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Abstract

This paper introduces the static bike relocation problem with multiple vehicles and visits,

the objective of which is to rebalance at minimum cost the stations of a bike sharing system

using a fleet of vehicles. The vehicles have identical capacities and service time limits, and

are allowed to visit the stations multiple times. We present an integer programming formu-

lation, implemented under a branch-and-cut scheme, in addition to an iterated local search

metaheuristic that employs efficient move evaluation procedures. Results of computational

experiments on instances ranging from 20 to 200 stations are provided and analyzed. We

also examine the impact of the vehicle capacity and of the number of visits and vehicles on

the performance of the proposed algorithms.

Keywords: Routing, Shared mobility systems, Bike sharing, Pickup and delivery

1. Introduction

We study the problem of rebalancing at minimum cost the stations of a bike sharing

system (BSS) by relocating the bikes using a fleet of vehicles. The inventories of the stations

and the travel times between stations are assumed to be static during the rebalancing

operation. The fleet is composed of identical vehicles with a given capacity and service time

limit, which depart from and return to the depot. The cost of the operation is measured as

the total travel time of the fleet. The vehicles can visit the stations multiple times, up to

a given limit, but a station can only be served by one vehicle of the fleet. In addition to

the travel times, we include the handling times of the bikes within the service time limit of
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the vehicles to ensure that the workload constraint is not violated. This problem is called

the static bicycle relocation problem with multiple vehicles and visits (SBRP-MVV).

There are now more than 7000 BSSs, as stated in the recent survey by Laporte et al.

(2015), and this number is growing at an increasing rate. There exists a body of research on

the problem of rebalancing BSSs, mainly on two variants of the problem: the static version

and the dynamic version. The main difference between the two variants is the customer

demand during the rebalancing operation, which is assumed to be zero for the static variant

while it can be non-zero for the dynamic variant. We refer the interested reader to the

papers by Nair and Miller-Hooks (2011), Contardo et al. (2012), and Chemla et al. (2013a)

for further details of the dynamic version. In what follows, we provide a brief review of the

literature on the static version.

The studies on the static version can be traced back to the seminal paper of

Benchimol et al. (2011) in which the authors introduced the static stations balancing prob-

lem (SSBP) and proved it to beNP-Hard. The SSBP aims at finding a minimum cost route

for a single vehicle that can visit the same station multiple times. The vehicle can drop

bikes temporarily at intermediate locations for future pickup, i.e. preemption was allowed.

The studies that followed introduced variants by changing three features: the number of ve-

hicles, the number of visits to stations, and the preemption property. Notably, a few studies

have incorporated additional features such as minimizing user dissatisfaction (Raviv et al.,

2013), demand intervals for the stations (Erdoǧan et al., 2014), and multiple types of bikes

(Li et al., 2016). Table 1 provides a summary of the literature on the static bike relocation

problems.

Table 1: Literature on static bike relocation problems

Single vehicle Multiple vehicles

Single visit Nonpreemptive

Erdoǧan et al. (2014) † Lin and Chou (2012) ‡

Ho and Szeto (2014) † ‡ Raviv et al. (2013) †

Li et al. (2016) † ‡ Dell’Amico et al. (2014) †

Forma et al. (2015) ‡

Dell’Amico et al. (2016) † ‡

Multiple visits

Nonpreemptive Erdoǧan et al. (2015) † Gaspero et al. (2013) ‡

Preemptive

Benchimol et al. (2011) † Rainer-Harbach et al. (2014) ‡

Chemla et al. (2013b) ‡ Alvarez-Valdes et al. (2016) ‡

Erdoǧan et al. (2015) †

Cruz et al. (2016) ‡

† Exact algorithm
‡ Heuristic algorithm

The reach of the state-of-the-art exact algorithms is 60 stations across the variants of
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the static bike relocation problem. Table 1 shows that no exact algorithms have been

developed for the case of multiple vehicles and multiple visits, a gap we aim to fill with this

study by proposing a branch-and-cut algorithm implemented over an integer programming

formulation. In addition, we present an iterated local search heuristic that benefits from

subsequence based data structures, which allow the algorithm to perform move evaluations

in amortized constant time.

The remainder of the paper is organized as follows. Section 2 formally defines the

SBRP-MVV and presents an integer programing formulation. Section 3 describes the

branch-and-cut algorithm. Section 4 explains the proposed iterated local search meta-

heuristic. Section 5 contains the computational experiments. Finally, Section 6 presents

the concluding remarks of this work.

2. Mathematical formulation

The SBRP-MVV can be formally defined as follows. We are given a complete and

undirected graph G = (V,E), where V is the set of vertices and E is the set of edges. Vertex

0 is the depot, while the remaining ones are the bike stations. Each station i ∈ V \ {0}

has a pickup or a delivery demand qi. We assume that qi > 0 indicates a pickup demand,

whereas qi < 0 denotes a delivery demand. Each edge {i, j} ∈ E has an associated travel

time cij. A fleet of K identical vehicles with capacity Q is available at the depot. A

route duration limit L is imposed for each route. There is a service time proportional to

the number of bikes to be delivered or collected at a station. More precisely, this service

time is given by the product of the handling time h and the number of bikes delivered or

collected. Moreover, a station is allowed to be visited at most N times by the same vehicle.

We assume that a station cannot be visited by different vehicles, i.e., it cannot appear in

two distinct routes in a feasible solution. The objective is to minimize the total travel time.

We define the network G′ = (V ′, A′), where V ′ = VC∪{0, d}. Set VC represents visits to

the stations, and contains N nodes for each station. Vertices 0 and d are the starting and

ending points, respectively, for all routes. The arc set A′ contains all possible arcs, except

those between nodes representing visits to the same station, and therefore there is no arc

between 0 and d. Moreover, therefore there is no arc leaving node d or entering node 0.

We define the following notation:

• δ+(i) ⊂ A′: the set of arcs leaving vertex i ∈ V ′;

• δ−(i) ⊂ A′: the set of arcs entering vertex i ∈ V ′;
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• π(i): the vertex in V associated to a vertex i ∈ V ′;

• f(i): the vertex j ∈ V ′ that represents the first visit to station i ∈ V \ {0}. We

arbitrarily define j = min{u ∈ V ′ | π(u) = i}.

The following decision variables are necessary to define the proposed formulation:

• xa = 1 if arc a ∈ A′ is in the solution, and 0 otherwise;

• ya: the flow of bikes on arc a ∈ A′;

• la: the route duration after traversing arc a ∈ A′;

• si: the pickup or delivery performed when visiting node i ∈ V ′.

The formulation can be written as follows.

minimize
∑

a∈A′

caxa (1)

subject to

∑

a∈δ+
(i)

xa −
∑

a∈δ−
(i)

xa = 0 i ∈ VC (2)

∑

a∈δ+
(0)

xa ≤ K (3)

∑

a∈δ+
(0)

xa =
∑

a∈δ−
(d)

xa (4)

∑

a∈δ+
(i)

ya −
∑

a∈δ−
(i)

ya = si i ∈ V ′ (5)

∑

j∈V ′:π(j)=i

sj = qi ∀i ∈ V \ {0} (6)

∑

a∈δ+
(i)

la −
∑

a∈δ−
(i)

la =
∑

a∈δ+
(i)

caxa + sih i ∈ VC , dπ(i) > 0 (7)

∑

a∈δ+
(i)

la −
∑

a∈δ−
(i)

la =
∑

a∈δ+
(i)

caxa − sih i ∈ VC , dπ(i) < 0 (8)

la = caxa + hya a ∈ δ+(0) (9)

la + hya ≤ Lxa a ∈ δ−(d) (10)
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∑

a∈δ−
(i)

xa ≤ 1 i ∈ VC (11)

∑

a∈δ−
(f(i))

xa = 1 i ∈ V \ {0} (12)

∑

a∈S

xa ≤ |S| − 1 ∀S ⊂ V ′ (13)

la ≤ Lxa a ∈ A′ (14)

ya ≤ Qxa a ∈ A′ (15)

s0 = max{d0, 0} (16)

sd = min{d0, 0} (17)

si ≥
∑

a∈δ+
(i)

xa i ∈ VC , dπ(i) > 0 (18)

si ≤ −
∑

a∈δ+
(i)

xa i ∈ VC , dπ(i) < 0 (19)

la ≥ 0 ∀a ∈ A′ (20)

ya ≥ 0 ∀a ∈ A′ (21)

xa ∈ {0, 1} ∀a ∈ A′. (22)

Objective function (1) minimizes the total travel time. Constraints (2) ensure that

if there is an arc arriving at a vertex i ∈ VC then there should an arc leaving the same

vertex i. Constraint (3) guarantees that at most K vehicles leave the depot. Constraint (4)

enforces the number of vehicles leaving vertex 0 to be the same as that arriving at vertex

d. Constraints (5) ensure the flow conservation of bikes for all vertices of the network.

Constraints (6) state that the sum of the deliveries or pickups performed at vertices of the

network that represent a visit to a given station i should be equal to the demand of i.

Constraints (7) and (8) compute the cumulative travel time after visiting station i ∈ VC ,

including the handling time. Constraints (9) and (10) determine the departure and arrival

time of a route, respectively, which depend on the number of bikes leaving vertex 0 and

arriving at vertex d. Constraints (11) forbid a vertex that represents a visit to a station

i ∈ VC to be visited more than once. Constraints (12) impose a visit to the vertex that

represents the first visit to a station i ∈ V \ {0}. This vertex can be arbitrarily defined; in

our case we selected the vertex with the smallest index among those that represent visits to

i. Constraints (13) are subtour inequalities. Constraints (14) limit the duration of a route.

Constraints (15) prevent the capacity of the vehicle to be exceeded. Constraints (16) and
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(17) determine the delivery and pickup values of vertices 0 and d, respectively. Constraints

(18) and (19) state that there should be at least a delivery or a pickup on every visited

performed. Constraints (20)–(22) define the domain of the variables.

Formulation (1)–(22) is not complete since it does not prevent a station to be visited by

different vehicles. Let R be the set composed of all pair of routes, represented by their arc

sets, with at least one station appearing in both of the them. We thus introduce inequalities

(23) to forbid the same station to be visited by distinct vehicles.

∑

a∈A′

xa ≤ |A
′| − 1 ∀A′ ∈ R. (23)

3. Branch-and-cut algorithm

Since the mathematical formulation described in Section 2 relies on an exponential

number of constraints, we have implemented a branch-and-cut (BC) algorithm in order

to deal with them in practice. The algorithm initially considers only the polynomial size

constraints (2)–(12) and (14)–(22), and then it introduces the exponential constraints (13)

and (23) in a dynamic fashion.

Subtour inequalities (13) are separated using a straightforward min-cut based procedure.

The BC algorithm tries to separate them only for the nodes whose depth is less than or

equal to 10 or whenever an integer solution is found.

Inequalities (23) can be seen as “no-good” cuts, since they are generally useful to ensure

feasibility but they do not strengthen the linear relaxation of the formulation. Therefore,

such inequalities are only included when an integer infeasible solution is found, that is, in

a lazy fashion.

4. Iterated local search metaheuristic

This section describes the metaheuristic we have developed for the SBRP-MVV. The

method is mostly based on iterated local search (ILS) (Lourenço et al., 2010), which al-

ternates between local search (intensification) and perturbation (diversification) moves.

ILS has been successfully applied to other vehicle routing problems, especially when

implemented under a multi-start scheme (Subramanian et al., 2010; Penna et al., 2013;

Vidal et al., 2015; Silva et al., 2015).

Figure 1 shows an outline of the developed algorithm. The heuristic performs multiple

restarts, where at each of them an ILS based procedure that executes local search and per-

turbation moves is iteratively called until nILS consecutive iterations without improvement
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have been executed. The best solution of the current multi-start iteration is always the

one chosen to be perturbed. Initial solutions are generated using an insertion-based con-

structive heuristic (see Section 4.3) that allows infeasible solutions. However, if a feasible

solution is not found after 2nR trials, then the algorithm generates a new initial solution.

The algorithm terminates after nR feasible restarts or 2nR restarts. The local search is ex-

ecuted using a randomized variable neighborhood decent (RVND) procedure (see Section

4.4), whereas the perturbation procedure performs random shift, swap or split moves (see

Section 4.5).

Figure 1: Multi-start ILS flowchart
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4.1. Auxiliary data structures

We have implemented some auxiliary data structures (ADSs), following the ideas pre-

sented in Hernández-Pérez and Salazar-González (2004), in order to improve the perfor-

mance of the proposed heuristic both in terms of computational complexity and of the

total number of operations performed.

Let σ = (σ(0), . . . , σ(|σ|−1)) be a subsequence of a solution S (with ←−σ as the associated

reverse subsequence), and let σi,j be the subsequence of σ that starts at the ith position

and ends at the jth position, i.e., σi,j = (σ(i), . . . , σ(j)). Moreover, let q′σ(i)
be the load

delivered or collected at station σ(i) on that particular visit. For each possible σ of S the

method stores and updates:

• qsum(σ) =
∑|σ|−1

i=0 q′σ(i)
= sum of the loads delivered/collected (cumulative load);

• qmin(σ) = min{0, qsum(σ0,0), qsum(σ0,1), . . . , qsum(σ0,|σ|−1)} = minimum cumulative

load;

• qmax(σ) = max{0, qsum(σ0,0), qsum(σ0,1), . . . , qsum(σ0,|σ|−1)} = maximum cumulative

load;

• lmin(σ) = −qmin(σ) = minimum flow of bikes allowed to enter σ so as to ensure

feasibility or so that the infeasibility does not increase;

• lmax(σ) = Q − qmax(σ) = maximum flow of bikes allowed to enter σ so as to ensure

feasibility or so that the infeasibility does not increase;

• tt(σ) =
∑|σ|−2

i=0

∑|σ|−1
j=i+1 cσ(i)σ(j)

= travel time;

• dur(σ) = tt(σ) + h
∑|σ|−1

i=0 |q
′
σ(i)
| = total duration (travel time + handling time).

Note that it is not necessary to store the ADSs regarding←−σ because they can be directly

derived in constant time from those stored for σ:

• qsum(
←−σ ) = qsum(σ);

• qmin(
←−σ ) = qsum(σ)− qmax(σ);

• qmax(
←−σ ) = qsum(σ)− qmin(σ);

• lmin(
←−σ ) = −qsum(σ) + qmax(σ);

• lmax(
←−σ ) = Q− qsum(σ) + qmin(σ);
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• tt(←−σ ) = tt(σ) (assuming that cij = cji);

• dur(←−σ ) = dur(σ) (assuming that cij = cji).

When a subsequence σ′ is composed of only one station (or depot) v, then qsum(σ
′) = q′v,

qmin(σ
′) = min(0, q′v),qmax(σ

′) = max(0, q′v), lmin(σ
′) = −qmin(σ

′), lmax(σ
′) = Q− qmax(σ

′),

tt(σ′) = 0 and dur(σ′) = h|q′v|. Let the operator ⊕ denote a concatenation between two

distinct subsequences. In what follows we show that any subsequence σ, |σ| > 1, can be

derived from two other subsequences σ1 and σ2 by means of the concatenation operator ⊕:

qsum(σ
1 ⊕ σ2) = qsum(σ

1) + qsum(σ
2); (24)

qmin(σ
1 ⊕ σ2) = min{qmin(σ

1), qsum(σ
1) + qmin(σ

2)}; (25)

qmax(σ
1 ⊕ σ2) = max{qmax(σ

1), qsum(σ
1) + qmax(σ

2)} (26)

lmin(σ
1 ⊕ σ2) = −qmin(σ

1 ⊕ σ2); (27)

lmax(σ
1 ⊕ σ2) = Q− qmax(σ

1 ⊕ σ2); (28)

tt(σ1 ⊕ σ2) = tt(σ1) + cσ1
(|σ1|−1)

σ2
(0)

+ tt(σ2); (29)

dur(σ1 ⊕ σ2) = dur(σ1) + cσ1
(|σ1|−1)

σ2
(0)

+ dur(σ2). (30)

The total number of subsequences of a solution S is of the order of |V |2. Since the

information stored for each subsequence can be updated in constant time, it takes O(|V |2)

operations to update all ADSs.

We now provide an example. Let σ = (2, 1, 3, 4, 1) be a subsequence involving 4 stations

(1, 2, 3 and 4) and 5 visits with q′σ(0)
= 3, q′σ(1)

= −3, q′σ(2)
= 4, q′σ(3)

= −2, and q′σ(4)
= −1.

The vehicle collects three bikes at station 2, delivers three bikes at station 1, collects four

bikes at station 3, delivers two bikes at station 4, and finally delivers one bike at station 1.

Note that station 1 is visited twice. Moreover, let us assume that: Q = 5, h = 2, c21 = 2,

c13 = 1, c34 = 3 and c41 = 2. We will thus have the following values for the ADSs for this

subsequence:

• qsum(σ) = 3− 3 + 4− 2− 1 = 1;

• qmin(σ) = min(0, 3, 0, 4, 2, 1) = 0;

• qmax(σ) = max(0, 3, 0, 4, 2, 1) = 4;

• lmin(σ) = 0;

• lmax(σ) = 5− 4 = 1;
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• tt(σ) = 2 + 1 + 3 + 2 = 8;

• dur(σ) = 8 + 2(3 + 3 + 4 + 2 + 1) = 34.

Note that the number of bikes that can enter σ, so as to ensure feasibility, must lie

within the interval [lmin(σ), lmax(σ)] = [0, 1]. Suppose now that Q = 3. This leads to an

infeasibility ([lmin(σ), lmax(σ)] = [0,−1]) since the capacity of the vehicle would be exceeded

when visiting station 3.

4.2. Evaluation function

Let wQ, wL and wN be the penalty weights associated with violations on load, route

duration and number of visits, respectively. We also define V (σ) as the set of stations that

are part of a route σ, and ni as the number of visits to a station i ∈ V (σ). The evaluation

function of route σ, which can be seen as a subsequence starting and ending at the depot,

is given by

Z(σ) = tt(σ) + wQ(max{0,−qmin(σ)}+max{0, qmax(σ)−Q}) + wL(max{0, dur(σ)− L})

+wN

∑

i∈V (σ)

(max{0, ni −N}).

(31)

The first term of the right-hand side of Equation (31) measures the travel time of the

route. The second one computes the penalty regarding the maximum violation on the

vehicle load. The violation occurs when the load exceeds the vehicle capacity or when the

load becomes negative. The third term is the penalty incurred when the route duration

exceeds the maximum limit. Finally, the last term computes the penalty in case of violation

on the maximum number of visits.

The values of wQ, wL and wN are initially set to 1000, 10 and 100, respectively. If the

local search returns an infeasible solution, then the penalty coefficients are automatically

adjusted as follows:

• in case of infeasibility due to load: wQ = min{100000, 1.2wQ}; otherwise, wQ =

max{1000, 0.8wQ};

• in case of infeasibility due to route duration: wL = min{1000, 1.2wQ}; otherwise,

wL = max{10, 0.8wQ};

• in case of infeasibility due to visits, wN = min{10000, 1.2wQ}; otherwise, wN =

max{100, 0.8wQ}.
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4.3. Constructive procedure

Algorithm 1 describes the insertion procedure used to build an initial solution. Let R be

the set composed of K initially empty routes and let SL be a set composed of the stations

whose demands have not been fully met in the partial solution. Firstly, all stations are

considered to be part of SL (lines 7–8). We define S as the partial initial solution and CL

as the candidate list composed of tuples containing information regarding each insertion.

A tuple has the format (v, p, r, ∆, q′, δ0), where v is the station, p is the position in which

v would be inserted in a given route r, ∆ is the insertion cost of v in the associated position

p and route r, q′ is the load to be delivered (q′ < 0) or collected (q′ > 0) in v, and δ is the

variation on the number of bikes at the beginning of the route. In addition, let rd(v) be

the residual demand of station v and let rd(0) be the residual demand of the depot.

While SL is not empty, the candidate list of all possible insertions is built at every

iteration (lines 10-30). The load q′ to be delivered or collected during a particular visit is

determined by an auxiliary procedure called DecideStationLoad. This procedure not only

specifies the value of q′, but also the value of δ (line 14). In a first round, the algorithm

only considers feasible insertions (lines 15–16). However, when this is no longer possible

(lines 20–22), the total residual demand of a station is met in a single yet infeasible visit

(lines 17–19). Next, the insertion cost is computed and CL is updated (lines 18–19). Note

that a station is only allowed to be inserted in route r in case it has not yet been added to

the partial solution S or it has been already added to route r itself. In practice, this is to

prevent the same station from being visited by distinct routes.

Once CL is built, one element is selected using the same idea of the construction

phase of the Greedy Randomized Adaptive Search Procedure (GRASP) metaheuristic

(Resende and Ribeiro, 2010) (line 23). More precisely, a restricted candidate list (RCL)

is created by choosing the elements from CL associated with the best insertions. The size

of RCL is controlled by a parameter α that defines the level of greediness or randomness.

The larger the value of α the larger the size of RCL. In our experiments α is selected

at random from the set {0.1, 0.2, 0.3, 0.4, 0.5}. An element is then randomly chosen from

RCL and the associated station v is inserted into the partial solution S on the specified

position p of route r with the corresponding load q′ (line 24). The initial load of route g(r)

as well as the load of the depot are updated in lines 25–26. Next, the residual demand

of station v is updated and, in case it turns out to be zero, v is removed from SL (lines

27–29). Moreover, all ADSs are updated accordingly (line 30).

After all vertices have been inserted and their respective demands are fully met, the

algorithm checks whether a pair of identical vertices appear next to each other in a route.
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Algorithm 1 Constructive procedure

1: procedure BuildInitialSolution(seed, data)

2: SL← V \ {0}

3: S ← ∅

4: firstRound← true

5: ldepot ← max(0, rd(0)) /*Load of the depot*/

6: lini(r)← 0, ∀r ∈ R /*Initial load of route r*/

7: for each station v ∈ V \ {0} do

8: SL← v

9: while |SL| > 0 do

10: CL← ∅

11: for each v ∈ SL do

12: for each r ∈ R in which v can be inserted do

13: for each position p of route r do

14: [q′, δ]← DecideStationLoad(v, p, r, rd(v), lini(r), ldepot) /*See Alg. 2*/

15: if q′ = 0 and firstRound = false then

16: q′ ← rd(v)

17: if q′ 6= 0 then

18: ∆← cost of inserting v in position p of r

19: CL← (v, p, r,∆, δ, q′)

20: if |CL| = 0 then

21: firstRound← false

22: Go to line 9

23: g ← element from CL selected using the idea of the constructive phase of GRASP

24: S ← S ∪ g(v) in position g(p) of route g(r) with load g(q′)

25: lini(g(r))← lini(g(r)) + g(δ)

26: ldepot ← ldepot − g(δ)

27: rd(v)← rd(v) − g(q′)

28: if rd(v) = 0 then

29: SL← SL \ {v}

30: Update ADSs

31: Check for consecutive visits to the same station in a route and, if it is the case, merge them so that

only a single visit is performed

32: return S

33: end BuildInitialSolution

If so, these are merged into a single visit (line 31). Finally, the initial solution is returned

(line 32).

Algorithm 2 presents the auxiliary procedure employed to decide the number of bikes to

be delivered or collected at station v when considering an insertion in a possible position p

of route r. The decision is performed based (i) on the cumulative load and load intervals of
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the subsequence of r starting from the first visit and ending at position p−1, here denoted

as subsequence σ1; (ii) on the load intervals of the subsequence of r starting from the

station associated with position p and ending at the last visit, here denoted as subsequence

σ2; (iii) on the extra load initially available at the depot (l+) that may be used to meet

the residual demand of a delivery station v without violating the loading constraints of σ1;

(iv) on the extra number of bikes that may be brought back to the depot (l−) due to the

insertion of a pickup station v. Note that these informations can be accessed in constant

time by simply checking the values of qsum(σ
1), lmin(σ

1), lmin(σ
2) and lmax(σ

2).

Algorithm 2 Decide the load of a station to be inserted in position p of a route r

1: procedure DecideStationLoad(v, p, r, rd(v), lini(r), ldepot)

2: Let σ1 be the subsequence of r starting from the first visit of a the route r and ending at the station

associated with position p− 1

3: Let σ2 be the subsequence of r starting from the station associated with position p and ending at the

last visit of route r

4: q′ ← 0; δ ← 0

5: if rd(v) < 0 then

6: l+ ← max(0,min(ldepot, lmax(σ
1)− lini(r))) /*Extra load available at the depot that does not violate σ1*/

7: if qsum(σ1) + lini(r) + l+ > lmin(σ
2) then

8: q′ ← −min(qsum(σ1) + lini(r) + l+ − lmin(σ
2), |rd(v)|)

9: if |q′| > max(0, qsum(σ1) + lini(r) − lmin(σ
2)) then

10: δ ← |q′| −max(0, qsum(σ1) + lini(r)− lmin(σ
2))

11: else

12: l− ← max(0, lini(r)− lmin(σ
1))) /*Extra load returning to the depot*/

13: if qsum(σ1) + lini(r) − l− < lmax(σ
2) then

14: q′ ← min(lmax(σ
2)− (qsum(σ1) + lini(r)− l−), rd(v))

15: if q′ > max(0, lmax(σ
2)− (qsum(σ1) + lini(r))) then

16: δ ← max(0, lmax(σ
2)− (qsum(σ1) + lini(r))) − q′

17: return [q′, δ]

18: end DecideStationLoad

If a vehicle leaving σ1 enters σ2 with more bikes than the minimum limit required by σ2,

i.e, qsum(σ
1)+lini(r)+l+ > lmin(σ

2), it is then possible to insert a delivery station v (rd(v) <

0) in position p with a corresponding load q′ given by the maximum between the excess of

bikes of the vehicle and rd(v) (lines 5–10). Analogously, if a vehicle leaving σ1 enters σ2 with

fewer bikes than the maximum limit required by σ2, i.e, qsum(σ
1)+ lini(r)−l− < lmax(σ

2), it

is then possible to insert a pickup station v (rd(v) > 0) in position p with a corresponding

load q′ given by the minimum between the residual capacity of the vehicle and rd(v) (lines

11–16). The variation on the depot load is computed in lines 9–10 and 15–16.
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4.4. Local search

RVND (Subramanian et al., 2010; Subramanian, 2012) extends the well-known VND

procedure (Mladenović and Hansen, 1997) by allowing a random ordering of the neighbor-

hoods. All possible moves of each neighborhood is examined and the search continues from

the best improving neighbor. If a neighborhood is not capable of finding an improved

solution, the procedure then selects another one at random.

We consider two classes of neighborhood structures: inter-route and intra-route. The

first performs moves between a pair of routes, whereas the latter only consider moves within

the same route. The main RVND scheme considers only inter-route neighborhoods. Intra-

route neighborhoods are only applied, also in an RVND fashion, over those routes that

have been affected by an inter-route move or by a perturbation move.

As in the construction phase, if the local search procedure detects that there are two or

more consecutive visits to the same station in a modified solution, they are then merged

into a single visit. It should be also pointed out that the ADSs are only updated for the

subsequences that were modified by a move. Finally, all moves are evaluated in amortize

constant time by using the information stored in the ADSs.

4.4.1. Inter-route neighborhood structures

The following inter-route neighborhood structures were implemented:

• Shift(σ, 0): a subsequence σ is moved from one route to another one. We have limited

the size of σ to 1 and 2. Each size is assumed to be a different neighborhood in the

RVND. Only those subsequences that do not have stations visited multiple times in

the route are considered.

• Swap(σ1, σ2): subsequence σ1 from one route is interchanged with another subse-

quence σ2 from a different route. We have limited the size of σ1 and σ2 to 1 and

2. Disregarding symmetries, each of the three possibilities is assumed to be a dif-

ferent neighborhood in the RVND. As in the previous case, only those subsequences

containing stations with a single visit in the respective route are considered.

• 2-opt*: two distinct routes are divided into two subsequences each: σ1 and σ2, for

the first route, and σ3 and σ4, for the second one. Next, two new routes are derived

by connecting σ1 with σ4 and σ3 with σ2.

4.4.2. Intra-route neighborhood structures

The following intra-route neighborhood structures were implemented:

14



• Reinsertion(σ): a subsequence σ is removed and reinserted in another position of

the route. The size of σ was limited to 1, 2 and 3, thus resulting in three different

neighborhoods.

• Exchange(σ1, σ2): subsequence σ1 is interchanged with other subsequence σ2. The

size of σ1 and σ2 were restricted to 1 and 2, thus leading to three distinct neighbor-

hoods (disregarding symmetries).

• 2-opt: an arc is removed and another one is inserted so as to build a new route.

• Split: a visit is selected and then a copy of the station associated with such visit is

inserted in another position (non-adjacent to the original visit) of the route. All split

possibilities are considered.

4.5. Perturbation mechanisms

The perturbation procedure randomly selects one of the following mechanisms:

• Multiple shift(σ, 0): multiple Shift(σ, 0) moves are applied at random and we limited

|σ| to be at most 3.

• Multiple swap(σ1, σ2): multiple Swap(σ1, σ2) moves are applied at random. In our

case we limited |σ1| = |σ2| to be at most 3.

• Split in half: this is a particular case of the Split neighborhood, where the value of

the original load is equally split between the original visit and the copy, and the latter

is inserted in a random position (non-adjacent to the original visit) of the route. In

this case the mechanism selects the visit associated with the largest delivery/pickup

of a random route.

5. Computational Experiments

The BC algorithm was implemented using CPLEX 12.6 over the mathematical formula-

tion described in Section 2. This algorithm and the ILS based heuristic presented in Section

4 were both coded in C++. BC was executed on a Intel Xeon E5-2650 v2 processor with

a clock speed of 2.60 GHz and 64 GB of RAM, running on Scientific Linux release 6.5

(Carbon), while ILS was executed on an Intel i7-3770 with 3.40 GHz and 16 GB of RAM

running Ubuntu 14.04. We considered only a single thread when running the algorithms.

ILS was run 10 times for each instance.
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5.1. Instances

The SBRP-MVV instances were derived from those proposed by

Hernández-Pérez and Salazar-González (2004) for the one-commodity pickup

and delivery traveling salesman problem (1-PDTSP), which are available at

http://hhperez.webs.ull.es/PDsite/#Benchmark. We considered a total of 630

instances involving up to 200 vertices and, for each of them, we adopted two distinct

values for the number of vehicles and for the maximum number of visits allowed, namely,

K = {2, 3} and N = {2, 3}. The route duration limit for each instance was computed

as follows: L = ⌈f × LB/K⌉, where LB is computed by solving the LP relaxation of

the model SBRP-R of Erdoǧan et al. (2015) and f is the minimum value in the set

{1, 1.1, 1.2, 1.3, . . .} for which an “aggressive” version of the heuristic is capable of finding

a feasible solution.

Preliminary experiments revealed that a station is seldom visited more than twice, even

for those instances with Q = 10. Therefore, we decided to disregard the instances with

N = 3, leading to a total of 2× 630 = 1260 instances.

5.2. Parameter tuning

Regarding the parameter nILS, we set its value as a function of the instance, more

precisely, nILS = max(Imin, n), where Imin is an input parameter used to avoid an in-

sufficient number of perturbations for small size instances. We then followed the pro-

cedure described in Cruz et al. (2016) to calibrate the parameter Imin. For this testing

we arbitrarily set nR = 1 and we adopted |σ| = 1 for neighborhoods Shift(σ,0) and

Reinsertion(σ), |σ1| = |σ2| = 1 for neighborhood Swap(σ1, σ2), and |σ1| = |σ2| ≤ 2 for

neighborhood Exchange(σ1, σ2). After performing some experiments on a subset of 30 ran-

dom instances, containing 2 instances with capacity values in {10, 15, 20} for each size in

{20, 40, 60, 100, 200}, we set Imin = 100. We chose instances with tight capacity values

because they are likely to be more harder to solve.

Once we set nILS = max{100, n}, we performed a series of experiments to calibrate the

parameter nR, and to determine the neighborhood structures to be used in the local search.

We tested three different values for nR and for each of them we tried four different types of

neighborhood combinations. Note that because there are 30 instances and two values forK,

then each scenario contains 30×2 = 60 instances. Since we executed the algorithm 10 times

for each setting, the total number of runs for each setting is equal to 600. The percentage of

feasible solutions returned by the algorithm in the 600 runs for each setting, as well as the

average gap between the average solutions and the best solution found during the tuning
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phase are reported in Table 2. The latter was computed considering only those instances

where all settings could find feasible solutions in all 10 runs. From the results obtained, we

decided to set nR = 20 and the neighborhoods selected were Shift(1,1), Swap(1,1), 2-opt*,

Reinsertion(1), Exchange(1,1), Exchange(2,2), 2-opt and Split.

Table 2: Percentage of feasible runs and average solution cost (out of 600) for each setting

nR = 10 nR = 15 nR = 20
Local Search Configuration

Feas (%) Avg Gap (%) Feas (%) Avg Gap (%) Feas (%) Avg Gap (%)

Shift(1,1) + Swap(1,1) + 2-opt*

Reinsertion(1) + Exchange(1,1) + 2-opt + Split
71.17 0.82 83.00 0.51 90.33 0.33

Shift(1,1) + Swap(1,1) + 2-opt*

Reinsertion(1) + Exchange(1,1) + 2-opt + Split 72.00 0.69 86.50 0.50 92.83 0.26

+ Reinsertion(2,2)

Shift(1,1) + Swap(1,1) + 2-opt*

Reinsertion(1) + Exchange(1,1) + 2-opt + Split 75.00 0.78 85.33 0.43 92.00 0.31

+ Exchange(2,2)

Shift(1,1) + Swap(1,1) + 2-opt* +

Reinsertion(1) + Exchange(1,1) + 2-opt 73.83 0.72 89.33 0.36 92.67 0.18

+ Reinsertion(2,2) + Exchange(2,2) + Split

5.3. Evaluating the impact of Q, N and K on solving the SBRP-MVV

In this section we are interested in evaluating the impact of the vehicle capacity and

number of vehicles on the number of visits to a station, as well as on the average gap. We

also examine the benefits and disadvantages of allowing multiple visits, in terms of solution

quality and CPU time, according to the vehicle capacity.

Figure 2 shows the average percentage of instances for which the best solution found by

ILS required multiple visits to the same station according to the value of Q. We can verify

that the percentage of instances requiring multiple visits tends to increase as the capacity

of the vehicle decreases. This observation becomes more evident for Q = {10, 15, 20}.

Moreover, it seems that multiple visits are more frequent for K = 2 than for K = 3.

Figure 3 illustrates the average gap between the best solutions found by ILS and the

lower bounds obtained by BC for the different values of Q. It shows that the smaller

the capacity, the harder the instance. Also, the instances appear to become harder when

there are more vehicles available. However, it is important to point out that the value of

L decreases as the number of vehicle increases (see Section 5.1), which may potentially

contribute to increase the level of difficulty of solving the SBRP-MVV.

From the results presented in Figures 2 and 3 it is possible to verify that multiple visits

seem to be less attractive for Q ≥ 25. We thus hereafter only report the results for the

instances with Q ≤ 20.
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Figure 2: Average percentage of instances for which the best solution found required multiple visits to the
same station
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Figure 3: Average gaps between the best solution found by ILS and the lower bound obtained by BC

Figure 4 depicts the average percentage improvement on the best solution obtained by

allowing multiple visits. Our aim in this case is to estimate the benefits of letting a station

to be visited more than once on the quality of the best solution found by ILS as the vehicle

capacity increases. The results suggest that the improvement is considerable for Q = 10

and still significant for Q = 15 and Q = 20, but only for K = 2 in the latter. In addition,

they are also in accordance with the results shown in Figure 2, that is, we can see that the

number of vehicles has an impact on the necessity of multiple visits for finding high quality
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Figure 4: Average percentage improvement on the best solution obtained by allowing multiple visits

Finally, Figure 5 shows the impact on CPU time of ILS when allowing multiple visits

to a station. In this case there is a clear runtime disadvantage when the algorithm tries

to exploit the possibility of visiting stations more than once. Unfortunately, this visibly

affects the convergence rate, especially for K = 3, where the increase in the CPU time is

more perceptible.
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Figure 5: Average CPU time spent by ILS

5.4. Detailed results for instances with 20 and 30 stations

Tables 3–6 present the detailed results found by the BC and ILS algorithms for the

instances involving 20 and 30 stations. Regarding the BC results, Root LB denotes the
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lower bound obtained after solving the root node, LB corresponds to the best lower bound

found, Root time (s) corresponds to the CPU time in seconds spent to solve the root

node, Time (s) is the total CPU time in seconds, Tree size indicates the number of

nodes of the BC tree and #Lazy cuts reports the number of lazy cuts (23) added. For

what concerns the ILS results, Min cost denotes the best cost found in the 10 runs, Avg

Cost corresponds to the average cost of the 10 runs, Avg Gap (%) indicates the average

gap between the average solution and the lower bound, and Avg Time (s) represents the

average CPU time of the 10 runs.

Table 3: Summary of computational results for n = 20, K = 2 and N = 2

BC ILS

Root Root Time Tree #Lazy Min Avg Avg Avg
Instance L

LB
LB

Time (s) (s) Size Cuts Cost Cost Gap (%) Time (s)

n20q10A 3192 4274.06 4463.36 9.86 3600.00 173600 2 5006 5006.00 12.16 0.58

n20q10B 3342 4492.06 5052.00 5.82 3250.87 253164 92 5052 5052.00 0.00 0.61

n20q10C 4134 5600.29 5697.99 23.20 3600.00 94884 3 6118 6118.00 7.37 1.00

n20q10D 3893 5658.83 5848.94 13.12 3600.00 112451 0 6277 6277.00 7.32 0.83

n20q10E 3939 5761.67 5889.45 15.99 3600.00 104090 0 6381 6381.00 8.35 0.89

n20q10F 3236 4575.17 4907.33 9.91 3600.00 123061 2 4983 4983.00 1.54 0.80

n20q10G 3387 4694.64 4994.90 7.76 3600.00 156040 0 5788 5788.00 15.88 0.59

n20q10H 3727 4957.18 5263.46 9.79 3600.00 155817 5 6328 6328.00 20.23 0.62

n20q10I 3218 4222.47 4428.70 8.36 3600.00 179674 0 4979 4979.00 12.43 0.64

n20q10J 3160 4136.95 4317.88 5.50 3600.00 265948 153 4995 4995.00 15.68 0.69

n20q15A 2736 3770.51 4047.56 6.48 3600.00 194713 1 4435 4435.00 9.57 0.49

n20q15B 3052 4284.43 4740.00 6.80 1011.28 80797 1 4740 4740.00 0.00 0.49

n20q15C 3528 4691.84 4860.09 11.74 3600.00 117417 3 5494 5494.00 13.04 0.79

n20q15D 3743 4769.17 4896.68 16.11 3600.00 120330 0 5638 5638.00 15.14 1.12

n20q15E 3611 4962.57 5240.24 12.45 3600.00 137366 3 5800 5800.00 10.68 0.65

n20q15F 2998 4406.85 4645.54 7.94 3600.00 120407 8 4923 4923.00 5.97 0.76

n20q15G 3233 4431.96 4707.58 5.82 3600.00 176153 0 5218 5218.00 10.84 0.53

n20q15H 3558 4567.60 5188.32 9.41 3600.00 114336 308 5635 5635.00 8.61 0.59

n20q15I 3058 3985.14 4316.49 6.01 3600.00 174000 5 4615 4615.00 6.92 0.67

n20q15J 3028 3840.26 4125.24 5.78 3600.00 250276 49 4270 4270.00 3.51 0.54

n20q20A 2736 3642.39 3947.75 3.12 3600.00 248072 0 4435 4435.00 12.34 0.44

n20q20B 3052 4091.14 4740.00 4.30 2435.69 229683 0 4740 4740.00 0.00 0.55

n20q20C 3267 4359.78 4605.94 10.17 3600.00 115222 0 5203 5203.00 12.96 0.63

n20q20D 3294 4217.71 4440.28 9.97 3600.00 142800 1 5016 5016.00 12.97 0.69

n20q20E 3282 4561.37 4763.00 6.44 56.32 1438 0 4763 4763.00 0.00 0.52

n20q20F 3062 4348.20 4674.00 6.95 124.99 4639 0 4674 4674.00 0.00 0.57

n20q20G 3079 4361.35 4798.13 6.27 3600.00 143011 0 5256 5256.00 9.54 0.62

n20q20H 3388 4339.99 4937.48 4.97 3600.00 189500 86 5320 5320.00 7.75 0.57

n20q20I 2897 3995.80 4272.24 4.98 3600.00 200668 0 4640 4640.00 8.61 0.65

n20q20J 3028 3713.55 4145.00 5.16 269.76 12342 0 4145 4145.00 0.00 0.44
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Table 4: Summary of computational results for n = 30, K = 2 and N = 2

BC ILS

Root Root Time Tree #Lazy Min Avg Avg Avg
Instance L

LB
LB

Time (s) (s) Size Cuts Cost Cost Gap (%) Time (s)

n30q10A 4114 5742.16 5796.06 49.04 3600.00 27304 0 6552 6559.50 13.17 2.18

n30q10B 4129 5858.21 5933.98 41.60 3600.00 31947 0 6617 6617.00 11.51 1.46

n30q10C 4292 5618.32 5668.99 45.29 3600.00 36139 0 6625 6625.40 16.87 3.45

n30q10D 4354 5446.28 5570.54 35.60 3600.00 39003 0 6219 6222.40 11.70 2.05

n30q10E 4023 5295.69 5411.80 35.39 3600.00 36225 0 6387 6387.00 18.02 1.74

n30q10F 3885 5214.95 5292.49 51.77 3600.00 44699 0 5977 5977.00 12.93 2.10

n30q10G 5605 7995.47 8070.85 62.21 3600.00 30714 0 9109 9112.00 12.90 2.37

n30q10H 4222 5350.89 5418.30 67.71 3600.00 32729 0 6138 6162.90 13.74 2.27

n30q10I 3752 4899.13 4961.84 35.27 3600.00 38162 0 5764 5764.00 16.17 1.89

n30q10J 4194 5471.28 5542.50 30.30 3600.00 37700 0 6026 6026.00 8.72 2.08

n30q15A 3723 5060.29 5159.71 34.49 3600.00 30044 0 5858 5858.00 13.53 1.69

n30q15B 3653 5023.00 5122.76 35.91 3600.00 51226 0 5682 5682.00 10.92 1.15

n30q15C 3777 4956.43 5093.17 18.79 3600.00 40921 0 5636 5636.00 10.66 2.84

n30q15D 3684 4912.23 5037.13 22.69 3600.00 42170 0 5844 5844.00 16.02 1.62

n30q15E 3713 4796.80 4931.23 21.79 3600.00 54917 0 5803 5803.00 17.68 1.62

n30q15F 3437 4722.68 4866.74 28.61 3600.00 52531 0 5388 5388.00 10.71 1.74

n30q15G 4701 6345.69 6457.06 46.49 3600.00 38018 0 7623 7648.20 18.45 2.54

n30q15H 3597 4570.93 4669.42 45.72 3600.00 34215 0 5304 5304.00 13.59 1.39

n30q15I 3262 4460.33 4602.80 24.55 3600.00 40396 2 4929 4929.00 7.09 1.07

n30q15J 3728 4895.24 4962.95 37.55 3600.00 29663 0 5847 5847.00 17.81 1.49

n30q20A 3527 4795.10 4917.30 20.61 3600.00 38196 1 5151 5151.00 4.75 1.05

n30q20B 3494 4753.92 4873.72 25.72 3600.00 60550 0 5336 5336.00 9.49 1.03

n30q20C 3605 4663.53 4799.08 16.10 3600.00 56650 0 5283 5283.00 10.08 1.34

n30q20D 3684 4701.90 4901.72 24.79 3600.00 45200 1 5136 5136.00 4.78 1.07

n30q20E 3559 4718.71 4877.90 22.18 3600.00 51607 0 5558 5558.00 13.94 1.09

n30q20F 3287 4561.58 4778.21 14.07 3600.00 42990 0 5252 5252.00 9.92 1.19

n30q20G 4340 5660.45 5752.77 36.41 3600.00 42384 0 6821 6821.00 18.57 1.77

n30q20H 2971 4287.60 4404.00 17.53 115.18 736 0 4404 4404.00 0.00 0.99

n30q20I 3262 4392.19 4502.50 22.70 3600.00 40997 0 4868 4868.00 8.12 1.02

n30q20J 3572 4705.40 4779.97 28.65 3600.00 34706 0 5603 5603.00 17.22 1.34

Table 5: Summary of computational results for n = 20, K = 3 and N = 2

BC ILS

Root Root Time Tree #Lazy Min Avg Avg Avg
Instance L

LB
LB

Time (s) (s) Size Cuts Cost Cost Gap (%) Time (s)

n20q10A 2128 4527.84 4694.71 11.49 3600.00 141123 0 5226 5226.00 11.32 0.51

n20q10B 2325 4841.79 5090.87 6.26 3600.00 285603 0 5920 5920.00 16.29 0.56

n20q10C 2756 5790.44 5930.73 19.03 3600.00 70777 0 6777 6777.00 14.27 0.87

n20q10D 2695 5833.02 5974.18 16.59 3600.00 111050 0 6621 6621.00 10.83 0.86

n20q10E 2735 5917.96 6062.60 13.61 3600.00 107165 3 6785 6785.00 11.92 0.79

n20q10F 2466 4775.84 4965.30 9.30 3600.00 145776 0 5788 5788.00 16.57 0.91

n20q10G 2464 4967.24 5217.98 8.13 3600.00 150975 3 5893 5893.00 12.94 0.74

n20q10H 2824 5160.81 5530.86 8.68 3600.00 144000 0 7007 7007.00 26.69 0.72

Continued on the next page

21



Table 5: Results for n = 20, K = 3 and N = 2 (continued)

Root Root Time Tree #Lazy Min Avg Avg Avg
Instance L

LB
LB

Time (s) (s) Size Cuts Cost Cost Gap (%) Time (s)

n20q10I 2360 4443.55 4653.54 11.58 3600.00 179762 8 5392 5392.00 15.87 0.69

n20q10J 2195 4335.67 4629.00 6.02 3600.00 225360 22 5402 5402.00 16.70 0.55

n20q15A 2128 3958.08 4226.79 6.65 3600.00 217378 0 5035 5035.00 19.12 0.48

n20q15B 2228 4593.24 4894.20 6.16 3600.00 280372 0 5231 5231.00 6.88 0.54

n20q15C 2520 4967.13 5178.01 11.85 3600.00 102448 0 6065 6065.00 17.13 0.69

n20q15D 2595 4862.84 5042.90 12.41 3600.00 118331 0 6258 6258.00 24.10 1.08

n20q15E 2517 5126.98 5403.39 11.49 3600.00 146582 0 6193 6193.00 14.61 0.51

n20q15F 2427 4631.84 4801.06 8.91 3600.00 137572 0 5660 5660.00 17.89 0.96

n20q15G 2258 4855.87 5271.43 6.16 3600.00 148142 0 5717 5717.00 8.45 0.51

n20q15H 2824 4716.51 5185.59 7.06 3600.00 169200 6 6629 6629.00 27.84 0.65

n20q15I 2146 4265.40 4517.09 6.99 3600.00 162444 1 5028 5028.00 11.31 0.57

n20q15J 2195 4050.99 4407.47 5.24 3600.00 228356 5 5300 5300.00 20.25 0.56

n20q20A 2128 3838.09 4140.81 3.34 3600.00 287030 0 5035 5035.00 21.59 0.42

n20q20B 2228 4420.11 4837.81 4.29 3600.00 373834 9 5231 5231.00 8.13 0.61

n20q20C 2469 4572.67 4836.59 8.96 3600.00 101872 0 5926 5926.00 22.52 0.75

n20q20D 2396 4463.11 4747.07 9.21 3600.00 137628 0 5674 5674.00 19.53 0.85

n20q20E 2407 4827.13 5048.87 8.36 3600.00 165175 0 5988 5988.00 18.60 0.75

n20q20F 2450 4558.05 4789.32 6.12 3600.00 169943 0 5404 5404.00 12.83 0.65

n20q20G 2258 4774.02 5148.33 5.46 3600.00 181988 0 5717 5717.00 11.05 0.60

n20q20H 2598 4536.83 5246.77 5.48 3600.00 183102 0 6166 6166.00 17.52 0.63

n20q20I 2146 4162.01 4471.14 5.66 3600.00 194176 0 4954 4954.00 10.80 0.56

n20q20J 2195 3971.67 4370.69 5.37 3600.00 226184 11 5278 5278.00 20.76 0.45

Table 6: Summary of computational results for n = 30, K = 3 and N = 2

BC ILS

Root Root Time Tree #Lazy Min Avg Avg Avg
Instance L

LB
LB

Time (s) (s) Size Cuts Cost Cost Gap (%) Time (s)

n30q10A 2874 5934.96 5982.56 51.37 3600.00 30318 0 6875 6876.10 14.94 2.10

n30q10B 2859 6043.92 6185.79 27.40 3600.00 37954 0 6972 6972.00 12.71 1.48

n30q10C 3090 5778.69 5868.04 33.22 3600.00 48706 0 7108 7116.90 21.28 2.38

n30q10D 3015 5542.38 5653.90 25.27 3600.00 41034 1 6525 6525.80 15.42 1.88

n30q10E 2991 5617.27 5694.02 37.17 3600.00 40486 0 7122 7122.00 25.08 1.53

n30q10F 2789 5389.12 5506.16 33.79 3600.00 44332 0 6506 6506.00 18.16 1.45

n30q10G 3858 8174.72 8264.69 38.06 3600.00 39822 0 9434 9434.00 14.15 1.85

n30q10H 2919 5536.95 5649.05 44.58 3600.00 37030 0 6698 6804.10 20.45 1.66

n30q10I 2719 5053.92 5149.49 41.14 3600.00 40347 0 6056 6056.00 17.60 1.45

n30q10J 3003 5657.10 5711.10 41.77 3600.00 33747 0 6538 6538.00 14.48 2.12

n30q15A 2743 5191.35 5322.57 34.51 3600.00 30155 0 6243 6243.00 17.29 1.37

n30q15B 2647 5231.57 5318.63 28.43 3600.00 48608 0 6110 6110.00 14.88 1.24

n30q15C 2747 5176.66 5303.31 25.39 3600.00 51881 0 6236 6236.00 17.59 2.88

n30q15D 2680 5106.61 5256.13 23.07 3600.00 51297 0 5798 5798.00 10.31 1.58

n30q15E 2785 5100.24 5219.16 20.17 3600.00 52500 0 6337 6337.00 21.42 1.69

n30q15F 2490 4980.90 5143.51 19.47 3600.00 49170 0 5915 5915.00 15.00 1.21

n30q15G 3255 6638.72 6720.82 41.69 3600.00 36531 0 7600 7600.00 13.08 1.74

Continued on the next page
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Table 6: Results for n = 30, K = 3 and N = 2 (continued)

Root Root Time Tree #Lazy Min Avg Avg Avg
Instance L

LB
LB

Time (s) (s) Size Cuts Cost Cost Gap (%) Time (s)

n30q15H 2606 4747.45 4813.97 41.93 3600.00 43841 0 6102 6102.00 26.76 1.80

n30q15I 2501 4639.79 4727.24 24.81 3600.00 41046 0 5526 5526.00 16.90 1.29

n30q15J 2796 5095.13 5193.83 29.05 3600.00 42921 0 6034 6034.00 16.18 1.42

n30q20A 2482 5090.96 5223.36 20.96 3600.00 39732 0 5769 5769.00 10.45 1.01

n30q20B 2647 4960.88 5199.03 26.26 3600.00 45534 0 6086 6086.00 17.06 1.29

n30q20C 2632 4920.93 5034.62 16.14 3600.00 64445 0 5731 5731.00 13.83 1.29

n30q20D 2568 5009.92 5154.88 21.52 3600.00 55724 0 5872 5872.00 13.91 1.18

n30q20E 2785 4963.61 5088.05 19.38 3600.00 52594 0 6014 6014.00 18.20 1.34

n30q20F 2490 4874.49 5082.34 15.04 3600.00 62524 0 5601 5601.00 10.21 0.92

n30q20G 3014 5964.44 6058.46 40.35 3600.00 40978 0 6968 6968.00 15.01 0.94

n30q20H 2502 4466.08 4626.66 18.02 3600.00 63658 0 5679 5679.00 22.75 1.90

n30q20I 2393 4599.53 4737.05 20.08 3600.00 46715 0 5410 5410.00 14.21 1.07

n30q20J 2692 4962.80 5037.11 33.22 3600.00 44192 0 5980 5980.00 18.72 1.09

For almost all cases, BC could not finish its execution within the time limit of one hour.

Yet, the exact algorithm managed to solve seven instances to optimality, where six of them

are for n = 20 and K = 2, and the other one is for n = 30 and K = 2. Note that ILS

also found the optimal solutions for these seven instances, but in less than one second. BC

could not prove the optimality of any of the instances with K = 3. It also failed to find an

integer solution for many instances, which possibly explains the lack of lazy cuts in such

cases, especially for K = 3. As expected, the root time for n = 30 is larger than n = 20,

because the CPU time required to solve the linear programs naturally increases with the size

of the instance. Since this also happens in the other nodes, a smaller number of nodes could

be solved within the time limit for the instances involving 30 stations, when compared to

those containing 20 stations. ILS found always the same solution for the 10 runs in all cases,

except for instances n30q10H, n30q15G, n30q10A, n30q10C, n30q10H, thus suggesting that

the proposed heuristic has a consistent performance in terms of robustness. The algorithm

also runs very fast for these instances, never spending, on average, more than three seconds

(except for instance n30q10C).

5.5. Aggregate results

Tables 7 and 8 show the aggregate results for K = 2 and K = 3, respectively, where

GapLB denotes the average gap between the average solutions and the lower bound found

by BC, GapBKS represents the average gap between the average solutions and the best

known solutions (BKSs) and Time (s) corresponds to the average CPU time in seconds.

We do not report the gaps with respect to the lower bound for the instances involving 200
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stations, because BC failed in most cases to solve the linear relaxation within the time

limit.

Table 7: Aggregate results for K = 2

Q = 10 Q = 15 Q = 20
n GapLB GapBKS Time GapLB GapBKS Time GapLB GapBKS Time

(%) (%) (s) (%) (%) (s) (%) (%) (s)
20 10.09 0.00 0.72 8.43 0.00 0.66 6.42 0.00 0.57
30 13.57 0.06 2.16 13.65 0.03 1.71 9.69 0.00 1.19
40 13.84 0.15 3.69 14.58 0.01 2.79 12.75 0.01 2.61
50 14.67 0.56 7.14 12.20 0.06 5.79 10.46 0.13 4.10
60 17.47 1.32 11.29 14.37 0.55 6.92 11.91 0.17 7.05
100 20.87 2.11 36.10 18.65 1.72 37.25 15.11 0.92 27.39
200 - 1.79 255.62 - 1.87 218.62 - 1.93 262.71

Table 8: Aggregate results for K = 3

Q = 10 Q = 15 Q = 20
n GapLB GapBKS Time GapLB GapBKS Time GapLB GapBKS Time

(%) (%) (s) (%) (%) (s) (%) (%) (s)
20 15.34 0.00 0.72 16.76 0.00 0.66 16.33 0.00 0.63
30 17.43 0.17 1.79 16.94 0.00 1.62 15.43 0.00 1.20
40 18.05 0.41 3.41 17.06 0.14 2.59 16.31 0.00 2.43
50 16.62 0.89 6.19 14.72 0.17 4.80 13.70 0.12 4.45
60 19.63 1.43 10.25 15.98 0.38 8.02 15.08 0.21 7.54
100 22.02 2.30 37.99 20.24 2.03 34.40 17.02 1.40 27.10
200 - 2.00 268.19 - 2.00 225.05 - 2.35 233.31

The results demonstrate that there is a considerable gap between the average solution

values and the lower bound. This does not necessarily mean that the solutions generated by

ILS are of poor quality. In fact, based on the small values of the average gaps with respect

to the BKSs, we suspect that the upper bounds found by ILS is likely to be closer to the

optimal solution than the lower bounds obtained by BC. For example, for the instances

involving up to 50 stations, it can be observed that the average gaps with respect to

the BKSs are always smaller than 1%, which suggests that ILS systematically finds, on

average, potentially high quality solutions. Furthermore, the average CPU time of the

proposed heuristic can be considered acceptable, especially for the instances containing up

to 100 stations.

It is important to point ot that we have disregarded the runs where ILS was not ca-

pable of generating a feasible solution when computing the average gaps. Tables 9 and 10

illustrate those instances for K = 2 and K = 3, respectively, where the proposed heuristic

failed to find a feasible solution in at least one of the 10 runs.

There are relatively very few instances where ILS was not successful in finding 10

feasible solutions out of 10 runs. This happened in 17 instances for K = 2 (8.09%) and in

25 instances for K = 3 (11.09%). We can also observe that, in most cases, such instances
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Table 9: Instances with less than 10 feasible runs for K = 2

Number of feasible runs and corresponding instances
1 2 3 4 5 6 7 8 9

n200q10F n200q10D - n200q10C n200q10H n50q20D n100q10B n100q10A n100q15E
n200q15E n200q10J n200q15C n100q10D
n200q15F n200q10B n200q15A
n200q10A
n200q20E

Table 10: Instances with less than 10 feasible runs for K = 3

Number of feasible runs and corresponding instances
1 2 3 4 5 6 7 8 9

n200q15D n200q10J - n200q15F - n200q15A n100q10D n60q20I n40q10C
n200q10F n200q10B n200q15B n100q20C n40q15H

n200q10H n200q15H n200q10A n40q15I
n200q10C n200q10E n50q20I

n200q20E n100q10I
n100q15B
n100q15H
n100q10A
n200q20F

contain 200 stations, especially for K = 2. The results suggests that, depending on the

value of L, finding feasible SBRP-MVV solutions in a systematic fashion is a challenging

task.

6. Concluding remarks

We have presented the static bicycle relocation problem with multiple vehicles and visits

(SBRP-MVV), and we have proposed a branch-and-cut (BC) algorithm over an extended

network-based mathematical formulation. The constraints that ensure that a station is

never visited by more than one vehicle are added in a lazy fashion, that is, only when an

infeasible integer solution is found. In addition, we have also developed an iterated local

search (ILS) based heuristic that uses efficient auxiliary data structures to perform move

evaluations in amortized constant time during the local search. This is done by storing

several information of each subsequence of a current solution.

Extensive computational experiments were conducted on new 1260 benchmark in-

stances, ranging from to 20 to 200 stations. The results obtained revealed that multiple

visits are only interesting for those instances whose vehicle capacity is up to 20. Moreover,

the average gaps between the average solutions found by ILS and the lower bound obtained

by BC appear to increase with the number of vehicles. On the other hand, the number of

multiple visits is likely to decrease as the number of vehicles increases.
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N. Mladenović, P. Hansen, Variable Neighborhood Search, Computers & Operations Re-

search 24 (1997) 1097–1100.

28


	Introduction
	Mathematical formulation
	Branch-and-cut algorithm
	Iterated local search metaheuristic
	Auxiliary data structures
	Evaluation function
	Constructive procedure
	Local search
	Inter-route neighborhood structures
	Intra-route neighborhood structures

	Perturbation mechanisms

	Computational Experiments
	Instances
	Parameter tuning
	Evaluating the impact of Q, N and K on solving the SBRP-MVV
	Detailed results for instances with 20 and 30 stations
	Aggregate results

	Concluding remarks

