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Repeated artificial selection of a complex trait facilitates the
identification of genes underlying the trait, especially if multiple
selected descendant lines are available. Here we developed a
pedigree-based approach to identify genes underlying the Green
Revolution (GR) phenotype. From a pedigree analysis, we selected
30 cultivars including the “Miracle rice” IR8, a GR landmark, its an-
cestors and descendants, and also other related cultivars for identi-
fying high-yield genes. Through sequencing of these genomes, we
identified 28 ancestral chromosomal blocks that were maintained
in all of the high-yield cultivars under study. In these blocks,
we identified 6 genes of known function, including the GR gene
sd1, and 123 loci with genes of unknown function. We randomly
selected 57 genes from the 123 loci to do knockout or knockdown
studies and found that a high proportion of these genes are essen-
tial or have phenotypic effects related to rice production. Notably,
knockout lines have significant changes in plant height (p<0.003),
a key GR trait, compared to wild-type lines. Some gene knockouts
or knockdowns were especially interesting. For example, knockout
of Os10g0555100, a putative glucosyltransferase gene, showed
both reduced growth and altered panicle architecture. In addition,
we found that in some retained chromosome blocks, several GR
related genes were clustered, although they have unrelated se-
quences, suggesting clustering of genes with similar functions. In
conclusion, we have identified many high-yield genes in rice. Our
method provides a powerful means to identify genes associated
with a specific trait.

high yield gene | pedigree analysis | green revolution | gene knockout

Complex traits, which might be related to survival in natural
environments or crop productivity (1), are genetically difficult to
dissect. This is, in part, because the effect of a single gene on a
phenotype is usually small (2). To determine the genetic archi-
tecture of a complex trait (and the underlying gene networks),
the most commonly employed methods are quantitative trait loci
(QTL) mapping and genome-wide association studies (GWAS).
QTL mapping is suitable for relatively simple quantitative traits
(3), while GWAS provides valuable insights into trait architecture
or candidate loci (4). Both methods have limitations, however. In
QTL, the effects detected may be sensitive to external environ-
ments (5) and the span of chromosomal regions detected is often
too long (owing to limited recombination events (6)) to pinpoint
the causative gene(s). Similarly, in GWAS, the effects detected are
sensitive to population structure, leading to both false positives
and false negatives (7, 8).

Recently, a pedigree from crosses between different founding
genotypes was used to fine-map QTLs in Arabidopsis (1, 9). The
pedigree-based analysis combines linkage and association study
(6). A pedigree with a founding genotype (e.g., derived from a
single cross of two ancestors) and with recombination events over
many generations could overcome the disadvantages inherent
in QTL and GWAS. To reduce the sensitivity to environmen-
tal effects, however, it is necessary to have a clear phenotypic
difference between the two ancestors. Identification of chromo-
somal blocks preserved in all members of the pedigree under

selection for a given trait will facilitate identification of candidate
genes. The question then is whether these candidates are indeed
associated with the trait. The CRISPR-cas9 system (10) can in
principle be used to knock out each candidate gene to get an
insight into its function. Below we describe an application of this
pedigree/knockout approach to the identification of high-yield
genes in rice.

Our study takes advantage of the diploid rice pedigree in the
Green Revolution. The Green Revolution has dramatically in-
creased agriculture production worldwide since the 1960s, saving
millions of lives from food shortage (11). The novel technologies
allowed agronomists to breed high-yield varieties of maize, wheat,
and rice. The yields were more than doubled in developing coun-
tries from 1961–1985 (12). Perhaps the most significant milestone
of the Green Revolution was the introduction of semi-dwarfing
genes into selected rice cultivars by hybridization.

The first semi-dwarf and high-yield modern rice variety
(HYV) of the Green Revolution, known as the “Miracle rice” IR8,
was created by crossing the Indonesian variety "Peta" with the
Chinese variety "Dee-geo-woo-gen" (DGWG). It represented the
first generation of the “high-yielding plant type”, which provided
a significantly higher yield potential for irrigated rice (13). In
addition to the significant reduction in stem length, the high-
yield rice cultivars have other important traits such as an early
flowering time, improvement in photosynthetic allocation, and
insensitivity to day length, directly or indirectly influencing the
grain yield and yield stability(14, 15). These high-yield traits could

Significance

Finding the genes that control a complex trait is difficult
because each gene may have only minor phenotypic effects.
Quantitative trait loci mapping and genome-wide association
study techniques have been developed for this purpose but
are laborious and time-consuming. Here we developed a new
method combining pedigree analysis, whole genome sequenc-
ing and CRISPR-Cas9 technology. By sequencing the parents
and descendants of IR8, the “Miracle rice” in Green Evolution,
we determined many genes that had been retained in the
pedigree by selection for high yield. Knockout and knockdown
studies showed that a large proportion of the identified genes
are essential or have phenotypic effects related to production.
Our approach provides a powerful means for identifying genes
involved in a complex trait.
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Fig. 1. Pedigree and flowchart for the identification of geneloci under selection. (a) An abridged pedigree of the major rice cultivars used in this study. The
green-highlighted cultivars were re-sequenced,while the gray-highlighted were not. OP means “the other parent” and was not sequenced. The percentage
in a box shows the expected probability of a given locus inherited from DGWG (D) or Peta (P) in that generation. The bottom box indicates the expected
probabilities of a locus shared by all of the 8 MH63 descendants, which are extremely low (see SI Appendix, Table S4). A solid arrow denotes a direct parent
(i.e. IR20) and a dotted arrow indicates an indirect ancestor (i.e. IR24). (b) Flowchart of the approach used to identify candidate blocks and gene loci derived
from DGWG or Peta. Numbers of blocks (B) and gene loci (G) within the high confidence blocks are shown in each step of filtering. The reported 6 genes (3
from DGWG and 3 from Peta) arethe gene loci that have clear functions reported in literature. Most of the 129 gene loci each contain only one gene, except
that 28 of them have two or more overlapped genes within a locus (see Methods).

be traced from the pedigree of “Miracle rice” IR8 that consists of
its parents and high-yield progenies.

We assume that the genes related to high-yield were under
strong artificial selection because yield was the major target trait
of rice breeding since the 1960s. In this scenario, we note: 1) if
the multiple lineages descended from an original cross have all
been placed under the same selection, the alleles responsible for
the trait in question should be found in all of the descendants,
but not in all control populations; 2) in principle these alleles can
be traced back to their origination and any variants inherited in
all generations can be identified; 3) a gene under strong artificial
selection should be present more commonly in progeny than
genes not under selection; and 4) when knocking out a high-yield
gene, a changed plant phenotype (e.g., an observable change in
morphology or physiological response such as sterility) should

be observed. All these expectations can be tested by sequencing
the cultivars at important nodes in the pedigree and then by a
knockout study using the CRISPR-Cas9 system.

Using the strategy above, we studied the extended pedigree
of the ancestors and descendants of IR8 and other related lines
(Fig. 1A) to determine a set of genes that played a critical role in
the rice Green Revolution. By resequencing 30 cultivars from the
pedigree (Fig. 1), we identified 28 chromosomal blocks, including
129 candidate gene loci, that have been preserved by artificial se-
lection (Fig. 2). Fifty-seven gene loci with unknown function were
selected to do knockout using the CRISPR-Cas9 technique. If the
knockout failed, then a knockdown experiment was conducted.
We found that 79% (15/19) knocked out loci and 62%(10/16)
knocked down loci have phenotypic changes. These studies
revealed a striking enrichment in yield/morphology-associated
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Fig. 2. Blocks inherited from DGWG and Peta in IR8, IR24, IR30, MH63 and the 8 descendants of MH63. Blue and red bars represent blocks derived from
DGWG and Peta, respectively. “Shared”denotes the shared regions in all of the eight MH63 descendants. The purple arrows represent the 6 genes reported
with functions related to plant type or high-yield, while the asterisks represent the 123 gene loci with unknown functions;the 6 genes are shared by all 8
MH63 descendants and 5 collateral series. Chromosomes 3, 4 and 6, which contain no regions shared by all 8 MH63 descendants, are not shown here. The
second last block on chromosome 1 was shortened using breaks.

genes among the candidate genes. Thus, our pedigree-guided approach provides a simple, robust and fast means to identify
candidate genes under directional selection.
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Table 1. Numbers of blocks derived from DGWG and Peta in different descendants

Ancestor Descendant Chromosome Total
1 2 3 4 5 6 7 8 9 10 11 12

DGWG IR8 4 15 17 12 7 11 4 3 3 13 6 13 108
IR24 4 12 9 8 6 11 4 3 3 13 3 9 85
IR30 4 11 7 7 6 7 4 2 3 12 2 8 73
MH63 2 5 3 2 4 2 2 1 3 7 2 3 36
Shareda 2 2 0 0 3 0 0 1 0 3 1 1 13
Genesb 442 75 0 0 136 0 0 64 0 28 6 34 785

Peta IR8 4 15 17 12 6 11 5 2 2 12 5 12 103
IR24 4 14 11 6 4 6 5 1 2 10 3 10 76
IR30 4 12 10 6 4 2 5 0 2 10 3 8 66
MH63 1 5 7 1 3 0 3 0 1 6 1 5 33
Shared a 1 2 0 0 3 0 2 0 1 5 1 0 15
Genes b 101 34 0 0 115 0 265 0 42 308 95 0 960

a Shared represents the blocks and enclosed genes observed in MH63 and in all of its eight descendants.
b Genes contained in the shared blocks.

Table 2. Phenotype when a specific gene was knocked out

Sampled ancestral block Loci Observed phenotypes

DGWG chr01:37602014-39226171 Os01g0884200 Dwarf, sterile
Os01g0884400a

Os01g0884450
Late heading, sterile

Os01g0885000 Small, growth retarded, fewer tillers
Os01g0886000 Late heading, fewer tillers, sterile

Peta chr01:40248759-40971796 Os01g0925600a Os01g0925700 Rolling leaves, shorter panicle, dwarf
Os01g0930800 Late heading, sterile
Os01g0930900 No phenotypic change

Peta chr10:21769689-21922126 Os10g0555600 a

Os10g0555651
Dwarf

Os10g0555900a Os10g0556000 Dwarf, late heading
Os10g0556200 Dwarf
Os10g0556900 No phenotypic change
Os10g0555100 Dwarf, spike shape change，
Os10g0555200 Dwarf, sterile
Os10g0555300 Dwarf, sterile
Os10g0555700 Sterile
Os10g0556100 Small, growth retarded, leaf rolling

Peta chr10:21992900-22072751 Os10g0558850 Rolling leaves, dwarf, weak
Os10g0559800a Os10g0559833 No phenotypic change

Peta chr11:6540176-7824094 Os11g0242400 No phenotypic change

The 123 gene loci that passed our filtration came from 16 blocks, which ranged in size from 43kb to 1624kb. In total, 19 gene loci from 5 blocks of
different sizes (80kb-1624kb) were successfully knocked out. For each gene, about 15 independently transgenic plants were obtained and on average in
79.5% of the cases the gene was knocked out in both homologous chromosomes. The phenotypic change was based on the observation of the homozygous
knockout plants. No phenotypic change means no significant change in phenotype; e.g., the knockout of the locus Os01g0930900 showed shorter plants and
shorter awns, but the changes were not statistically significant. In total, 15 out of the 19 knockouts exhibited phenotypes different from the wild type,
suggesting that a large portion of these unknown-function gene loci are involved in flowering, fertility, leaf morphology, etc. The genotype and phenotype
of each gene studied are described in Table S15. All the knockout plants in this table were in the Kasalath background
aIn five pairs, the two genes in a pair are partly or completely overlapped. For example, Os01g0884450 is completely contained in Os01g0884400.
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Table 3. Phenotypic changes in knock-down mutants.

Locus Abnormal phenotypes

Os01g0883900 Curled leaves, retarded growth. Died before
matured.

Os01g0931600 Retarded growth, multiple tillers.
Os05g0170200 Retarded growth, curled leaves.
Os10g0556500 Brown and curled leaves. Died before

matured.
Os10g0556700 Normal.
Os10g0559866 Normal.
Os02g0258900 Retarded growth, brown and curled leaves.
Os10g0391100 Normal.
Os10g0391200 Normal.
Os10g0392400 Curled leaves. Died before matured.
Os10g0554900 Normal.
Os12g0103000 Brown leaves. Died before matured.
Os12g0104250 Normal.
Os12g0104400 Brown leaves. Died before matured.
Os12g0104700 Retarded growth, curled leaves. Died before

matured.
Os12g0104733 a Only grew roots. No seedling.
Os12g0104766 a Curled leaves.

a These genes are included in the same locus.

Results

Rice cultivar selection and SNP identification
The famous “Miracle rice” IR8 is the key cultivar in our

pedigree analysis (Fig. 1A). Its descendants and derivatives have
been extensively used in the field, and its parents have been widely
utilized to breed desired plant types (16). Another key cultivar
is Minghui63 (MH63), which is a fourth generation descendant
of IR8 and was the restorer line for a number of rice hybrids.
MH63 accounted for >20% of the total production area in China
during the 1980s and 1990s (17). Because of its wide planting
areas with a stable high-yield, environmental or epigenetic effects
could be excluded. IR8 and MH63 form the basis of our pedigree
analysis. The pedigree further expands upward to the parents
of IR8 (i.e., DGWG and Peta) and MH63 (IR30 and Gui630)
and downward to the descendants of IR8 (i.e., IR24) and MH63.
IR20, which has the same parents as IR8, and eight extensively
used descendants of MH63 are also included in the analysis (Fig.
1A). All descendants of IR8 possessed the common feature of
high-yield. To enhance the resolution in identifying genes under
selection, we also sequenced four IR8 collateral series, eight tall
landraces and a wild rice as the controls (SI Appendix, Fig. S1B
and Table S1). The alleles present in the control groups were
considered unlikely to contribute to high yield.

The 30 diploid rice accessions selected above were re-
sequenced with a reasonable coverage depth (>20×) in our
study (SI Appendix, Table S1 and Fig. S2). Because pedigree
information and independent re-sequencing of descendants from
the same ancestor offer the unique advantage of discriminating
against false markers, each inherited block of interest can be
double-checked not only between successive generations but also
between nodes separately by more than one generation and
between lineages. Based on the linked markers in the majority
of the successive generations, this approach can exclude false
markers, infer correct single nucleotide polymorphisms (SNPs),
and improve the accuracy of SNP identification (SI Appendix, Fig.
S3). In the two most important parent-offspring trios, DGWG-
Peta-IR8 and IR30-Gui630-MH63, a total of 592,603 and 481,385
high-quality SNPs were called, respectively, to detect the inher-
ited chromosomal blocks from IR8 and its parents (see Methods
and SI Appendix, Fig. S4).

Expected and observed proportions of inherited blocks
With the pedigree information, the probability of a block or a

gene being passed on to the next generation can be computed us-
ing classical genetic theory. One can then compare the computed
probability with the observed proportion (see SI Appendix, SI Ma-
terials and Methods). In the absence of selection, the probabilities
of a gene locus in MH63 from DGWG and Peta are expected
to be 3.9% and 13.4%, respectively (Fig. 1A and SI Appendix,
Table S2). The probability of one or more DGWG or Peta blocks
being present in all eight descendants of MH63 is extremely low
(4.71×10-8 or 1.62×10-7) (Fig. 1A, Table 1 and SI Appendix, Table
S3, Table S4). Therefore, every block retained in all of the MH63
progenies is likely to have been targeted by artificial selection for
the high-yield phenotype.

Theoretically, the heterozygosity of the F1 hybrid will be re-
duced to half in its F2 progeny through selfing and will eventually
be reduced to almost zero in an inbred line (e.g., IR8 or MH63).
Therefore, the crossover events can be detected in both IR8 and
MH63 to determine the origin of each block (SI Appendix, Table
S5 and Table S6). The block information in MH63 enabled us to
exclude the genetic blocks from Gui630 and identify those from
DGWG or Peta based on the pedigree in Fig. 1A. In MH63,
we found 57 and 59 blocks that were derived from 36 DGWG
and 33 Peta blocks in IR8, respectively (Fig. 2). Thus, many of
the original inherited blocks from DGWG and Peta had been
fragmented into smaller ones in MH63 by recombination. The
average length is 483 kb for the 57 DGWG-derived blocks and
398 kb for the 59 Peta-derived blocks, which are 5.45- and 3.20-
fold shorter than the average lengths in the original blocks in IR8,
respectively (SI Appendix, Table S7 and Table S8). Among those
original blocks, only a total of 6.26 Mb DGWG and a total of 8.76
Mb Peta segments are inherited in all of the 8 MH63 descendants.
They were 2.39- and 1.55-fold shorter than the inherited blocks
observed in MH63, respectively. The sequences shared by all 8
MH63 descendants contained 785 DGWG- and 960 Peta-specific
genes (Fig. 1B and Fig. 2).

Identification of candidate genes for the high-yield phenotype
When only a limited number of genes in a block are under

selection, the ancestral block will become shorter and shorter over
generations because of recombination events. Fig. 2 includes an
example in which a block on Peta chromosome 5 became shorter
and shorter by crossover events from IR8 to MH63. Interestingly,
a candidate gene, GW5, which is responsible for rice grain width,
shape, quality and yield, is located near recombination hotspots
(18) but has been retained. The pattern displays efficient selection
on this block.

In a block with many genes, some alleles that are not sub-
jected to selection may be inherited due to linkage (i.e., hitchhik-
ing). Several strategies were employed to exclude the hitchhiked
genes and identify the genes that were most likely the target of
selection, including those with un-annotated functions (Fig. 1B).
π (polymorphic sites/informative sites) was calculated for each
10-kb window to compare the diversity values within and between
different groups. First, we assumed that targeted alleles should
have been retained also in the IR8 collateral series because those
cultivars are also of high-yield plant types. With this assumption,
we selected four cultivars of the IR8 collateral series (SI Appendix,
Fig. S1 and Table S1) and calculated the nucleotide diversity
of these candidate genes between MH63 and each of the four
collateral cultivars together with IR26, a progeny of IR24, and
a sister line of UPR221 (a parent of IR30 in Fig. 1A). Only the
genes that had an average diversity <0.0001 and were identical
in the majority of collateral series (≥3) for the compared pairs
were kept. Second, we assumed that a gene with an extremely
low diversity among wild rice lines and cultivars should be ex-
cluded because it is more likely to be essential for fundamental
biological processes rather than being responsible for the high-
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Table 4. Plant height comparison between Kasalath knockout mutants and wild types.

Locus Mutant
height (cm)

WT
height
(cm)

Height change: (mutant
height-WT height)/WT height

4 positive
controlsa

Os01g0883800 62.8 132.4 -52.6%

Os01g0884300 65.5 129.3 -49.3%
Os05g0170000 47.8 130.3 -63.4%
Os02g0260200 98.3 123.3 -20.3%

18 target
gene locib

Os01g0884200 110.7 129.3 -14.40%

Os01g0884400
Os01g0884450

125.3 127.3 -1.6%

Os01g0886000 127.7 129.6 -1.5%
Os01g0925600
Os01g0925700

93.3 125.6 -25.7%

Os01g0930800 125.3 131.2 -4.5%
Os01g0930900 130.2 129.1 0.9%
Os10g0555100 99.6 130.1 -23.4%
Os10g0555200 99.7 130.3 -23.5%
Os10g0555300 105.2 129.2 -18.6%
Os10g0555600
Os10g0555651

95.2 130.2 -26.9%

Os10g0555700 127.1 130.6 -2.7%
Os10g0555900
Os10g0556000

64.6 132.4 -51.2%

Os10g0556100 65.2 127.3 -48.8%
Os10g0556200 73.7 122.1 -39.6%
Os10g0556900 131.2 129.1 1.6%
Os10g0558850 117.2 130.2 -10.0%
Os10g0559800
Os10g0559833

130.1 129.3 0.6%

Os11g0242400 129.4 128.6 0.6%
10 random
controlsc

Os01g0936100 130.3 131.5 -0.9%

Os05g0375600 134.0 132.4 1.2%
Os05g0571700 126.5 129.2 -2.1%
Os05g0573600 132.0 130.1 1.5%
Os10g0341750 134.0 130.1 3.0%
Os10g0342300 132.0 129.2 2.2%
Os10g0341700 133.0 130.2 2.2%
Os05g0571300 134.3 132.4 1.5%
Os10g0558400 128.5 132.4 -2.9%
Os10g0342650 131.3 131.5 -0.1%

On average, positive controls showed 46.4% reduction in plant height (p=0.017, two-tail t-test,
95% confidence interval: -99.6 -20.84), while 18 target gene loci showed 16.4% reduction in plant
height (p=0.0013, two-tail t-test, 95% confidence interval: -31.98 -9.22). 10 random controls only
showed a slight difference (knockout effect) (average 0.5%, p=0.42, two-tail t-test, 95% confidence
interval: -1.16 - 2.54).
a Four of the 6 positive controls were knocked out in Kasalath. GW5 was knocked out in Wuyungeng
and rl14 was not successfully knocked out.
b The knockout plant (Os01g0885000) died before the tilling stage, and the plant height could not
be compared with the others. Therefore, only 18 target mutants were measured.
c10 genes adjacent to the target blocks were randomly chosen as controls.

681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748

6 www.pnas.org --- --- Footline Author

749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816



Submission PDF

Fig. 3. Photos of knockout mutants with changed phenotypes.These photos show 6 examples as shorter plants, rolling leaves, a later heading date, changed
panicles and empty seeds compared with the wild type. The other 9 knockout mutants with observable phenotypic changes and the controls are shown in SI
Appendix, Fig. S7. Supporting informationThe following materials are available in the online version of this article.SI Materials and Methods

yield phenotype. Therefore, we further filtered out the bottom 50% of genes in terms of the diversity between MH63 and the
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11 wild rice varieties. Third, we filtered further by comparison
to tall cultivars as follows. All the re-sequenced cultivars in this
study were grown in the field and their heights were measured.
Because the semi-dwarfism trait was specifically selected for the
Green Revolution, we expect that the alleles related to the Green
Evolution would be divergent with tall cultivars and only be kept
in the genes showing a diversity higher than the median between
MH63 and each of the 8 tall cultivars (SI Appendix, Table S1 and
Table S9).

The above filtering procedure identified 129 gene loci, which
can be divided into 101 single loci and 28 loci with overlapping
genes (where two or more genes overlap completely or partly
within the same locus). As an example of overlapping genes,
the coding sequence of Os01g0883850 is completely contained
in the reported gene sd1 (Os01g0883800). These two genes are
thus considered as a single entity in our analysis. Each locus is
named by one gene it contains. Of the 129 gene loci, 44 are
from DGWG- and 85 from Peta-specific blocks (Fig. 1B and SI
Appendix, Table S10). These 129 gene loci are located on 17 blocks
which are inherited in all 8 descendants of MH63. Six of the 129
gene loci contain genes with known functions, including the semi-
dwarf gene, sd-1, known as the “green revolution gene”. This gene
encodes gibberellin 20-oxidase, the key enzyme in the gibberellin
biosynthesis pathway. Another gene, larger panicle (lp), which
controls the panicle architecture (19), has recently been found
to be a target of selection in Indica cultivars by a GWAS study
of 1479 rice accessions (20). The others are GW5, bc10, rl14 and
OsNAC6, responsible for grain width, brittle culm, leaf rolling
and stress tolerance, respectively (18, 21–24). Interestingly, half
of these six genes were identified from natural mutants in contrast
to the fact that most functional genes were identified commonly
from T-DNA insertion and mutagen induced mutants (roughly
accounting for 90% of genes reported with known function). This
suggests that the identified genes from a pedigree analysis could
better reflect the real targets of selection in plant breeding than
the genes identified from artificial mutants.

Knockout phenotypes of candidate gene loci
To determine whether a gene locus with unknown function

has a phenotypic effect when knocked out, 57 of the 123 loci with
unknown function were randomly sampled to do knockout by the
CRISPR-cas9 system. Of these, 19 had knockout mutants, which
were confirmed by PCR and Sanger sequencing. However, in
the other 38 gene loci, no knockout mutants were obtained even
after at least two independent transformations. We suspected that
many of these genes are essential in callus development, so that
no transformant survived. This possibility is supported by the
observation that most (91.2%) of these genes had medium or high
expression levels in callus (SI Appendix, Table S11).

As positive controls, we also attempted to knock out the 6
genes with known functions. As expected, 5 knockout mutants
exhibited similar or stronger phenotypic changes compared to
previous studies (18, 19, 21, 23, 24) (SI Appendix, Table S12).
However, one of them, RL14, had no knockout mutant (see SI
Appendix, Table S12). In a previous report, rl14, which carries
a single amino acid mutation, exhibited severe leaf rolling and
therefore RL14 may have essential functions, so that its knockout
could not survive (22). In addition, as random controls, 10 genes
were randomly sampled from the 1kb-300kb regions (SI Appendix,
Table S13) adjacent to the retained ancestor blocks (which were
shared by all 8 descendants of MH63). The near-neighbor con-
trols may be considered as conservative random controls for,
unlike true random controls, these controls in part allow for
possibly important position effects, such as the clustering of genes
with similar expression profiles (25). In all 10 cases the knockout
mutant showed no phenotypic changes (SI Appendix, Table S14),
in contrast to 79% (15/19) of the unknown gene loci that showed
observable phenotypic changes when the gene was knocked out

(Table 2 and detailed changes in phenotypes and genotypes in SI
Appendix, Table S15).

High yield plants are typically dwarf, as dwarfism reduces
investment into stalk, thereby potentially increasing investment
into seeds. Therefore, we studied the growth difference between
the mutated and unmutated version. We compared plant heights
in knockout and wild type lines by the paired t-test (Table 4).
As expected, the random control genes showed no difference
in height between mutant and non-mutant versions (P =0.42,
95% confidence interval, -1.15cm, 2.54cm), while the positive
controls showed a significant shorter height in mutants than in
wild type (P =0.017, confidence interval: -99.6 cm to -20.84 cm).
Importantly, for the test group we also saw a strong dwarfism
phenotype (P =0.0013; 95% CI: -31.98 to -9.22 cm). As these
were random samples from the 123 unknown gene loci, it implies
that a high proportion of the 123 loci have a phenotype similar
to that of the well-described positive control genes identified
by the same method. However, the extent of the dwarfism is
reduced in the test sample compared with the positive controls
(t-test on percentage difference comparing positive control and
test samples, P =0.029, 95% CI: -67.82 -5.48). These genes may
have weaker effects than the previously reported ones, and this
may be why they have not been identified.

A gene of particular interest is Os10g0555100, as its knockout
showed a different panicle architecture and a 23% reduction
in height. Note that one of the reported genes, larger panicle
(lp), showed an altered panicle architecture as well. The protein
product may be a glycogenin glucosyltransferase (see ic4r.org),
suggesting a possible role in controlling free glucose and glu-
cose storage. This speculation, however, requires further analysis.
Among the other genes some, such as Os10g0558850, had rolled
leaves (Fig. 3) but a relatively modest reduction in plant height
(∼ 10%). All the 15 unknown gene loci with knockout pheno-
types have various protein-level motifs with unknown function,
suggesting that the plant type and the high-yield phenotype are
controlled by many types of genes.

Interestingly, the physically-proximal gene loci, although
showing no sequence similarity, have similar functions. For exam-
ple, 3 of the 6 gene loci on chromosome 1 (from Os01g0884400
to Os01g0930900) had knockouts resulted in late heading and
6 of the 11 loci on chromosome 10 (Table 2 and SI Appendix,
Table S15) had knockouts resulted in dwarf phenotypes relative
to the background line. This clustering mirrors the previously
observed clustering of QTL signals (26). The clustering may
reflect selection for coordinated gene expression or may possibly
be owing to epistatic effects. Importantly, this result also suggests
a strategy for finding genes with similar functions: if you have
found one, investigate its neighbors.

Knockdown phenotypes of gene loci with no knockout trans-
formant

To investigate the 38 loci with no knockout mutants, we ran-
domly selected 26 loci to knock down their expression level, using
the dCas9 knockdown technique (27). Similar to the knockout
results, in 10 of the 26 loci (38.5%) no knockdown mutants
were obtained due to the death of the transformed callus after
hydromycin selection. Most of the 26 loci also have medium or
higher expression levels in callus (SI Appendix, Table S16). More-
over, even in the 16 loci with knockdown transgenic plants, 10
knockdown plants showed distinct negative phenotypic changes
and 7 of them died during plant regeneration (Table 3 and SI Ap-
pendix, Fig. S5). As expected, the qRT-PCR study confirmed that
the expression of these target loci in knockdown transformants
was indeed down-regulated (SI Appendix, Fig. S6). These results
suggest that most of the 38 candidate genes are essential genes in
rice.
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Discussion

Determining the genes that explain complex traits has never been
easy. The two much used methods, QTL and GWAS, have both
led to important discoveries, but such analyses are typically very
labor intensive. Indeed, during the past decades, much effort
has gone into dissecting the genetic basis of high-yielding traits
based on molecular linkage maps, e.g., the identification of many
quantitative trait loci (QTLs) (28–31), but had identified rela-
tively few genes. The pedigree-based method that we expanded
here has, for some cases, short-cut much of the effort. It requires
a good pedigree and consistent directional selection, however.
Confirmation of such results would until recently also have been
very time consuming, but CRISPR-Cas9 can greatly reduce the
amount of work. In this study. We have not only identified the
3 well known loci for the Green Revolution (the “green revolu-
tion gene” sd1, grain size-related gene GW5 and domestication
gene lp), but also identified over 100 candidates. Among the 57
candidate genes selected for knockout and knockdown studies,
we found that many of them are essential genes or showed
phenotypic effects. Thus, the pedigree approach seems to be
highly efficient for identifying candidate genes that were subject
to strong selection..

While the knockout analysis suggested a low false positive
rate, the false negative rate, by contrast, is unknown and probably
quite high as our filters are quite stringent. Indeed, when we look
at two genes that failed to pass the diversity cutoff, we find that
one of them resulted in phenotypic change when knocked out.
This suggests that slight relaxation of the stringent filtering will
result in more candidates, but potentially a higher false positive
rate too. More generally, we do not know how many genes
are essential for the rice Green Revolution. As a consequence,
the method should then be considered a technique to greatly
enrich for selectively relevant genes rather than a method for an
exhaustive search.

This study showed that rice is unusually well suited to this
pedigree method. First, the well-documented pedigree informa-
tion can be used to calculate the expected proportions of blocks
(or loci) being transmitted from an ancestor to a descendant (e.g.,
Fig. 1A). By comparing the expected and observed proportions,
the gene loci that were most likely to have been the target of
artificial selection could then be identified. For example, the
probability of a DGWG block appearing in all of the eight MH63
descendants was estimated to be nearly zero. Thus, if a block is
observed in the re-sequencing data, it was very likely subjected
to strong artificial selection. Second, from the relationships in a
pedigree, SNP markers can be verified and corrected by compar-
ing the sequences of parents and offspring between generations
(demonstrated in Fig. 2 and SI Appendix, Fig. S1). In rice we
are fortunate to have access to the stocks of the prior genera-
tions. Third, pedigree analysis focuses on tracing relatively longer
blocks from the parents to the offspring instead of single SNPs
or genes. It is therefore not difficult to identify selected targets.
Finally, the CRISPR-Cas9 system provides an effective way of
gene knockout to find a set of genes relevant to complex traits.
In conclusion, our approach should be useful for many breeding
projects.

Our choice of our model organism was not just motivated
by the fact that the conditions for pedigree analysis were met,
but also by the enormous impact of the Green Revolution, as
indicated by the generation of high-yielding plant types through
breeding. The introduction of dwarfing genes has resulted in
plants that possess short and strong stalks, which are less liable to
lodging. The stability of shorter plants dramatically reduces the
need for photosynthetic investment in the stem. Assimilates are
then redirected to grain production, resulting in a better plant
type and increased yield (32). The candidate genes identified

in this study will be useful for understanding the underlying
mechanism of this physiology.

Importantly then, we have identified many new genes respon-
sible for high-yield, an economically most important trait. Most of
these gene loci have not yet been functionally annotated, although
a few of them belong to the β-expansin family or contain a zinc
finger domain, which are known to play an important role in plant
height, flower development, and light-regulated morphogenesis
(33–35). We highlighted Os10g0555100, the knockout of which
showed a different panicle architecture and a 23% reduction
in height. We also note that our results suggest that the genes
identified from cultivated lines in a pedigree could better reflect
the real targets in plant breeding than the genes identified from
artificial mutants. Our catalogue of 123 unannotated gene loci
provides choices for downstream analysis. Our knockout and
knockdown study of about half of these loci revealed that most
of the genes in these loci are essential for rice phenotypes or
for normal growth. Among the 159 genes we identified, there
are at least 31 yield related genes, including 15 identified by
knockout, 10 by knockdown and 6 previously reported. This
proportion (19.5%) is significantly higher than the expectation
(2.33 in 159 = 1.5%) based on the reported yield related genes
in the rice genome (p<0.001, χ2=334, df=1, Chi-squared test
with Yate’s correction, see details in the SI Appendix, SI Materials
and Methods). However, the alleles contributing to the Green
Evolution are not necessarily null alleles, so our knockout and
knockdown studies did not directly test the contribution of allelic
changes to the Green Revolution. Gene replacements in IR8 or
MH63 would directly reveal the contributions of the alleles, but
IR8 and MH63 are difficult to transform and gene replacement
is currently difficult in rice.

Our results also highlight clustering of unrelated genes with
similar yield-associated phenotypes in the genome. This obser-
vation is of relevance to those hunting for complex trait genes
and for those interested in genome evolution. For the former, it
suggests that looking at neighbors of functionally relevant genes
would be an effective way to look for functionally related genes.
The clustering may reflect epistasis between genes or selection for
co-expression. Previous QTL analysis also suggested that genes of
similar phenotypic effects tend to cluster together (26), but this
could also reflect allelic versions of control elements for a single
gene. The fact that the knockouts of the clustered genes tend to
have similar phenotypes suggests it is not the case.

Methods
Detailed materials andmethods are outlined in SI Appendix, SI Materials and
Methods

Plant materials and sequencing
The seeds of all rice accessions were obtained from International Rice

Research Institute (IRRI) and China National Rice Research Institute (CN-
RRI) (Dataset S1). Pedigree information was obtained from the germplasm
databases of IRRI and CNRRI. All rice varieties were grown in the paddy-
field. DNA samples were prepared from fresh leaves of a single plant using
the Cetyltrimethyl Ammonium Bromide (CTAB) method and were sequenced
at BGI-Shenzhen. Briefly, paired-end sequencing libraries with an insert size
of ∼500 bp were constructed for each plant, following the BGI-Shenzhen’s
instructions, and 2×100bp paired-end reads were generated on an Illumina
HiSEq 2000. The sequencing reads of the 30 rice accessions have been
deposited to the NCBI Short Read Archive under the Accession Numbers
PRJNA271253 and SRR1060330. Indica cultivar 9311 callus RNA-seq data was
downloaded from NCBI, BioProject PRJNA117345, SRR037711∼SRR037724.

Construction of CRISPR Genome-Editing Vectors and target gene loci
knockout

For each target locus, gRNAs were designed to target specific sites at the
beginning of exons to cause a frame shift mutation. For each target, a pair
of DNA oligonucleotides with appropriate cloning linkers were synthesized
(BGI, Inc). Each pair of oligonucleotides were phosphorylated, annealed, and
then ligated into BsaI-digested pRGEB31 vectors (addgene No.7722) (36).
After transformation into Escherichia coli DH5-alpha, the resulting constructs
were purified with Plasmid Mini kit (Genebase, Inc) for subsequent use in
rice callus transformation. We selected Kasalath and Wuyungeng24 to be
the background because they have a high transformation success rate while
IR8 and MH63 are difficult to transform. Besides, Kasalath has a rather high
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stature and it is easy to observe when it becomes dwarf. Each construct was
transformed into calli of Kasalath (an Indica) or Wuyugeng24 (a Japonica)
by the method reported in a previous study (37). About ten transformed
individuals were produced in two recipients for each vector (details in SI
Appendix, Table S13, Table S14 and Table S15).

Genotype confirmation and phenotype observation
The transgenic plants were examined under natural field conditions

in the Experimental station of Nanjing University, Nanjing, China. For each
plant, genomic DNA was extracted from fresh leaves by the CTAB method.
In order to get double knockout mutants, we amplified the target region
by PCR and confirmed the genotypes by Sanger sequencing. Primers were
designed to make PCR products of ∼1kb that contain the target sites. The
results showed that 82.1% of transgenic plants had a knockout allele and
79.5% had double knockout mutants. Phenotypes of the mutants were
observed at different stages. Plant phenotypes were observed every three
days to determine the changes in comparisonwithwild type rice plants. Plant
height was measured after the stage of heading. Fertility and spike shape
were observed when seeds were mature.
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