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A fluorescent peptidyl substrate for visualizing peptidyl-prolyl 
cis/trans isomerase activity in live cells  

Quan Jiang,a,‡ Xiao-Rong Li,a,‡ Cheng-Kun Wang,a Juan Cheng,a Chao Tan,a Tian-Tian Cui,a Nan-Nan 
Lu,a Tony D. James,b Feng Han*a and Xin Li*a 

This paper reports on a fluorescent probe (PPI-P) for imaging active 

peptidyl-prolyl cis/trans isomerases in live cells. PPI-P is capable of 

responding to both recombinant and cellular PPIases 

fluorogenically, and has been shown to specifically image active 

PPIases in live cells. 

Due to the partial double bond character of peptidyl-prolyl bonds 

and the high activation enthalpies for cis/trans isomerization, prolyl 

isomerization is intrinsically slow but can be accelerated by peptidyl-

prolyl cis/trans isomerases (PPIases).1 PPIases are therefore 

considered as important chaperones in modulating the folding, 

trafficking and function of target proteins.2-4 PPIases are divided into 

three groups, the FK506-binding protein (FKBP) family, Cyclophilin 

and the Parvulin family (Pin1 and Par14).5,6 PPIases directly or 

indirectly regulate pathogenic protein multimerization in human 

diseases and represent a family rich in targets for modulating 

mitochondrial function, chaperone activity, stress response, 

transcription gene regulation, chromatin dynamic, and kinase 

activity.7-11 Many individual genes within the PPIase family are 

associated with age-related diseases,12 including cardiovascular 

diseases, cancer and age-related macular degeneration, e. g., Pin1 

has been implicated in the pathogenesis of cancers and Alzheimer’s 

disease,13, 14 while FKBP25 participates in epigenetic regulation of 

gene expression and ribonucleoprotein complexes.15 Despite the 

biological importance, the relationship between PPIase activity and 

their precise function, and the underlying mechanism responsible for 

physiological regulation and pathological dysregulation of prolyl 

isomerization remain largely unknown, which emphasizes the 

necessity of reliable assays for monitoring PPIase activity. 

To date, the catalytic activity of PPIases is usually monitored 

spectrophotometrically by the chymotrypsin-coupled assay using N-

succinyl-Ala-Ala-Pro-Phe-p-nitroanilide peptide as a probe. This 

assay exploits the finding that α-chymotrypsin can proteolyze the p-

nitroanilide amide bond to enhance the absorbance at 390 nm when 

the Ala-Pro bond is in the trans conformation.16,17 While this assay 

has facilitated PPIase evaluation and yielded important results, it can 

only be used with lysates or recombinant proteins thus precluding 

the application to live cells. Since cell lysis disrupts the carefully 

controlled cellular environment and may affect the stability and 

function of target proteins, it is very important to study proteins in 

their native environments in order to achieve more biologically 

relevant results.18 

In recent years, chemical tools have become the method of choice 

for detecting protein activity in intact live samples.19,20 Though there 

have been a number of probes reported for imaging various proteins, 

probes that could significantly advance PPIase research remain 

undeveloped. With this research we introduce an exciting new 

chemical tool to the currently available toolbox of probes dedicated 

to understanding protein function: fluorogenic probe (PPI-P) for 

monitoring PPIase activity in live cells. The probe is a peptide with 

the sequence of Ala-Ala-Pro-Phe labeled with a 6-(dimethylamino)-

2-naphthoyl fluorophore at the N terminus and a p-nitroanilide 

group at the C terminus. We reasoned that the cis geometry of PPI-P 

would bring the naphthalene fluorophore and the nitroanilide 

quencher into close proximity and therefore cause fluorescence 

quenching.21 Prolyl isomerases can catalyze the transformation of 

the cis prolyl bond to trans, separating the fluorophore from the 

quencher and therefore restoring the fluorescence. We have shown 

that PPI-P is sensitive to PPIases in vitro. Notably, it facilitates the 

visualization of the dynamic changes involved during PPIase activity 

in live cells. 

Initially, to facilitate the imaging of functional PPIases in live cells, 

we took advantage of their ability to catalyze prolyl-containing 

peptide isomerization. Since the distance between the N and C 

terminals of a peptide may change significantly before and after the 

peptidyl-prolyl isomerization, a fluorophore and a quencher were 

incorporated into a PPIase substrate, resulting in a probe where 

fluorescence intensity changes can be used to monitor the 

isomerization. For this purpose, Ala-Ala-Pro-Phe was selected as a 

representative PPIase substrate due to its broad-spectrum activity 
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among various PPIases,22 and probe PPI-P was developed by tagging 

the tetrapeptide with the 6-(dimethylamino)-2-naphthoyl 

fluorophore at the N terminus and p-nitroanilide quencher at the C 

terminus. We reasoned that as the cis isomer, the probe would be 

weakly fluorescent due to the close proximity of the fluorophore and 

the quencher. Then, PPIases would catalyze the isomerization from 

cis to trans, separating the fluorophore from the quencher, resulting 

in a concomitant fluorescence increase (Fig. 1). The tagged PPI-P 

peptide was synthesized as detailed in the supporting information. 

As shown by the attached NMR traces in the supporting information, 

both the 1H NMR signals and 13C NMR signals of PPI-P appear in pairs, 

suggesting the presence of both the cis and trans isomers. However, 

high performance liquid chromatography (HPLC) analysis gave only 

one peak under several elution conditions. After failing to 

differentiate the cis isomer from the trans one, we decide to use PPI-

P as such for the following experiments. 

 

Fig. 1 Structure of PPI-P and the proposed mode of action. 

With PPI-P in hand, we first investigated its fluorescence response 

towards PPIases in lysates. Given that PPIases exist in most cell types, 

we then measured the fluorescence response of PPI-P to various 

lysates. Having confirmed that the lysis buffer caused no change to 

the PPI-P fluorescence (Fig. S1). We then recorded the spectra of PPI-

P in the presence of various lysates. As shown in Fig. 2A, PPI-P itself 

in PBS displayed moderate fluorescence centered at 460 nm (Φ 

0.101), probably due to presence of residual trans isomer. 

Interestingly, all the cell lysates tested were able to induce 

fluorescence enhancement of PPI-P. And an increase of fluorescence 

quantum yield to 0.132 was observed when PPI-P fluorescence 

plateaued after the treatment of lysate from HEK-293 cells. 

Furthermore, using lysate from N2a cells, we were able to 

demonstrate that the fluorescence increase of PPI-P was dose 

dependent, with increasing lysate resulting in a stronger 

fluorescence response (Fig. 2B, Fig. S2), similar results were obtained 

when PPI-P was treated with lysate from HEK-293 cells (Fig. S3). To 

make sure that this observed fluorogenic response towards cell 

lysates was not due to probe aggregation, we determined the 

solubility of PPI-P in PBS (pH 7.4, 10 mM) by UV absorption analysis, 

and a linear correlation between absorption intensity and PPI-P 

concentration was observed in the range of 0-50 μM (Fig. S4), 

suggesting the good solubility of the probe under the working 

concentration. We also confirmed that PPI-P was stable in cell lysate 

by monitoring the probe-lysate mixture with liquid chromatography 

– mass spectrometry (LC-MS) analysis. As shown in Fig. S5, when PPI-

P was treated with HEK-293 lysate, a time-dependent fluorescent 

intensification was observed. When aliquots of the mixture at 

indicated time was analysed by LC-MS, no new peak other than PPI-

P could be found, indicating that PPI-P is stable enough to resist 

decomposition at least during the tested period. These results also 

indicate that the fluorogenic response of PPI-P towards cell lysates 

was due to its isomerization from cis to trans. 

 
Fig. 2 (A) Fluorescence spectra of PPI-P (5 μM) before and after the treatment (10 min) 

of lysates (20 μL) from various cell lines. (B) Fluorescence spectra of PPI-P (5 μM) after 

the treatment (10 min) of various amounts of lysate from N2a cells. All cell lysates were 

adjusted to a total protein concentration of 1 μg/μL before addition. Spectra were taken 

in PBS (10 mM, pH 7.4) at ambient temperature. 

To further confirm that the fluorescence response of PPI-P to cell 

lysates was due to PPIases, two additional experiments were 

performed. First, the response of PPI-P towards recombinant PPIases 

was investigated. For this purpose, recombinant FKBP25 and Pin1 

were chosen due to their relevance in the pathological processes of 

cardiovascular and cerebrovascular disorders.23,24 The catalytic 

activity of FKBP25 was verified using the traditional chymotrypsin-

coupled assay which displayed a dramatically accelerated 

enhancement for the absorption of N-succinyl-Ala-Ala-Pro-Phe-p-

nitroanilide at 405 nm in the co-presence of α-chymotrypsin (Fig. S6), 

indicating the efficient catalytic activity of recombinant FKBP25. 

Interestingly, when the PPI-P probe was treated with the same 

recombinant FKBP25, significant fluorescence enhancement was 

observed (Fig. 3A). Consistently, similar results were obtained for 

recombinant Pin1 treatment (Fig. 3B), demonstrating the potential 

of PPI-P as a reliable and facile probe for PPIase activity. 

Second, we investigated the effect of FKBP inhibitors on the lysate-

induced fluorescence enhancement. When PPI-P was treated with 

whole lysate derived from HEK293 cells, a significant fluorescence 

enhancement was observed (Fig. 3C). However, the fluorescence 

increase was significantly reduced when the system was co-

incubated with rapamycin or FK506, two potent inhibitors of FKBPs 

(Fig. 3D), clearly suggestive of PPI-P being the molecular target of 

PPIases. All these results taken together, demonstrate the specificity 

of PPI-P towards PPIases among the myriad of other biological 

components found in lysates. 
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Fig. 3 Characterization of the kinetic response of PPI-P to PPIases. PPI-P fluorescence 

was recorded at 460 nm after recombinant FKBP25 (1 μg/μl, 10 μl) (A), or recombinant 

Pin1 (1 μg/μl, 10 μl) (B) treatment. (C) Lysate from HEK293 cells (1 μg/μl, 10 μl) could 

also induce a PPI-P fluorescence increase and (D) this increase by cell lysate (1 μg/μl, 5 

μl) could be blocked in the presence of FKBP inhibitor rapamycin (final concentration, 10 

μM) and FK506 (final concentration, 1 mM). 

Having confirmed the capability of PPI-P to evaluate PPIase activity 

from lysates, we moved on to evaluate the feasibility to image 

endogenous PPIase activity in live cells. We first confirmed that PPI-

P was of little cytotoxicity by CCK-8 assay (Fig. S7). Then we stained 

EA.hy926 cells with PPI-P after cells were transfected with lentiviral 

vector encoding EGFP for dual-colour confocal imaging, and the 

dynamic change of PPI-P fluorescence in the transfected cells was 

monitored (video S1). 

 

Fig. 4 Detecting endogenous PPIase activity in live EA.hy926 cells with PPI-P. Data shown 

are the time-lapse confocal images of EA.hy926 cells treated with PPI-P (final 

concentration, 2.5 μM) in the absence (A) or presence (B) of rapamycin (final 

concentration, 1 μM). Lentiviral vector encoding EGFP were transfected into EA.hy926 

cells for confocal imaging. The merge panels indicate an overlap of the EGFP (Green) 

signal with PPI-P (Blue) signal. Probe fluorescence was collected at 420−480 nm with λex 

405 nm. EGFP fluorescence was collected at 500−550 nm with λex 488 nm. 

The series of images in Fig. 4A are individual frames from the 

continuous time-lapse movie, from which we observed the gradual 

elevation of intracellular PPI-P fluorescence in a time dependent 

manner, which was confirmed by quantification of the fluorescence 

data (Fig. S8), indicating the presence of native PPIases and their 

catalytic effect on PPI-P to catalyze the isomerization of the probe 

from cis to trans. In order to assess the specificity of PPI-P in live cells, 

its fluorescence response in EA.hy926 cells pretreated with 

rapamycin was monitored (video S2). As shown in Fig. 4B and S8, 

PPIase inhibition by rapamycin resulted in a reduced and delayed 

fluorescent response for PPI-P to endogenous PPIases, further 

demonstrating the specificity of PPI-P for PPIases in live cells. 

To further evaluate the spatiotemporal resolution of PPI-P for 

determining PPIase activity in live cells, the response towards 

overexpressed FKBP25 fused with EGFP was investigated. The 

lentivirus vector encoding EGFP-FKBP25 was transfected into live 

EA.hy926 cells, and FKBP25-overexpression-induced PPI-P 

fluorescence changes were monitored in real-time with EGFP as an 

overexpression indicator (video S3). Representative images from 

video S3 are given in Fig. 5. Notably, intracellular PPI-P fluorescence 

was positively correlated with the FKBP25 expression level with cells 

overexpressing EGFP-FKBP25 demonstrating stronger PPI-P 

fluorescence than its non-overexpressing counterparts (Fig. 5 and 

S9), which agrees well with the data in Fig. 2B, further suggesting the 

specificity of PPI-P towards PPIases. Taken together, these 

experiments provide convincing evidence that PPI-P is capable of 

detecting endogenous PPIase activity in live cells. 

 

Fig. 5 Confocal fluorescence images of FKBP25-induced PPIase activity detected by PPI-

P in live EA.hy926 cells. Lentiviral vector encoding FKBP25-EGFP were transfected into 

EA.hy926 cells. Cells were then treated with PPI-P (2.5 μM). Data shown are the time-

lapse series for confocal plane images recorded from live EA.hy926 cells over a 20-min 
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time frame. The dotted line in white or yellow respectively indicated the cells 

overexpression the FKBP25-EGFP or not. Probe fluorescence was collected at 420−480 

nm with λex 405 nm. EGFP fluorescence was collected at 500−550 nm with λex 488 nm. 

In summary, by taking advantage of the mechanism of PPIase 

activity, we have developed a fluorogenic probe to report on the 

catalytic activity of PPIases in both lysates and live cells. The 

specificity and sensitivity of the probe has been demonstrated using 

the imaging of exogenous and endogenous PPIases in live cells. It 

should be noted that although the sensitivity of the probe is not good 

enough due to the apparent background fluorescence, it represents 

the first example where PPIase activity has been directly imaged in 

live cells, and should be inspiring for future work. Given the 

importance of PPIases in regulating protein conformation and 

function, we envision that further work may be conducted with the 

construction of new probes whose spectra properties at cis and trans 

geometry could be well resolved and those that have brighter and 

red-shifted excitation/emission spectra. 
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