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Preface

This book provides an introduction to the theory of dynamical systems with
the aid of Python. It is written for both senior undergraduates and graduate
students. Chapter 1 provides a tutorial introduction to Python—new users
should go through this chapter carefully while those moderately familiar and
experienced users will find this chapter a useful source of reference. The first
part of the book deals with continuous systems using differential equations,
including both ordinary and delay differential equations (Chapters 2–12), the
second part is devoted to the study of discrete systems (Chapters 13–17), and
Chapters 18–21 deal with both continuous and discrete systems. Chapter 22
gives examples of coursework and also lists three Python-based examinations
to be sat in a computer laboratory with access to Python. Chapter 23 lists
answers to all of the exercises given in the book. It should be pointed out that
dynamical systems theory is not limited to these topics but also encompasses
partial differential equations, integral and integro-differential equations, and
stochastic systems, for instance. References [1–6] given at the end of the Pref-
ace provide more information for the interested reader. The author has gone
for breadth of coverage rather than fine detail and theorems with proofs are
kept at a minimum. The material is not clouded by functional analytic and
group theoretical definitions, and so is intelligible to readers with a general
mathematical background. Some of the topics covered are scarcely covered
elsewhere. Most of the material in Chapters 9–12 and 16–21 is at postgrad-
uate level and has been influenced by the author’s own research interests.
There is more theory in these chapters than in the rest of the book since it is
not easily accessed anywhere else. It has been found that these chapters are
especially useful as reference material for senior undergraduate project work.
The theory in other chapters of the book is dealt with more comprehensively
in other texts, some of which may be found in the references section of the
corresponding chapter. The book has a very hands-on approach and takes
the reader from the basic theory right through to recently published research
material.

v
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Python is extremely popular with a wide range of researchers from all
sorts of disciplines; it has a very user-friendly interface and has extensive
visualization and numerical computation capabilities. It is an ideal package to
adopt for the study of nonlinear dynamical systems; the numerical algorithms
work very quickly, and complex pictures can be plotted within seconds.

The first chapter provides an efficient tutorial introduction to Python.
Simple Python programming is introduced using three basic programming
structures: defining functions, for loops, and if, then, else constructs. New
users will find the tutorials will enable them to become familiar with Python
within a few days. Both engineering and mathematics students appreciate
this method of teaching and I have found that it generally works well with
one staff member to about twenty students in a computer laboratory. In most
cases, I have chosen to list the Python commands at the end of each chapter;
this avoids unnecessary cluttering in the text. The Python programs have
been kept as simple as possible and should run under later versions of the
package. All Python files for the book (including updates and extra files) can
even be downloaded from the Web via GitHub at:

https://github.com/springer-math/dynamical-systems-with-applications-
using-python

Readers will find that they can reproduce the figures given in the text, and
then it is not too difficult to change parameters or equations to investigate
other systems.

Chapters 2–12 deal with continuous dynamical systems. Chapters 2 and 3
cover some theory of ordinary differential equations and applications to mod-
els in the real world are given. The theory of differential equations applied
to chemical kinetics and electric circuits is introduced in some detail. The
memristor is introduced and one of the most remarkable stories in the history
of mathematics is relayed. Chapter 2 ends with the existence and uniqueness
theorem for the solutions of certain types of differential equations. The theory
behind the construction of phase plane portraits for two-dimensional systems
is dealt with in Chapter 3. Applications are taken from chemical kinetics, eco-
nomics, electronics, epidemiology, mechanics, and population dynamics. The
modeling of the populations of interacting species is discussed in some detail
in Chapter 4 and domains of stability are discussed for the first time. Limit
cycles, or isolated periodic solutions, are introduced in Chapter 5. Since we
live in a periodic world, these are the most common type of solution found
when modeling nonlinear dynamical systems. They appear extensively when
modeling both the technological and natural sciences. Hamiltonian, or con-
servative, systems and stability are discussed in Chapter 6, and Chapter 7
is concerned with how planar systems vary depending upon a parameter.
Bifurcation, bistability, multistability, and normal forms are discussed.

https://github.com/springer-math/dynamical-systems-with-applications-using-python
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The reader is first introduced to the concept of chaos in continuous sys-
tems in Chapters 8 and 9, where three-dimensional systems and Poincaré
maps are investigated. These higher-dimensional systems can exhibit strange
attractors and chaotic dynamics. One can rotate the three-dimensional ob-
jects in Python and plot time series plots to get a better understanding of
the dynamics involved. Once again, the theory can be applied to chemi-
cal kinetics (including stiff systems), electric circuits, and epidemiology; a
simplified model for the weather is also briefly discussed. Chapter 9 deals
with Poincaré first return maps that can be used to untangle complicated
interlacing trajectories in higher-dimensional spaces. A periodically driven
nonlinear pendulum is also investigated by means of a nonautonomous dif-
ferential equation. Both local and global bifurcations are investigated in
Chapter 10. The main results and statement of the famous second part of
David Hilbert’s sixteenth problem are listed in Chapter 11. In order to un-
derstand these results, Poincaré compactification is introduced. The study
of continuous systems ends with one of the authors specialities—limit cycles
of Liénard systems. There is some detail on Liénard systems, in particular,
in this part of the book, but they do have a ubiquity for systems in the
plane. Chapter 12 provides an introduction to delay differential equations
with applications in biology and nonlinear optics.

Chapters 13–17 deal with discrete dynamical systems. Chapter 13 starts
with a general introduction to iteration and linear recurrence (or difference)
equations. The bulk of the chapter is concerned with the Leslie model used
to investigate the population of a single species split into different age classes.
Harvesting and culling policies are then investigated and optimal solutions are
sought. Nonlinear discrete dynamical systems are dealt with in Chapter 14.
Bifurcation diagrams, chaos, intermittency, Lyapunov exponents, periodic-
ity, quasiperiodicity, and universality are some of the topics introduced. The
theory is then applied to real-world problems from a broad range of disci-
plines including population dynamics, biology, economics, nonlinear optics,
and neural networks. Chapter 15 is concerned with complex iterative maps
in the Argand plane, where Julia sets and the now-famous Mandelbrot set
are plotted. Basins of attraction are investigated for these complex systems
and Newton fractals are introduced. As a simple introduction to optics, elec-
tromagnetic waves and Maxwell’s equations are studied at the beginning of
Chapter 16. Complex iterative equations are used to model the propagation
of light waves through nonlinear optical fibers. A brief history of nonlinear
bistable optical resonators is discussed and the simple fiber ring resonator
is analyzed in particular. Chapter 16 is devoted to the study of these op-
tical resonators, and there is discussion on phenomena such as bistability,
chaotic attractors, feedback, hysteresis, instability, linear stability analysis,
multistability, nonlinearity, and steady states. The first and second iterative
methods are defined in this chapter. Some simple fractals may be constructed
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using pencil and paper in Chapter 17, and the concept of fractal dimension
is introduced. Fractals may be thought of as identical motifs repeated on
ever-reduced scales. Unfortunately, most of the fractals appearing in nature
are not homogeneous but are more heterogeneous, hence the need for the
multifractal theory given later in the chapter. It has been found that the
distribution of stars and galaxies in our universe is multifractal, and there
is even evidence of multifractals in rainfall, stock markets, and heartbeat
rhythms. Applications in geoscience, materials science, microbiology, and
image processing are briefly discussed. Chapter 18 provides a brief introduc-
tion to image processing which is being used more and more by a diverse
range of scientific disciplines, especially medical imaging. The fast Fourier
transform is introduced and has a wide range of applications throughout the
realms of science.

Chapter 19 is devoted to the new and exciting theory behind chaos con-
trol and synchronization. For most systems, the maxim used by engineers
in the past has been “stability good, chaos bad,” but more and more nowa-
days this is being replaced with “stability good, chaos better.” There are
exciting and novel applications in cardiology, communications, engineering,
laser technology, and space research, for example. A brief introduction to
the enticing field of neural networks is presented in Chapter 20. Imagine
trying to make a computer mimic the human brain. One could ask the ques-
tion: In the future will it be possible for computers to think and even be
conscious? The human brain will always be more powerful than traditional,
sequential, logic-based digital computers and scientists are trying to incor-
porate some features of the brain into modern computing. Neural networks
perform through learning and no underlying equations are required. Mathe-
maticians and computer scientists are attempting to mimic the way neurons
work together via synapses; indeed, a neural network can be thought of as a
crude multidimensional model of the human brain. The expectations are high
for future applications in a broad range of disciplines. Neural networks are
already being used in machine learning and pattern recognition (computer vi-
sion, credit card fraud, prediction and forecasting, disease recognition, facial
and speech recognition), the consumer home entertainment market, psycho-
logical profiling, predicting wave over-topping events, and control problems,
for example. They also provide a parallel architecture allowing for very fast
computational and response times. In recent years, the disciplines of neu-
ral networks and nonlinear dynamics have increasingly coalesced and a new
branch of science called neurodynamics is emerging. Lyapunov functions can
be used to determine the stability of certain types of neural network. There
is also evidence of chaos, feedback, nonlinearity, periodicity, and chaos syn-
chronization in the brain.

Chapter 21 focuses on binary oscillator computing, the subject of UK,
International, and Taiwanese patents. The author and his co-inventor, Jon
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Borresen, came up with the idea when modeling connected biological neu-
rons. Binary oscillator technology can be applied to the design of arithmetic
logic units (ALUs), memory, and other basic computing components. It
has the potential to provide revolutionary computational speed-up, energy
saving, and novel applications and may be applicable to a variety of techno-
logical paradigms including biological neurons, complementary metal-oxide-
semiconductor (CMOS), memristors, optical oscillators, and superconducting
materials. The research has the potential for MMU and industrial partners
to develop super fast, low-power computers and may provide an assay for
neuronal degradation for brain malfunctions such as Alzheimer’s, epilepsy,
and Parkinson’s disease!

Examples of coursework and three examination-type papers are listed in
Chapter 22, and a complete set of solutions for the book is listed in Chap-
ter 23.

Both textbooks and research papers are presented in the list of references.
The textbooks can be used to gain more background material, and the re-
search papers have been given to encourage further reading and independent
study.

This book is informed by the research interests of the author, which are
currently nonlinear ordinary differential equations, nonlinear optics, multi-
fractals, neural networks, and binary oscillator computing. Some references
include recently published research articles by the author along with two
patents.

The prerequisites for studying dynamical systems using this book are
undergraduate courses in linear algebra, real and complex analysis, calculus,
and ordinary differential equations; a knowledge of a computer language such
as Basic, C, or Fortran would be beneficial but not essential.

Recommended Textbooks

[1] H.P Langtangen and A. Logg, Solving PDEs in Python: The FEniCS
Tutorial I (Simula SpringerBriefs on Computing), Springer, New York, 2017.

[2] B. Bhattacharya and M. Majumdar, Random Dynamical Systems in Fi-
nance, Chapman & Hall/CRC, New York, 2016.

[3] L.C. de Barros, R.C. Bassanezi and W.A. Lodwick, A First Course in
Fuzzy Logic, Fuzzy Dynamical Systems, and Biomathematics: Theory and
Applications, Springer, New York, 2016.

[4] V. Volterra, Theory of Functionals and of Integral and Integro-Differential
Equations, Dover Publications, New York, 2005.



x Preface

[5] J. Mallet-Paret (Editor), J. Wu (Editor), H. Zhu (Editor), Y. Yi (Editor),
Infinite Dimensional Dynamical Systems (Fields Institute Communications),
Springer, New York, 2013.

[6] C. Bernido, M.V. Carpio-Bernido, M. Grothaus et al., Stochastic and In-
finite Dimensional Analysis, Birkhäuser, New York, 2016.

Special thanks go to Ben Nuttall (Python guru), Community Manager,
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love, inspiration, and support.
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Appendix A

Index of Python Programs

Readers can download the Python program files via GitHub:

https://github.com/springer-math/dynamical-systems-with-applications-
using-python

These files will be kept up-to-date and extra files will be added in the
forthcoming years.

A.1 IDLE Python Programs

These files include solutions to the Exercises listed in Chapter 1.

euclid_algorithm.py --- See Exercise 10.

F2C.py --- See Exercise 1(a).

F2K.py --- Converts degrees Fahrenheit to Kelvin.

fibonacci.py --- Lists first n terms of the Fibonacci sequence.

fmu.py --- The logistic function.

fractal_tree.py --- Plots a fractal tree.

fractal_tree_color.py --- Plots a color fractal tree.

grade.py --- Converts a score to a grade.

guess_number.py --- Guess the number game.

koch_snowflake.py --- See Exercise 1(d).

koch_square.py --- Plots a Koch square fractal.

Pythag_Triples.py --- See Exercise 1(c).

sierpinski.py --- Plots a Sierpinski triangle fractal.

sierpinski_square.py --- Plots a Sierpinski square fractal.
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sum_primes.py --- See Exercise 1(b).

sum_n.py --- Sums the natural numbers to n.

A.2 Anaconda Python Programs

If you have difficulty with the animation programs in Spyder, you have to
change the backend to run an animation in the IPython console. You can do
that by running

In[1]: %matplotlib qt5

before the animation. If you don’t want to use this command every time,
you can go to: Tools, Preferences, IPython Console, Graphics, Backend, and
change it from “Inline” to “Automatic.”

Program_01a.py --- Solve a simple ODE.

Program_01b.py --- Solve a second order ODE.

Program_01c.py --- Plot two curves on one graph.

Program_01d.py --- Subplots.

Program_01e.py --- Surface and contour plot in 3D.

Program_01f.py --- A parametric curve in 3D.

Program_01g.py --- Animation of a simple curve.

Program_02a.py --- Solve a separable ODE.

Program_02b.py --- Solve the logistic ODE.

Program_02c.py --- Power series solution.

Program_02d.py --- Power series solution for van der Pol.

Program_02e.py --- Plot series solution against numerical

solution.

Program_02f.py --- Solve a linear first order ODE.

Program_02g.py --- Solve a linear second order ODE.

Program_03a.py --- Plot the phase portrait of a linear system.

Program_03b.py --- Plot the phase portrait of a nonlinear

system.

Program_03c.py --- Finding critical points.

Program_04a.py --- Phase portrait and time series of Holling-

Tanner model.
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Program_05a.py --- Limit cycle of a Fitzhugh-Nagumo system.

Program_05b.py --- Approximate and numerical solutions to ODEs.

Program_05c.py --- Error between one-term and numerical

solution.

Program_05d.py --- Lindstedt-Poincare technique.

Program_06a.py --- Contour plot.

Program_06b.py --- Surface plot.

Program_07a.py --- Animation of a simple curve.

Program_07b.py --- Animation of a subcritical Hopf bifurcation.

Program_07c.py --- Animation of a SNIC bifurcation.

Program_08a.py --- The Rossler attractor.

Program_08b.py --- The Lorenz Attractor.

Program_08c.py --- The Belousov-Zhabotinsky reaction.

Program_08d.py --- Animation of a Chua circuit bifurcation.

Program_09a.py --- Simple Poincare return map.

Program_09b.py --- Hamiltonian with two degrees of freedom plot.

Program_09c.py --- Phase portrait and Poincare map for the

Duffing system.

Program_09d.py --- Bifurcation diagram of Duffing equation.

Program_10a.py --- Computing Lyapunov quantities.

Program_10b.py --- Division algorithm for multivariate

polynomials.

Program_10c.py --- S-polynomial.

Program_10d.py --- Computing the Groebner basis.

Program_10e.py --- Computing Groebner basis of Lyapunov

quantities.

Program_10f.py --- Animation of a homoclinic limit cycle

bifurcation.

Program_10g.py --- Animation of a homoclinic limit cycle

bifurcation.

Program_11a.py --- Animation of a Lienard limit cycle.

Program_12a.py --- The method of steps.

Program_12b.py --- Plot of solution by method of steps.

Program_12c.py --- The Mackey-Glass DDE.

Program_12d.py --- The Lang-Kobayashi DDEs.
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Program_13a.py --- Computing bank interest.

Program_13b.py --- Solving a second order recurrence relation.

Program_13c.py --- The Leslie matrix, eigenvalues and

eigenvectors.

Program_14a.py --- Graphical iteration of the tent map.

Program_14b.py --- Bifurcation diagram of the logistic map.

Program_14c.py --- Computing Lyapunov exponents for the

logistic map.

Program_14d.py --- Iteration of the Henon map.

Program_14e.py --- Lyapunov exponents of the Henon map.

Program_15a.py --- Point plot for a Julia set.

Program_15b.py --- Colormap of a Julia set.

Program_15c.py --- Color Mandelbrot set.

Program_15d.py --- Color Newton fractal Julia set.

Program_16a.py --- Intersection of implicit curves.

Program_16b.py --- Chaotic Attractor of the Ikeda map

Program_16c.py --- Bifurcation diagram of the Ikeda map.

Program_17a.py --- The Koch curve.

Program_17b.py --- Chaos game and the Sierpnski triangle.

Program_17c.py --- Barnsley’s fern.

Program_17d.py --- Subplots of tau, D_q and f(alpha)

multifractal spectra.

Program_18a.py --- Generating a multifractal image

Program_18b.py --- Counting pixels in a color image.

Program_18c.py --- Image and statistical analysis on

microbes.png

Program_18d.py --- Fast Fourier transform of a noisy signal

Program_18e.py --- Iterative map and power spectra

Program_18f.py --- Fast Fourier transform of Lena image

Program_18g.py --- Edge detection in Lena image

Program_19a.py --- Chaos control in the logistic map.

Program_19b.py --- Chaos control in the Henon map.

Program_19c.py --- Chaos synchronization between two Lorenz

systems.

Program_19d.py --- Generalized synchronization.

Program_20a.py --- The generalized delta learning rule.



Appendix 649

Program_20b.py --- The discrete Hopfield network.

Program_20c.py --- Iteration of a minimal chaotic neuromodule.

Program_20d.py --- Bifurcation diagram of neuromodule.

Program_21a.py --- The Hodgkin-Huxley equations.

Program_21b.py --- The Fitzhugh-Nagumo half-adder.

Program_21c.py --- Phase portrait Josephson junction limit

cycle.

Program_21d.py --- Animated Josephson junction limit cycle.

Program_21e.py --- Pinched hysteresis of a memristor.
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inverted pendulum, 322
io.imsave, 474
isoclines, 67
isolated periodic solution, 114
isothermal chemical reaction, 86
iterated function system (IFS),

440
iteration, 328

Jacobian, 171
Jacobian matrix, 78, 192, 205,

371, 502
Jaynes-Cummings model, 595
Jordan curve, 121, 286
Josephson junction

mathematical model, 573
Josephson junction (JJ), 571
jth point of period i, 357
Julia set, 386, 389, 434, 612

color, 390
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KAM
theorem, 227
tori, 227

kernel machines, 525
Kerr

effect, 407, 413
type, 413

kinetic energy, 146
Kirchhoff’s

current law, 49
laws, 532
voltage law, 49

Koch
curve, 436
snowflake, 464
square, 436

ladybirds and aphids, 99
lambdas, 315
laminarize, 494
Lang-Kobayashi equations, 310
Laplace transform, 50
large-amplitude limit cycle, 175

bifurcation, 175
laser, 182, 374, 410, 494

model, 310
LaTeX, 24
law of mass action, 86
learning process, 521
learning rate, 527
least mean squared (LMS)

algorithm, 524
legend, 23, 107
Legendre transformation, 450
Leslie

matrix, 334
model, 333

lexicographical order, 253
lie detector, 526
Liénard

equation, 248
plane, 282

system, 116, 123, 139, 260,
281

large parameter, 286
local results, 290

theorem, 293
limit cycle, 106, 114, 118, 206,

595, 611
hyperbolic, 259
neuron, 116
nonexistence, 608
3-D, 195

Lindstedt-Poincaré technique, 131
linear differential equation, 34
linear phase shift, 412, 423
linear stability analysis, 56, 300,

417
linear transformation, 187
linearization, 78
linearized system, 78
Lipschitz

condition, 53
continuous, 53

local bifurcation, 273
log-log plot, 445
logic gates, 407
logic operations, 565
logistic

equation, 38, 302
function, 6
growth, 101
map, 360, 497, 612

Lorenz
attractor, 201
equations, 199, 494

loss in the fiber, 412
Lotka-Volterra model, 99, 164,

212, 304
low-gain saturation function, 523
low pass filter, 484
lowest common multiple, 256
Lyapunov

quantity, 247
stability, 531
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Lyapunov domain of stability, 155
Lyapunov exponent, 197, 366, 612

Lorenz system, 603
Lyapunov function, 151, 154, 194,

247, 284, 550, 607
Hopfield network, 532

Lyapunov quantities, 290
Lyapunov stability theorem, 152
lynx and snowshoe hares, 99

Mac OS, 2
Mackey-Glass model, 306
magnetic field vector, 405
magnetic flux, 405
magnetostrictive ribbon, 494
Mandelbrot, 443
Mandelbrot set, 389, 391, 434
manifold, 72
Maple, 26
math module, 4
Mathematica, 26
MATLAB, 26
MATLAB code to Python, 603
matplotlib, 18
maximal interval of existence, 54,

62, 118
Maxwell’s equations, 404
Maxwell-Bloch equations, 406
Maxwell-Debye equations, 406
McCulloch-Pitts neuron, 522
MEA, 577
mean, 545

infectivity period, 212
latency period, 212

mechanical oscillator, 91
DDE, 321

mechanical system, 117, 176
Melnikov

function, 259
integral, 258

memory devices, 407
memristance, 52
memristor, 51, 572, 573

mathematical model, 574
meshgrid, 157
meteorology, 199
method of multiple scales, 134
method of steepest descent, 527
method of steps, 299
mgrid, 425
micro-parasite—zooplankton—

fish system,
104

minimal chaotic neuromodule,
542

minimal Gröbner basis, 257
mixed fundamental memories, 537
mixing, 353
modulo, 254
monomial, 253

ordering, 253
mortgage assessment, 526
motif, 434
mplot3d, 207
multi-electrode array, 577
multidegree, 254
multifractal, 447, 472, 602

formalism, 448
Hénon map, 459
Sierpiński triangle, 459
spectra, 448

multistability, 174
multistable, 151, 175, 206, 241,

543
murder, 60
muscle model, 60
mutual exclusion, 96
myimages, 292
mylein sheath, 558

national income, 332
negative

limit set, 118
semiorbit, 118

negatively, invariant, 118
net reproduction rate, 339
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network architecture, 521
neural network, 375, 505, 521

DDE, 315
neuristor, 572
neurodynamics, 541
neurological assay, 577
neuromodule, 541
neuron

module, 375
neuron(s), 114, 521, 551, 558
neuronal model, 521
neurotransmitters, 558
Newton fractal, 395, 602
Newton’s law of cooling, 60
Newton’s law of motion, 146
Newton’s method, 395, 528
noise, 497
NOLM, 404

with feedback, 410
nonautonomous system, 116, 227
nonconvex closed curve, 124
nondegenerate

critical point, 148, 246
nondeterministic chaos, 195, 492
nondeterministic system, 520
nonexistence of limit cycles, 123
nonhyperbolic

critical point, 79, 151, 607
fixed point, 371

nonlinear
center, 247
optics, 374
phase shift, 412
refractive index coefficient,

413
nonlinearity, 175, 407
nonperiodic behavior, 196
nonsimple canonical system, 67
normal form, 164, 170
normalized eigenvector, 340
not robust, 101
notebook, 14
np.mgrid, 88

nullclines, 67
numerical solutions, 42
numpy, 18

occasional proportional feedback
(OPF), 494

ODE, 34
odeint, 42, 57
OGY method, 495
ohm, 49
Ohm’s law, 48
optical

bistability, 407
computer, 407
fiber, 410
fiber double ring, 410
memories, 407
oscillators, 572
resonator, 176
sensor, 408

optimal sustainable, 340
optogenetics, 578
orbit, 66, 118
ordinary differential equation, 34
oscillation of a violin string, 114
oscillatory threshold logic, 563
output vector, 521
ozone production, 211

parasitic infection, 111
Parkinson’s disease, 577
partial differential equations, 34
partition function, 448
Pascal’s triangle, 464
passive circuit, 51
Peixoto’s theorem in the plane,

164
pendulum, 147, 159, 241

double, 593
perceptron, 522
perihelion, 593
period, 259

bubblings, 368
limit cycle, 103, 119, 205
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undoublings, 368
period-doubling, 203
period-doubling bifurcations to

chaos, 363
period-n cycle, 195
period-one behavior, 350
period-two, 196

behavior, 350
period-three behavior, 351
periodic

behavior, 115
orbit, 259
windows, 363

periodicity, 348, 353
permittivity of free space, 405
perturbation methods, 127
phase portrait, 66
phase shift, 412
physiology, 505
piecewise, 300, 315
piecewise linear function, 523
pinched hysteresis, 52, 574
pitchfork bifurcation, 167
pixels, 451
planar manifold, 187
plastics, 453
plt.axes, 292
Poincaré

compactification, 275
map, 119, 199, 216, 259, 371,

495
section, 216, 611

Poincaré-Bendixson theorem, 120,
227, 281, 287

Poisson brackets, 223
polar coordinates, 69, 276
pole placement technique, 496
pollution, 106
polymer, 453
population, 92

of rabbits, 86
population model, 614

positive
limit set, 118
semiorbit, 118

positively, invariant, 118
potato man, 394
potential difference, 48
potential energy, 146, 151
potential function, 151
pow(x,y), 315
power, 412

law, 443
spectra, 199, 203
of a waterwheel, 92

power-splitting ratio, 412
pprint, 57
Prandtl number, 200
preallocate, 20
predation, 104

rate, 101
predator-prey, 117

DDE, 304
models, 99
system, 109

probe vector, 536
propagation, 412
psychological profiling, 526
PyDDE, 298
pydelay, 298, 311
Pyragas’s method, 493
Python

based exam, 607, 613
files download, 2

qth moment, 448
qualitative behavior, 66
qualitatively equivalent, 74
quasi-periodicity, 221
quasi-polynomials, 302
quasiperiodic, 544, 552

route to chaos, 203
quasiperiodic forcing, 228
quiver, 88
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Rössler
attractor, 194
system, 194

radioactive decay, 610
randint(a,b), 459
random behavior, 195
Raspberry Pi, 2
rate constant, 45
rate-determining step, 45
Rational(1,2), 376
rationally independent, 221
ravel, 157
Rayleigh number, 200
Rayleigh system, 115
re, 396
reaction rate equation, 45
real distinct eigenvalues, 68
recurrence relation, 328
recurrent neural network, 524,

531
red blood cells, 374
red and grey squirrels, 96
reduced, 262
reduced Gröbner basis, 257
reflected, 407
refractive index, 407
refractive nonlinearity, 407
refuge, 106
regionprops, 477
regulator poles, 496
relative permeabilities, 406
relative permittivities, 406
repeated real eigenvalues, 70
repolarization, 559
resistance, 49
resonance terms, 173
resonant, 173
response system, 506, 508
restoring coefficient, 282
restoring force, 116
restrictions in programming, 291
return map, 247, 607
reverse rate constant, 46

reversed fundamental memories,
537

RGB image, 474
rgb2gray, 477
ring, 252
ringing, 241
RLC circuit, 51, 117
roach:fish population, 338
robust, 103
Rotating Wave Approximation

(RWA), 312
rsolve, 342
rubbers, 453

S-polynomial, 256
saddle point, 69, 148
saddle-node bifurcation, 165
saddle-node on an invariant cycle

bifurcation, 176
safe bifurcation, 174
save image, 472
savefig, 22
scaling, 443, 448
scatter, 425
sea lions and penguins, 96
seasonal effects, 106
seasonality, 212
second iterative method, 420,

422, 552
second order linear difference

equation, 330
second part of Hilbert’s sixteenth

problem, 272
second-order differential equation,

50
secular term, 131
sedimentary rocks, 453
self-similar, 448
self-similar fractal, 441
self-similarity, 434
semistable

critical point, 56
limit cycle, 118, 220, 286
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sensitivity to initial conditions,
196, 348, 353, 492

separable differential equation, 35
separation of variables, 35
separatrix, 151

cycle, 261
series solutions, 42
SFR, 403

resonator, 409, 412
sharks and fish, 99
Sierpiński triangle, 439
sigmoid function, 523
signal processing, 453, 482
simple canonical system, 68
simple nonlinear pendulum, 146
simply connected domain, 123
singlet, 212
singular node, 70
Smale horseshoe map, 234, 373
Smale-Birkhoff theorem, 235
small perturbation, 56, 417
small-amplitude limit cycle, 246
soft bifurcation, 174
solar system, 492
solution curves, 36
solve, 88, 258
soma, 521, 558
spatial vector, 405
spectrum of Lyapunov exponents,

197
speed of light, 406
spike train, 559
spin-glass states, 537
spirals, 355
spurious steady state, 537
SR flip-flop, 569
stability, 151, 190

diagram, 420
stable

critical point, 55, 152
fixed point, 361, 388
focus, 69
limit cycle, 103, 118

manifold, 72, 79, 186, 191,
495

node, 69
staircases, 356
stationary point, 55
std, 545
steady state, 51, 103
stem cell, 578
stiff system, 47, 212
stiffness, 116
stochastic methods, 520
stock market analysis, 453
stoichiometric equations, 45
Stokes’s theorem, 405
strange attractor, 197
stretching and folding, 348
strictly dominant, 336
structurally

stable, 103, 164
unstable, 101, 164

subcritical Hopf bifurcation, 174,
200

subharmonic oscillations, 229
subplots, 22, 107
summing junction, 521
superconductor, 573
supercritical Hopf bifurcation,

174
supervised learning, 524
surface plot, 24
susceptible population, 105
susceptibles, 85
sustainable, 338
switches, 407
symbols, 57
sympy, 15
synaptic

cleft, 558
gap, 558
vesicles, 558
weights, 521

synchronization, 494, 505, 541
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synchronization of chaos, 505
synchronous updating, 537

target vector, 524, 527
targeting, 497
τ(q), 449
Taylor series expansion, 56, 78,

371, 417
tent map, 348, 608
3D plot, 23
three-dimensional system, 186
threshold, 559

logic, 564
value, 85

time series, 105, 364
chaos detection, 198
plot, 198

Tinkerbell map, 601
Toda Hamiltonian, 240
topological dimension, 448
topologically equivalent, 74
torus, 228
total degree, 253
totally

connected, 388
disconnected, 388

training, 524
trajectory, 66, 118
transcritical bifurcation, 167
transfer function, 521, 551
transient, 51
transmitted, 407
transversal, 247
transversely, 216
travelling salesman problem, 531
triangular pulse, 421
trigsimp, 130
trivial fixed point, 356
turbulence, 453, 492
2D plot, 21
two-neuron module, 533

uint8, 476
unconstrained optimization

problem, 527
uncoupled, 187
uniform asymptotic expansion,

127
uniform harvesting, 341
unipolar activation function, 522
uniqueness theorem, 53
universality, 365
Unix, 2
unstable

critical point, 55, 153
fixed point, 361, 388
focus, 69
limit cycle, 118
manifold, 72, 79, 186, 191
node, 68

unsupervised learning, 524

vacuum, 405
vacuum tube oscillator, 571
value of homes in Boston, 529
van der Pol equation, 130
van der Pol system, 114, 259
vector field, 66

plot, 533
velocity of light, 413
Verhulst’s equation, 38, 96
virus, mobile phone, 592
viscosity, 200
viscous fingering, 434
volt, 48
voltage drop, 48

wave equations, 404
wave vector, 406
wavelength, 406

light, 413
WC , 191
while loop, 6, 29
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Windows, 2
wing rock, 175
WinPython, 14
WS , 79, 191
WU , 79, 191

X-ray spectroscopy, 453

XOR gate, 522

You Tube, 386
youngest class harvesting, 339

Zq, 448
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