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TIME-DISPERSIVE BEHAVIOUR AS A FEATURE OF1

CRITICAL-CONTRAST MEDIA∗2

KIRILL CHEREDNICHENKO† , YULIA ERSHOVA‡ , AND ALEXANDER V. KISELEV§3

Abstract. Motivated by the urgent need to attribute a rigorous mathematical meaning to the4
term “metamaterial”, we propose a novel approach to the homogenisation of critical-contrast com-5
posites. This is based on the asymptotic analysis of the Dirichlet-to-Neumann map on the interface6
between different components (“stiff” and “soft”) of the medium, which leads to an asymptotic ap-7
proximation of eigenmodes. This allows us to see that the presence of the soft component makes8
the stiff one behave as a class of time-dispersive media. By an inversion of this argument, we also9
offer a recipe for the construction of such media with prescribed dispersive properties from periodic10
composites.11

Key words. Homogenisation, Effective properties, Operators, Time-dispersive media, Asymp-12
totics13

AMS subject classifications. 34E13, 34E05, 35P20, 47A20, 81Q3514

1. Introduction.15

1.1. Physics context and motivation for quantitative analysis. Under-16

standing the dependence of material properties of continuous media on frequency is a17

natural and practically relevant task, stemming from the theoretical and experimental18

studies of “metamaterials”, e.g. materials that exhibit negative refraction of propa-19

gating wave packets. Indeed, it was noted as early as in the pioneering work [37], that20

negative refraction is only possible under the assumption of frequency dispersion, i.e.21

when the material parameters (permittivity and permeability in electromagnetism,22

elastic moduli and mass density in acoustics) are not only frequency-dependent, but23

also become negative in certain frequency bands.24

Independently of the search for metamaterials, in the course of the development of25

the theory of electromagnetism, it has transpired in modern physics that the Maxwell26

equations need to be considered with time-nonlocal “memory” terms, see e.g. [24,27

Section 7.10] and also [7], [34]. The related generalised system (in the absence of28

charges and currents in the domain of interest) has the form29

(1.1) ρ∂tu+

∫ t

−∞
a(t− τ)u(τ)dτ + iAu = 0, A =

(
0 i curl

−i curl 0

)
,30

where u represents the (time-dependent) electromagnetic field (H,E)>, the matrix ρ31
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2 K. CHEREDNICHENKO, YU. ERSHOVA, AND A. V. KISELEV

depends on the electric permittivity and magnetic permeability, and a is a matrix-32

valued “susceptibility” operator, set to zero in the more basic form of the system.133

Applying the Fourier transform in time t to (1.1), an equation in the frequency34

domain is obtained:35

(1.2)
(
iωρ+ â(ω)

)
û(·, ω) + iAû(·, ω) = 0,36

where û is the Fourier transform of u, and ω is the frequency. Equation (1.2) is37

often interpreted as a “non-classical” version of Maxwell’s system of equations, where38

the permittivity and/or permeability are frequency-dependent. The existence of such39

media (commonly known as Lorentz materials) and the analysis of their properties go40

back a few decades in time and has also attracted considerable interest quite recently,41

e.g. in the study of plasma in tokamaks, see [15] and references therein.42

Simultaneously with the above developments in the physics literature, recent43

mathematical evidence, see [38], [6], suggests that such novel material behaviour,44

which is incompatible (see [5, 10, 11]) with the mathematical assumption of uniform45

ellipticity of the corresponding differential operators (such as A in (1.1)), may be ex-46

plained by means of the asymptotic analysis (“homogenisation”) of operator families47

with rapidly oscillating, and non-uniformly elliptic, coefficients.48

It is therefore reasonable to ask the question of whether frequency dispersion49

laws such as pertaining to (1.2), which in turn may provide one with metamaterial50

behaviour in appropriate frequency intervals [37], can be derived by some process of51

homogenisation of composite media with contrast (or, as we shall suggest below, any52

other miscroscopic degeneracies resonating with the macroscopic wavefields).53

1.2. Basis for the mathematical framework. If one were to look for an54

asymptotic expansion of eigenmodes of a high-contrast composite, restricted to the55

soft component of the medium, one would notice (see, e.g., [9]) that their leading-56

order terms can be understood as the eigenmodes of boundary-value problems with57

impedance (i.e., frequency-dependent) boundary conditions. Such problems have been58

considered in the past (see, e.g., [32]), motivated by the analysis of the wave equation.59

On the other hand, by the celebrated analysis [29, 30] of the so-called generalised60

resolvents, one knows that a problem of this type admits a conservative dilation,61

which is constructed by adding the hidden degrees of freedom. In fact, this latter62

observation has been used in [19, 20] in devising a conservative “extension” of a63

time-dispersive system of the type (1.1). In the present paper we argue that the64

aforementioned conservative dilation is precisely the asymptotic model of the original65

high-contrast composite. Furthermore, the leading-order terms of its eigenmodes66

restricted to the stiff component are solutions to a problem of the type (1.2) with67

frequency dispersion. They can be easily expressed in terms of the above impedance68

boundary value problems, thus yielding an explicit description of the link between the69

resonant soft inclusions and the macroscopic time-dispersive properties. Therefore,70

models of continuous media with frequency-dependent effective boundary conditions71

can be seen as natural building blocks for media with frequency dispersion.72

It is of a considerable value to relate these ideas to the earlier works [26, 27, 18],73

where similar limiting impedance-type problems are obtained in the spectral analy-74

sis of “thin” periodic structures, converging to metric graphs. Here, one obtains the75

1From the rigorous operator-theoretic point of view, A in (1.1) is treated as a self-adjoint operator
in a Hilbert space H of functions of x ∈ Ω, for example H = L2(Ω;R6), where Ω is the part of the
space occupied by the medium.

This manuscript is for review purposes only.



TIME-DISPERSIVE DEHAVIOUR AS A FEATURE OF CRITICAL-CONTRAST MEDIA 3

aforementioned impedance setup (see Fig. 1) on the limiting graph as the asymptotics76

of the eigenmodes of a Neumann Laplacian, when the “thickness” of the structure van-77

ishes for one particular (resonant) scaling between the “edge” and “vertex” volumes78

of the structure.

Frequency-dependent BCs

Fig. 1. An example of a resonant thin network. Edge volumes are asymptotically of
the same order as vertex volumes. The stiffness of the material of the structure is of the
order period-squared.

79

It is instructive to point out that the results of [9] establish a thrilling relationship80

between the analysis of thin structures and the homogenisation theory of high-contrast81

composites. Namely, the paper [9] deals with the case of the so-called superlattices

Soft component

Stiff component

Frequency-dependent BCs

Fig. 2. High-contrast superlattice. The problem for a superlattice is reduced to a one-
dimensional high-contrast problem. This is asymptotically equivalent to an impedance-type
problem on the soft component.

82
[36] with high contrast, see Fig. 2. While simple to set up, the related system of83

ordinary differential equations (subject to the appropriate conditions of continuity84

This manuscript is for review purposes only.



4 K. CHEREDNICHENKO, YU. ERSHOVA, AND A. V. KISELEV

of fields and fluxes) is nontrivial from the point of view of quantitative analysis, see85

also [8]. It is shown that the asymptotic model for this system is precisely the one86

derived in [26, 27, 18] in the case of a resonant thin structure converging to a chain-87

graph, see Fig. 1. As we shall argue in the present article, such superlattices (and88

the corresponding chain-graphs) offer a simple prototype for a metamaterial, via the89

mathematical approach outlined above.90

The described result suggests that thin networks might acquire the same asymp-91

totic properties as those of the corresponding high-contrast composites. It is therefore92

a viable conjecture, that the metamaterial properties of a medium can be attained via93

a version of geometric contrast instead of relying upon the contrast between material94

components. This is especially promising when the required material contrast cannot95

be guaranteed, as is commonly the case in elasticity and electromagnetism. The cor-96

responding thin networks on the other hand have been made available in the study of97

graphenes and related areas. This subject will be further pursued in a forthcoming98

publication.99

The above exposition vindicates the value of quantum graph models in the analysis100

of high-contrast composites, where we follow the well-established convention, see [3],101

to use the term quantum graph for an ordinary differential operator of second order102

defined on a metric graph. These graph-based models are seen as natural limits of103

composite thin networks consisting of a large number of channels (for, say, acoustic or104

electromagnetic waves), where a combination of high-contrast and rapid oscillations105

becomes increasingly taxing at small scales and often leads to impractical numerical106

costs. For channels with low cross-section-to-length ratios, the material response of107

such a system, see Fig. 3, is closely approximated by a quantum graph as described108

above. Systems of this type are a particular example of high-contrast composites and

Soft component

Stiff component

Fig. 3. Thin network. An example of a high-contrast periodic network. Stiff channels
are in grey, soft channels are in blue.

109

thus, as explained above, they possess resonant properties at the miscroscale, which, in110

turn, leads to macroscopic dispersion. At a very crude level, this is similar to the way111

in which particle motion on the atomic scale leads to Lorentz-type electromagnetism,112

see e.g. [31, Chapter 1] for the analysis of a related model of the damped harmonic113

oscillator.114

Furthermore, periodic quantum graphs with a vanishing period can serve as realis-115

tic explicitly solvable ODE models for multidimensional continuous media, as demon-116

strated2, e.g., in [28], where an h-periodic cubic lattice, for small positive h, is shown117

to be close (including the scattering properties) to the Laplacian in Rd. More involved118

2We remark, that it was Professor Pavlov who had pioneered the mathematical study of quantum
graphs, see [21].

This manuscript is for review purposes only.



TIME-DISPERSIVE DEHAVIOUR AS A FEATURE OF CRITICAL-CONTRAST MEDIA 5

periodic graphs can be used to model non-trivial media, including anisotropic ones.119

As a particular realistic example of a thin network with high contrast, consider120

the problem of modelling acoustic wave propagation in a system of channels Ωε,δ, ε-121

periodic in one direction, of thickness δ � ε, and with contrasting material properties122

(cf. Fig. 3). To simplify the presentation, we assume the antiplane shear wave123

polarisation (the so called S-waves), which leads to a scalar wave equation for the124

only non-vanishing component W, of the form125

Wtt −∇x · (aε(x)∇xW ) = 0, u = W (x, t), x, t ∈ R,126

where the coefficient aε takes values one and ε2 in different channels of the ε-periodic127

structure. Looking for time-harmonic solutions W (x, t) = U(x) exp(iωt), ω > 0, one128

arrives at the spectral problem129

(1.3) −∇ · (aε∇U) = ω2U.130

As we argue below, the behaviour of (1.3) is close, in a quantitatively controlled way131

as ε→ 0, to that of an “effective medium” on R described by an equation of the form132

(1.4) − U ′′ = β(ω)U,133

for an appropriate function β = β(ω), explicitly given in terms of the material pa-134

rameters aε and the topology of the original system of channels.135

The goal of the present paper is to derive an explicit general formula for the136

function β in (1.4), in terms of the topology of the graph representing the original137

domain of wave propagation, which is no longer restricted to the example shown in138

Fig. 3. As noted above, the presence of both rapid oscillations and high contrast139

make the task mathematically nontrivial. In our approach, which is new, we call140

upon some recently developed machinery in the operator-theoretic analysis of abstract141

boundary-value problems (which in our case take the form of boundary-value problems142

for differential operators of interest). In the subsequent work [10] we develop the143

corresponding analysis for the multidimensional case, which is neither included nor144

an extension of the analysis for graphs presented in this article. However, it is based145

on the same set of mathematical ideas, which makes us hope that the foundations for146

(1.4) in the case of PDEs is clear from what follows.147

Unlike the approach aimed at derivation of norm-resolvent convergence, which we148

adopt in [11, 10], in the present paper, having the convenience of the more physically149

inclined reader in mind, we systematically treat the subject from the point of view of150

spectral problems and, in particular, of the asymptotic analysis of eigenmodes. We151

refer the interested reader to the aforementioned papers, where further mathematical152

details, which we think are out of scope here, are contained.153

The present paper can be viewed as following in the footsteps of [9] in that it154

relies upon the analysis of the fibre representations (obtained via the Floquet-Gelfand155

transform) of the original periodic operator. This is carried out using the bound-156

ary triples theory (see, e.g., [22, 14]), which generalises the classical methods based157

on the Weyl-Titchmarsh m-coefficient, applied to self-adjoint extensions of symmet-158

ric operators. This allows us to develop a novel approach to the homogenisation of159

a class of periodic high-contrast problems on “weighted quantum graphs”, i.e. one-160

dimensional versions of thin composite media where the material parameters on one of161

the components are much lower than on the others and scaled in a “critical” way with162

respect to the period of the composite. We reiterate that the idea that such media163

This manuscript is for review purposes only.



6 K. CHEREDNICHENKO, YU. ERSHOVA, AND A. V. KISELEV

can be viewed as idealised models of thin periodic critical-contrast networks has been164

explored in the mathematics literature, see [27], [18], [39] and elsewhere. The back-165

bone of our approach is the study of eigenfunctions of the problem restricted to one166

(“soft”) component of the composite. After the asymptotics for these is obtained, it167

proves possible to reconstruct the “complete” eigenfunctions, where we implicitly rely168

upon the classical results of operator theory, in particular dealing with out-of-space169

self-adjoint extensions of symmetric operators and associated generalised resolvents.170

1.3. Physics interpretation and relevance to metamaterials. Our argu-171

ment leads to the understanding of the phenomenon of critical-contrast homogeni-172

sation limit as a manifestation of a frequency-converting device: if one restricts the173

eigenfunctions to the “stiff” component, they prove to be close to those of the medium174

where the soft component has been replaced with voids but correspond to non-trivially175

shifted eigenfrequencies. This is precisely what one would expect in the setting of176

time-dispersive media after the passage to the frequency domain, cf. (1.2).177

From the physics perspective, this link between homogenisation and frequency178

conversion can be viewed as a justification of an “asymptotic equivalence” between179

eigenvalue problems for periodic composites with high contrast and wave propagation180

problems with nonlinear dependence on the spectral parameter, which in the frequency181

domain characterise “time-dispersive media”, as in (1.1), see also [34, 35, 19, 20].182

As we mention above, the phenomenon of frequency dispersion emerging as a183

result of homogenisation has been observed in the two-scale formulation applied to184

critical-contrast PDEs in, e.g., [38, 6]. Our approach goes beyond the results of [38, 6]185

in several ways. First, being based on an explicit asymptotic analysis of operators,186

using the recent developments in the theory of abstract boundary-value problems (see187

e.g. [33]), it provides an explicit procedure for recovering the dispersion relation and188

does not draw upon the well-known two-scale asymptotic techniques. Second, the189

convergence statements are obtained in the much stronger operator-norm topology.190

Finally, our approach is not restricted to topologies where the stiff component forms191

a connected set, see [11] for explicit dispersion formulae derived in such setups.192

The approach we develop in the present paper offers a new perspective on frequen-193

cy-dispersive (time non-local) continuous media, in the sense that it provides a recipe194

for the construction of such media with prescribed dispersive properties from periodic195

composites whose individual components are non-dispersive. It has been known that196

time-dispersive media [19] in the frequency domain can be realised as a “restriction”197

of a conservative Hamiltonian defined on a space which adds the “hidden” degrees of198

freedom.3199

In summary, the existing belief in the engineering and physics literature that time-200

dispersive properties often arise as the result of complex microstructure of composites201

suggests to look for a rather concrete class of such conservative Hamiltonian dilations,202

namely, those pertaining to differential operators on composites with critical contrast.203

Our results can be viewed as laying foundations for rigorously solving this problem.204

2. Infinite-graph setup. Consider a graph G∞, periodic in one direction, so
that G∞ + ` = G∞, where ` is a fixed vector, which defines the graph axis. Let the
periodicity cell G be a finite compact graph of total length ε ∈ (0, 1), and denote by

3 This is based on the observation that the equation (1.2) can be written in the form of an
eigenvalue problem AU = ωU, U ∈ H, for a suitable self-adjoint “dilation” A of the operator A, so
that A acts in a space H ⊃ H. The vector field U has a natural physical interpretation in terms of
additional electromagnetic field variables, the so-called polarisation P and magnetisation M, so that
the full (12-dimensional) field vector is (H,E, P,M)>.

This manuscript is for review purposes only.



TIME-DISPERSIVE DEHAVIOUR AS A FEATURE OF CRITICAL-CONTRAST MEDIA 7

ej , j = 1, 2, . . . n, n ∈ N, its edges. For each j = 1, 2, . . . , n, we identify ej with the
interval [0, εlj ], where εlj is the length of ej . We associate with the graph G∞ the
Hilbert space

L2(G∞) :=
⊕
Z

n⊕
j=1

L2(0, εlj).

Consider a sequence of operators Aε, ε > 0, in L2(G∞), generated by second-order205

differential expressions206

(2.1) − d

dx

((
aε
)2 d
dx

)
,207

with positive G-periodic coefficients (aε)2 defined on G∞, with the domain dom(Aε)208

that describes the coupling conditions at the vertices of G∞ :209

(2.2)

dom(Aε) =

{
u ∈

⊕
e∈G∞

W 2,2
(
e)
∣∣∣ u continuous,

∑
e3V

σe(a
ε)2u′(V ) = 0 ∀ V ∈ G∞

}
,210

In the formula (2.2) the summation is carried out over the edges e sharing the vertex211

V, the coefficient (aε)2 in the vertex condition is calculated on the edge e, and σe = −1212

or σe = 1 for e incoming or outgoing for V, respectively. The matching conditions (2.2)213

represent the combined conditions of continuity of the function and of vanishing sums214

of its co-normal derivatives at all vertices (i.e. the so-called Kirchhoff conditions).215

3. Gelfand transform. We seek to apply the one-dimensional Gelfand trans-216

form217

(3.1) v(x) =

√
ε

2π

∑
n∈Z

u(x+ εn)e−it(x+εn).218

to the operator Aε defined on G∞ in order to obtain the direct fibre integral for the219

operator Aε :220

(3.2) Aε =

∫
⊕
Aεtdt.221

In order to do achieve this goal, we first note that the geometry of G∞ is encoded in222

the matching conditions (2.2) only. This opens up a possibility to embed the graph223

G∞ into R1 by rearranging it edges as consecutive segments of the real line (leading224

to a one-dimensional ε-periodic chain graph). In doing so we drop the customary225

practice of drawing graphs in a way reflecting matching conditions (i.e., so that these226

are local relative to graph vertices). The above embedding leads to rather complex227

non-local matching conditions, but, on the positive side, allows us to use the Gelfand228

transform (3.1).229

The Gelfand transform leads to periodic conditions on the boundary of the cell230

G and thus in our case identifies the “left” boundary vertices of the graph G with231

their translations by `, which results in a modified graph Ĝ. Apart from this, the232

matching conditions for the internal vertices of G admit the same form as for Aε,233

except for the fact that the Kirchhoff matching is replaced by a Datta-Das Sarma one234

(the latter can be viewed as a weighted Kirchhoff), see below in (3.4). Unimodular235

weights appearing in Datta-Das Sarma conditions are precisely due to the non-locality236

of matching conditions mentioned above for the embedding of G∞ into R1.237

This manuscript is for review purposes only.



8 K. CHEREDNICHENKO, YU. ERSHOVA, AND A. V. KISELEV

The image of the Gelfand transform is described as follows. There exists a uni-238

modular list {wV (e)}e3V , cf. [11], defined at each vertex V of Ĝ as a finite collection239

of values corresponding to the edges adjacent to V . For each t ∈ [−π/ε, π/ε), the240

fibre operator Aεt is generated by the differential expression241

(3.3)

(
1

i

d

dx
+ t

)
(aε)2

(
1

i

d

dx
+ t

)
242

on the domain243
244

(3.4) dom(Aεt ) =

{
v ∈

⊕
e∈G

W 2,2
(
e)
∣∣∣245

wV (e)v|e(V ) = wV (e′)v|e′(V ) for all e, e′ adjacent to V,246 ∑
e3V

∂(t)v(V ) = 0 for each vertex V

}
,247

248

where ∂(t)v(V ) is the weighted “co-derivative” σewV (e)(aε)2(v′ + itv) of the function249

v on the edge e, calculated at V.250

4. Boundary triples for extensions of symmetric operators. In the analy-251

sis of the asymptotic behaviour of the fibres Aεt of the original operator Aε representing252

the quantum graph, we employ the framework of boundary triples for a symmetric253

operator with equal deficiency indices for the description of a class of its extensions.254

Part of the toolbox of the theory of boundary triples is the generalisation of the clas-255

sical Weyl-Titchmarsh m-function to the case of a matrix (finite deficiency indices)256

and operators (infinite deficiency indices).257

The boundary triples theory is a very convenient toolbox for dealing with exten-258

sions of linear operators, originating in the works of M. G. Krĕın. In essence, it is an259

operator-theoretic interpretation of the second Green’s identity, see (4.1) below. As260

such, it allows one to pass over from the consideration of functions in Hilbert spaces to261

a formulation in which one deals with objects in the boundary spaces (such as traces262

of functions and their normal derivatives), which in the context of quantum graphs263

are finite-dimensional. Furthermore, it allows one to use explicit concise formulae for264

the resolvents of operators under scrutiny and other related objects. Thus it facili-265

tates the analysis by expressing the familiar, commonly used in this area, objects in266

a concise way.267

Definition 4.1 ([22, 25, 14]). Suppose that Amax is the adjoint to a densely de-268

fined symmetric operator on a separable Hilbert space H and let Γ0, Γ1 be linear269

mappings of dom(Amax) ⊂ H to a separable Hilbert space H.270

A. The triple (H,Γ0,Γ1) is called a boundary triple for the operator Amax if the271

following two conditions hold:272

1. For all u, v ∈ dom(Amax) one has the second Green’s identity273

(4.1) 〈Amaxu, v〉H − 〈u,Amaxv〉H = 〈Γ1u,Γ0v〉H − 〈Γ0u,Γ1v〉H.274

2. The mapping dom(Amax) 3 u 7−→ (Γ0u,Γ1u) ∈ H ⊕H is onto.275

B. A restriction AB of the operator Amax such that A∗max =: Amin ⊂ AB ⊂ Amax276

is called almost solvable if there exists a boundary triple (H,Γ0,Γ1) for Amax and a277

bounded linear operator B defined on H such that278

dom(AB) =
{
u ∈ dom(Amax) : Γ1u = BΓ0u

}
.279
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TIME-DISPERSIVE DEHAVIOUR AS A FEATURE OF CRITICAL-CONTRAST MEDIA 9

C. The operator-valued Herglotz4 function M = M(z), defined by280

(4.2) M(z)Γ0uz = Γ1uz, uz ∈ ker(Amax − z), z ∈ C+ ∪ C−,281

is called the Weyl-Titchmarsh M -function of the operator Amax with respect to the282

corresponding boundary triple.283

Suppose AB be a self-adjoint almost solvable restriction of Amax with compact284

resolvent. Then M(z) is analytic on the real line away from the eigenvalues of A∞,285

where A∞ is the restriction of Amax to domain dom(A∞) = dom(Amax) ∩ ker(Γ0). It286

is a key observation for what follows that u ∈ dom(AB) is an eigenvector of AB with287

eigenvalue z0 ∈ C \ spec(A∞) if and only if288

(4.3)
(
M(z0)−B

)
Γ0u = 0.289

In the next section we utilise a particular operator Amax and a boundary triple290

(H,Γ0,Γ1), which we use to analyse the resolvents of the operators on quantum graphs291

introduced in Sections 2, 3.292

5. Graph with high contrast: prototype for time-dispersive media. In293

what follows we develop a general approach to the analysis of weighted quantum294

graphs with critical contrast. We demonstrate it on one particular example, which,295

as we show in Appendix A, exhibits all the properties of the generic case. We have296

thus chosen to present the analysis in the terms that are immediately applicable297

to the general case and, whenever advisable, we provide statements that carry over298

without modifications. Speaking of a “general” case, we imply an operator of the299

class introduced in Section 2, where some of the edges esoft (“soft” edges) of the cell300

graph G carry the weight aε = ε, with the remaining edges carrying weights of order301

1 uniformly in ε.302

The rationale of the present section is in fact extendable to an even more general303

setup (including the one of periodic high-contrast PDEs), which we treat in the paper304

[10]. However, in the present work we consider a rather simplified model, in view305

of keeping technicalities to a bare minimum and thus hopefully making the matter306

transparent to the reader.307

Consider the graph G∞ with the periodicity cell G shown in Figure 4. The

Fig. 4. Periodicity cell G. The intervals of lengths εl1 and εl3 are “stiff”, i.e. they
carry the weights a2

1 and a2
3, respectively, whereas the interval of length εl2 is “soft”, with

weight ε2.

308

Gelfand transform, see Section 3, applied to this graph, yields the graph Ĝ of Figure309

5. In the present section we show that there exists a boundary triple such that Aεt is310

an almost solvable extension of the corresponding Amin, and the M -function (which311

is in our case a matrix-valued function; for convenience, it is written as a function of312

k :=
√
z, with the branch chosen so that =k > 0) of Amax is given by313

(5.1) M(k, ε, t) = kM̃ stiff(κ, τ) + εM̃ soft(k, τ), κ := εk, τ := εt,314

4For a definition and properties of Herglotz functions, see e.g. [31].
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10 K. CHEREDNICHENKO, YU. ERSHOVA, AND A. V. KISELEV

Fig. 5. The graph Ĝ. The left and right boundary vertices have been identified.

where315

(5.2) M̃ stiff(κ, τ) :=



−a1 cot
κl1
a1
− a3 cot

κl3
a3

a1
e−i(l1+l3)τ

sin
κl1
a1

+ a3
eil2τ

sin
κl3
a3

a1
ei(l1+l3)τ

sin
κl1
a1

+ a3
e−il2τ

sin
κl3
a3

−a1 cot
κl1
a1
− a3 cot

κl3
a3


,316

317

(5.3) M̃ soft(k, τ) := k


− cot kl2

eil2τ

sin kl2

e−il2τ

sin kl2
− cot kl2

 ,318

(Note that for all τ ∈ [−π, π) the function M̃ soft(·, τ) is meromorphic and regular at319

zero.)320

Essentially, the claim made is a straightforward consequence of the double inte-321

gration by parts, followed by a simple rearrangement of terms. In the rest of this322

section we sketch the construction applicable in the general case, which in particular323

yields the result for the model graph considered. Under the definitions of Section324

4, the maximal operator Amax = A∗min is defined by the same differential expression325

(3.3) on the domain326

327

(5.4) dom(Amax) =

{
v ∈

⊕
e∈Ĝ

W 2,2
(
e)
∣∣∣ wV (e)v|e(V ) = wV (e′)v|e′(V )328

for all e, e′ adjacent to V, ∀V ∈ Ĝ
}
.329

330

In what follows we use the triple (Cm,Γ0,Γ1), where m is the number of vertices in331

the graph Ĝ, and332

(5.5) Γ0v =
{
v(V )

}
V
, Γ1v =

{∑
e3V

∂(t)v(V )
}
V
, v ∈ dom(Amax),333
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where v(V ) is the common value of wV (e)v|e(V ) for all edges e adjacent to V, and334

∂(t)v(V ) is defined at the end of Section 3, see also (5.6) below.335

By definition of the M -matrix one has Γ1v = MΓ0v, for functions v ∈ ker(Amax−
z), which have the form

v(x) = exp(−ixt)

{
Ae exp

(
− ikx

aε

)
+Be exp

(
ikx

aε

)}
, x ∈ e, Ae, Be ∈ C,

where k :=
√
z, and the co-derivative is given by336

(5.6)

(aε)2(v′(x) + itv(x)) = ikaε exp(−ixt)

{
−Ae exp

(
− ikx

aε

)
+Be exp

(
ikx

aε

)}
, x ∈ e,337

For the vertex V and for every “Dirichlet data” vector Γ0v one of whose entries is
unity and the other entries vanish, the “Neumann data” vector Γ1v gives the column
of the M -matrix corresponding to V. The elements of Γ1v corresponding to diagonal
and off-diagonal entries of M(z) are, respectively,

−
∑
e∈V

kaε cot

(
kεle
aε

)
,

∑
e∈V

kaεw̃V (e)

(
sin

kεle
aε

)−1

,

where {w̃V (e)}e3V is a unimodular list uniquely determined by the list {wV (e)}e3V .338

The resulting M -matrix is constructed from these columns over all vertices V.339

In particular, for the example of Fig. 4–5, we have the following: the boundary340

space H pertaining to the graph Ĝ is H = C2. The unimodular list functions wV1 and341

wV2 are as follows, denoting by e(1), e(3) the stiff edges and by e(2) the soft edge:342 {
wV1(e(j))

}3

j=1
=
{

1, 1, eiτ(l2+l3)
}
,
{
wV2(e(j))

}3

j=1
=
{
eiτl3 , 1, 1

}
,343

and similarly344 {
w̃V1

(e(j))
}3

j=1
=
{
e−iτ(l1+l3), eiτl2 , eiτl2

}
,{

w̃V2
(e(j))

}3

j=1
=
{
eiτ(l1+l3), e−iτl2 , e−iτl2

}
,

345

yielding the formulae (5.2), (5.3).346

6. Asymptotic diagonalisation of the M-matrix and the eigenvector347

asymptotics. The present section is the centrepiece of our approach. The major348

difficulty to overcome is he fact that the operator Aεt entangles in a non-trivial way349

the stiff and soft components of the medium. On the level of the analysis of the350

operator itself this problem admits no obvious solution, unless one is prepared to in-351

troduce a two-scale asymptotic ansatz. On the other hand, the M -matrix calculated352

above will be shown to be additive with respect to the decomposition of the medium353

(hence the notation M soft and M stiff). Thus, via the representation (5.1), it proves354

possible to use the asymptotic expansion of M stiff , which is readily available, to re-355

cover the asymptotics of eigenmodes, restricted to the soft component. This way, the356

homogenisation task at hand can be viewed as a version of the perturbation analysis357

in the boundary space pertaining to the problem.358

In the example considered (and in the general case in view of Appendix A) it359

follows from (4.3), (5.1) that uε is an eigenfunction of the operator Aεt , see (3.3)–360

(3.4), if and only if361

(6.1) M softΓ0uε = −M stiffΓ0uε, M soft := εM̃ soft, M stiff := kM̃ stiff .362
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12 K. CHEREDNICHENKO, YU. ERSHOVA, AND A. V. KISELEV

In writing (6.1), we assume, without loss of generality, that the eigenvalue zε = k2363

corresponding to the eigenfunction uε does not belong to the spectrum of the Dirichlet364

decoupling At∞, defined according to the general theory of Section 4 for the operators365

we introduce in Section 3. It follows from (5.2)–(5.3) that in any compact subset of366

C, for small enough ε, this spectrum coincides with the ε-independent set of poles367

of the matrix M̃ soft For this reason we can safely work under the assumption that368

the eigenvalues zε do not belong to the spectrum of the Dirichlet operator on the369

soft inclusion. This assumption ensures that the condition z0 ∈ C \ spec(A∞) for the370

validity of (4.3) is satisfied in both cases: for the M -matrix of the operator Aεt , where371

B = 0, and for the M -matrix of the operator on the soft component represented by372

(6.1), where the role of B is played by the matrix −M stiff .373

We proceed by observing that the matrices M soft and M stiff in (6.1) can be treated374

as M -matrices of certain triples on their own. In particular, it will be instrumental in375

what follows to attribute this meaning to M soft. To this end, consider the decompo-376

sition of the graph Ĝ into its “soft” Gsoft and “stiff” Gstiff components (each of these377

is treated as a graph, so that Ĝ = Gsoft ∪ Gstiff) and the operator Asoft
max defined by378

(3.3), (5.4), with Ĝ replaced by Gsoft. The boundary space for Asoft
max can be defined379

as H, the same as the boundary space for the operator Amax (again by Appendix A380

in the general case). The boundary operators Γsoft
j , j = 0, 1, are defined as in (5.5) for381

the graph Gsoft. Then, by inspection, the M -matrix for the operator Asoft
max coincides382

with M soft (see [12] for further details).383

For each v ∈ dom(Amax), define ṽ to be the restriction of v to the soft component384

Gsoft, so that clearly ṽ ∈ dom(Asoft
max). We notice that (6.1) implies, in particular, that385

(6.2) M softΓsoft
0 ũε = BεΓsoft

0 ũε, Bε := −M stiff .386

Furthermore, since M soft is the M -matrix for the pair (Γsoft
0 ,Γsoft

1 ), one has387

M softΓsoft
0 ũε = Γsoft

1 ũε,388

so the condition (6.2) takes a form similar to (4.2):389

(6.3) Γsoft
1 ũε = BεΓsoft

0 ũε.390

This condition involves the Dirichlet data of the solution to the spectral equation391

for Asoft
max which is an ODE on the graph Gsoft with a constant coefficient. The Dirichlet392

data Γsoft
0 ũε determine the vector ũε uniquely. The named vector is interpreted as a393

solution to the spectral equation on the soft component of the graph Ĝ subject to z-394

dependent boundary conditions, encoded in (6.3). On the other hand, this vector can395

also be used to reconstruct the vector uε: indeed, from Γ0uε = Γsoft
0 ũε it follows, that396

uε, which is by assumption an eigenvector to Aεt at the point z, is simply a continuation397

of ũε to the rest of the graph Ĝ based on its Dirichlet data at the boundary of the soft398

component. It follows, cf. (6.3), that the asymptotic analysis can be reduced to the399

soft component, with the information about the stiff component fed into the related400

asymptotic procedure by means of the stiff-soft interface.401

Before we proceed further, let us take another look at the equation MΓ0uε = 0,402

cf. (6.1), which is equivalent to uε being an eigenvector of Aεt at the value of spectral403

parameter z. Using the fact that M = M soft +M stiff as well as the explicit expressions404

for the matrices M soft, M stiff, cf. (5.1), it is easily seen that the leading-order term of405

Γ0uε, and thus of uε, does not depend on the soft component of the medium, since the406

elements of M soft are ε-small. On the other hand, the situation is drastically different407
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from the viewpoint of the associated dispersion relation, which must be guaranteed408

for the solvability of MΓ0uε = 0. The dispersion relation follows from the condition409

detM = 0, and it is here, and here only, that the soft component of the medium410

makes its presence felt in the problem. Due to the fact that M stiff is rank one at411

τ = 0, it transpires that the leading-order term of the equation detM = 0 in the412

case of critical contrast only blends together in a non-trivial way the stiff and soft413

components of the medium. Bearing this in mind, the phenomenon of critical-contrast414

homogenisation can be seen as a manifestation of a frequency-converting device: if415

one restricts the eigenfunctions to the stiff component, they are ε-close to those of the416

medium where the soft component has been replaced with voids, but correspond to417

non-trivially shifted eigenfrequencies. This is precisely what one would expect in the418

setting of time-dispersive media after the passage to the frequency domain, cf. (1.1),419

(1.2). We will come back to this discussion in Section 8.420

Let us return to the analysis of (6.3), which, as explained above, contains all the421

information on the asymptotic behaviour of Aεt . We notice that the named equation422

corresponds to a homogeneous ODE; the non-trivial dependence on ε is concealed423

in the right-hand side, which describes ε- and frequency-dependent boundary condi-424

tions. The problem of asymptotic analysis of eigenfunctions of Aεt is thus effectively425

reduced to the analysis of the asymptotic behaviour of these boundary conditions.426

This analysis, however, is simplified by the fact that Bε = −M stiff, see (6.2), where427

M stiff is shown to be the M -matrix of Astiff
max (see Appendix A) by a similar argument428

to that applied above to M soft. Hence, the asymptotics sought for M stiff is simply429

the asymptotics of the Dirichlet-to-Neumann map of a uniformly elliptic problem at430

zero frequency, which allows to use well-known elliptic techniques.431

Firstly, we notice that the results of Section 5 combined with the asymptotic432

formulae433

ae cot
κle
ae

=
a2
e

κle
− 1

3
κle +O(κ3), ae

(
sin

κle
ae

)−1

=
a2
e

κle
+

1

6
κle +O(κ3),434

yield the following statement.435

Lemma 6.1. Suppose that K ⊂ C is compact. One has436

M̃ stiff(κ, τ) = κ−1M0(τ)+κM1(τ)+O(κ3), τ ∈ [−π, π), κ = εk, ε ∈ (0, 1), k ∈ K,437

where M0 and M1 are analytic matrix functions of τ .438

It follows from Lemma 6.1 that, for all τ ∈ [−π, π),439

(6.4) Bε(z) = ε−1B0 + εzB1 +O(ε3z2), ε ∈ (0, 1),
√
z ∈ K,440

where B0, B1 are Hermitian matrices that depend on τ only. The following two441

lemmata, proved in Appendices B and C, carry over to the general case with only442

minor modifications, since they pertain to the stiff component of the medium and443

therefore rely upon the general uniformly elliptic properties of the latter.444

Lemma 6.2. There exist γ ≥ 0 (where γ = 0 if and only if the graph Gstiff is a445

tree5) and an eigenvalue branch µ(τ) for the matrix B0, such that dim Ker
(
B0−µ(τ)

)
=446

1, τ ∈ [−π, π), and447

(6.5) µ(τ) = γτ2 +O(τ4).448

5Recall that a tree is a connected forest [13].
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We denote by ψ(τ) the normalised eigenvector for the eigenvalue µ(τ), so that449

ψ(0) = (1/
√

2)(1, 1)>, i.e. the trace of the first eigenvector of the Neumann problem450

on the stiff component at zero quiasimomentum, which is clearly constant. Let P :=451

〈·, ψ(τ)〉Hψ(τ) and P⊥ be the orthogonal projections in the boundary space onto ψ(τ)452

and its orthogonal complement, respectively.453

Lemma 6.3. There exists C⊥ > 0 such that454

(6.6) P⊥B0P⊥ ≥ C⊥P⊥,455

in the sense that the operator P⊥(B0 − C⊥)P⊥ is non-negative.456

We use Lemma 6.3 to solve (6.3) asymptotically. The overall idea is to diagonalise457

the leading order term ε−1B0 of the asymptotic expansion of Bε in (6.3). From Lemma458

6.2 we infer that B0 has precisely one eigenvalue quadratic in τ (which thus gets459

close to zero), while Lemma 6.3 provides us with a bound below on the remaining460

eigenvalue. The fact that the eigenvalue µ(τ) degenerates requires that the next461

term in the asymptotics of Bε be taken into account in the related eigenspace. This462

additional term is easily seen to be z-dependent (in fact, linear in z).463

We start with an auxiliary rescaling of the soft component. Namely, we introduce464

the unitary operator Φε mapping v 7→ v̂ according to the formula v̂(·) =
√
εv(ε·).465

Under this mapping, the length of the soft component loses its dependence on ε. The466

operator Âsoft
max is defined as the unitary image of Asoft

max under the mapping Φε, and467

Γ̂soft
0 , Γ̂soft

1 are the boundary operators for the rescaled soft component:468

Γ̂soft
0 v̂ :=

{
v̂(V )

}
V
, Γ̂soft

1 v̂ :=

{∑
e3V

∂̂(τ)v̂(V )

}
V

, v̂ ∈ dom
(
Âsoft

max

)
,469

where we set v̂(V ) as the common value of wV (e)v̂|e(V ) for all e adjacent to V, and470

∂̂(τ)v̂(V ) is the expression σewV (e)(v̂′+ iτ v̂) on the edge e, calculated at V. Note that471

Γ̂soft
1 does not depend on ε.472

Under the rescaling Φε the equation (6.3) becomes473

(6.7) Γ̂soft
1 ûε = ε−1BεΓ̂soft

0 ûε,474

where in accordance with the above convention ûε = Φεũε.475

We start our diagonalisation procedure by considering the non-degenerate eigen-476

space of Bε. Applying P⊥ to both sides of (6.7), replacing Bε by its asymptotics (6.4)477

and using (6.6) yields478

(6.8) P⊥Γ̂soft
1 ûε = ε−2P⊥B0P⊥Γ̂soft

0 ûε +O(1) ≥ ε−2C⊥P⊥Γ̂soft
0 ûε +O(1),479

where we assume that uε is L2-normalised. Multiplying by ε2 both sides of (6.8) and480

applying the Sobolev embedding theorem to the left-hand side of (6.8), we infer481

(6.9) P⊥Γ̂soft
0 ûε = O(ε2).482

Plugging this partial solution back into (6.7), to which P is applied on both sides, we483

obtain484

PΓ̂soft
1 ûε = ε−2PB0PΓ̂soft

0 ûε + zPB1PΓ̂soft
0 ûε +O(ε2)485

= ε−2µ(τ)PΓ̂soft
0 ûε + zPB1PΓ̂soft

0 ûε +O(ε2).486487
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We have proved that up to an error term admitting a uniform estimate O(ε2) one488

has the following asymptotically equivalent problem for the eigenvector v̂ε:489

(6.10) P⊥Γ̂soft
0 ûε = 0, PΓ̂soft

1 ûε = ε−2µ(τ)PΓ̂soft
0 ûε + zPB1PΓ̂soft

0 ûε.490

We use Lemma 6.2 and expand PB1P in powers of τ = εt as follows6: PB1P =491

PB(0)
1 P +O(τ). The second equation in (6.10) admits the form492

(6.11) PΓ̂soft
1 ûε = γt2PΓ̂soft

0 ûε + zPB(0)
1 PΓ̂soft

0 ûε + (O(τ) +O(τ4/ε2))PΓ̂soft
0 ûε.493

Expressing PΓ̂soft
0 ûε from the latter equation, it is easily seen based on embedding494

theorems that (6.11) is asymptotically equivalent, up to an error uniformly estimated495

as O(ε), to the following equation:496

(6.12) PΓ̂soft
1 ûε = γt2PΓ̂soft

0 ûε + zPB(0)
1 PΓ̂soft

0 ûε.497

We formulate the above result as the following theorem.498

Theorem 6.4. Let û solve the following equation on the re-scaled soft component:499

(6.13)

Âsoft
maxû = zû,

P⊥Γ̂soft
0 û = 0,

PΓ̂soft
1 û = γt2PΓ̂soft

0 û+ zPB(0)
1 PΓ̂soft

0 û.

500

Then the eigenvalues zε and their corresponding eigenfunctions uε of the operators501

Aεt , see (3.3), (3.4), are O(ε)-close uniformly in t ∈ [−π/ε, π/ε), in the sense of C502

and in the sense of the L2 norm, respectively, to the values z as above and functions503

ueff defined as follows. On the soft component Gsoft we set ueff(·) := (1/
√
ε)û(ε−1·),504

where û solves (6.13). On the stiff component Gstiff the function ueff is obtained as505

the extension by (1/
√
ε)v, where v is the solution of the operator equation506

Astiff
maxv = 0,507

determined by the Dirichlet data of û(ε−1·), where Astiff
max is defined by (8.14), Appendix508

A.509

Remark 6.5. It is straightforward to see that the eigenvalue µ(τ) in Lemma 6.2 is
the least, by absolute value, Steklov eigenvalue of Astiff

max, i.e. the least κ such that the
problem

Astiff
maxv̆ = 0, v̆ ∈W 2,2(Gstiff),

Γstiff
1 v̆ = κΓstiff

0 v̆.

admits a non-trivial solution v̆. Note that for this solution v̆ one has Γstiff
0 v̆ = ψ(τ),510

where ψ(τ) is defined in the text following Lemma 6.2. It follows that for the function511

v of Theorem 6.4 one has v = cv̆, where c is a constant determined by û.512

6In the example considered in the present paper, as opposed to the general case, one can prove

that PB1P = PB(0)
1 P + O(τ2), see the calculation in [11, Appendix B] for details. This yields the

error bound O(ε2) in the statement of Theorem 6.4.
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7. Eigenvalue and eigenvector asymptotics in the example of Section 5.
Here we provide the result of an explicit calculation applying the general procedure
described in the previous section to the specific example of Section 5 (see [11] for
details). We start by expanding the matrix Bε as a series in powers of ε:

B̂ := ε−1Bε = B̂0 + zB̂1 +O(ε2z2), B̂0 :=
1

ε2

(
D ξ

ξ D

)
, B̂1 :=

(
E η

η E

)
,

where513

ξ : = −a
2
1

l1
exp
(
iτ(l1 + l3)

)
− a2

3

l3
exp(−iτ l2), D :=

a2
1

l1
+
a2

3

l3
,(7.1)514

η : =
1

6

(
l1 exp

(
iτ(l1 + l3)

)
+ l3 exp(−iτ l2)

)
, E :=

1

3
(l1 + l3).515

516

The matrix ε2B̂0 is Hermitian and has two distinct eigenvalues, µ = D − |ξ| and517

µ⊥ = D + |ξ|. The eigenvalue branch µ is singled out by the condition µ|τ=0 = 0.518

In order to diagonalise the matrix B̂0, consider the normalised eigenvectors ψ(τ) =519

(1/
√

2)(1,−ξ/|ξ|)> and ψ
(τ)
⊥ = (1/

√
2)(1, ξ/|ξ|)> corresponding to the eigenvalues µ520

and µ⊥, respectively, as well as the matrix X :=
(
ψ(τ), ψ

(τ)
⊥
)
. The projections P, P⊥,521

introduced in the previous section, are as follows:522

P =
1

2


1 − ξ

|ξ|

− ξ

|ξ|
1

 , P⊥ =
1

2


1

ξ

|ξ|
ξ

|ξ|
1

 .523

It follows by a straightforward calculation that the effective spectral problem is524

given by525

(7.2) −
(
d

dx
+ iτ

)2

u = zu,526

527

(7.3)

u(0) = − ξ

|ξ|
u(l2),

(u′ + iτu)(0) +
ξ

|ξ|
(u′ + iτu)(l2) =

((
l1
a2

1

+
l3
a2

3

)−1(
τ

ε

)2

− (l1 + l3)z

)
u(0),

528

By invoking Theorem 6.4, the problem (7.2)–(7.3) on the scaled soft component529

provides the asymptotics, as ε → 0, of the eigenvalue problems for the family Aεt ,530

t = τ/ε ∈ [−π/ε, π/ε). Its spectrum, i.e. the set of values z for which (7.2)–(7.3)531

has a non-trivial solution, as well as the corresponding eigenfunctions approximate,532

up to terms of order O(ε2), the corresponding spectral information for the family Aεt ,533

and consequently, Aε. Notice that the stiff component of the original graph (where534

the eigenfunctions converge to a constant, in a suitable scaled sense), appears in this535

limit problem through the boundary datum u(0). In the next section we show that an536

appropriate extension of the function space for (7.2)–(7.3) by the (one-dimensional)537

complementary space of constants leads to an eigenvalue problem for a self-adjoint538

operator, describing a conservative system. Solving this latter eigenvalue problem for539

the element in the complementary space yields a frequency-dispersive formulation we540

announced in the introduction.541
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8. Frequency dispersion in a “complementary” medium.542

8.1. Self-adjoint out-of-space extension. Following the strategy outlined at543

the end of the last section, we treat u(0) in (7.3) as an additional field variable, and544

reformulate (7.2)–(7.3) as an eigenvalue problem in a space of pairs (u, u(0)), see (8.4).545

More precisely, for all values τ ∈ [−π, π), consider an operator Ahom
τ in the space546

L2(0, l2) ⊕ C defined as follows. The domain dom
(
Ahom
τ

)
consist of all pairs (u, β)547

such that u ∈W 2,2(0, l2) and the quasiperiodicity condition548

(8.1) u(0) = wτu(l2) =:
β√
l1 + l3

, wτ ∈ C,549

is satisfied. On dom
(
Ahom
τ

)
the action of the operator is set by550

(8.2) Ahom
τ

(
u

β

)
=


−
(
d

dx
+ iτ

)2

u

1√
l1 + l3

Γτ

(
u

β

)
 ,551

where Γτ : W 2,2(0, l2)⊕ C→ C is bounded. We set552

(8.3) Γτ

(
u

β

)
= −(u′+iτu)(0)+wτ (u′+iτu)(l2)+

(σt)2

√
l1 + l3

β, σ2 :=

(
l1
a2

1

+
l3
a2

3

)−1

,553

where wτ = −ξ/|ξ| (see (7.1) for the definition of ξ), in which case Ahom
τ is a self-554

adjoint operator on the domain described by (8.1). Moreover, (7.2)–(7.3) is the prob-555

lem on the first component of spectral problem for the operator Ahom
τ :556

(8.4) Ahom
τ

(
u

β

)
= z

(
u

β

)
.557

We now re-write this spectral problem in terms of the complementary component558

β ∈ C. In order to do this, we represent the function u in (8.4) as a sum of two: one559

of them is a solution to the related inhomogeneous Dirichlet problem, while the other560

takes care of the boundary condition. More precisely, consider the solution v to the561

problem562

−
(
d

dx
+ iτ

)2

v = 0, v(0) = 1, v(l2) = wτ ,563

i.e.564

(8.5) v(x) =
{

1 + l−1
2

(
wτ exp(iτ l2)− 1

)
x
}

exp(−iτx), x ∈ (0, l2).565

The function566

ũ := u− β√
l1 + l3

v567

satisfies568

−
(
d

dx
+ iτ

)2

ũ− zũ =
zβ√
l1 + l3

v, ũ(0) = ũ(l2) = 0.569
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In other words, one has570

ũ =
zβ√
l1 + l3

(
A

(τ)
D − zI

)−1
v,571

where A
(τ)
D is the Dirichlet operator in L2(0, l2) associated with the differential ex-572

pression573

−
(
d

dx
+ iτ

)2

.574

We now write the “boundary” part of the spectral equation (8.4) as575

(8.6)

K(τ, z)β = zβ, K(τ, z) :=
1

l1 + l3

{
zΓτ

((
A

(τ)
D − zI

)−1
v

0

)
+ Γτ

(
v

√
l1 + l3

)}
.576

In accordance with the rationale for introducing the component β, the effective dis-577

persion relation for the operator Aετ/ε, τ ∈ [−π, π), is given by578

K(τ, z) = z.579

The explicit expression for this relation that we have obtained, see (8.6), is new, and it580

quantifies explicitly the rôle of the soft component of the composite in the macroscopic581

frequency-dispersive properties. In particular, the expression (8.6) shows that the soft582

inclusions enter the macroscopic equations via a Dirichlet-to-Neumann map on the583

boundary of the inclusions.584

8.2. Explicit formula for the time-dispersion kernel. Here we compute585

explicitly the kernel K(τ, z) entering the effective dispersion relation for Aετ . In view586

of possible generalisations, and recalling the pioneering formula in [38, Section 8] for587

effective dispersion in double-porosity media, we represent the action of the resolvent588 (
A

(τ)
D − zI

)−1
as a series in terms of the normalised eigenfunctions589

(8.7) φj(x) =

√
2

l2
exp(−iτx) sin

πjx

l2
, x ∈ (0, l2), j = 1, 2, 3, . . . ,590

of the operator A
(τ)
D . This yields591

(8.8) K(τ, z) :=
1

l1 + l3

z
∞∑
j=1

〈v, φj〉L2(0,l2)

µj − z
Γτ

(
φj

0

)
+ Γτ

(
v

√
l1 + l3

) .592

where µj = (πj/l2)2, j = 1, 2, 3, . . . , are the eigenvalues corresponding to (8.7). For593

the choice (8.3) of Γτ we obtain (see (8.5), (8.7))594

Γτ

(
v

√
l1 + l3

)
=

2

l2

(
1−<θ(τ)

)
+

(
στ

ε

)2

, θ(τ) :=

a2
1

l1
e−iτ +

a2
3

l3∣∣∣∣a2
1

l1
e−iτ +

a2
3

l3

∣∣∣∣ ,595

596

Γτ

(
φj

0

)
= −

√
2

l2

πj

l2

(
(−1)j+1θ(τ) + 1

)
,

〈v, φj〉L2(0,l2) =

√
2l2
πj

(
(−1)j+1θ(τ) + 1

)
, j = 1, 2, . . .

597
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Substituting the above expressions into (8.8) and making use of the formulae, see e.g.598

[23, p. 48],599

∞∑
j=1

1

(πj)2 − x2
=

1

2

(
1

x2
− cosx

x sinx

)
,

∞∑
j=1

(−1)j

(πj)2 − x2
=

1

2

(
1

x2
− 1

x sinx

)
, x /∈ πZ,600

we obtain601

(8.9) K(τ, z) =
1

l1 + l3

{
2
√
z cos(l2

√
z)

sin(l2
√
z)

− 2
√
z

sin(l2
√
z)
<θ(τ) +

(
στ

ε

)2}
.602

8.3. Asymptotically equivalent model on the real line. In this section we603

are going to treat (8.6), (8.9) as a nonlinear eigenvalue problem in the space of second604

components of pairs (u, β) ∈ L2(0, l2)⊕ C. As is evident from above, this problem is605

closely related to (7.2)–(7.3), via the construction presented in Section 8.1. We show606

next that the aforementioned macroscopic field is governed by a certain frequency-607

dispersive formulation. In order to obtain the latter, we will use a suitable inverse608

Gelfand transform.609

Our strategy can be seen as motivated by the following elementary observation,610

closely linked with the Birman-Suslina study [5] of homogenisation in the moderate611

contrast case, albeit understood in terms of spectral equations. Starting with the612

spectral problem613

(8.10) − d2u

dx2
= zu on L2(R),614

one applies the Gelfand transform7 (well defined on generalised eigenvectors due to
the rigging procedure, see, e.g., [2, 4]) to obtain for ũ := Gu

−
(
d

dx
+ it

)2

ũ(x, t) = zũ(x, t), x ∈ (0, ε), t ∈ [−π/ε, π/ε).

We compute the inner products of both sides in L2(0, ε) with the normalised constant
function (1/

√
ε)1, which yields the dispersion relation of the original problem via the

equation
t2û(t) = zû(t),

where û is the Fourier transform of the function u ∈ L2(R). The latter equation is615

then solved in the distributional sense,616

(8.11) β(t) =
∑
m

cmδ(t− tm),617

where β(t) := û(t) and the sum in (8.11) is taken over m = 1, 2, so that t1, t2 are618

the solutions of the equation t2 = z, and cm are arbitrary constants. Ultimately, one619

7Recall, cf. Section 3, that the Gelfand transform is a map L2(R) → L2
(
(0, ε) × (−π/ε, π/ε)

)
given by

Gu(y, t) =

√
ε

2π

∑
n∈Z

u(x+ εn) exp
(
−it(x+ εn)

)
, t ∈

[
−π/ε, π/ε

)
, x ∈ (0, ε).
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applies the inverse Gelfand transform620

(G∗f)(x) =

√
ε

2π

π/ε∫
−π/ε

f(t) exp(itx)dt, f ∈ L2

(
−π
ε
,
π

ε

)
, x ∈ R,621

to the function B(x, t) := (1/
√
ε)β(t)1(x), i.e.

v(x) :=

√
ε

2π

∫ π/ε

−π/ε
B(x, t) exp(itx)dt, x ∈ R.

It is easily seen that this function is precisely the solution to (8.10).622

We emulate the above argument for the case of interest to us, starting from623

the eigenvalue problem K(τ, z)β = zβ, which we now treat as an equation in the624

distributional sense with K given by (8.9). It admits the form625

(8.12) (σt)2β =

{
(l1 + l3)z − 2

√
z cos(l2

√
z)

sin(l2
√
z)

+
2
√
z

sin(l2
√
z)
<θ(εt)

}
β, t =

τ

ε
,626

The solution is defined by (8.11), where {tm} is the set of zeroes of the equation627

K(εt, z) = z.628

Second, we argue that the function B(x, t) as defined above is the ε-periodic629

Gelfand transform of the solution to a spectral equation on R for a differential operator630

with constant coefficients, where the conventional spectral parameter z is replaced by631

a nonlinear in z expression, as on the right-hand side of (8.12).632

Indeed, expand the function <θ(τ) into Fourier series633

<θ(τ) =
1√
2π

∞∑
n=−∞

cn exp(inτ), cn :=
1√
2π

∫ π

−π
<θ(τ) exp(−inτ)dτ, n ∈ Z.634

and apply to B(x, t) the inverse Gelfand transform G∗ :635

(G∗f)(x) =

√
ε

2π

π/ε∫
−π/ε

f(t) exp(itx)dt, f ∈ L2

(
−π
ε
,
π

ε

)
, x ∈ R.636

We denote U := G∗B and notice that637

√
ε

2π

π/ε∫
−π/ε

t2B(x, t) exp(itx)dt = − d2

dx2

(√
ε

2π

π/ε∫
−π/ε

B(x, t) exp(itx)dt

)
= −U ′′(x)638

and639 √
ε

2π

π/ε∫
−π/ε

<θ(εt)B(x, t) exp(itx)dt =

∞∑
n=−∞

cn

√
ε

2π

π/ε∫
−π/ε

B(x, t) exp
(
it(x+ εn)

)
dt640

641

=
1√
2π

∞∑
n=−∞

cnU(x+ εn) ∼ 1√
2π

∞∑
n=−∞

cnU(x) = <θ(0)U(x) = U(x), ε→ 0.642

643
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The above asymptotics as ε → 0 is understood in the sense of W−2,2(R). It can644

be demonstrated, see [11], that the order of convergence is O(ε2) (and O(ε) in the645

general case), however we do not dwell on the complete proof here. The idea of the646

proof, which is standard, can be, for example, the following. Instead of the function647

β, define β0 by the expression (8.11), where the sequence {tm} is replaced by the648

sequence {t0m} of zeros of the equation K0(τ, z) = z. Here K0 is defined by (8.9)649

with <θ(τ) replaced by <θ(0) = 1. It is then shown that β is O(ε2)-close, in the650

sense of distributions, to β0, and one obtains the claim by taking the inverse Gelfand651

transform of the function B0(x, t) = (1/
√
ε)β0(t)1(x).652

It follows that the limit equation on the function U takes the form653

(8.13) − σ2U ′′(x) =

{
(l1 + l3)z + 2

√
z tan

(
l2
√
z

2

)}
U(x), x ∈ R.654

In particular, the limit spectrum is given by the set of z ∈ R for which the expression655

in brackets on the right-hand side of (8.13) is non-negative, see Fig. 6.656

100 200 300 400 500 600 700

-1000

-500

500

1000

Fig. 6. Dispersion function. The plot of the dispersion function on the right-hand side
of (8.13), for l1 + l3 = 1− l2 = 0.2. The spectral gaps are highlighted in bold.

Appendix A: The reduction of the general case to the one treated in657

Section 6. We proceed as follows. First, we decompose the graph Ĝ into the union658

of its stiff and soft components, Ĝ = Gsoft ∪ Gstiff, each of these being a graph on659

its own. The common boundary of them is ∂G := Gsoft ∩ Gstiff, and it is treated660

as a set of vertices. Second, we consider two maximal operators Ăsoft
max and Ăstiff

max,661

which are densely defined in L2(Gsoft) and L2(Gstiff), respectively, by (3.3), (5.4)662

applied to Gsoft and Gstiff. Furthermore, we introduce the orthogonal projections663

P soft, P stiff in the boundary space H onto the subspaces pertaining to vertices of Gsoft664

and Gstiff, respectively. Finally, we construct boundary triples for Ă
soft (stiff)
max with665

boundary spaces P soft (stiff)H and boundary operators Γ̆
soft (stiff)
j , j = 0, 1 (cf. (5.5)),666

respectively.667
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Now consider the restrictions668

(8.14)

Asoft (stiff)
max = Ăsoft (stiff)

max

∣∣
dom(A

soft (stiff)
max )

,

dom
(
Asoft (stiff)

max

)
:=
{
u ∈ dom

(
Ăsoft (stiff)

max

)∣∣∣(1− P∂G)Γ̆
soft (stiff)
1 u = 0

}
,

669

where P∂G is defined as an orthogonal projection in H onto the subspace pertaining to
the vertices belonging to ∂G. For these two maximal operators, one has the common
boundary space P∂GH and boundary operators defined by

Γ
soft (stiff)
j := P∂GΓ̆

soft (stiff)
j , j = 0, 1.

The corresponding M -matrices M soft (stiff) are computed as inverses of the matri-670

ces P∂G
(
M̆ soft (stiff)

)−1
P∂G, where the latter are considered in the reduced space671

P∂GH and M̆ soft (stiff) are M -matrices of Ă
soft (stiff)
max relative to the boundary triples672 (

P soft (stiff)H, Γ̆soft (stiff)
0 , Γ̆

soft (stiff)
1

)
.673

It is easily shown that the operator Aεt is expressed as an almost solvable extension674

parameterised by the matrix B = 0 relative to a triple which has the M -matrix675

M = M soft +M stiff . It follows that all the prerequisites of the analysis carried out in676

Section 6 are met.677

Appendix B: Proof of Lemma 6.2. The proof could be carried out on the678

basis of [16], [17] and is rather elementary. Nevertheless, in the present paper we have679

elected to follow an alternative approach to this proof, which has an advantage of680

carrying over to the PDE case with minor modifications.681

For simplicity we set wV (e) = 1 for all e, V in (3.4), as the argument below is682

unaffected by the concrete choice of the list {wV (e)}e3V , V ∈ Ĝ, in the construction683

of Section 3. For convenience, we also imply that the unitary rescaling to a graph of684

length one has been applied to the operator family Aεt . For brevity, we keep the same685

notation for the unitary images of graphs Ĝ, Gstiff and ∂G under this transform.686

For each τ ∈ [−π, π), the eigenvalues of B0(τ) are those µ ∈ C for which there687

exists u 6= 0 satisfying688

(8.15)



(
d

dx
+ iτ

)2

u = 0 in Gstiff ,

−
∑
e3V σe

(
u′e(V ) + iτu(V )

)
= µu(V ), V ∈ ∂G,

u continuous on Gstiff ,

689

where u′e(V ) is the derivative of u along the edge e of Gstiff evaluated at V ∈ ∂G,690

and, as before, σe = −1 or σe = 1, depending on whether e is incoming or outgoing691

for V, respectively. It is known that the spectrum of (8.15) is discrete and the least692

eigenvalue, which clearly coincides with µ(τ), is simple.693

Formal series. In order to show (6.5), we first consider series in powers of iτ :694

(8.16) µ =

∞∑
k=1

αj(iτ)2k, u =

∞∑
j=0

uj(iτ)j ,695

where uj , j = 1, 2, . . . are continuous on Gstiff .696
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Note that the expansion for µ contains only even powers of the parameter τ, as697

it is an even function of τ. Indeed, the function obtained from the eigenfunction u in698

(8.15) by changing the directions of all edges of the graph is clearly an eigenfunction699

for (8.15) with τ replaced by −τ. (On such a change of edge direction, the weights700

we(V ), e 3 V , V ∈ Ĝ, are replaced by their complex conjugates.) In view of the fact701

that for all τ ∈ (−π, π] the eigenvalue µ(τ) is simple, we obtain µ(−τ) = µ(τ).702

Substituting the expansion (8.16) into (8.15) and equating the coefficients on703

different powers of τ, we obtain a sequence of recurrence relations for uj , j = 0, 1, . . .704

In particular, the problem for u0 is obtained by comparing the coefficients on τ0 :705 
u′′0 = 0 on Gstiff ,∑
e3V σe(u0)′e(V ) = 0, V ∈ ∂G,

u0 continuous on Gstiff .

706

Assuming that Gstiff contains a loop, it follows that u0 is a constant, which we set to707

be unity. In the case opposite, i.e., when Gstiff is a tree, µ(τ) ≡ 0 for all τ , and the708

claim of Lemma follows trivially.709

We impose the condition of vanishing mean of uj , j = 1, 2, . . . over Gstiff . This is710

justified by the convergence estimates below as well as the fact that the eigenvalue µ711

is simple. The choice u0 = 1 thus corresponds to the “normalisation” condition that712

the mean over Gstiff of the eigenfunction u for (8.15) is close to unity8 for small values713

of τ.714

Proceeding with the asymptotic procedure, the problem for u1 is obtained by715

comparing the coefficients on τ1 :716 

u′′1 = 0 on Gstiff ,∑
e3V σe

(
(u1)′e(V ) + 1

)
= 0, V ∈ ∂G,

u1 continuous on Gstiff ,∫
Gstiff u1 = 0.

717

Further, the equation for u2 is obtained by comparing the coefficients on τ2 :718

(8.17)



u′′2 = −2u′1 − 1 on Gstiff ,

−
∑
e3V σe

(
(u2)′e(V ) + u1(V )

)
= α2, V ∈ ∂G,

u2 continuous on Gstiff ,∫
Gstiff u2 = 0.

719

The condition for solvability of the problem (8.17) yields the expression for α2, as720

follows:721 ∫
Gstiff

(−2u′1 − 1) =

∫
Gstiff

u′′2 = −
∑
V ∈∂G

∑
e3V

σe(u2)′e(V ) =
∑
V ∈∂G

(∑
e3V

σeu1(V ) + α2

)
.722

Re-arranging the terms in the last equation, we obtain723

α2 = −
∣∣∂G∣∣−1

∫
Gstiff

(u′1 + 1).724

8The eigenfunction u clearly does not vanish identically, at least for small values of τ.
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The above asymptotic procedure is continued, to obtain the terms of all orders in725

(8.16). In particular, for the term u3 in the expansion for u we obtain726 

u′′3 = −2u′2 − u1 on Gstiff ,

−
∑
e3V σe

(
(u3)′e(V ) + u2(V )

)
= α2u1, V ∈ ∂G,

u3 continuous on Gstiff ,∫
Gstiff u3 = 0.

727

Error estimates. We write728

u = 1 + iτu1 + (iτ)2u2 + (iτ)3u3 +R, µ(τ) = α2(iτ)2 + r,729

so that R, r satisfy730

(8.18)

(8.19)

(
d

dx
+ iτ

)2

R = −(iτ)4(2u′3 + u2)− (iτ)5u3 on Gstiff ,

−
∑
e3V

σe(R
′
e(V ) + iτR(V )) =

=
(
r + α2(iτ)2

)(
1 + iτu1 + (iτ)2u2 + (iτ)3u3 +R

)
− α2(iτ)2(1 + iτu1), V ∈ ∂G

R continuous on Gstiff ,∫
Gstiff

R = 0.



731

Notice first that732
733

(8.20) r + α2(iτ)2 = µ(τ) = min
u∈W 2,2(Gstiff )

(∑
∂G
|u|2
)−1 ∫

Gstiff

∣∣∣∣∣
(
d

dx
+ iτ

)
u

∣∣∣∣∣
2

734

≤
∣∣∂G∣∣−1∣∣Gstiff

∣∣τ2.735736

Multiplying (8.18) by R, integrating by parts, and using (8.19), we obtain the estimate737

(8.21) ‖R‖2L2(Gstiff ) ≤ C
(
|τ ||r|‖R‖L2(Gstiff ) + |τ |4‖R‖L2(Gstiff ) + |r|2

)
, C > 0,738

and hence, by virtue of (8.20), we obtain739

(8.22) ‖R‖L2(Gstiff ) ≤ Cτ2.740

Next, we re-arrange the right-hand side of (8.19):741
742 (

r + α2(iτ)2
)(

1 + iτu1 + (iτ)2u2 + (iτ)3u3 +R
)
− α2(iτ)2(1 + iτu1)743

= r
(
1 + iτu1 + (iτ)2u2 + (iτ)3u3 +R

)
+ α2(iτ)2

(
(iτ)2u2 + (iτ)3u3 +R

)
.744745

Multiplying (8.18) by 1, integrating by parts, and using (8.19) once again yields the746

existence of C > 0 such that747

(8.23) |r| ≤ C
(
|τ |‖R‖L2(Gstiff ) + |τ |4

)
.748
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Combining this with (8.22) yields |r| ≤ Cτ3, which, by virtue of (8.21) again, implies749

(8.24) ‖R‖L2(Gstiff ) ≤ C|τ |3.750

Finally, the inequalities (8.23) and (8.24) together yield751

(8.25) |r| ≤ C|τ |4,752

as claimed.9753

Appendix C: Proof of Lemma 6.3. For all τ ∈ [−π, π), using the formula for754

the second eigenvalue µ
(τ)
2 of the problem (8.15) via the Rayleigh quotient, we obtain755

µ
(τ)
2 = min

{(∑
∂G
|u|2
)−1 ∫

Gstiff

∣∣∣∣∣
(
d

dx
+ iτ

)
u

∣∣∣∣∣
2

: u ∈W 2,2(Gstiff),

∫
Gstiff

u = 0

}
756

≥ min

{(∑
∂G
|u|2
)−1 ∫

Gstiff

|u′|2 : u ∈W 2,2(Gstiff),

∫
Gstiff

u = 0

}
= µ

(0)
2 > 0,757

758

from which the claim follows by setting C⊥ = µ
(0)
2 .759
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