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This paper examines whether knowledge from academic research of varying quality can lead to 

differential quality innovation at the firm level via a knowledge spillover process – without the 

firm conducting the research and producing the knowledge but by using it as an external input to 

its innovation process. Based on econometric analysis of data reflecting patent activity of 

emerging entrepreneurial life sciences firms and thousands of academic publications we find that 

higher quality academic science associates with higher quality industrial innovation. Importantly, 

we document that the degree that a given firm conducts basic science moderates this relationship. 

Our work develops a novel theoretical and empirical link between academic knowledge quality 

and industrial innovation and identifies the contingencies that allow this link to materialize. 
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1. Introduction 

Recognizing that the locus of innovation often resides outside an organization’s boundaries 

(Cohen and Levinthal, 1990), firms in knowledge intensive industries regularly use academic 

science as an external input to their innovation process (Cassiman et al., 2010; Cassiman et al., 

2008). Importantly, academic science is heterogeneous in quality; some works provide more 

insights than others, present more novel techniques, are better executed and generally present a 

richer knowledge pool that firms can draw upon (Gittelman, 2007; Jong and Slavova, 2014; 

Nonaka, 1994). Putting those two phenomena together begs the question: does higher quality 

academic science as an external input to the innovation process translate to higher quality firm 

innovation?  

The extant literature has not analyzed this question in any significant depth as the focus 

has been on examining the linkages between academic science and the quality of industrial 

innovation. Subsequently, that focus has shifted attention away from the heterogeneity of 

academic science quality. Cassiman et al. (2008), Fleming and Sorenson (2004), Nagaoka (2007) 

and Sorenson and Fleming (2004) all conclude that knowledge-intensive firms which use 

academic research as an external input to the innovation process improve the quality of their 

innovations. They do not, however, take into account the fact that academic research is 

heterogeneous in quality. That is, they reach their important insights by linking firm patent 

quality measures with the number of academic publications that are cited in the firm patents but 

are not authored by the focal firm. However, the only quality indicator these studies use is a 

separation of journal articles with an impact factor from the full list of prior art references1. As 

such, they treat all articles (as long as they are published in a journal which has an impact factor) 

                                                 
1 Nagaoka (2007) does not make this separation relying instead on the count of citations to academic papers. 
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as being of similar quality. Accordingly, they mask potentially substantial differences in 

academic science quality. These differences may manifest both at an aggregate level (i.e. overall 

journal quality, as reflected in impact factors) and at a micro level (i.e. article quality, as 

reflected in number of citations garnered by a given article irrespective of the journal in which it 

is published). These are important considerations given the wide variation in quality not only 

among journals but also within journals, with certain contributions being of higher quality than 

others. 

 Against this background and motivated by studies linking knowledge quality measures 

(e.g. citation weighted publications) of in-house basic research with innovation outcomes 

(Almeida et al., 2011; Belenzon and Patacconi, 2014; Gittelman and Kogut, 2003; Jong and 

Slavova, 2014; Subramanian et al., 2013), in this paper we bring academic knowledge quality, 

measured with impact factors and article citation counts, as an external input to industrial 

innovation to the forefront. We do so both conceptually and empirically. After we review what is 

known about the nature of academic science, the derived knowledge, and the process that firms 

use to innovate we discuss the mechanisms that can translate higher science quality to higher 

quality of industrial innovation. Importantly, given the cognitive difficulties that some firms may 

have in assimilating such knowledge (Kealey and Ricketts, 2014) we then uncover the boundary 

conditions under which such relationship holds. In line with the literature on the benefits 

afforded to firms conducting basic science (Gambardella, 1992; Rosenberg, 1990) and with the 

literature highlighting the positive effects of developing higher absorptive capacity (Cohen and 

Levinthal, 1990; Fabrizio, 2009; Lane and Lubatkin, 1998) we find that only firms conducting 

and publishing in-house basic research are able to produce higher quality innovations by using 

higher quality academic science as an external input to the innovation process. 
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In the empirical part of the paper we measure knowledge from academic research with 

articles published in academic journals. We do so based on robust findings which document that 

journal articles are a common vehicle by which industrial actors tap into academic knowledge 

(Cohen et al., 2002) and represent a reliable measure of knowledge flows from the public sector 

(Roach and Cohen, 2013). To measure the quality of academic research we use two separate 

measures. The first reflects the number of citations received by each journal article referenced in 

each patent. The second measures the impact factor of the journals in which these articles are 

published. To explicitly test whether higher quality knowledge from academic research leads to 

higher quality of innovations at the firm level we build a number of econometric specifications 

that link patent quality with the number of published articles that are cited in the focal patents 

and the knowledge quality variables we described above. 

We conduct the analysis within a sample of emerging entrepreneurial life sciences firms. We 

focus our attention in the area of the life sciences as academic research in this area tends to be 

both a starting point of industrial development (Balconi et al., 2010) and to have immediate 

industrial applications (Argyres and Liebeskind, 1998; Narin et al., 1997). In line with a long 

stream of research, we measure the quality of innovation through patent quality (Hagedoorn and 

Cloodt, 2003; Lanjouw and Schankerman, 1999) which we approximate with the number of 

times a patent has been cited by later patents (i.e. forward citations) (Fischer and Leidinger, 

2014; Harhoff et al., 1999; Lerner, 1994; Sneed and Johnson, 2009).  

Our choice to concentrate on innovations produced by emerging, mostly young 

entrepreneurial firms in the life sciences is aligned with the use of academic science as an 

external input.2 Typically, such firms have limited financial resources and often rely on 

                                                 
2 We opt to measure technological innovation with patents based on the evidence that in high technology industries 

patents are a reliable innovation proxy despite their shortcomings (Acs et al., 2002; Igami, 2013). These 
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knowledge spillovers (Khilji et al., 2006; Kolympiris and Kalaitzandonakes, 2013) and 

knowledge from academic research (Cohen et al., 2002; Laursen and Salter, 2004) to fuel their 

innovation. As such, if the differential quality of knowledge from academic research has a 

differential impact on industrial innovation, we expect to observe such relationship in the case of 

emerging entrepreneurial life sciences firms. Note that these types of firms differ in the degree 

they conduct and publish basic research which then allows us to uncover the boundary conditions 

discussed above. 

For the analysis we construct and merge 3 different datasets. The first identifies and 

describes all life-sciences grant recipients of the Small Business Innovation Research (SBIR) 

program and it is provided by commercial vendor InKnowVation. As we explain below in detail, 

the SBIR program awards grants to the types of firms we are interested in - emerging small 

innovative firms. The second dataset measures the patent activity of those firms across time; it 

was assembled by sourcing proprietary data from Thomson Innovation. The third dataset 

contains detailed information on all the publications cited in the focal patents as well as on the 

publication activity of the sample firms. It is constructed via intensive programming and manual 

cleanups utilizing data from the bibliographic database SCOPUS. 

Understanding the relationship between quality of knowledge from academic research and 

industrial innovation in small entrepreneurial firms is important in its own right. Small and 

young firms, especially in knowledge intensive industries such as the life sciences, contribute 

significantly to innovation, job creation, wealth generation and the like (Cumming et al., 2014; 

Haltiwanger et al., 2013; Henrekson and Johansson, 2010; Lawless, 2014; Neumark et al., 

                                                 

shortcoming may arise because innovative firms may not patent for strategic reasons (Teece, 1986) or patents may 

relate more to invention rather than to innovation (Moser, 2005). Specifically for the life sciences the use of patents 

as an innovation proxy is particularly suitable because of the strong links between innovation and patents in that 

industry (Arundel and Kabla, 1998). 
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2011).3 Thus, understanding the factors that drive improvements in the quality of the innovation 

process in those firms should be important for social welfare.  

The rest of the paper is organized as follows: In section 2 we discuss the notion of academic 

knowledge quality and we summarize the mechanisms that can connect higher academic quality 

to higher innovation quality as well as the contingencies that allow such links to materialize. In 

section 3 we describe our empirical models. In section 4 we discuss our data source, sample 

development and variable construction. In section 5 we present our results and we conclude in 

section 6. 

2. Published academic research, its quality and industrial innovation  

Academic research quality is an encompassing term that incorporates notions relating, among 

others, to academic work that has more societal impact, affords higher recognition among peers, 

exerts a stronger influence on the advance of knowledge, it is more important, makes stronger 

contribution to the body of knowledge and inspires further research (e.g. Aksnes and Rip, 2009; 

Jensen et al., 2003; Owen-Smith and Powell, 2003; Stremersch et al., 2007). Largely because of 

its encompassing nature, defining research quality with precision is an inherently difficult task as 

different actors may assign different weights in various components of quality. For instance, 

some may place more emphasis on societal impact, others may look for novelty, while others 

may evaluate more favorably work that forms the foundation for follow up studies. While such 

differences, when they exist, obstruct a comprehensive and commonly agreed upon definition, 

they do not pose a prohibitive obstacle on approximating the quality of a given piece of academic 

work. That holds largely because secondary data can represent most elements of research quality 

simultaneously. That is, journal rankings and impact factors, the number of times an article has 

                                                 
3 Nightingale and Coad (2014) present a thorough account of the contribution of emerging firms to economic growth 

as well as on the conditions under which this relationship does not hold. 
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been cited by follow up work (forward citations) and other widely used indicators, despite their 

shortcomings, generally approximate research quality and offer two main advantages (e.g. 

Azoulay et al., 2014; Thursby and Kemp, 2002). First, they correspond well intuitively with the 

notions of recognition, impact and the like; to give an example, one can easily conceptualize 

forward citations as a measure of the degree that a given piece of academic research acts as 

foundation for follow up work. Second, and perhaps more fundamentally, they also tend to 

correlate with the assessment of research quality as revealed by judgements made by scientists 

(Aksnes, 2003, 2006; Aksnes and Rip, 2009). This latter observation complements existing 

findings suggesting that ex ante scores provided by scientists correlate with realized research 

quality (Li and Agha, 2015). This is particularly important because not all scientists adopt the 

same definition of quality, yet they generally find works that score high in the secondary 

measures in question to be of superior quality.  

The next inquiry is if/how academic knowledge of higher quality can lead, via a knowledge 

spillover process, to higher quality industrial innovation. As already introduced, existing works 

pick up the issue only indirectly since, when explaining the quality of industrial innovation, they 

treat all articles (as long as they are published in a journal having an impact factor) as being of 

similar quality (Cassiman et al., 2008; Fleming and Sorenson, 2004).4 Such empirical choice is in 

line with the theoretical framework of those contributions in which knowledge quality is not 

central as an input to firm innovation.5 Alternatively, we propose that knowledge quality merits 

separate attention.  

                                                 
4 Some works, in the context of in-house (academic) science production, acknowledge that knowledge can be 

heterogeneous in terms of its quality and therefore also in terms of potential relevance for industrial innovation 

(Gittelman, 2007; Jong and Slavova, 2014; Nonaka, 1994).  
5 Sorenson and Fleming (2004), without adjusting journal articles for underlying knowledge quality and without 

focusing on firm patents, attribute the positive association they find between forward citations and science intensity 

of a given patent to the rapid diffusion of knowledge that publications (as part of the prior art) bring about. Such 

explanation is indeed possible but it applies only when the dependent variable is the number of forward citations. In 
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Accordingly, in what follows we first discuss how academic science can contribute to 

industrial innovation at the firm level and then approach the question of how/if academic 

knowledge of higher quality can lead, via a knowledge spillover process, to higher quality of 

industrial innovation. 

Following the dynamic theory of organizational knowledge creation (Nonaka, 1991, 1994) 

the interplay between tacit and explicit knowledge is what drives innovation within 

organizations. When tacit knowledge, defined as knowledge that is difficult to be fully 

articulated by its possessor and it is held in “people’s heads and bodies” (Leonard and Sensiper, 

1998; Polanyi, 1975) is transformed to explicit knowledge, and vice versa, organizations 

innovate (Nonaka, 1991, 1994). This happens via articulation in which tacit knowledge is 

converted to codified knowledge and via internalization in which codified knowledge is used as 

an input to strengthen one’s knowledge base (Nonaka, 1991). When such processes occur, a 

spiral of knowledge is eventually created and organizations innovate. Leonard and Sensiper 

(1998) discuss how the exchange between tacit and explicit knowledge is crucial via three main 

routes. First, it helps in problem solving as it allows its possessor to identify patterns and reach 

solutions more effectively. Second, it allows for a better framing of problems which does not 

rely on established routines but rather on intuition and creative thinking. Third, it promotes an 

enhanced understanding of how processes work, and as such it allows for more accurate 

predictions.  

                                                 

unreported results where we employed patent family size as an alternative measure of patent quality we reach 

conclusions similar to those derived from the baseline estimates we present in Table 3. As such, we expect to indeed 

be measuring patent quality. Note that in analyzing forward citations of European patents Cassiman et al. (2008) had 

an interpretation of their dependent variable similar to ours. We acknowledge though, that the conclusions of 

Cassiman et al. (2008) are not directly comparable to our study given a) the significant differences in the patent 

offices between EU and the US, hence the differences in the content of patents (de la Potterie, 2011) and b) the fact 

that Cassiman et al. (2008) used only European patents of 79 Flemish firms. 
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When academic science is not produced in-house but it is used as an external input to the 

innovation process we expect it to contribute to firm innovation via the mechanism of 

internalization --- when codified knowledge enhances the knowledge base of a given firm 

(Nonaka, 1991). When it is not conducted internally, published academic science represents a 

source of codified knowledge for the focal firm, a source that can serve as an input to enrich a 

firm’s knowledge base.6 This may happen if external codified knowledge becomes an example to 

follow or a knowledge input when firms codify their internal tacit knowledge and, hence, 

increase the clarity of their ideas (Zollo and Winter, 2002). Similarly, external codified 

knowledge can boost a firm’s knowledge base by facilitating the exchange of tacit and codified 

knowledge. For instance, in reverse engineering firm employees may use published academic 

(codified) work and build their own tacit knowledge based on it; the end result is the codification 

of tacit firm knowledge in the form of innovation. Such a process highlights the exchange 

between tacit and codified knowledge: codified external academic knowledge becomes an input 

in the generation of firm tacit knowledge and then is transformed into codified firm knowledge. 

A second mechanism through which academic knowledge as an external input can boost firm 

innovation is when it minimizes the search costs involved in most innovation processes. When 

firms conduct (academic) research in-house they generate tacit knowledge in the process but they 

also incur the costs associated with the discovery process. This mechanism has been described in 

previous works (e.g. Hicks, 1995) but, by definition, does not apply when external academic 

                                                 
6 Indeed, in the life sciences academic knowledge consistently fuels industrial progress (Argyres and Liebeskind, 

1998; Cockburn and Henderson, 1998; Liebeskind et al., 1996) and academic life science research is often the 

cornerstone for subsequent commercial developments (Balconi et al., 2010). As the lines between basic and applied 

research are often blurry, academic research can have nearly immediate commercial applications (Argyres and 

Liebeskind, 1998; Narin et al., 1997). Accordingly, industrial players in the life sciences can draw upon knowledge 

emanating from academic research to advance their immediate innovative efforts (McMillan et al., 2000) in order to 

generate new projects and complete existing projects (Cohen et al., 2002). To illustrate, even before the boom in the 

life sciences industry, one out of three medical products and drugs produced from 1986 to 1994 in the US would not 

have been possible had it not been for academic research (Mansfield, 1998).  
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science is used as an external input to firm innovation. Instead, academic science, conceptualized 

as a map that describes the technological landscape (Fleming and Sorenson, 2004), can provide, 

as an external input, a better understanding of the technological landscape at a smaller cost. This 

holds insofar as it allows actors to in essence leverage (part of) the advantages of possessing tacit 

knowledge without having to incur the search costs and experience that lead to it. As Fleming 

and Sorenson (2004) put it, “science can tell inventors how to avoid wasted effort”, which is a 

major advantage of possessing tacit knowledge. To be clear, using academic science as an 

external input does not eliminate all search costs because the process leading to the published 

outcome and the associated tacit knowledge are not revealed.  

When, though, academic knowledge takes the form of published articles such search costs 

could indeed lessen as the publication process weeds out less valuable knowledge sources 

without the firm having to perform the task and incur the costs. That is, because what is typically 

reported in published articles are the most noteworthy new findings and scholarly contributions 

journal articles convey the latest academic knowledge that most merits attention and hence better 

describes the technological landscape without the need of personal contacts (Sorenson and 

Fleming, 2004). As a result, the process of publication serves as a filter of works that could be 

relevant as an external input to the innovation process. Additionally, published articles are also 

more relevant as a form of external academic knowledge when considering the mechanism of 

internalization discussed above. For instance, published articles allow the receiver of knowledge 

to learn from many sources (what Gray and Meister (2004) term published knowledge sourcing). 

It follows that firms may combine insights and may also have more examples to work with when 

they codify their internal tacit knowledge.  
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The key factor underpinning the advantages that published articles bring to the mechanisms 

of internalization and minimization of search costs is that the authors of journal articles describe 

their methods in detail. In fact, even the scientific instruments used (e.g. assays) are listed in 

many life science journals (Bergenholtz, 2014) to ensure reliability and reproducibility of 

findings. Accordingly, when the methods are presented in detail the amount of tacit knowledge 

surrounding a publication lessens and articles become a more relevant basis to transform internal 

tacit knowledge to codified knowledge, boost the exchange between tacit and codified 

knowledge, conduct new research, replicate research findings, or even avoid the costs of 

conducting duplicate research. 

We therefore expect emerging life science firms, as well as other knowledge-based firms, to 

exploit the knowledge from academic research reported in journal articles to improve the quality 

of their innovation. Previous studies, not focusing on small firm research, have generally 

supported this expectation (Acosta et al., 2012; Sapsalis and van Pottelsberghe de la Potterie, 

2007; Sorenson and Fleming, 2004).  

Against this background, we form our first hypothesis: 

Hypothesis 1: Firms that use academic science as an external input to their innovation 

process will produce innovations of higher quality. 

Given the hypothesis that academic science and resulting knowledge per se can augment the 

quality of industrial innovation, the follow up question is why higher quality of academic science 

would improve the quality of industrial innovation. To address this question, we reflect upon the 

two main mechanisms by which we expect external academic knowledge to impact firm 

innovation: internalization and minimization of search costs. Under internalization, external 

academic science can assist in transforming in-house tacit knowledge to codified knowledge 
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when it serves as an example and/or when it is used as an input to the knowledge transformation 

process. When examples and/or inputs of this kind are of higher quality, firm inventors are more 

likely to be confronted with more inspiring cases, to become exposed to better described, more 

efficient, more novel techniques and so on. Therefore, it is the increased usefulness, novelty and 

higher rigor facets of higher science quality that we expect to matter the most under the 

mechanism of internalization. Equivalently, other aspects of science quality such as higher 

societal impact and serving as foundation for follow-up academic works are less relevant. To 

illustrate, we would expect an emerging firm to gain more insights when using as external inputs 

the seminal articles of Stanley Cohen and Herber Boyer on DNA cloning and recombinant DNA 

(Cohen et al., 1972; Cohen et al., 1973) – both highly cited – when compared to lesser quality 

articles on similar topics as they describe more novel, and rigorous techniques that are useful for 

a wide array of applications. It is important to note that such mechanisms are more relevant for 

cases where academic science is used as an external knowledge source. When producing 

(academic) science in-house the mechanisms relate more to the internal generation of tacit 

knowledge (e.g. Hicks, 1995) and less so on the use of codified knowledge as a means to 

innovate. 

Higher quality external academic science can also bring about significant benefits in search 

cost minimization. An important insight from conceptualizing science as a description of the 

technological landscape is that science can equip firm inventors with an understanding of the 

essential factors shaping the landscape (Fleming and Sorenson, 2004). When such understanding 

takes place, inventors can proceed in different ways than they would have proceeded in its 

absence; this process typically boosts innovation performance (Fleming and Sorenson, 2004). 

Starting then from the notion that higher science quality refers to work that is more 
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groundbreaking, more rigorous and more insightful, we would expect this type of science to 

better describe the technological landscape as it will likely represent more novel ideas, 

techniques and scientific advancements. When this happens, inventors are equipped with a better 

understanding of their field, can follow more promising directions, and consequently produce 

innovations of higher quality. Again, then, similar to the mechanism of internalization it is the 

usefulness, rigor and novelty aspects of higher quality science that we expect to matter the most 

under cost minimization.   

Turning our attention to empirical evidence, there is some support in the literature for the 

notion that knowledge heterogeneity, partly captured within quality differentials, may have a 

separate impact on innovation. One stream of studies documents that higher quality academics 

are generally more likely to produce inventions with higher commercial potential (Thursby et al., 

2001) and are generally more apt to commercialize their innovations through various means, 

including firm creation (Zucker et al., 1998). Another stream of literature analyzes the spillover 

effects of academic and industrial R&D on local firm creation and reports that who conducts 

R&D matters for the rate of firm creation (Bade and Nerlinger, 2000; Karlsson and Nyström, 

2011; Kolympiris et al., 2014). As well, studies that examine knowledge-based firms in regional 

clusters, indicate that the efficacy of knowledge flows in improving firm performance hinges 

upon the quality of the actors from whom the knowledge arises (Beaudry and Breschi, 2003; 

Kolympiris et al., 2011). All in all, it is conceivable that a similar effect is present in the case of 

knowledge flows from academic research to industrial innovation. We therefore hypothesize 

that:  

Hypothesis 2: Firms that use higher quality academic science as an external input to their 

innovation process will produce innovations of higher quality. 
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The foregoing discussion suggests that academic science and particularly science of higher 

quality can lead to industrial innovation of higher quality. Still, there are contingencies under 

which such relationship holds.  

A key insight of the work on a firm’s absorptive capacity (Cohen and Levinthal, 1990) is that 

not all firms are equally equipped to benefit from external knowledge. Some firms are better able 

to accumulate and utilize external knowledge largely because they develop certain competencies 

that first allow them to understand it and then to embed it in their internal production function 

(Laursen and Salter, 2004). Indeed, for the case of academic science, Kealey and Ricketts (2014) 

build their conceptualization of science as a contribution good on the notion that the cognitive 

difficulty that some actors have in processing academic knowledge makes it partly excludable 

and hence a contribution good.7  

But how can firms overcome this obstacle and develop higher cognitive abilities that can 

allow them to navigate the knowledge landscape map that science offers? One strategic 

competency that can allow firms in knowledge intensive industries to gain from academic 

research is the degree that the firm engages in basic research (Cockburn and Henderson, 1998; 

Fabrizio, 2009; Gambardella, 1992; Spencer, 2001). Given that a large part of published 

academic science is of basic nature, firms conducting in-house basic research are afforded 

several advantages (Rosenberg, 1990). For instance, they are better able to understand the 

assumptions underlying the published results, develop networks with academic scientists and 

thereby better identify the boundary conditions of those results, and ultimately better appreciate 

their applicability for in-house accumulation of knowledge (Lane and Lubatkin, 1998). Further, 

                                                 
7 Kealey and Ricketts (2014) distinguish contribution goods from club goods by the nature of their excludability. 

Exclusion in contribution goods is based primarily on the capabilities of the prospective user rather than the property 

rights of the current possessor. 
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by conducting basic science in-house a given firm can become more familiar with academic 

research and share similar techniques, understandings and vocabulary with academia (Fabrizio, 

2009); as a result knowledge transfer between academia and industry improves. Along the same 

lines, firms that promote academic publications by employees can be more effective in 

incorporating novel techniques in their toolbox and ultimately be more successful (Cockburn and 

Henderson, 1998; Henderson, 1994; Henderson and Cockburn, 1994). As Rosenberg (1990) puts 

it “A firm is much less likely to benefit from university research unless it also performs some 

basic research”.  

These sorts of advantages suggest that the type of research conducted in-house has a 

moderating effect on the relationship between academic research, its quality and the quality of 

industrial innovation. We therefore hypothesize that: 

Hypothesis 3a: The degree that a given firm conducts more basic research in-house 

positively moderates the relationship between the use of external academic science by the firm 

and the quality of its innovations. 

Hypothesis 3b: The degree that a given firm conducts more basic research in-house 

positively moderates the relationship between the quality of external academic science used by 

the firm and the quality of its innovations. 

3. Methods and procedures 

In order to empirically test the stated hypotheses we measure industrial innovations with patents 

and we relate, via econometric models, the quality of patents with measures of academic science 

intensity and quality while controlling for remaining factors that can also contribute to patent 

quality. 
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3.1. Dependent Variable 

The dependent variable we employ in the analysis is the number of times a given patent is 

cited by later patents (forward citations). The intuition behind this measure is that higher citation 

levels imply superior significance or applicability. Indeed, a number of studies have consistently 

shown that forward citations correlate strongly with realized market value for a particular patent 

and are often regarded a reliable measure of patent quality (e.g. Fischer and Leidinger, 2014; 

Gambardella et al., 2008; Harhoff et al., 1999; Harhoff et al., 2003). Notably, forward citations 

also correlate with the size of the inventive step for a given technology: an additional citation 

correlates with meaningful increases in the innovativeness of a given technology (Moser et al., 

2014).  

Nevertheless, citation counts are not directly comparable across all patents; the number of 

citations is partly dependent on the age of the patent. More recent patents tend to have fewer 

citations largely due to the effective time needed before they become visible. In the same vein, 

the secular increase in the annual number of patents over time implies that very early patents 

may also tend to have fewer citations than more recent patents. Most patents receive their 

citations in the first few years after issue. If we look at a patent issued in, say, 1980, there were 

fewer patents of all classes issued in the succeeding five years than there were for a patent issued 

25 years later, in 2005. All other things being equal, then, the earlier patent should have fewer 

forward citations simply because there were fewer other patents available to cite it (Lanjouw and 

Schankerman, 2004a). To address those two issues we use as our dependent variable the number 

of forward citations acquired by each sample patent as a proportion of the average number of 
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citations received by all sample patents granted in the same year (CITECOUNT)8. Thus for any 

given year the average patent will have a value of 1 on this variable. A value of 2 indicates that 

the patent garnered twice the average number of forward citations, while a value of 0.5 would 

indicate it received only half the average number, and so forth. 

3.2. Independent Variables 

To test H1 we include in the analysis a variable that measures the number of journal articles 

that are referenced in the focal patent (JARTs). This choice is based on the findings that journal 

articles are a prime means via which industrial actors tap into knowledge from academic research 

and are a reliable proxy of knowledge flows from academia (Cohen et al., 2002; Roach and 

Cohen, 2013). The choice is also congruent with a number of previous studies that have used the 

number of scientific non-patent references as an indicator of the science intensity represented in 

a patent (Gittelman and Kogut, 2003; Roach and Cohen, 2013; Sapsalis and van Pottelsberghe de 

la Potterie, 2007; Sorenson and Fleming, 2004).  

To test H2 we employ two novel variables. The first measures the average number of 

citations received by the articles referenced in each sample patent (ARTCITEs).9 The second 

measures the impact factor of the journals in which these articles are published (IMPACT). The 

rationale for using two separate measures is twofold. First, as discussed before, knowledge 

                                                 
8 We use the sample patents to calculate CITECOUNT because we expect the patents of the sample firms to be 

comparable and, thus, to have the same prospects in generating a comparable number of forward citations. We base 

such expectation on the largely homogeneous set of firms in terms of age, innovation potential and scientific field.  
9 We opt to use the total number of citations up to present and not citations per year to escape the following concern 

associated with citations per year: to illustrate, we use an example in which we employ citations from publication 

date to present as our measure of interest and assume that two articles receive 100 citations each. The first was 

published in 1990 and the second in 2000. If we employ citations per year the article published in 1990 will get a 

lower score than the one published in 2000 even though both received the same citations. As such, we would 

systematically undervalue older articles. Alternatively, we could calculate average citations from article publication 

date to patent grant year. Then, the article published in 1990 with 100 cites will score 100 when it is referenced by a 

patent from 1991, but only score 20 when referenced by a patent from 1995. As such, we would be assigning 

different scores to the same article. 
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quality is an encompassing term which almost by definition is difficult to capture with precision 

with a single measure. As such, by using two measures we aim to better describe knowledge 

quality. Second, while closely related, impact factors and citation rates may be capturing 

different aspects of quality: impact factors can better represent a form of pre-publication 

assessment of quality while citations a post-publication assessment (Eyre-Walker and Stoletzki, 

2013). Accordingly, by using both measures we expect to account for such differences.  

To be more precise, we use ARTCITEs under the premise that individual citation counts are 

superior to other measures as they are a direct measure of the quality of a specific journal article 

and thus are less prone to the statistical issues that may plague aggregated measures (Garfield, 

2006). On the other hand, quality may not be always the main driver behind the number of 

citations for a given article; the academic preeminence of the author, network effects, exposure 

and other factors may also play a role. We expect IMPACT to cope with that issue. A journal’s 

impact rating, as calculated by Journal Citation Reports (JCR), is generally accepted as a 

measure of the quality and importance of the overall research that a given journal publishes 

(Garfield, 2006). Indeed, partly because of the peer review process and partly because of the fact 

that tenure decisions, professional prestige, prizes, research grants and other forms of 

professional development in academia rely on articles published in journals with higher impact 

factors, what is typically reported in higher impact factor journals is the most noteworthy new 

findings and scholarly contributions. In practical terms, the fact that IMPACT approximates 

quality from a more aggregate perspective allows us to detect research quality even for articles 

that did not garner many citations but were published in journals hosting higher quality research. 

To test H3a and H3b we interact the JARTs, ARTCITEs and IMPACT variables with the 

RESLEV variable that measures whether the firm conducts more applied or more basic science. 
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Following the methodology of Boyack et al. (2014), which is based on a textual analysis of the 

title and abstract of each article, we first calculate the probability that a given article published 

by the focal firm describes a) applied technology, b) engineering – technological mix, c) applied 

research and d) basic scientific research. Assigning a value of 1 for applied technology, 2 for 

engineering and so on in the next step we assign each article a research level score corresponding 

to the category with the highest probability. To construct RESLEV we average those values over 

all articles published by each firm. As such, increasing values of RESLEV correspond to firms 

conducting more basic research. For firms without any publications RESLEV takes the value of 

0 under the assumption that firms that do not publish are not particularly active in conducting 

basic science. In line with H3a and H3b we expect positive coefficients for the interaction terms.  

3.3. Control Variables 

Guided by previous literature, we include a number of control variables that have been 

shown to impact patent quality. Reference to prior art in the form of patents is often considered 

an indicator of knowledge flows (Alcácer and Gittelman, 2006; Nemet and Johnson, 2012; 

Sampat and Ziedonis, 2004; Thompson, 2006). Accordingly, we include a variable that measures 

the number of prior art patent references for each patent (PATREFS) and expect a positive sign 

for the associated coefficient. To account for the quality of those patents we include a variable 

that measures the average number of total citations these patent have garnered over time 

(REFQUAL). Along the same lines, patents with broader scope of coverage are often regarded as 

more foundational and of higher quality (Czarnitzki et al., 2011; Lerner, 1994), although 

empirical results have been mixed (Harhoff et al., 2003). We measure scope as the number of 

distinct four-digit IPC categories assigned to a particular patent (SCOPE). 
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Patented innovations that are more original and groundbreaking in general also tend to be of 

higher quality. To measure originality we follow Harhoff and Wagner (2009) in constructing the 

originality measure first pioneered by Trajtenberg et al. (1997) (ORIGINAL). This index is a 

Herfindahl-type measure that measures the degree of similarity between the area of technology 

of the focal patent and the areas of technology of the patents referenced as prior art. More 

original patents tend to have a lesser degree of technological overlap with the patent they cite as, 

by definition, they represent more novel inventions. Formally, the measure is calculated as 

𝑂𝑅𝐼𝐺𝐼𝑁𝐴𝐿𝑖 = 1 − ∑ (
𝑅𝑒𝑓𝑠𝑖𝑘

𝑅𝑒𝑓𝑠𝑖
)
2

𝑁𝑘
𝑘=1 , where patent i references patents from k technology classes. 

The originality index requires some adjustment from its basic form to enhance its accuracy. As in 

Trajtenberg et al. (1997) we adjust the final index for patents with more than two references by 

the factor 𝑅𝑒𝑓𝑠𝑖/(𝑅𝑒𝑓𝑠𝑖 − 1). In addition, the index is undefined in the case of no references 

and always equals zero in the case of one reference. Arguably, patents with little or no prior art 

are among the most original innovations. Thus, in this study all patents with no prior art patent 

references are assigned an originality score of one. For patents with one reference, we assume 

that innovations whose prior art is in a different technology area as more original than one whose 

prior art is in the same area. Thus, for such cases we assign patents in the former category an 

originality score of one, while those in the latter receive a score of zero. More original patents 

also tend to occur earlier in the technology cycle (Régibeau and Rockett, 2010). To account for 

such observation, we include a measure of when the patent was issued (PATAGE), defined here 

as the number of months between the month the patent was granted and December 2012. 

With regards to firm-specific features we include the number of inventors listed on each 

patent (INVENTS) as a proxy for firm resources devoted to a particular innovation; based on the 

premise that more resources tend to relate to higher quality we expect a positive sign for the 
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corresponding coefficient. Other firm characteristics may have an impact on patent quality as 

well. In particular, younger firms may have a structure and culture that is more conducive to 

innovation than older firms that may be more bureaucratic (Acs et al., 1994), which then could 

lead to older firms producing innovations of lower quality (Balasubramanian and Lee, 2008). On 

the other hand, older organizations may be more innovative due to experience associated with a 

learning curve or because they are more able to capitalize on their research efforts. To account 

for such considerations we include the age of the firm in years in the year the patent was granted 

(FIRMAGE). 

We include three additional firm-specific characteristics. The first counts the number of 

articles published by firm scientists prior to the application year of each patent in our database 

(PUBCOUNT). We expect firms whose employees are engaged in academic research to be able 

to understand external academic research more comprehensively and as a result to utilize this 

external knowledge to produce innovations of higher quality. As argued in the discussion leading 

to hypothesis 2 research quality is not homogeneous and quality differentials can lead to different 

innovation outcomes. As such, the second firm-specific characteristic we include in the analysis 

is the average number of citations received by articles authored by firm employees 

(AVGCITES). The third firm-specific variable accounts for the increased scope of collaborations 

between universities and industrial actors (Link and Rees, 1990). Given such scope we need to 

account for the degree of intentional knowledge transfer between the sample firms and academic 

institutions. To do so, we include a binary variable that reflects whether a given patent includes a 

university as a co-assignee (COLLAB). COLLAB also accounts for the possibility that planned 

knowledge transfer can be more effective than journal articles in transmitting tacit knowledge. 

Theoretically, because university research tends to be more basic it can result in more valuable 
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innovations (Czarnitzki et al., 2011). However, firms that engage in publishing can suffer in 

terms of innovative output (Gittelman and Kogut, 2003). Thus, university collaboration can steer 

the quality of firm innovation either way, so it is difficult to anticipate the sign of COLLAB a 

priori. To account for any unobservable characteristics of a given firm such as organizational 

culture or innate ability of employees that can also drive innovation quality we include firm-

specific dummy variables in the analysis. Finally, to address differences in citation patterns 

across technology areas, we include a set of binary variables that represent the technology class 

to which the focal patent belongs.  

4. Data sources and presentation 

4.1. Identifying Emerging Firms through the Small Business Innovation Research Program 

We identified emerging life sciences firms via grant recipients of the Small Business 

Innovation Research (SBIR) program. In recognition of the role small- and medium-sized 

enterprises (SMEs) play in innovation, the US Congress established the SBIR program in 1982 

(Audretsch, 2002; Cooper, 2003). The legislation mandates a percentage of federal extramural 

research and development expenditures be allocated to small business firms. Funding is provided 

in two phases, followed by commercialization; further funding, if any, comes from private 

investors. In addition to supporting R&D in SMEs, the program has the stated goals of 

stimulating technological innovation in general and increasing the commercialization of 

innovations resulting from federal R&D programs. Pursuant to these goals, the bulk of SBIR 

funds are awarded to emerging firms operating in cutting edge knowledge-intensive research 

areas such as the life sciences, electronics, materials and energy conversion. As well, the 

majority of the recipients are still at the (very) early stages of firm growth and as such the SBIR 

funds are typically the initial financial proceeds from external sources. Given these features of 
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the SBIR program, it appears to be a suitable source of data for the present study; award winners 

are typically emerging, innovative, independent firms with limited financial resources 

(Audretsch, 2003; Audretsch et al., 2002).10 As such, seeking academic knowledge via a 

spillover process appears likely for this cohort of firms.  

4.2. Data description 

To develop our data set we began with the entire population of the 1671 life science firms 

that received an SBIR award from 1983 to 2006, as provided by InKnowVation. We searched for 

award recipients up to 2006 (and applications submitted up to 2007) in order to be able to 

observe and source the full list of patents granted to those firms and minimize potential 

truncation of the data. Given the substantial time lag between the application and the grant date 

of a given patent (Mitra-Kahn et al., 2013), using 2007 as the cut-off point of our applications 

allowed us to study patents granted through the end of 2012.  

We then searched the patent database maintained by commercial vendor Thompson 

Innovation11 to identify which of the 1671 SBIR award winners had filed patent applications 

from 1971 through 2007. This procedure reduced the sample to the 910 firms that had patent 

activity for the time period in question12. These 910 firms had been granted 15,505 patents. 

These 15,505 patents cited more than 575,000 non-patent references which included articles in 

academic journals, court documents, industry reports, laboratory reference books, gene bank 

entries and others. The inconsistent format of non-patent references in the patent files prompted 

                                                 
10 Note that by concentrating on a relatively homogeneous set of firms allows us the opportunity to eliminate sources 

of patent heterogeneity arising from firm and industry characteristics, such as patent portfolio size (Lanjouw and 

Schankerman, 2004b) and market structure (Ziedonis, 2004) as well as to lessen concerns that unobserved 

heterogeneity can hamper our estimates in a meaningful way. 
11 To ensure we measure all relevant patents and to cope with potential issues that could arise from differences in the 

way a given firm is reported as the assignee in different patents we tried a number of variants in the firm name (e.g. 

20/20 Genesystems was coded as 20/20 Genesystems Inc., 20/20 Gene*, 20-20 Genesystems and so on). 
12 Firms with patents were slightly larger and older than firms without patents and in general had sourced more 

funds from the SBIR program.  
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us to use a combination of manual cleanup and automated procedures to separate the journal 

articles from the rest of the non-patent references.13 Manual cleanup and automated procedures 

both have potential for error, albeit of different kinds. Thus, to keep the data process tractable 

without loss of generality, and given that the unit of analysis is the patent, we randomly selected 

7753 patents (half of the population of 15,505 patents) which we manually processed. These 

7753 patents represented approximately 87 percent of the patents owned by 434 firms. We then 

manually identified and added the remaining 1156 patents for those firms to reach the final 

sample of 434 firms with 8908 patents.14  

The Thomson Innovation dataset contained the information we needed to construct the 

dependent and independent variables (i.e. number of forward citations, list of patent and non-

patent references, etc.). Once we isolated the journal articles from the full list of non-patent 

references we developed a list of journal titles, tied to each patent, which were then matched to a 

list of 8594 journal titles with International Standard Serial Numbers (ISSNs), from the Journal 

Citation Reports (JCR). Using the ISSNs we located the journals of interest, the articles included 

in the patent references and the number of citations per article from SCOPUS. More specifically, 

we exploited the option in SCOPUS to look up articles based on the affiliation of the authors; we 

                                                 
13 More specifically, we faced two major obstacles. First, there was no standard order to the elements of the 

reference and no standard punctuation scheme. That is, journal articles are not reported in the same way at the 

USPTO not only across patents but also within the same patent, and hence in our data source. For instance, 

sometimes the title was placed between brackets, other times it was placed between quotation 

marks/periods/commas and other times it was not placed between any kind of identifiers. Second, across and within 

patents, journal titles are not reported consistently. To illustrate, we came across 311(!) different ways of 

abbreviating the journal title “Proceedings of the National Academy of Sciences of the USA”. The most common 

punctuation practice was to place the article title in quotes, so we used this criteria to separate each reference into 

three segments – before, within, and after quotes. We then used an automated search procedure to initially identify 

journal titles, followed by manual cleanup. We identified journal titles for 254,827 references, over 90% of those 

initially identified as journal articles. 
14 Firms included in this sample were largely similar to those left out. The main exception was that the firms in the 

sample had more patents per firm on average (19.3 vs. 10.3). The difference is expected as the firms with the more 

patents are more heavily represented in the pool of patents we randomly draw from (precisely because they have 

more patents). As such, they are more likely to be more heavily represented in the set of firms we study. 
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input the firm names (as well as variants of the name to make sure we did not miss any articles) 

in the affiliation search and then downloaded all the articles in which at least one author was 

affiliated with the focal firm. 

To calculate the ORIGINAL index we first converted the primary IPC code of the focal 

patent and all of its referenced patents to the 35 category ISI-OST-INPI classification, a 

classification scheme that more accurately reflects technological relatedness than does the IPC 

coding system (Schmoch, 2008). Each term in the summation, then, is the number of patent 

references belonging to a particular technology class divided by the total number of patent 

references for the focal patent.15 The index ranges from 0 for the least original patents to 1 for 

the most original patents. We also used the classification scheme which assigned IPCs to 

technology areas to construct the technology class dummy variables. 

Table 1 displays the descriptive statistics for the variables used in the analysis. As described 

above, the average patent in any given grant year has a value of one for the dependent variable, 

CITECOUNT. Thus, by construction this variable has a mean of 1. CITECOUNT has a 

somewhat skewed distribution, as the median is roughly one-third the mean and the modal value 

is zero16. The heterogeneity of the observed values implies that our sample is composed of 

patents of different quality.  

< TABLE 1 ABOUT HERE> 

With regards to the variables we employ to test our hypotheses, the average patent in our data 

set had 25 journal articles in its list of references, with half of the patents having fewer than 11 

journal articles in their reference list. In general the 25 figure we refer to above strengthens our 

                                                 
15 In this sample a total of 549 unique four digit IPC codes were collapsed into 33 technology classes. Two 

technology classes were not represented in this data set. 
16 Note that to calculate the variable we employed the number of forward citations of the patents by the original 910 

firms. Even when the variable is constructed by employing the patents of the 434 sample firms, the results remain 

qualitatively similar. 
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expectation that emerging life sciences firms rely on academic science as a source of knowledge 

and it is in line with the note of McMillan et al. (2000) that biotechnology patents reference basic 

research more heavily than other areas of technology. The cited articles were published on 

journals with an average impact factor of 9.42 with a minimum of 0.23 and a maximum of 50.81. 

As well, the modal value of the ARTCITEs variable suggests that most articles referenced in the 

sample patents had not received any citations even though there is substantial variability (the 

standard deviation is 2.5 times larger than the mean value). The wide distribution of the variables 

we use to approximate science quality is important as it indicates the heterogeneity of the quality 

of the science focal firms use as an external input to their innovative process.17 

The average sample patent cited 37 patents, belonged to 3 IPC categories, had an originality 

score of 0.61 (out of 1), and had 4 inventors. Information not reported in Table 1 illustrates the 

young age of the sample firms: half of them were 2 years old when they received the SBIR 

award while the modal value for firm age at the receipt of the award was 1 year.18 

With regards to the publication activity of the sample firms, most firms had not published 

any articles. However, three firms had well above average publication rates (more than 830 

publications each) and their record in essence inflates the reported average value of the variable 

in question. As shown in Appendix Table 2 where we omit these firms from the analysis we 

observe only small differences when compared to the baseline estimates presented in Table 3. On 

average the articles published by the sample firms had garnered 46 citations. Interestingly, half 

of the articles published by the sample firms appeared in journals scoring high in the level of 

                                                 
17 These statistics alleviate concerns that our sample is subject to the general finding that higher quality science 

tends to appear more frequently as prior art in patent documents (Narin et al., 1997). Along the same lines, even if 

such possibility holds in our sample, it would imply that the coefficients of IMPACT and ARTCITEs represent a 

lower bound of the true effect of science quality on the quality of industrial innovation.  
18 Note that the statistics of firm age at patent application as reported in Table 1 are somewhat inflated mostly 

because of a handful of older and larger firms that had a large number of applications. As such, the patents of those 

firms are represented in the sample more heavily.  
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basicness (3.24 out 4). This statistic reinforces the close ties between basic research and applied 

work within the life sciences.  

The correlation coefficients shown in Table 2 are, for the most part, relatively small, which 

should help us to estimate the separate effects of each right-hand variable on patent quality.  

< TABLE 2 ABOUT HERE> 

Before we proceed to the empirical results, we need to discuss two important considerations 

that relate to the suitability of the sample at hand and the interpretation of the results. 

The first consideration is that the observations from the 434 firms we employ in the analysis 

are relatively similar to the observations from the 910 firms that composed the population of life 

sciences firms that received SBIR grants and patented their research. Appendix Table 1 presents 

the descriptive statistics for the variables we employ in the empirical specifications (except 

IMPACT, JARTs, and selected firm-specific variables) for the 910 firms, and Table 1 presents 

the descriptive statistics for the 434 firms. The variables in these two tables exhibit only small 

differences, leading us to conclude that the sample of firms in this study is representative of the 

original group. 

The second consideration relates to the degree that our estimates reflect knowledge spillovers 

from academia to industry. In total, employees of our sample firms were listed as (co)-authors of 

19,479 articles listed in SCOPUS. As previously mentioned, our sample patents cited 254,827 

articles. As such, if all 19,479 articles are cited in the focal patents, only 7.6% of the cited 

articles represent academic science conducted within the firm holding the patent, hence not a 

spillover process. Therefore, for the full sample we estimate that at most 8 out of 100 articles do 

not capture knowledge spillovers. However, this is an upper bound and does not necessarily hold 

for every patent in the analysis. Our estimates could be subject to noise if there is significant 
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variability among patents in the percentage of cited articles that actually represent knowledge 

spillovers. Because of the previously described non-standard format that JARTs appear in the 

patent files we are not able to precisely estimate the relevant percentage. However, to assess the 

issue we manually looked up the reference lists of more than 600 randomly selected patents; no 

patent had more than 10 percent of its cited articles co-authored by the assignee firm and for 

most patents the equivalent percentage was well below the 7.6 figure discussed above. These low 

percentages are significant for the interpretation of the JARTs, IMPACT and ARTCITE 

coefficients in that they strongly imply that for the largest part these coefficients do in fact 

measure knowledge flows from academia to industry rather than internally produced academic 

research. Relatedly, we maintain that our estimates reflect primarily knowledge spillovers even 

when considering that the prior art listed in patents is added both by the applicant firm and by the 

patent examiner. While examiners do influence the list of cited literature in a given patent 

(Alcácer and Gittelman, 2006; Alcácer et al., 2009), they do so only to a minimal degree when it 

comes to non-patent references (Tijssen, 2002) perhaps because they are less familiar with the 

academic literature when compared to their exposure to patents.19 Specifically for life sciences, 

and without separating patent and non-patent references, evidence shows that life sciences is a 

field where the share of cited references that come directly from the inventors is higher than the 

corresponding share in the majority of other fields (Alcácer et al., 2009; Criscuolo and 

Verspagen, 2008). All in all, such observations are among the prime drivers in suggesting that 

journal articles cited in a given patent are a reliable measure of knowledge flows (Roach and 

Cohen, 2013).  

                                                 
19 A substantial portion of the sample patents were granted before 2001, which is the year after which USPTO 

makes available information about whether a cited reference was added by the examiner or the applicant. 

Accordingly, we cannot check who added the journal article in the list of patent references. 
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5. Empirical Results 

5.1. Main Results 

Table 3 presents the Tobit estimates where the dependent variable is the adjusted number of 

forward citations for a given patent. Because, as a proportion, this variable has a lower bound of 

0 we use a Tobit estimator to address this feature of the data (Wooldridge, 2009). Model 1 

includes only the variables used to test Hypotheses 1 and 2. In model 2 we add the patent-

specific control variables to model 1 and in model 3 we add the firm-specific control variables. 

Model 4 is the fully specified model without testing H3 (i.e. without the moderating effects). In 

models 5 and 6 we test H3 and in model 7 we test H3a. Model 8 is the fully specified model 

testing all hypotheses.  

The multicollinearity condition index and the fit statistics reported for all models suggest that 

a) inference concerns associated with multicollinearity are not pronounced since across 

specifications the index is within the range of the threshold level of 30 (Belsley et al., 1980) and 

b) that the models have explanatory power.  

< TABLE 3 ABOUT HERE> 

Across specifications we fail to reject H1. JARTs shows a positive and statistically 

significant coefficient; the higher the science intensity of the firm patents the higher their quality. 

As discussed previously, the fact that the vast majority of the cited articles were not co-authored 

by the sample firms indicates that the reported coefficients measure knowledge spillovers from 

academia to industry. 

We find the results pertaining to H2 and H3 particularly interesting. The findings of 

model 5 support H3b. Firms that conduct more basic research are better able to use higher 
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quality academic science, as measured by the IMPACT20 variable, to produce innovations of 

higher quality. In fact, the basicness of firm research has a strong moderating effect on the 

relationship between higher quality academic science and higher quality industrial innovation: 

the marginal effect of IMPACT on the quality of industrial innovation is insignificant when 

RESLEV takes on the value of 0 (models 5 and 8); that is when the firm does not conduct basic 

research. All in all, we find that the separate effects of higher quality academic science accrue 

only to firms that can actually better accumulate such science via their basic science orientation. 

We do not find a similar effect for science intensity as the interaction term in model 7 is 

statistically insignificant (hence we reject H3a). An explanation in line with these findings is that 

higher quality academic science may be more difficult to grasp than lesser quality science and as 

such conducting basic science may afford additional benefits only for the case of higher quality 

academic research.  

On aggregate, these results demonstrate that science intensity has an independent positive 

effect on the quality of patented innovations and so does science quality, at least for the cohort of 

firms that are active in conducting more basic science. This latter result is important in that it 

highlights that cognitive difficulties and absorptive capacity can determine which types of firms 

can benefit from academic science of higher quality via a knowledge spillover process. Upon 

reflection, these results give support to our hypotheses and are in line with our discussion that 

science quality needs to be at the center of studies analyzing the links between academic research 

and industrial innovation.  

                                                 
20 The results of model 6 do not reveal similar findings for the ARTCITEs variable. A possible driver behind that 

finding is that individual citations may be driven by factors other than quality; because, as we explain in section 3.2, 

the impact factor is less prone to such issues, it may be capturing knowledge quality in a more aggregate manner. 
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As it pertains to the control variables, patents that cite more patents as prior art are of higher 

quality, while patent scope and originality have no discernable effect. The positive sign of the 

variable measuring the quality of the referenced patents (REFQUAL) reinforces our main 

conclusion that higher quality inputs lead to higher quality innovations. Firm-specific variables 

showed varying influence on quality. In line with previous works (Czarnitzki et al., 2011), the 

number of inventors listed on a patent, representing the firm’s resources devoted to R&D, 

showed a significant positive relationship with patent quality. Along the same lines, younger 

firms had higher quality patents as well. The negative sign of the COLLAB variable implies that, 

for the sample firms, collaboration with universities did not improve but rather degraded the 

quality of innovations. Firms publishing better, rather than more, articles also had patents of 

higher quality.  

5.2. Sensitivity Analysis 

In Table 4 we present models that test the robustness of our findings. 

< TABLE 4 ABOUT HERE> 

As we explain in footnote 9 we opt to use the total number of citations up to present as one of 

our measures of article quality and not citations per year so that we do not systematically 

undervalue older articles. In model 1 we test the sensitivity of our conclusions to the construction 

of the variable in question. We replace ARTCITEs in model 8 of Table 3 with a variable that 

measures citations of a focal article as a proportion of the average number of citations received 

by all sample articles published in the same year. Thus, for any given year the average article 

will have a value of 1 on this variable. A value of 2 indicates that the article garnered twice the 

average number of citations, while a value of 0.5 would indicate it received only half the average 

number, and so forth. The results remain qualitatively similar to the baseline estimates.  
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If at a certain point in time firm scientists explore a pertinent technology of explorative 

nature and if such technology requires them to draw on high quality science, then such time-

variant unobserved characteristics of the opportunities being explored can determine both the 

quality of science being used as an input and the quality of the patents (the output). In such case, 

our findings would not be reflecting a link between the quality of science and the quality of 

industrial innovation but would be a result of the unobserved heterogeneity described above. We 

expect the technological class dummy variables to account for the nature of the technology being 

explored. To check whether the temporal dimension of the project a firm is exploring influences 

our estimates, in model 2 of Table 4 we include a set of dummy variables that match the 

application year of the patent21 and in model 3 we replace the technological class dummy with 

the year dummies. We do not observe significant differences between these models and the 

baseline estimates we present in table 3.  

In model 4 of Table 4 we drop the two science quality measures from the analysis but keep 

JARTs. We do so in order to further demonstrate that explicitly accounting for science quality is 

a meaningful exercise in explaining the quality of firm innovation. That is, if the coefficient of 

JARTs would pick up the quality effects when the quality measures are not included in the 

analysis we would expect it to increase in magnitude substantially. We do not observe such 

change as the magnitude of the JARTs coefficient remains unchanged (0.004). This consistency 

illustrates that incorporating knowledge quality in the analysis helps in better understanding the 

quality of firm innovation.  

                                                 
21 The results remain unchanged even if we define the year dummies at t-1 or t-2 with t being the application year. 
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6. Conclusions and discussion 

In the introduction of the paper we noted that the contribution of knowledge from academic 

research on industrial innovation at the firm level has been examined in various studies but the 

impact of the heterogeneity of such knowledge has not been assessed. Further, in this body of 

literature the contributions of academic knowledge on industrial innovation via a knowledge 

spillover process has not received attention in any significant depth. For these reasons, in this 

study we examine whether different quality knowledge from academic research leads to 

industrial innovation of different quality via knowledge spillovers. Importantly, we also uncover 

the boundaries that relate to firm-specific characteristics and allow a given firm to more 

effectively improve its innovation record using academic science of higher quality as an input. 

Empirically, we use a micro level analysis and we show that patents of entrepreneurial life 

science firms that reference academic research published in journal articles are of higher quality. 

We also document a separate significant effect of knowledge quality. We find that articles 

published in journals with a higher impact factor lead to industrial innovation of higher quality as 

long as they are employed by firms active in conducting and publishing basic research. Our 

results, therefore, suggest that better equipped firms can more effectively exploit the insights 

provided by higher quality academic science. On the other hand, we do not document differences 

across different cohorts of firms in the exploitation of academic science per se. As such, the case 

might be made that higher quality academic science is more challenging to grasp and the higher 

cognitive ability afforded to firms with a basic science orientation gives them an advantage in 

that respect.  

From a more aggregate perspective, we complement a long stream of research highlighting 

the beneficial effects of developing higher absorptive capacity; our estimates imply that 
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increased cognitive capabilities achieved via in-house basic research allow firms to gain from 

academic science of higher quality. As such, follow up studies can further investigate the links 

between academic research quality and industrial innovation. Our results also inform the 

conceptualization of science as a contribution good (Kealey and Ricketts, 2014). This 

conceptualization challenges the non-excludable nature of academic science as it emphasizes that 

cognitive difficulties in processing knowledge can act as a barrier to access. Simply put, to use 

the science, one must be able to understand it. Our estimates paint a more nuanced story: not 

science per se but higher quality, and perhaps more difficult to grasp, science appears to exhibit 

contribution good characteristics. We see this as a fruitful area for further research. 

 Our study contributes to the literature that examines how academic science impacts 

industrial innovation. In the face of tighter fiscal policies and generally shrinking academic 

research budgets universities are increasingly expected to generate commercial outcomes from 

on-campus research. Such expectations often translate to more demands on faculty to exploit 

their research in the market. However, commercial demands often come on top of pressures to 

publish in high quality journals as tenure decisions, professional progress and the like are closely 

linked to publication outcomes. Our results imply that the dual demands of higher quality 

publications and commercial exploitation can be reconciled. Publication outcomes of higher 

quality, i.e. those correlating strongly with career advancement, are also the ones that can lead to 

higher quality industrial innovation. Such finding can, therefore, inform university 

administrators, public granting agencies promoting innovation, directors of development policies 

and directors of technology transfer at different universities when designing frameworks and 

policies relating to university based innovation, tenure decisions and the like. Similarly, the fact 

that emerging young entrepreneurial firms are among the prime drivers of economic growth 
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implies that our study speaks directly to all policy makers that envision boosting economies by 

encouraging small firm innovation. 

Our work also suggests that efforts by government officials and researchers to standardize 

the process of reporting, identifying and utilizing scientific non-patent references could be a 

worthwhile exercise (Callaert et al., 2012). References listed in patent documents represent a rich 

source of information for studies on innovation, knowledge exchange and the like but the non-

standard format in which they are reported can hamper their usefulness and discourage 

researchers to address in depth the linkages between academic knowledge quality and 

commercial outcomes.  

In terms of managerial implications, we reinforce the conclusion reached in a large part of 

the literature that investing in basic research may pay off for emerging knowledge intensive 

firms. Previous works highlight that in-house basic research assists firms in many ways including 

the exploitation of academic research. Our work enriches this finding. We bring to light the 

novel finding that in-house basic research is instrumental in exploiting higher quality academic 

research; such research can lead to higher quality firm innovation but is likely more difficult to 

comprehend and use. This is a point worth emphasizing when considering that the resource 

scarcity entrepreneurial firms often face may discourage them from investing in basic research 

despite their high intellectual capital. While our estimates are not meant to provide a cost benefit 

analysis regarding the increases in innovation quality and the costs of conducting basic science, 

they do indicate that in-house basic science can afford significant benefits.  

To close we acknowledge that our study is subject to limitations. For our work we have 

focused on emerging life sciences firms in part because of the welfare enhancing character of 

these firms but also because they present a suitable template for the research question at hand. As 
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such, our results must be generalized to other sectors and different types of firms through further 

studies. Similarly, due to computational difficulties we were not able to precisely estimate how 

many of the cited journal articles are co-authored by the sample firms. Perhaps future studies can 

discover how to incorporate such considerations. More broadly, with an eye on the evidence 

demonstrating their suitability as the best available metric, we rely on assessments of research 

quality derived by subjective assessments of quality (e.g. how many authors have cited a piece of 

academic work which indirectly suggests their quality assessment). We are aware that the 

measures we employ are the best available but are still subject to shortcomings that make them 

far from a perfect measure (Eyre-Walker and Stoletzki, 2013). We are not, however, aware of 

measures that could more objectively and more comprehensively describe research quality for 

studies, like ours, that rely on large number of publications. As such, we encourage future studies 

to address the issue in depth.  
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