of a prethermalized state following a sud-
den quench in an isolated system [47–49] — in such a
prethermalized state, there is a flow of energy between
degrees of freedom at different scales. For a thermal-
ized state, we expect the density matrix takes the Gibbs
form ρ = exp (−Heff/Teff) with some effective Hamilto-
nianHeff. One may note however that any density matrix
can be written in the Gibbs form; to make the criterion
meaningful one thus needs a method to independently de-
termine Heff. This means simultaneously measuring the
occupations and densities of available states — this is the
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essence of the fluctuation dissipation theorem, which we
discuss below.

In this letter, we find the two-time correlations of a
driven dissipative lattice, and see the emergence of a
quasi-thermalized state. We calculate both on-site and
inter-site correlations, giving access to the momentum
resolved fluorescence spectrum of a driven coupled cav-
ity array. In order to eliminate boundary and finite-
size effects, we work always with the translationally in-
variant infinite lattice. On-site calculations in a finite-
size lattice have also been recently studied for the XXZ
model [50]. While the methods we present are general,
our work will focus on the transverse field anisotropic XY
model (which has both the Ising and XY models as spe-
cial cases), a driven dissipative realization of which was
proposed by Bardyn and İmamoğlu [51], and the steady
state properties studied [20, 52] using matrix product
state approaches. As shown in [51] and reviewed in the
supplementary material [53], this model can be realized
by an array of coupled cavities in the photon blockade
regime, with a two-photon pump that creates pairs of
photons in adjacent sites (see Fig. 6).

J

κ

J J J

κ κ κ

FIG. 1. Coupled cavity array with hopping J , photon loss κ
and two-photon pumping (blue line). When strong nonlinear-
ity (purple shading) in each cavity leads to photon blockade,
this yields the transverse field anisotropic XY model [51].

Following [20, 53], working in the rotating frame
of the pump, the effective Hamiltonian has the form:
H = −J

∑
j

[
gσzj + 1+∆

2 σxj σ
x
j+1 + 1−∆

2 σyj σ
y
j+1

]
. The di-

mensionless transverse field g depends on the pump-
cavity detuning, and the anistropy parameter ∆, given
by the ratio of pump strength and photon hopping J .
For ∆ = 1 we recover the Ising model and for ∆ = 0
the isotropic XY model. In the following we will work in
units of J. For the driven system, the Hamiltonian is ac-
companied by photon loss at rate κ into empty radiation
modes. We thus have the master equation:

∂tρ = L{ρ} = −i [H, ρ]

+
κ

2

∑
j

(
2σ−j ρσ

+
j − σ

+
j σ
−
j ρ− ρ σ

+
j σ
−
j

)
. (1)

While a non-driven system would equilibrate with the
bath, the time-dependent driving breaks detailed bal-
ance and leads instead to a nonequilibrium steady state
(NESS).

The fluctuation and response spectra discussed above
require evaluating two-time correlation functions which,

for a Markovian system, can be found using the quantum
regression theorem [26]:〈

O
(j)
2 (t)O

(i)
1 (0)

〉
= Tr

[
O

(j)
2 etLO

(i)
1 ρss

]
, (2)

where i, j label two lattice sites and 1, 2 two local opera-
tors. In order to compute this for an infinite lattice, we
employ matrix product state (MPS) methods. We first
find the steady state ρss of the master equation (1). We
do this by using the infinite Time Evolving Block Dec-
imation (iTEBD) algorithm [54, 55] to find the trans-
lationally invariant infinite MPS such that L{ρss} = 0.
Starting from the NESS, we then calculate two-time cor-
relations using Eq. (43). Because applying local oper-
ators Ô1 to ρss breaks translational invariance, we can
no longer propagate using iTEBD. For a finite size lat-
tice, TEBD could be used, but this restricts the extent of
correlations in both space and time, as excitations are re-
flected from the boundaries [56]. Fortunately, a method
to find such correlations in an infinite lattice has been
developed by Bañuls et al. [57] for unitary evolution.
This approach [57], which we extend to open systems,
writes the time evolution between applying Ô1 and Ô2

as a tensor network, and contracting this network gives
the desired correlator (see [53] for details).

Using this approach, we calculate the fluctuation
spectrum SO,O† (ω) and the response function of the
system χ′′O,O† (ω) which are at the heart of the

fluctuation-dissipation theorem [26, 41], SO,O† (ω) =
F (ω)χ′′O,O† (ω) , with the distribution function F (ω) dis-

cussed below. Both SO,O† (ω) and χ′′O,O† (ω) are the
Fourier transforms of two-time correlations

S̃O,O† (t) =
1

2

〈
{Ô (t) , Ô† (0)}

〉
, (3)

χ̃O,O† (t) = iθ (t)
〈

[Ô (t) , Ô† (0)]
〉
, (4)

which we may evaluate using Eq. (43).
Figure 2 shows the on-site (i = j) fluctuation and re-

sponse functions in frequency domain for Ô1 = Ô2 = Ô ∈
{σx, σz} and a range of values of transverse field g. We
show both the Ising limit, (∆ = 1, left two columns) as
well as at small ∆ (right column), where analytic results
can be found using spin-wave theory as discussed fur-
ther below. The panels (a–c) show S (ω) which measures
the occupations while, panels (d–f) show response func-
tion χ′′ (ω), which measures the density of states (DoS).
We note that while at g = 0, 1 we see S (ω) for σx is
peaked at ω = 0, its value always remains finite as there
is no phase transition in this open one-dimensional sys-
tem [20, 25]. As we will discuss later, the form of the
density of states seen here can be understood from the
momentum resolved correlation functions.

The bottom row of Fig. 2 shows the inverse distribution
functions F (ω)−1 = χ′′O,O† (ω) /SO,O† (ω) for Ô = σx, σz

respectively. In an equilibrium system, the distribu-
tion function F (ω) depends only on whether Ô obeys
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FIG. 2. Spectrum of fluctuations S(ω), imaginary part of
response function χ′′(ω), and inverse distribution function
F (ω)−1. Left two columns: Ising limit ∆ = 1, Right column
shows ∆ = 0.05 where spin-wave theory (solid lines) matches
well. Energies given in units of J . Other parameters used:
κ = 0.5.

Fermionic or Bosonic (anti-)commutation relations; for
Bosons it is: F (ω) ≡ 2nB (ω)+1 = coth((ω−µ)/2T ). In
a driven dissipative system, F (ω) may take a more gen-
eral form. However as identified in other contexts [7, 35–
41], quasi-thermalisation of low energy modes often oc-
curs, leading to the identification of a low energy effective
temperature F (ω) ∼ 2Teff/ω. Note that since all calcula-
tions are performed in the rotating frame, all frequencies
are measured relative to the pump frequency — i.e. the
pump frequency acts as an effective chemical potential µ
that sets the frequency at which F (ω) diverges.

As seen in Fig. 2(g,h), F (ω)−1 is linear ω → 0 indicat-
ing the emergence of a low energy effective temperature
in this model. Because the power spectrum of physi-
cal operators is positive, there is a minimum possible
fluctuation contribution for a given dissipation, mean-
ing |F (ω)|−1 ≤ 1. At high frequencies the distribution
function of a fully thermalised system asymptotically ap-
proaches this value. In our non-equilibrium system we
see that in some cases the inverse distribution |F (ω)|−1

approaches 1 over a range of frequencies, however in all
cases it falls falls below one at higher frequencies, in-
dicating higher fluctuations than for a thermal state.
The results shown give some indication that, at least
for Fig. 2(g), the F (ω) approaches a thermal form more
closely at larger g.

The right column of Fig. 2 compares the MPS results
(points) to analytic spin-wave theory [53, 58], which is
valid if the density of excitations is small. We see a good
agreement between spin-wave theory and MPS numer-
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FIG. 3. The effective temperature Teff against transverse field
g. We find Teff by fitting F (ω) ' A coth(bω) for low fre-
quencies (ω ≤ 1.0), and plotting Teff ≡ A/2b. (a) MPS re-
sults for σx,z fluctuations and the transverse-field Ising limit
(∆ = 1.0); (b) Spin wave results for σx,y fluctuations at
∆ = 0.05. Energies given in units of J . Other parameters
used: κ = 0.5.

ics at ∆ = 0.05 for σx correlations (we do not show the
σz spectra for this ∆, as these vanish in the linearised
spin-wave theory). Remarkably, the agreement for F (ω)
is better than for S (ω) , χ′′ (ω) individually. It is notable
that despite being a linear (i.e. non-interacting) theory,
the spin-wave result reproduces both the low energy ef-
fective temperature and the emergent plateau F (ω) ' 1
at intermediate frequencies. The distribution function of
spin-wave theory can be understood as a weighted aver-
age of k-dependent function F (ω, k) = (2Teff,k+λkω

2)/ω,
with weighting by the k-dependent density of states [53].
This form (which follows directly from the structure of
the relevant linearised theory) leads directly to the exis-
tence of a low energy effective temperature. The plateau
at F (ω) ' 1, seen only at larger g, results from the lo-
cal spectra averaging over many momentum states [53],
however the form F (ω, k) inevitably leads to F (ω) ∝ ω
at high frequencies, corresponding to the breakdown of
the plateau.

As well as the deviation from the thermal F (ω), a sec-
ond distinction from an equilibrated system is that both
the distribution and the low-energy effective temperature
extracted differ depending on the system operator con-
sidered. Figure 3(a) shows how Teff of σx and σz correla-
tors vary with transverse field g. Fig. 3(b) shows similar
results for the spin-wave theory at small ∆ for σx and
σy correlators (as noted above, σz correlators vanish in
a linearised theory). We observe that for ∆→ 0, g →∞
the σx,y excitations thermalize to the same effective tem-
perature, Teff ≈ −g/2. This can be understood as Teff,k

becomes k independent in this limit, see [53].

We only show results for g > 0 in Fig. 2, since there
exists a simple duality allowing us to relate the form of
S (ω), χ′′ (ω), F (ω)

−1
for values g and −g. This duality,

discussed in [20] arises because a combination of g 7→ −g
and a π rotation of the spin on every second site leads
to H 7→ −H. (A more general discussion of such dual-
ities can be found in [59].) This duality means that on
changing the sign of g, the state of the system should cor-
respond to reversing the sign of all energies. We may then
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FIG. 4. S(ω, k) momentum-resolved fluctuation spectrum for
excitations of: (a) σx at g = 5.0; (b) σz at g=5.0; (c) σx at
g = 1.0; (d) σz at g = 1.0. Energies given in units of J . Other
parameters used: κ = 0.5.

note that fluctuation and dissipation spectra show differ-
ent parity; χ′′ (−ω) = −χ′′ (ω), while S (−ω) = S(ω),
and so F (−ω) = −F (ω). As such, the energy sign rever-
sal under g 7→ −g yields a sign change of the distribution
function and effective temperature. We find g < 0 gives
positive temperatures, and g > 0 negative temperatures.
This is consistent with the spatial ordering seen [20]: for
Teff < 0 there is a high energy anti-ferromagnetic state.
A more intuitive understanding of this comes from the
fact that g is proportional to the pump-cavity detuning,
so that g < 0 corresponds to a red-detuned pump and
consequent cooling, while g > 0 corresponds to blue de-
tuning. Blue-detuned pumping is typically associated to
heating; here it does lead to energy accumulation, but
this induces a negative temperature state, rather than
high positive temperatures. At g = 0, the susceptibility
χ′′(ω) vanishes, so F (ω)−1 = 0 and the effective temper-
ature diverges.

So far we have evaluated correlation functions at equal
positions; this corresponds to recording all light from one
cavity, which implicitly integrates over momentum. More
information on the structure of the correlations is avail-
able if we consider the momentum-resolved spectrum.
This requires evaluating correlations at non-equal sites
i, j, and performing a double Fourier transform with re-
spect to separation in time t and space |i − j|. The re-
sulting fluctuation spectra S(ω, k) are displayed in Fig. 4
(The response function χ′′(ω, k) shows similar features
as S(ω, k)). We show the case for Ô = σx, σz, and two
values of g (we consider only g > 0, since the duality
discussed above allows one to understand the effects of a
sign change of g). All the features visible in these spectra
can be described straightforwardly using excitation spec-

tra derived from the Jordan-Wigner solution of HTFI (see
e.g. [60] for details).

At large positive g, the NESS is known [20] to be a
maximum energy state with spins pointing in the −ẑ
direction, opposing the magnetic field. The spectrum
of the σx operator corresponds to single spin flips, so
follows the single particle dispersion ω(k) = ε(k) ≡
2J
√

1 + g2 + 2g cos(k) (where we consider de-excitations
of the maximum energy state). This expression is shown
by the black line in Fig. 4(a). In contrast, the σz oper-
ator corresponds to two-particle excitations, which come
in two varieties. The first one is a two-particle contin-
uum with ω = ε(k1) + ε(k2), k1 + k2 = k. The envelope
of these states is given by εmin(k) < ω(k) < εmax(k) with
εmax/min(k) = 4J

√
1 + g2 ± 2g cos(k/2), shown by the

dotted black lines in Fig. 4(b). The other kind of exci-
tations involves scattering existing particles from mode
q to q + k, i.e. ω(k) = ∆ε(q, k) ≡ ε(q + k) − ε(q). The
dominant contribution comes from q = 0, since this cor-
responds to the maximum energy mode, which is max-
imally occupied for a negative temperature state. The
black solid line shows ∆ε(0, k) which indeed matches the
dominant feature observed. Given these momentum re-
solved results, the momentum integrated spectral func-
tions in Fig. 2(a,c) can be easily understood, with peaks
arising from van Hove singularities at the band edges.

Near g = 1.0 the NESS instead shows antiferromag-
netic correlations. The spectra here retain key features
but are distorted. In the σx spectrum, Fig. 4(c) and
Fig. 2(a,c), the peaks at k = ±π become dominant. In
the σz spectrum, Fig. 4(d) and Fig. 2(b,d), the scatter-
ing band and two-particle continuum overlap. The black
lines show the same expressions as discussed above. A
ground state phase transition occurs for |g| < 1, hence
the gap closing at g = 1.0. In contrast, the NESS at
g = 1.0 already enters an antiferromagnetic state. As
such, it is unsurprising these dispersions (which use nor-
mal state Jordan Wigner forms) do not match the spec-
trum as well as they did at g = 1.0. As one continues to
decrease g → 0 the spectrum becomes further dominated
by the modes near ω = 0, as seen in Fig. 2(a–d).

In conclusion, we have calculated the two-time corre-
lations of a driven-dissipative coupled-cavity array, pro-
viding the fluorescence and absorption spectra. Due to
the duality between red and blue detuned scenarios, we
find that a blue pump-cavity detuning produces a quasi-
thermalized state with a negative temperature. We have
also shown how the structure of F (ω) and emergent ther-
malization can be understood using a spin-wave theory,
and how momentum resolved fluorescence reveals the
nature of quasiparticle excitations in the quasi-thermal
state. The system we have studied here is in the photon
blockade regime, with at most one excitation per site.
This restricts us to study “first-order” correlation func-
tions. When generalizing to problems with a larger on-
site Hilbert space, second-order photon counting correla-
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tions may also be of interest, in revealing the coherence
and statistics of any ordered state. Our results illustrate
how calculating such correlations of the fluorescence can
provide new insights into the state of many-body driven
dissipative systems.
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SUPPLEMENTARY MATERIAL FOR: FLUORESCENCE SPECTRUM AND THERMALIZATION IN A
DRIVEN COUPLED CAVITY ARRAY

DRIVEN-DISSIPATIVE XY MODEL

This section provides the derivation of the effective
transverse field anisotropic XY model which we study,
starting from a model of a coupled cavity array, follow-
ing Refs. [20, 51].

We consider a 1D lattice of optical or microwave cav-
ities supporting photon modes bj with tunneling ampli-
tude J between adjacent cavities, and an on-site optical
nonlinearity U which induces effective photon-photon in-
teractions in each cavity. Such a coupled cavity array is
thus described by the Bose-Hubbard Hamiltonian:

H =
∑
j

[
ωcb
†
jbj + Ub†jb

†
jbjbj − J

(
b†jbj+1 + H.c.

)]
.

In addition to these elements, we consider a two-photon
drive Ω cos(2ωP t) near two-photon resonance ωP ≈ ωc.
We then work in the limit of strong optical nonlinearity
with a perfect photon blockade, which restricts occupa-
tions to at most one photon in each cavity. This strong
nonlinearity then implies that the two-photon drive is
only resonant with creation of photon pairs on adjacent
cavities. The above considerations allow us to replace
each cavity mode with a spin-1/2, equivalent to replac-
ing the bosonic operators by Pauli matrices: bj → σ−j .
Our model Hamiltonian then becomes:

H0 =
∑
j

ωc
2
σzj − J

∑
j

[
σ+
j σ
−
j+1 + H.c.

]
− Ω

∑
j

[
σ+
j σ

+
j+1e

−2iωpt + H.c.
]
. (5)

If we then define the dimensionless parameters g = (ωp−
ωc)/2J , ∆ = Ω/J , we can transform H0 to a rotating
frame (at pump frequency ωp) to gauge away the explicit
time-dependence and write:

H = −J
∑
j

[
gσzj +

1 + ∆

2
σxj σ

x
j+1 +

1−∆

2
σyj σ

y
j+1

]
.

(6)
The Hamiltonian H of a coupled cavity array thus takes
a form of XY model where g acts as the transverse mag-
netic field, and ∆ is the anisotropy of spin-spin interac-
tions. The limit ∆ = 0 corresponds to the isotropic XY
model and ∆ = 1 to the Ising model.

SPIN-WAVE APPROXIMATION AT SMALL
EXCITATION NUMBER

In this section we present further of the spin wave the-
ory [58] used to describe the behavior at small excitation
number. In particular, we can use this to understand ei-
ther the limit of large |g| or small ∆, as both lead to small
excitation number. Such an approach was used in Joshi
et al. [20] for small ∆ to calculate static correlation func-
tions; here we extend this to dynamical correlation func-
tions and associated spectra.

At ∆ = 0 (i.e. zero pumping Ω/J = 0), or at g → −∞,
the NESS of our model corresponds to an empty state.
For a small ∆, one can thus use spin-wave approxima-
tion, which ignores the constraint on double occupancy
of a lattice site, and so is only valid for a low density of
excitations. In this small excitation number regime we
can revert from spin-1/2 operators (hard-core bosons) to
bosonic fields: σ−j → bj , hence recovering aspects of a
weakly interacting model. (Note that for large positive
g a similar argument can be made, making use of the
duality under g → −g discussed in the manuscript.)

Calculating correlation functions

Spin-wave approximation and equations of motion

We first follow the steps described in [20] to derive
the Hamiltonian in terms of Bosonic system operators
bk and b†−k. Working in the momentum basis, bk =∑
j e
ikjbj/

√
N , the master equation, written as Eq. (1)

in the main text becomes:

∂tρ = −i
∑
k

[hk, ρ] +
κ

2

∑
k

(
2b̂k ρb

†
k − b

†
kbk ρ− ρ b

†
kbk

)
,

(7)
where

hk = −
(
b†k b−k

)(g + cos(k) ∆ cos(k)
∆ cos(k) g + cos(k)

)(
bk
b†−k

)
, (8)

and we have set J = 1, so all energies are measured in
units of J . Note that when ∆ controls the strength of
pair creation, while max(κ, g, 1) determines the cost of
creating these excitations, so the small excitation regime
corresponds to ∆ � max(κ, g, 1). To find correlation
functions, rather than considering the master equation
above, we introduce the equivalent Heisenberg-Langevin
equations for the system operators coupled to a Marko-
vian bath [61]. The equations of motion for bk and b†−k
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can be written in a matrix form:

∂tf(t) = Mf(t) + v(t), (9)

with the vectors:

f(t) =

(
bk(t)

b†−k(t)

)
, v(t) =

√
2κ

(
bink (t)

b†in−k(t)

)
, (10)

and the matrix:

M =

(
−κ+ 2i(g + cos(k)) 2i∆ cos(k)
−2i∆ cos(k) −κ− 2i(g + cos(k))

)
.

(11)
Here, coupling to Markovian bath introduces the input
noise term bink (t). Since we consider a zero temperature
bath, there is only vacuum quantum noise, and the only

nonzero correlator is
〈
bink (t)b†ink′ (t′)

〉
= δk,k′δ(t− t′).

The solution of (9) is:

f(t) = eMtf(0) +

∫ t

0

dt′eM(t−t′)v(t′).

In the long-time limit t→∞ we find the expressions for
system operators:

bk(t) =
√

2κ

∫ t

0

dt′
[
G1(t− t′)bink (t′) +G2(t− t′)b†in−k(t′)

]
,

b†−k(t) =
√

2κ

∫ t

0

dt′
[
G∗1(t− t′)b†in−k(t′) +G∗2(t− t′)bink (t′)

]
.

(12)

where the propagators G1,2(τ) are matrix elements of
eMt given by:

G1(τ) = e−κτ
[
cos(ξkτ) + iεk

sin(ξkτ)

ξk

]
, (13)

G2(τ) = iηke
−κτ sin(ξkτ)

ξk
, (14)

with dispersions εk = 2(g + cos(k)), ηk = 2∆ cos(k), and
ξk =

√
ε2k − η2

k.

Correlations and effective temperatures for σ̂x

After deriving the system operators, we now proceed
to calculate the frequency-resolved spectra for XX cor-
relations. Since σxj → bj + b†j in the spin-wave limit, we
can express the on-site XX two-time correlator as:

C̃xx(τ) = 〈σx(0)σx(τ)〉 =
〈
b†(0)b†(τ)

〉
+ 〈b(0)b(τ)〉

+
〈
b†(0)b(τ)

〉
+
〈
b(0)b†(τ)

〉
, (15)

where the correlations are given by a Fourier transform
from momentum to real space:〈

b†(0)b(τ)
〉

=

∫ π

−π
dk eikl

〈
b†k(0)bk(τ)

〉 ∣∣∣∣
l=0

,

and similar expressions for other correlators. We then
substitute in the solutions for operators (12), and evalu-
ate the time integrals at unequal times, t+ τ and t. This
gives a two-time correlator:

C̃xx(τ) =
e−κτ

2π

∫ π

−π
dk

[
cos(ξkτ) + i(ηk − εk)

sin(ξkτ)

ξk

+
ηk(ηk − εk)

ξ2
k + κ2

(
cos(ξkτ) + κ

sin(ξkτ)

ξk

)]
. (16)

The quantities of interest are the fluctuation spec-
trum S(ω) and susceptibility χ′′(ω) given by the Fourier
transforms of S̃(τ) = 1

2 (C̃(τ)∗ + C̃(τ)) and χ̃(τ) =

iΘ(τ)(C̃(τ)∗ − C̃(τ)) respectively. Plugging in (16) and
taking a Fourier transform with respect to τ , we obtain
XX spectra:

Sxx(ω) =
κ

π

∫ π

−π
dk

Pk + ω2 + 2ηk(ηk − εk)

Qk(ω)
, (17)

χ′′xx(ω) =
2κω

π

∫ π

−π
dk

ηk − εk
Q−1
k (ω)

, (18)

where we have introduced auxiliary functions Pk = ξ2
k +

κ2, and Qk(ω) = (Pk − ω2)2 + (2ωκ)2.
One can then substitute eik → z, and the integrals in

(17), (18) become contour integrals around a unit circle C
with |z| = 1. The values of (17), (18) are then determined
by the residues of poles z = Z located inside C (i.e. with
|Z| < 1). Both (17) and (18) have the same set of eight
poles given by:

Z = θs1,s2 ±
√
θ2
s1,s2 − 1,

θs1,s2 =
−g + s1

√
g2∆2 − 1−∆2

4 [κ2 − ω2 + s2 2iωκ]

1−∆2
,

with s1 = ±1, s2 = ±1. Evaluating the contour integrals
gives fluctuation spectrum:

Sxx(ω) = 2κ
∑
|Zn|<1

Znαn, (19)

where

αn =

[
(1−∆)Z2

n + 2gZn + (1−∆)
]2

+ (ω2 + κ2)Z2
n

(1−∆2)2
∏8
m=1,m 6=n(Zn − Zm)

.

Similarly the susceptibility is given by:

χ′′xx(ω) = −4κω
∑
|Zn|<1

Z2
nβn, (20)

where

βn =
(1−∆)Z2

n + 2gZn + (1−∆)

(1−∆2)2
∏8
m=1,m 6=n(Zn − Zm)

.
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In both expressions, the sum runs over poles Zn inside
the unit circle C with |Zn| < 1. From (19) and (20)
it is straightforward to derive the distribution function
Fxx(ω) of fluctuation-dissipation theorem:

Fxx(ω) =
Sxx(ω)

χ′′xx(ω)
= − 1

2ω

∑
|Zn|<1 Znαn∑
|Zn|<1 Z

2
nβn

. (21)

It is evident that in the low frequency limit ω → 0,
the distribution Fxx(ω) is dominated by the 1/ω diver-
gence. The effective thermalization of NESS thus already
emerges in spin-wave theory, leading to an effective tem-
perature Teff:

Teff,xx = −1

4

∑
|Zn|<1 Znαn∑
|Zn|<1 Z

2
nβn

∣∣∣∣
ω=0

. (22)

Correlations and effective temperatures for σ̂y

Similarly to the previous subsection, we can calculate
the fluctuation spectrum and susceptibility for Y Y exci-
tations in the spin-wave limit where σyj → −i(bj − b

†
j).

By following the same steps as for XX correlators, we
obtain the Y Y spectra:

Syy(ω) =
κ

π

∫ π

−π
dk Q−1

k (ω)
[
Pk + ω2 + 2ηk(ηk + εk)

]
,

(23)

χ′′yy(ω) =
2κω

π

∫ π

−π
dk Q−1

k (ω)(ηk + εk). (24)

The only differ from the expressions for XX spectra (17),
(18) by (ηk − εk) → (ηk + εk). Note that as a result,
the contours integrals to evaluate have the same poles as
for XX correlators, but with different residues and thus
different weights.

Continuing along the same steps as for XX correlators,
we find the Y Y fluctuation spectrum:

Syy(ω) = 2κ
∑
|Zn|<1

Znγn, (25)

where

γn =

[
(1 + ∆)Z2

n + 2gZn + (1 + ∆)
]2

+ (ω2 + κ2)Z2
n

(1−∆2)2
∏8
m=1,m6=n(Zn − Zm)

.

The Y Y susceptibility is given by:

χ′′yy(ω) = −4κω
∑
|Zn|<1

Z2
nδn, (26)

where

δn =
(1 + ∆)Z2

n + 2gZn + (1 + ∆)

(1−∆2)2
∏8
m=1,m6=n(Zn − Zm)

.

and the poles Zn are the same as in XX spectra. One can
then straightforwardly derive the distribution function
Fyy(ω):

Fyy(ω) =
Syy(ω)

χ′′yy(ω)
= − 1

2ω

∑
|Zn|<1 Znγn∑
|Zn|<1 Z

2
nδn

. (27)

and the effective temperature Teff:

Teff,yy = −1

4

∑
|Zn|<1 Znγn∑
|Zn|<1 Z

2
nδn

∣∣∣∣
ω=0

. (28)

Vanishing correlations for σz

Note that while the above approach allows calculation
of the XX and Y Y correlators, we cannot use this small
excitation number approximation to find the ZZ correla-
tors. To see this, note that if we express the ZZ two-time
correlator using σzj = b†jbj − bjb

†
j , then in the spin-wave

limit:

C̃zz(τ) = 〈σz(0)σz(τ)〉 =

=
〈
b†(0)b(0)b†(τ)b(τ)

〉
−
〈
b(0)b†(0)b†(τ)b(τ)

〉
+
〈
b(0)b†(0)b(τ)b†(τ)

〉
−
〈
b†(0)b(0)b(τ)b†(τ)

〉
. (29)

Since the problem involves non-interacting bosons, the
steady state is Gaussian and we can expand the four-
field correlators using Wick’s theorem, which leads to
C̃zz(τ) = 0. Thus, at this order of approximation all ZZ
spectra are trivially zero. This is to be expected, since
σz correlations are quartic and the spin wave theory is
linear.

Temperature of individual bosonic modes

Building on the spin-wave theory introduced above,
we next discuss thermalization and the appearance of an
effective temperature from this linear theory. To under-
stand these effects, it is helpful to consider the contri-
bution of individual bosonic modes. From (17), (18) we
thus define the momentum-resolved fluctuation spectrum
and susceptibility:

Sxx(ω, k) =
κ

π
Q−1
k (ω)

[
Pk + ω2 + 2ηk(ηk − εk)

]
. (30)

χ′′xx(ω, k) =
2κω

π
Q−1
k (ω)(ηk − εk). (31)

Then the distribution function of an individual bosonic
k-mode:

Fxx(ω, k) =
Sxx(ω, k)

χ′′xx(ω, k)
=
ξ2
k + ω2 + κ2 + 2ηk(ηk − εk)

2ω(ηk − εk)
.

(32)
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Focusing on the frequency dependence of this expression,
we see it can be written in the form:

Fxx(ω, k) =
2Teff,xx,k + λxx,kω

2

ω
, (33)

where λxx,k = [2(ηk − εk)]−1, and the effective temper-
ature of an individual bosonic mode, defined from the
ω → 0 limit is:

Teff,xx,k =
κ2 + (ηk − εk)2

4(ηk − εk)
, (34)

where we have used the definition of ξ2
k = ε2k − η2

k.
From the above, we see that despite considering a lin-

earized (i.e. non-interacting) theory, a low energy ef-
fective temperature emerges for each individual k mode.
However, the functional form of Fxx(ω, k) does not show
a plateau around Fxx(ω, k) ' 1, as expected for an equi-
librium system, and as sometimes seen from the MPS
numerics for Fxx(ω). Instead |Fxx(ω, k)|−1 shows a peak
at ω = ω∗xx,k ≡

√
2Teff,xx,k/λxx,k =

√
κ2 + (ηk − εk)2,

with a peak height

|Fxx(ω∗xx,k, k)|−1 =
1√

8Teff,xx,kλxx,k
=

√
(ηk − εk)2

κ2 + (ηk − εk)2
.

One may see that as required, this peak value is always
less than one, and approaches one if damping is weak
compared the energy difference |ηk − εk|. While this mo-
mentum resolved distribution function does not show a
plateau, as seen in Fig. 2, a plateau does arise for the site-
local (i.e. momentum integrated) result. This site-local
distribution function can be expressed as a weighted aver-
age of distributions F (ω, k) of individual bosonic modes:

F (ω) =

∫ π
−π dk F (ω, k)χ′′(ω, k)∫ π

−π dk χ
′′(ω, k)

. (35)

Because the location of the peak for each mode k
differs, this weighted average shows a plateau aris-
ing from combining all these peaks, stretching over
a range of frequencies, set by the range of peak
frequencies, i.e.

√
κ2 + 4[g − (1−∆)]2 < ω∗xx,k <√

κ2 + 4[g − (1 + ∆)]2. Note that as such the location
of the plateau moves to higher frequencies as we increase
g, as seen in Fig. (2) of the ma text. Note also that the
plateau is always finite, and F (ω) ∝ ω at large enough
frequency.

As noted earlier, if we look at Y Y correlations in place
of XX, the only change is to replace ηk − εk → ηk +
εk in the above expressions, including in the density of
states χ′′(ω, k). Because of this change, one has both that
Teff,yy,k differs from Teff,xx,k, as well as the distribution
of occupied modes changing.

In the limit of large g, Eq. (34) becomes Teff,xx,k ≈
Teff,yy,k ≈ −g/2, independent of momentum k and the

operator being measured. Since this result is indepen-
dent of momentum, the local effective temperature from
Eq. (35) also approaches this value,

Teff ≈ −g/2. (36)

In Fig.(3) of the main text we show the extracted tem-
perature of the spin-wave theory for both σx and σy cor-
relators: at large g, where quasi-thermalization holds,
we see both temperatures approach this same value.
In the opposite limit, of small g, one may note that
ηk ± εk = 2(∆± 1) cos(k)± g can now pass through zero
for some real k, leading to a divergence of both Teff,k and
λk. This divergence is however integrable, giving a finite
form of F (ω) and the corresponding Teff, except as seen
at g = 0 in Fig.(3).

Correlations for the Ising limit

As noted earlier, the small excitation density limit can
be understood as resulting either from small ∆ or large
g. As such, this approximation should remain valid even
for the Ising limit, ∆ = 1, as long as g � 1. However,
at first appearance the above results are singular in the
limit ∆ = 1. This is in fact not the case as one may
readily check. For example, considering Ô = σ̂x, we see
that as ∆→ 1 the poles given Z are still given by θs1,s2
but the values of θs1,s2 become singular, specifically:

θs1,s2 =

{
−(κ+ s2iω)2/8g s1 = +1

−g/(1−∆) s1 = −1
.

Inserting this into the definition of Z, we find that of the
eight poles, four remain finite, while two tend to zero and
two to infinity. Pairs of poles at zero and infinity in fact
cancel, as long as the residue at the remaining poles is
finite. This can be checked to be true, with the residues
becoming αn = (ω2 + κ2)/16g2 for the finite poles. The
behavior in the limit ∆→ 1 is shown in Fig. 5.

0.0
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0 4 8 12
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)
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SW, g=5.0

-0.6

0.0

0 4 8 12

(b) 

χ"
(ω

)

ω
-1.0

0.0

0 4 8 12

(c) 

F(
ω

)-1

ω

FIG. 5. Correlation functions for ∆ = 1, comparing MPS
numerics (points) with spin wave calculations (lines). Panels
(a-c) show the spectrum of fluctuations S(ω), imaginary part
of response function χ′′(ω), and the inverse distribution func-
tion F (ω)−1 respectively. The results match well for g = 5.0,
but poorly for g = 1.0.

As seen in Fig. 5, the spin wave theory indeed accu-
rately captures the behavior at large g, but clearly fails
in the case g = 1.0, where it would not be expected to
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hold. As with the small ∆ results in the main text, we
see that the distribution function matches more accu-
rately than the fluctuation and response functions sepa-
rately. We may note that for ∆ = 1, there is never a true
plateau in the distribution function. This can be under-
stood from the fact that for ∆ = 1, εk−ηk = 2g, so both
Teff,xx,k = −(κ2 +4g2)/4g and λxx,k = −1/2g become in-
dependent of k, meaning that Fxx(ω, k) is also indepen-
dent of k, so the integrated version F (ω) follows the form

of Eq. (33), having a peak at ω∗ =
√
κ2 + 4g2 as is visible

in Fig. 5. Note however that for Y Y correlations the same
statement would not be true, as εk + ηk = 2g + 4 cos(k)
is k-dependent.

Fluctuation-dissipation relation in linear theories

It is notable that, as discussed above, the linearized the
spin-wave result predicts a low energy quasi-thermal dis-
tribution with a non-zero effective temperature for XX
and Y Y excitations. This is particularly notable in the
light of papers, e.g. Ford and O’Connell [62] which sug-
gest that the fluctuation dissipation theorem fails for a
Markovian dissipation of a bath, and one would expect to
find the effective F (ω) to be frequency independent, cor-
responding approximately to zero temperature. This sec-
tion discusses why the model we consider does not show
such behavior. Specifically, as already noted, the struc-
ture of distribution function is dependent on the mode
considered. If in place of the XX and Y Y correlations
we had directly considered correlations of the anihilation
operators, C̃bb†(τ) =

〈
b(0)b†(τ)

〉
, then we would have

found the distribution function Fbb†(ω) would be flat.
We first discuss this point, and why it is that XX and
Y Y distribution functions are not flat. Since Ref. [62]
also considers the analogue of XX correlations, we then
address further differences between the model discussed
there and our results.

We first discuss the observation that the distribution
function for correlators of annihilation and creation op-
erators generally leads to a flat distribution. A quantum
harmonic oscillator (with frequency Ω, and field oper-
ators b, b†) interacting with a bath of radiation modes

(with frequency ωk, field operators B†k, Bk for each mode)
via coupling strength is described by the Hamiltonian

H = Ωb†b+
∑
k

ωkB
†
kBk +

∑
k

[
gkbB

†
k + H.c.

]
. (37)

Here gk is the system-bath coupling strength. Using the
standard input-output formalism [61] in the Markovian
limit we derive Heisenberg-Langevin equation of motion

∂tb(t) = −iΩb(t)− κb(t) +
√

2κbin(t), (38)

where the input noise operator bin(t) is introduced by
coupling to Markovian bath. For a zero-temperature

bath there is only vacuum noise and the only non-zero
correlator is

〈
bin(t)b†in(t′)

〉
= δ(t − t′). Next, one can

obtain the steady-state solution (at t→∞):

b(t) =
√

2κ

∫ t

−∞
dt′e−iΩ(t−t′)−κ(t−t′)bin(t). (39)

The only non-vanishing two-time correlator then is

〈b(0)b†(τ)〉 = e−κ|τ |+iΩτ . (40)

Taking a Fourier transform of the symmetrized cor-
relator S̃bb†(τ) = 1

2

〈
{b(0), b†(τ)}

〉
= e−κ|τ |+iΩτ and

response function χ̃bb†(τ) = iθ(τ)
〈[
b(0), b†(τ)

]〉
=

iθ(τ) e−κ|τ |+iΩτ gives the fluctuation spectrum and sus-
ceptibility:

Sbb†(ω) = χ′′bb†(ω) =
2κ

(ω − Ω)2 + κ2
. (41)

Subsequently, one obtains a flat distribution spectrum for
b, b† modes, in contrast to the quasi-thermal distribution
of the XX and Y Y modes:

Fbb†(ω) =
Sbb†(ω)

χ′′
bb†

(ω)
= 1. (42)

Our spin-wave equations differs from the above deriva-
tion in that the spin-wave theory has anomalous terms
proportional to ∆. However, the derivation above can
be extended just as well to a linear theory with anoma-
lous terms since its Hamiltonian can be diagonalized eas-
ily using the Bogoliubov transformation [63]. The cru-
cial difference that occurs in the spin wave theory dis-
cussed above is our calculation of XX and Y Y correla-
tions, which mean fluctuation and dissipation terms in-
volve sums and differences of correlators 〈b(0)b†(τ)〉 and
〈b†(0)b(τ)〉. Once these are both considered, the single
mode functions results in Eq. (30–32) follow, giving a
frequency dependent result.

As noted earlier, the above result is notable in con-
nection to the argument by Ford and O’Connell [62]
that quantum regression can never give a thermal spec-
trum. The problem considered there is similar to ours
in that there are anomalous terms (since no rotating-
wave approximation is made in the system bath cou-
pling), and the correlations considered are the XX cor-
relations. However, there is a crucial difference in that
Ref. [62] considers Ohmic rather than Markovian dissi-
pation. This difference leads to the different conclusions
of the previous section.

TENSOR NETWORK APPROACH FOR
TWO-TIME CORRELATIONS

In this section, we describe the tensor network method
for computing two-time correlations in open quantum
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FIG. 6. Tensor network used to evaluate two-time correla-
tions, using boundary eigenvectors (orange) for calculating
two-time correlations under non-unitary Liouvillian propaga-
tor.

systems in the thermodynamic limit. We use quantum re-
gression to calculate two-time correlations Eq. (43), start-
ing from the NESS density matrix ρSS , represented by
a translationally invariant infinite MPS that was previ-
ously computed using infinite TEBD algorithm [54, 55].〈

O
(j)
2 (t)O

(i)
1 (0)

〉
= Tr

[
O

(j)
2 etLO

(i)
1 ρss

]
. (43)

For a finite size lattice, one could still directly use TEBD
algorithm to perform the time evolution in (43). How-
ever, such direct propagation is incompatible with infinite
TEBD: application of a local operator O1 to ρSS breaks
translational invariance. A naive solution would be to
use a finite size extrapolation, which is prone to bound-
ary and finite-size effects. In particular, the finite lattice
size would restrict the extent of correlations in both space
and time, as excitations will be reflected back from the
boundaries, and the simulation will be no longer valid at
later times [56]. Such simulation would also inccur an
additional computational cost that scales linearly with
the system size which will be inefficient for large lattices
needed to approximate the thermodynamic limit, in com-
parison to only two sites required in the infinite TEBD.
Nonetheless, such a method has been recently used to
calculate aging dynamics in the XXZ model [50].

Fortunately, it is possible to avoid these issues that
arise due to finite size altogether. A method to compute
two-time correlations in an infinite system directly (i.e.
without resorting to a finite size extrapolation) has been
proposed by Bañuls et al [57] for unitary evolution in
isolated systems. In our work, we extend this approach

to open quantum systems whose dynamics is governed by
the quantum master equation for density matrices. We
provide a brief description of the algorithm below.

The idea is to construct a network representing the en-
tire time evolution, instead of evolving the MPS in time
step by step. We start from an infinite MPS represent-
ing vectorized NESS density matrix |ρss〉 and apply the

first operator O
(i)
1 (0) at the initial time t = 0. Then, for

every time evolution step we insert a propagator MPO.
After repeating this for the required number of time steps

we apply the second operator O
(j)
2 (t) at the final time t.

Taking the trace at the final time removes the dangling
physical dimension at each site of the last MPO propaga-
tor. This procedure produces a 2D tensor network that
is infinite along the spatial axis but finite along the time
axis, giving an unnormalized two-time two-point correla-
tor:

〈
O

(j)
2 (t)O

(i)
1 (0)

〉
∝ TN→∞ TO1

T |i−j|−1 TO2
TN→∞,

(44)
where T = is a transfer matrix of the evolved density
matrix, and TO1,2 are transfer matrices containing an ap-
plication of operators O1,2 at the initial and final times
at lattice sites i, j, as shown in Fig. 1(b) of the main
text.

Since the network is translationally invariant, T is the
same on every site (except at the sites where the op-
erators are applied) and we may effectively replace the
semi-infinite lattices, to the left and right of the sites
where Ô1 and Ô2 act, by the left and right eigenvec-
tors of T corresponding to its largest eigenvalue λ since
limN→∞ TN = λN |R〉〈L|. In practice, we compute an
MPS approximation to the eigenvectors |R〉, 〈L| by us-
ing the MPS-MPO power method. We multiply an ini-
tial arbitrary MPS (oriented along the time axis) by T
(represented as an MPO along the time axis) a suffi-
cient number of times until it converges to |R〉, 〈L| for
the right- and left-multiplication respectively. We trun-
cate the MPS bonds after each multiplication using the
method described in [64], performing truncation along
the time axis. Once we have calculated |R〉 and 〈L|,
the resulting network is finite along both space and time
axes. It can then be easily contracted using MPO-MPS
and MPS-MPS multiplications [54, 64] to give any two-
time two-point correlator:〈

O
(j)
2 (t)O

(i)
1 (0)

〉
=

〈
L|TO1

T |i−j|−1TO2
|R
〉

λ|i−j|+1
, (45)

normalized by trace Tr(ρ) =
〈
L|T |i−j|+1|R

〉
= λ|i−j|+1.
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