
 Manchester Metropolitan University

Lynch, Stephen (2018) Dynamical Systems with Applications using Python. Birkhäuser. ISBN 9783319781457

Downloaded from: http://e-space.mmu.ac.uk/622016/
Publisher: Birkhäuser
DOI: https://doi.org/10.1007/978-3-319-78145-7
Please cite the published version

Dynamical Systems with Applications using Python

1st ed. 2018, XVI, 665 p. 277 illus., 118 illus. in color.

Printed book

Hardcover
79,99 €| £69.99 | $\$ 89.99$
${ }^{[1]} 85,59 €(D)|87,99 €(A)| C H F$ 94,50
eBook
67,82 €|£55.99 | \$69.99
${ }^{[2]} 67,82 €(\mathrm{D})|67,82 €(\mathrm{~A})| \mathrm{CHF}$ 75,50

Available from your library or springer.com/shop
MyCopy [3]
Printed eBook for just
€ | \$ 24.99
springer.com/mycopy

Stephen Lynch

Dynamical Systems with Applications using Python

- Designed for a broad audience of students in applied mathematics, physics, and engineering
- Represents dynamical systems with popular Python libraries like sympy, numpy, and matplotlib
- Explores a variety of advanced topics in dynamical systems, like neural networks, fractals, and nonlinear optics, at an undergraduate level

This textbook provides a broad introduction to continuous and discrete dynamical systems. With its hands-on approach, the text leads the reader from basic theory to recently published research material in nonlinear ordinary differential equations, nonlinear optics, multifractals, neural networks, and binary oscillator computing. Dynamical Systems with Applications Using Python takes advantage of Python's extensive visualization, simulation, and algorithmic tools to study those topics in nonlinear dynamical systems through numerical algorithms and generated diagrams. After a tutorial introduction to Python, the first part of the book deals with continuous systems using differential equations, including both ordinary and delay differential equations. The second part of the book deals with discrete dynamical systems and progresses to the study of both continuous and discrete systems in contexts like chaos control and synchronization, neural networks, and binary oscillator computing. These later sections are useful reference material for undergraduate student projects. The book is rounded off with example coursework to challenge students' programming abilities and Python-based exam questions. This book will appeal to advanced undergraduate and graduate students, applied mathematicians, engineers, and researchers in a range of disciplines, such as biology, chemistry, computing, economics, and physics.

Lifelong 40\% discount for authors

[^0](2irkhäuser

Stephen Lynch

Dynamical Systems with Applications using Python

Stephen Lynch
Manchester Metropolitan University
Manchester, UK

ISBN 978-3-319-78144-0
ISBN 978-3-319-78145-7 (eBook)
https://doi.org/10.1007/978-3-319-78145-7
Library of Congress Control Number: 2018952351
Mathematics Subject Classification (2010): 00A05, 00A69, 37-01, 34-01, 34Cxx, 34Dxx, 34H10, 34K18, 37-04, 37Nxx, 68U10, 78A60, 92B20
(C) Springer International Publishing AG, part of Springer Nature 2018

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This book is published under the imprint Birkhäuser, www.birkhauser-science.com by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

This book provides an introduction to the theory of dynamical systems with the aid of Python. It is written for both senior undergraduates and graduate students. Chapter 1 provides a tutorial introduction to Python-new users should go through this chapter carefully while those moderately familiar and experienced users will find this chapter a useful source of reference. The first part of the book deals with continuous systems using differential equations, including both ordinary and delay differential equations (Chapters 2-12), the second part is devoted to the study of discrete systems (Chapters 13-17), and Chapters 18-21 deal with both continuous and discrete systems. Chapter 22 gives examples of coursework and also lists three Python-based examinations to be sat in a computer laboratory with access to Python. Chapter 23 lists answers to all of the exercises given in the book. It should be pointed out that dynamical systems theory is not limited to these topics but also encompasses partial differential equations, integral and integro-differential equations, and stochastic systems, for instance. References [1-6] given at the end of the Preface provide more information for the interested reader. The author has gone for breadth of coverage rather than fine detail and theorems with proofs are kept at a minimum. The material is not clouded by functional analytic and group theoretical definitions, and so is intelligible to readers with a general mathematical background. Some of the topics covered are scarcely covered elsewhere. Most of the material in Chapters $9-12$ and $16-21$ is at postgraduate level and has been influenced by the author's own research interests. There is more theory in these chapters than in the rest of the book since it is not easily accessed anywhere else. It has been found that these chapters are especially useful as reference material for senior undergraduate project work. The theory in other chapters of the book is dealt with more comprehensively in other texts, some of which may be found in the references section of the corresponding chapter. The book has a very hands-on approach and takes the reader from the basic theory right through to recently published research material.

Python is extremely popular with a wide range of researchers from all sorts of disciplines; it has a very user-friendly interface and has extensive visualization and numerical computation capabilities. It is an ideal package to adopt for the study of nonlinear dynamical systems; the numerical algorithms work very quickly, and complex pictures can be plotted within seconds.

The first chapter provides an efficient tutorial introduction to Python. Simple Python programming is introduced using three basic programming structures: defining functions, for loops, and if, then, else constructs. New users will find the tutorials will enable them to become familiar with Python within a few days. Both engineering and mathematics students appreciate this method of teaching and I have found that it generally works well with one staff member to about twenty students in a computer laboratory. In most cases, I have chosen to list the Python commands at the end of each chapter; this avoids unnecessary cluttering in the text. The Python programs have been kept as simple as possible and should run under later versions of the package. All Python files for the book (including updates and extra files) can even be downloaded from the Web via GitHub at:
https://github.com/springer-math/dynamical-systems-with-applications-using-python

Readers will find that they can reproduce the figures given in the text, and then it is not too difficult to change parameters or equations to investigate other systems.

Chapters 2-12 deal with continuous dynamical systems. Chapters 2 and 3 cover some theory of ordinary differential equations and applications to models in the real world are given. The theory of differential equations applied to chemical kinetics and electric circuits is introduced in some detail. The memristor is introduced and one of the most remarkable stories in the history of mathematics is relayed. Chapter 2 ends with the existence and uniqueness theorem for the solutions of certain types of differential equations. The theory behind the construction of phase plane portraits for two-dimensional systems is dealt with in Chapter 3. Applications are taken from chemical kinetics, economics, electronics, epidemiology, mechanics, and population dynamics. The modeling of the populations of interacting species is discussed in some detail in Chapter 4 and domains of stability are discussed for the first time. Limit cycles, or isolated periodic solutions, are introduced in Chapter 5. Since we live in a periodic world, these are the most common type of solution found when modeling nonlinear dynamical systems. They appear extensively when modeling both the technological and natural sciences. Hamiltonian, or conservative, systems and stability are discussed in Chapter 6, and Chapter 7 is concerned with how planar systems vary depending upon a parameter. Bifurcation, bistability, multistability, and normal forms are discussed.

The reader is first introduced to the concept of chaos in continuous systems in Chapters 8 and 9 , where three-dimensional systems and Poincaré maps are investigated. These higher-dimensional systems can exhibit strange attractors and chaotic dynamics. One can rotate the three-dimensional objects in Python and plot time series plots to get a better understanding of the dynamics involved. Once again, the theory can be applied to chemical kinetics (including stiff systems), electric circuits, and epidemiology; a simplified model for the weather is also briefly discussed. Chapter 9 deals with Poincaré first return maps that can be used to untangle complicated interlacing trajectories in higher-dimensional spaces. A periodically driven nonlinear pendulum is also investigated by means of a nonautonomous differential equation. Both local and global bifurcations are investigated in Chapter 10. The main results and statement of the famous second part of David Hilbert's sixteenth problem are listed in Chapter 11. In order to understand these results, Poincaré compactification is introduced. The study of continuous systems ends with one of the authors specialities-limit cycles of Liénard systems. There is some detail on Liénard systems, in particular, in this part of the book, but they do have a ubiquity for systems in the plane. Chapter 12 provides an introduction to delay differential equations with applications in biology and nonlinear optics.

Chapters 13-17 deal with discrete dynamical systems. Chapter 13 starts with a general introduction to iteration and linear recurrence (or difference) equations. The bulk of the chapter is concerned with the Leslie model used to investigate the population of a single species split into different age classes. Harvesting and culling policies are then investigated and optimal solutions are sought. Nonlinear discrete dynamical systems are dealt with in Chapter 14. Bifurcation diagrams, chaos, intermittency, Lyapunov exponents, periodicity, quasiperiodicity, and universality are some of the topics introduced. The theory is then applied to real-world problems from a broad range of disciplines including population dynamics, biology, economics, nonlinear optics, and neural networks. Chapter 15 is concerned with complex iterative maps in the Argand plane, where Julia sets and the now-famous Mandelbrot set are plotted. Basins of attraction are investigated for these complex systems and Newton fractals are introduced. As a simple introduction to optics, electromagnetic waves and Maxwell's equations are studied at the beginning of Chapter 16. Complex iterative equations are used to model the propagation of light waves through nonlinear optical fibers. A brief history of nonlinear bistable optical resonators is discussed and the simple fiber ring resonator is analyzed in particular. Chapter 16 is devoted to the study of these optical resonators, and there is discussion on phenomena such as bistability, chaotic attractors, feedback, hysteresis, instability, linear stability analysis, multistability, nonlinearity, and steady states. The first and second iterative methods are defined in this chapter. Some simple fractals may be constructed
using pencil and paper in Chapter 17, and the concept of fractal dimension is introduced. Fractals may be thought of as identical motifs repeated on ever-reduced scales. Unfortunately, most of the fractals appearing in nature are not homogeneous but are more heterogeneous, hence the need for the multifractal theory given later in the chapter. It has been found that the distribution of stars and galaxies in our universe is multifractal, and there is even evidence of multifractals in rainfall, stock markets, and heartbeat rhythms. Applications in geoscience, materials science, microbiology, and image processing are briefly discussed. Chapter 18 provides a brief introduction to image processing which is being used more and more by a diverse range of scientific disciplines, especially medical imaging. The fast Fourier transform is introduced and has a wide range of applications throughout the realms of science.

Chapter 19 is devoted to the new and exciting theory behind chaos control and synchronization. For most systems, the maxim used by engineers in the past has been "stability good, chaos bad," but more and more nowadays this is being replaced with "stability good, chaos better." There are exciting and novel applications in cardiology, communications, engineering, laser technology, and space research, for example. A brief introduction to the enticing field of neural networks is presented in Chapter 20. Imagine trying to make a computer mimic the human brain. One could ask the question: In the future will it be possible for computers to think and even be conscious? The human brain will always be more powerful than traditional, sequential, logic-based digital computers and scientists are trying to incorporate some features of the brain into modern computing. Neural networks perform through learning and no underlying equations are required. Mathematicians and computer scientists are attempting to mimic the way neurons work together via synapses; indeed, a neural network can be thought of as a crude multidimensional model of the human brain. The expectations are high for future applications in a broad range of disciplines. Neural networks are already being used in machine learning and pattern recognition (computer vision, credit card fraud, prediction and forecasting, disease recognition, facial and speech recognition), the consumer home entertainment market, psychological profiling, predicting wave over-topping events, and control problems, for example. They also provide a parallel architecture allowing for very fast computational and response times. In recent years, the disciplines of neural networks and nonlinear dynamics have increasingly coalesced and a new branch of science called neurodynamics is emerging. Lyapunov functions can be used to determine the stability of certain types of neural network. There is also evidence of chaos, feedback, nonlinearity, periodicity, and chaos synchronization in the brain.

Chapter 21 focuses on binary oscillator computing, the subject of UK, International, and Taiwanese patents. The author and his co-inventor, Jon

Borresen, came up with the idea when modeling connected biological neurons. Binary oscillator technology can be applied to the design of arithmetic logic units (ALUs), memory, and other basic computing components. It has the potential to provide revolutionary computational speed-up, energy saving, and novel applications and may be applicable to a variety of technological paradigms including biological neurons, complementary metal-oxidesemiconductor (CMOS), memristors, optical oscillators, and superconducting materials. The research has the potential for MMU and industrial partners to develop super fast, low-power computers and may provide an assay for neuronal degradation for brain malfunctions such as Alzheimer's, epilepsy, and Parkinson's disease!

Examples of coursework and three examination-type papers are listed in Chapter 22, and a complete set of solutions for the book is listed in Chapter 23.

Both textbooks and research papers are presented in the list of references. The textbooks can be used to gain more background material, and the research papers have been given to encourage further reading and independent study.

This book is informed by the research interests of the author, which are currently nonlinear ordinary differential equations, nonlinear optics, multifractals, neural networks, and binary oscillator computing. Some references include recently published research articles by the author along with two patents.

The prerequisites for studying dynamical systems using this book are undergraduate courses in linear algebra, real and complex analysis, calculus, and ordinary differential equations; a knowledge of a computer language such as Basic, C, or Fortran would be beneficial but not essential.

Recommended Textbooks

[1] H.P Langtangen and A. Logg, Solving PDEs in Python: The FEniCS Tutorial I (Simula SpringerBriefs on Computing), Springer, New York, 2017.
[2] B. Bhattacharya and M. Majumdar, Random Dynamical Systems in Finance, Chapman \& Hall/CRC, New York, 2016.
[3] L.C. de Barros, R.C. Bassanezi and W.A. Lodwick, A First Course in Fuzzy Logic, Fuzzy Dynamical Systems, and Biomathematics: Theory and Applications, Springer, New York, 2016.
[4] V. Volterra, Theory of Functionals and of Integral and Integro-Differential Equations, Dover Publications, New York, 2005.
[5] J. Mallet-Paret (Editor), J. Wu (Editor), H. Zhu (Editor), Y. Yi (Editor), Infinite Dimensional Dynamical Systems (Fields Institute Communications), Springer, New York, 2013.
[6] C. Bernido, M.V. Carpio-Bernido, M. Grothaus et al., Stochastic and Infinite Dimensional Analysis, Birkhäuser, New York, 2016.

Special thanks go to Ben Nuttall (Python guru), Community Manager, the Raspberry Pi Foundation, Cambridge, UK (www.raspberrypi.org), for reviewing this book. I would also like to express my sincere thanks to all of the reviewers of this book and the other editions of my books. As always, thanks also go to Birkhäuser and Springer, especially Samuel DiBella (Assistant Editor, Springer Nature). Finally, thanks to my family and especially my wife Gaynor, and our children, Sebastian and Thalia, for their continuing love, inspiration, and support.

Manchester, UK
Stephen Lynch FIMA SFHEA

Contents

1 A Tutorial Introduction to Python 1
1.1 The IDLE Integrated Development Environment for Python 2
1.1.1 Tutorial One: Using Python as a Powerful Calculator 4
1.1.2 Tutorial Two: Simple Programming with Python 6
1.1.3 Tutorial Three: Simple Plotting Using the Turtle Module 9
1.2 Anaconda, Spyder and the Libraries, Sympy, Numpy, and Matplotlib 14
1.2.1 Tutorial One: A Tutorial Introduction to Sympy 15
1.2.2 Tutorial Two: A Tutorial Introduction to Numpy and Matplotlib 18
1.2.3 Tutorial Three: Simple Programming, Solving ODEs, and More Detailed Plots 20
1.3 Exercises 27
2 Differential Equations 33
2.1 Simple Differential Equations and Applications 34
2.1.1 Linear Differential Equations 34
2.1.2 Separable Differential Equations 35
2.1.3 Exact Differential Equations 39
2.1.4 Homogeneous Differential Equations 40
2.2 Applications to Chemical Kinetics 44
2.3 Applications to Electric Circuits 48
2.4 Existence and Uniqueness Theorem 53
2.5 Python Programs 57
2.6 Exercises 59
3 Planar Systems 65
3.1 Canonical Forms 66
3.1.1 Real Distinct Eigenvalues 68
3.1.2 Complex Eigenvalues $(\lambda=\alpha \pm i \beta)$ 69
3.1.3 Repeated Real Eigenvalues 70
3.2 Eigenvectors Defining Stable and Unstable Manifolds 72
3.3 Phase Portraits of Linear Systems in the Plane 74
3.4 Linearization and Hartman's Theorem 78
3.5 Constructing Phase Plane Diagrams 79
3.6 Python Programs 87
3.7 Exercises 90
4 Interacting Species 95
4.1 Competing Species 96
4.2 Predator-Prey Models 99
4.3 Other Characteristics Affecting Interacting Species 104
4.4 Python Programs 107
4.5 Exercises 108
5 Limit Cycles 113
5.1 Historical Background 114
5.2 Existence and Uniqueness of Limit Cycles in the Plane 117
5.3 Nonexistence of Limit Cycles in the Plane 123
5.4 Perturbation Methods 127
5.5 Python Programs 136
5.6 Exercises 139
6 Hamiltonian Systems, Lyapunov Functions, and Stability 145
6.1 Hamiltonian Systems in the Plane 146
6.2 Lyapunov Functions and Stability 151
6.3 Python Programs 157
6.4 Exercises 158
7 Bifurcation Theory 163
7.1 Bifurcations of Nonlinear Systems in the Plane 164
7.1.1 A Saddle-Node Bifurcation 165
7.1.2 A Transcritical Bifurcation 167
7.1.3 A Pitchfork Bifurcation 167
7.1.4 A Hopf Bifurcation 170
7.2 Normal Forms 170
7.3 Multistability and Bistability 174
7.4 Python Programs 178
7.5 Exercises 180
8 Three-Dimensional Autonomous Systems and Chaos 185
8.1 Linear Systems and Canonical Forms 186
8.2 Nonlinear Systems and Stability 190
8.3 The Rössler System and Chaos 194
8.3.1 The Rössler Attractor 194
8.3.2 Chaos 196
8.4 The Lorenz Equations, Chua's Circuit, and the Belousov-Zhabotinski Reaction 199
8.4.1 The Lorenz Equations 199
8.4.2 Chua's Circuit 201
8.4.3 The Belousov-Zhabotinski (BZ) Reaction 204
8.5 Python Programs 207
8.6 Exercises 211
9 Poincaré Maps and Nonautonomous Systems in the Plane 215
9.1 Poincaré Maps 216
9.2 Hamiltonian Systems with Two Degrees of Freedom 221
9.3 Nonautonomous Systems in the Plane 227
9.4 Python Programs 235
9.5 Exercises 239
10 Local and Global Bifurcations 245
10.1 Small-Amplitude Limit Cycle Bifurcations 246
10.2 Gröbner Bases 252
10.3 Melnikov Integrals and Bifurcating Limit Cycles from a Center 258
10.4 Bifurcations Involving Homoclinic Loops 260
10.5 Python Programs 262
10.6 Exercises 266
11 The Second Part of Hilbert's Sixteenth Problem 271
11.1 Statement of Problem and Main Results 272
11.2 Poincaré Compactification 275
11.3 Global Results for Liénard Systems 281
11.4 Local Results for Liénard Systems 290
11.5 Python Programs 291
11.6 Exercises 292
12 Delay Differential Equations 297
12.1 Introduction and the Method of Steps 298
12.2 Applications in Biology 304
12.3 Applications in Nonlinear Optics 310
12.4 Other Applications 313
12.5 Python Programs 315
12.6 Exercises 320
13 Linear Discrete Dynamical Systems 327
13.1 Recurrence Relations 328
13.2 The Leslie Model 333
13.3 Harvesting and Culling Policies 337
13.4 Python Programs 342
13.5 Exercises 343
14 Nonlinear Discrete Dynamical Systems 347
14.1 The Tent Map and Graphical Iterations 348
14.2 Fixed Points and Periodic Orbits 353
14.3 The Logistic Map, Bifurcation Diagram, and Feigenbaum Number 360
14.4 Gaussian and Hénon Maps 368
14.5 Applications 373
14.6 Python Programs 376
14.7 Exercises 380
15 Complex Iterative Maps 385
15.1 Julia Sets and the Mandelbrot Set 386
15.2 Boundaries of Periodic Orbits 391
15.3 The Newton Fractal 395
15.4 Python Programs 396
15.5 Exercises 399
16 Electromagnetic Waves and Optical Resonators 403
16.1 Maxwell's Equations and Electromagnetic Waves 404
16.2 Historical Background 406
16.3 The Nonlinear SFR Resonator 412
16.4 Chaotic Attractors and Bistability 413
16.5 Linear Stability Analysis 417
16.6 Instabilities and Bistability 420
16.7 Python Programs 424
16.8 Exercises 428
17 Fractals and Multifractals 433
17.1 Construction of Simple Examples 434
17.2 Calculating Fractal Dimensions 441
17.3 A Multifractal Formalism 448
17.4 Multifractals in the Real World and Some Simple Examples 452
17.5 Python Programs 459
17.6 Exercises 464
18 Image Processing with Python 471
18.1 Image Processing and Matrices 472
18.2 The Fast Fourier Transform 477
18.3 The Fast Fourier Transform on Images 484
18.4 Exercises 487
19 Chaos Control and Synchronization 491
19.1 Historical Background 492
19.2 Controlling Chaos in the Logistic Map 497
19.3 Controlling Chaos in the Hénon Map 498
19.4 Chaos Synchronization 505
19.5 Python Programs 509
19.6 Exercises 513
20 Neural Networks 519
20.1 Introduction 520
20.2 The Delta Learning Rule and Backpropagation 526
20.3 The Hopfield Network and Lyapunov Stability 531
20.4 Neurodynamics 541
20.5 Python Programs 545
20.6 Exercises 550
21 Binary Oscillator Computing 557
21.1 Brain Inspired Computing 558
21.2 Oscillatory Threshold Logic 563
21.3 Applications and Future Work 571
21.4 An Assay for Neuronal Degradation 577
21.5 Python Programs 579
21.6 Exercises 584
22 Coursework and Examination-Type Questions 591
22.1 Examples of Coursework Questions 592
22.2 Examination 1 607
22.3 Examination 2 610
22.4 Examination 3 613
23 Solutions to Exercises 619
23.1 Chapter 1 619
23.2 Chapter 2 622
23.3 Chapter 3 623
23.4 Chapter 4 625
23.5 Chapter 5 626
23.6 Chapter 6 628
23.7 Chapter 7 628
23.8 Chapter 8 630
23.9 Chapter 9 631
23.10 Chapter 10 631
23.11 Chapter 11 632
23.12 Chapter 12 634
23.13 Chapter 13 634
23.14 Chapter 14 636
23.15 Chapter 15 637
23.16 Chapter 16 638
23.17 Chapter 17 638
23.18 Chapter 18 639
23.19 Chapter 19 639
23.20 Chapter 20 640
23.21 Chapter 21 640
23.22 Chapter 22 641
Appendix A Index of Python Programs 645
A. 1 IDLE Python Programs 645
A. 2 Anaconda Python Programs 646
Index 651

Appendix A

Index of Python Programs

Readers can download the Python program files via GitHub:
https://github.com/springer-math/dynamical-systems-with-applications-using-python

These files will be kept up-to-date and extra files will be added in the forthcoming years.

A. 1 IDLE Python Programs

These files include solutions to the Exercises listed in Chapter 1.

```
euclid_algorithm.py --- See Exercise 10.
F2C.py --- See Exercise 1(a).
F2K.py --- Converts degrees Fahrenheit to Kelvin.
fibonacci.py --- Lists first n terms of the Fibonacci sequence.
fmu.py --- The logistic function.
fractal_tree.py --- Plots a fractal tree.
fractal_tree_color.py --- Plots a color fractal tree.
grade.py --- Converts a score to a grade.
guess_number.py --- Guess the number game.
koch_snowflake.py --- See Exercise 1(d).
koch_square.py --- Plots a Koch square fractal.
Pythag_Triples.py --- See Exercise 1(c).
sierpinski.py --- Plots a Sierpinski triangle fractal.
sierpinski_square.py --- Plots a Sierpinski square fractal.
```

sum_primes.py --- See Exercise 1(b).
sum_n.py --- Sums the natural numbers to n.

A. 2 Anaconda Python Programs

If you have difficulty with the animation programs in Spyder, you have to change the backend to run an animation in the IPython console. You can do that by running

In[1]: \%matplotlib qt5

before the animation. If you don't want to use this command every time, you can go to: Tools, Preferences, IPython Console, Graphics, Backend, and change it from "Inline" to "Automatic."

```
Program_01a.py --- Solve a simple ODE.
Program_01b.py --- Solve a second order ODE.
Program_01c.py --- Plot two curves on one graph.
Program_01d.py --- Subplots.
Program_01e.py --- Surface and contour plot in 3D.
Program_01f.py --- A parametric curve in 3D.
Program_01g.py --- Animation of a simple curve.
Program_02a.py --- Solve a separable ODE.
Program_02b.py --- Solve the logistic ODE.
Program_02c.py --- Power series solution.
Program_02d.py --- Power series solution for van der Pol.
Program_02e.py --- Plot series solution against numerical
        solution.
Program_02f.py --- Solve a linear first order ODE.
Program_02g.py --- Solve a linear second order ODE.
Program_03a.py --- Plot the phase portrait of a linear system.
Program_03b.py --- Plot the phase portrait of a nonlinear
        system.
Program_03c.py --- Finding critical points.
Program_04a.py --- Phase portrait and time series of Holling-
        Tanner model.
```

```
Program_05a.py --- Limit cycle of a Fitzhugh-Nagumo system.
Program_05b.py --- Approximate and numerical solutions to ODEs.
Program_05c.py --- Error between one-term and numerical
    solution.
Program_05d.py --- Lindstedt-Poincare technique.
Program_06a.py --- Contour plot.
Program_06b.py --- Surface plot.
Program_07a.py --- Animation of a simple curve.
Program_07b.py --- Animation of a subcritical Hopf bifurcation.
Program_07c.py --- Animation of a SNIC bifurcation.
Program_08a.py --- The Rossler attractor.
Program_08b.py --- The Lorenz Attractor.
Program_08c.py --- The Belousov-Zhabotinsky reaction.
Program_08d.py --- Animation of a Chua circuit bifurcation.
Program_09a.py --- Simple Poincare return map.
Program_09b.py --- Hamiltonian with two degrees of freedom plot.
Program_09c.py --- Phase portrait and Poincare map for the
    Duffing system.
Program_09d.py --- Bifurcation diagram of Duffing equation.
Program_10a.py --- Computing Lyapunov quantities.
Program_1Ob.py --- Division algorithm for multivariate
        polynomials.
Program_10c.py --- S-polynomial.
Program_10d.py --- Computing the Groebner basis.
Program_10e.py --- Computing Groebner basis of Lyapunov
        quantities.
Program_1Of.py --- Animation of a homoclinic limit cycle
        bifurcation.
Program_10g.py --- Animation of a homoclinic limit cycle
    bifurcation.
Program_11a.py --- Animation of a Lienard limit cycle.
Program_12a.py --- The method of steps.
Program_12b.py --- Plot of solution by method of steps.
Program_12c.py --- The Mackey-Glass DDE.
Program_12d.py --- The Lang-Kobayashi DDEs.
```

Program_13a.py --- Computing bank interest.	
Program_13b.p	Solving a second order recurrence relation.
Program_13c.py	- The Leslie matrix, eigenvalues and eigenvectors.
Program_14a.py --- Graphical iteration of the tent map.	
Program_14b.py --- Bifurcation di	
Program_14c.py --- Computing Lyapunov exponents for the logistic map.	
Program_14d.py --- Iteration of the Henon map.	
Program_14e.py --- Lyapunov exponents of the Henon map.	
Program_15a.py --- Point plot for a Julia set.	
Program_15b.py --- Colormap of a Julia set.	
Program_15c.py --- Color Mandelbrot set.	
Program_15d.py --- Color Newton fractal Julia set.	
Program_16a.py --- Intersection of implicit curves. Program_16b.py --- Chaotic Attractor of the Ikeda map Program_16c.py --- Bifurcation diagram of the Ikeda map.	
Program_17a.py --- The Koch curve. Program_17b.py --- Chaos game and the Sierpnski triangle. Program_17c.py --- Barnsley's fern.	
Program_17d.py --- $\begin{aligned} & \text { Subplots of tau, D_q and } f(a l p h a) ~ \\ & \text { multifractal }\end{aligned}$ multifractal spectra.	
Program_18a.py --- Generating a multifractal image	
Program_18b.py --- Counting pixels in a color image.	
Program_18c.py --- Image and statistical analysis on microbes.png	
Program_18d.py --- Fast Fourier transform of a noisy signal	
Program_18e.py --- Iterative map and power spectra	
Program_18f.py --- Fast Fourier transform of Lena image	
Program_18g.py --- Edge detection in Lena image	
Program_19a.py --- Chaos control in the logistic map.	
Program_19b.py --- Chaos control in the Henon map	
Program_19c.py --- Chaos synchronization between two Lorenz systems.	
Program_19d.py	- Generalized synchronization.
rogram_20a	e generalized delta learning

```
Program_20b.py --- The discrete Hopfield network.
Program_20c.py --- Iteration of a minimal chaotic neuromodule.
Program_20d.py --- Bifurcation diagram of neuromodule.
Program_21a.py --- The Hodgkin-Huxley equations.
Program_21b.py --- The Fitzhugh-Nagumo half-adder.
Program_21c.py --- Phase portrait Josephson junction limit
    cycle.
Program_21d.py --- Animated Josephson junction limit cycle.
Program_21e.py --- Pinched hysteresis of a memristor.
```


Index

absorptive nonlinearity, 407
action potential, 114, 559
activation
function, 521, 550
level, 532
potential, 522
ADALINE network, 524
affine linear transformation, 440
age class, 106, 333
Airy equation, 61
algebraicity of limit cycles, 283
All or None principle, 560
Alzheimer's disease, 577
ampere, 48
Ampere's law, 405
Anaconda, 14
Anaconda Python programs, 646
anemia, 374
angiogenesis, 308
angular frequency of the wave, 406
animation, 26
Spyder, 646
ants and termites, 96
aperiodic, 201, 360
behavior, 196
append, 262
applying a damper, 493
arrhythmic, 495
Artificial Intelligence Group, 526
artificial neural networks, 520

ArtistAnimation, 178
assay for neuronal degradation, 577
associative memory, 524, 531
asymptotic expansion, 127
asymptotically stable
critical point, 152
asynchronous updating, 536
attractor, 193
attributes, 529
autocatalysis, 204
autonomous differential equation, 54
autonomous system, 186
auxiliary system approach, 507
average Lyapunov exponent, 366
ax.set title, 235
Axes3D(fig), 235
axial flow compressors, 175
axon, 521, 558
Baby computer, 571
backpropagation, 526
algorithm, 528
backward training, 388
ballistic propagation, 571
bandwidth, 407
Barnsley's fern, 441
basin of attraction, 159, 193, 372, 388
basis, 253
batch data, 530
Belousov-Zhabotinski reaction, 204, 212
Bendixson's criterion, 123
bias, 521
bifurcating limit cycles from a center, 258
bifurcation
curve, 167
diagram, 166
at infinity, 273
point, 362
value, 164
bifurcation diagram
CR resonator, 409
DDE
field components, 313
Mackey-Glass, 307
Duffing equation, 232
Gaussian map, 370
Ikeda map, 425
Josephson junction, 575
limit cycles, 177
logistic map, 365
neuromodule, 544
periodically forced pendulum, 233
SFR resonator, 422
SNIC, 178
binarize, 475
binary half adder, 565
biology, 374
bipolar activation function, 522
bistability, 174, 175, 368, 421
bistable, 175, 206, 370, 408
cycle, 203
device, 407, 421
neuromodule, 543
optical resonator, 495
region, 233, 241, 409, 414
solution, 176
bistable region, 544
blit, 178
blowflies, 360
bluegill sunfish, 104
Boston housing data, 529
boundaries of periodic orbits, 391
box-counting dimension, 443, 448
brain functions, 521
Briggs-Rauscher, 204
bursting, 310
butterfly effect, 200
BZ reaction, 204
canny edge detector, 477
canonical form, 66, 67, 186
Cantor
multifractal, 454
set, 235, 435
capacitance, 49
capacitor, 49
cardioid, 393
cardiology, 492
carrying capacity, 38
cavity ring (CR) resonator, 408
cavity round-trip time, 408
cell body, 558
center, 69, 148, 246
manifold theorem, 191
changing the system parameters, 493
chaologist, 492
chaos, 194, 196, 350, 353, 409
control, 541, 552
synchronization, 505
chaos control
OGY method, 493
periodic proportional pulses, 513
chaos game, 439
chaotic
attractor, 197, 229, 415
dynamics, 199
phenomena, 348
chaotic attractor
Hénon map, 501
neuromodule, 542
Sierpiński, 440
Chapman cycle, 211
characteristic
equation, 302, 330
exponent, 283
multiplier, 219
charge density, 405
chemical
kinetics, 44, 86, 117, 204, 505, 561
reaction, 59
signals, 521
substance, 61
chemical law of mass action, 44
Chua's circuit, 51, 117, 201, 493, 514
circle map, 221
circular frequency of light, 410
classical symmetry argument, 248
classification of critical points, 71
climate change, 314
clipping problem, 451
clockwise bistable cycle, 632
clockwise hysteresis, 241, 410
cluster, 524
cmap, 396
CMOS oscillators, 571
coarse Hölder exponent, 450
codimension- 1 bifurcation, 182
codimension- 2 bifurcation, 182
coexistence, 96
coexisting chaotic attractors, 372
col, 69
collect, 128
comb(k,s), 459
common typing errors, 20
commutative ring, 252
competing species, $96,110,140$
complete synchronization, 506
completely
integrable, 221
reduced, 254
complex eigenvalues, 69, 330
complex iterative equation, 417
complex (x,y), 396
compound interest, 329
computer algebra, 252
concentrations, 44
conditional Lyapunov exponents, 506
conductivity, 406
conformal mapping, 386
conservation of energy, 146
conservation of mass, 86
conservative, 146
contact rate, 212
content-addressable memory, 532
continuation lines, 20
continuous Hopfield model, 532
contour plot, 24
control curves, 499
control engineering, 526
control parameter, 495
control region, 495
controlling chaos
Hénon map, 498
logistic map, 497
conversational agents, 526
convex closed curve, 123
convoluted surfaces, 191
coordinates of an image, 474
core area of the fiber, 413
corollary to Poincaré-Bendixson theorem, 120
correlation dimension, 450
coulomb, 48
counterclockwise hysteresis, 410
coupler, 412
critical point, 55, 72, 186, 191, 300
at infinity, 276
culling, 106
policy, 337
current, 48
density, 405
cusp, 84
cylindrical polar coordinates, 193
damping, 116
damping coefficient, 282
dangerous bifurcation, 174
Daphnia dentifera, 104
dashed curve, 22
data, 545
data mining, 520
databases, 529
DDE, 298
dde23, 315
ddeint, 298
def, 6
defibrillator, 495
defraction, 61
degenerate
critical point, 148
node, 70
degree, 273
degree lexicographical order, 253
delay differential equation, 298
deleted neighborhood, 121
delta learning rule, 524, 526
dendrites, 521, 558
depolarization, 559
depolarize, 566
derivative of the Poincaré map test, 220
desired vector, 527
deterministic chaos, 195, 492
deterministic system, 520
$D_{f}, 441$
dielectric, 406
difference equation, 328,551
differential amplifier, 407
diffusion limited aggregates
(DLA), 453
dimension, 448
direction
field, 66
vector, 66
discrete Fourier transform, 479
discrete Hopfield model, 536
dispersive nonlinearity, 407
displacement function, 247
distributive laws, 252
divergence test, 248
domain of stability, 97, 193, 388
double-coupler fiber ring resonator, 410, 428
double Hopf bifurcation, 308, 322
double-scroll attractor, 203
double-well potential, 151
$D_{q}, 448$
driver system, 506, 507
dsolve, 57
Duffing
equation, 129, 227
system, 493, 611
Dulac's criterion, 122
Dulac's theorem, 273
$E_{C}, 191$
economic model, 117, 322, 332
economics, $92,374,382,453,505$
edge detection
Roberts, 485
Sobel, 485
eig, 342
eigenvector, 72
El Niño, 313
electric
circuit, 48, 92, 117, 201, 532
displacement, 405
displacement vector, 405
field, 412, 417, 495
field strength, 405
flux density, 405
electromotive force (EMF), 49
elementary steps, 44
elliptic integral, 259
EMF, 49
energy level, 227
enrichment of prey, 106
ENSO model, 313
Enthought Canopy, 14
environmental effects, 106
environmental model, 313
epidemic, 61, 85, 106, 117, 212
epilepsy, 577
epoch, 524
equilibrium point, 55
ergodicity, 366,495
error backpropagation rule, 528
error function, 527
erythrocytes, 374
$E_{S}, 72,186,191$
$E_{U}, 72,186,191$
Euclidean dimension, 448
Euclid's algorithm, 29
exact, 39
exact differential equation, 39
excitatory, 521, 558
existence and uniqueness
limit cycle, 117
existence theorem, 53
extinct, 96

Fabry-Perot
interferometer, 407
resonator, 407
farad, 49
Faraday's law, 49 of induction, 404
fast Fourier transform, 480
feedback, 175, 407, 420
feedback mechanism, 543
feedforward single layer network, 523
Feigenbaum constant, 365
Ferranti Mark 1, 571
FFT, 480
fiber parameters, 423

Fibonacci sequence, 343
field, 253
figsize, 107
fine focus, 246
first integral, 146
first iterative method, 419, 422, 552
first return map, 216
first-order difference equation, 328
fish population, 38, 181, 345
Fitzhugh-Nagumo
equations, 116
oscillator, 114
system, 563
fixed point, 55, 355
period m, 221
period N, 357
period one, 217, 414, 497
period two, 498
fixed size box-counting algorithm, 451
fixed weight box-counting algorithm, 451
flow, 118
focal values, 247
fold bifurcation, 182
for loop, 6
forced system, 227
forward rate constant, 46
fossil dating, 59
Fourier spectrum, 478
Fourier transform, 477
fractal, 434, 441
attractor, 197, 441
dimension, 441
Cantor set, 442
Koch curve, 442
Koch square, 442
Sierpiński triangle, 442
geometry, 434
structure, 196, 201, 386
fragmentation ratios, 449
$f(\alpha)$ spectrum, 448
FuncAnimation, 178, 207
Function, 57
function approximators, 526
fundamental memory, 536
fuzzy discs, 451
Gauss's law
electricity, 405
magnetism, 405
Gauss-Newton method, 528
Gaussian input pulse, 421
Gaussian map, 368
Gaussian pulse, 638
generalized delta rule, 528
generalized fractal dimensions, 448
generalized mixed Rayleigh Liénard equations, 267
generalized synchronization, 507
gestation period, 304
GitHub, 2
global bifurcation, 260, 273
global warming, 314
globally asymptotically stable, 194, 211
glucose in blood, 60
Gröbner bases, 252
gradient, 66
gradient vector, 527
graphene nano-ribbon, 573
graphic, 120
graphical method, 351, 417
gray scale, 458, 473
Green's theorem, 122
Gross National Product (GNP), 374
Guido van Rossum, 2
Hénon-Heiles Hamiltonian, 225
haematopoiesis, 306
Hamiltonian, 146, 611

Hamiltonian systems
with two degrees of freedom, 221
handcrafted patterns, 541
hard bifurcation, 174
Hartman's theorem, 79
harvesting, 106, 181
policy, 337
Hausdorff dimension, 448
Hausdorff index, 441
Hausdorff-Besicovich dimension, 450
Heaviside function, 523
Hebb's learning law, 522
Hebb's postulate of learning, 536
help command, 20
Hénon map, 370, 445, 451, 609, 612
henry, 49
heteroclinic
bifurcation, 234
orbit, $120,150,234,274$
tangle, 234
heterogeneous, 448
hidden layer, 524, 528, 603
high pass filter, 484
Hilbert numbers, 273
Hints for programming, 20
history, 176
history function, DDEs, 298
Hodgkin-Huxley equations, 114, 560
Holling-Tanner model, 101, 139, 164
homoclinic
bifurcation, 200, 234, 261
loop, 260, 261, 267
orbit, $150,234,274$
tangle, 234
homogeneous, 448
homogeneous differential equation, 40

Hopf
bifurcation, $170,182,303$
singularity, 182
Hopfield network, $156,531,551$, 610, 613
Hopfield neural network, 525
horseshoe dynamics, 235
host-parasite system, 104
human population, 85,343
hyperbolic
attracting, 283
critical point, 79
fixed point, 220,371
iterated function system, 440
repelling, 283
stable limit cycle, 220
unstable limit cycle, 220
hyperpolarize, 566
hyperpolarized, 559
hysteresis, 175, 371, 421
curves, 313
Josephen junction, 574

IDE, 14
ideal, 252
IDLE, 2
IDLE Python programs, 645
if, elif, else, 6
Ikeda
DDE, 310
map, $375,414,428,513$
im, 396
image analysis, 453
image compression, 434, 484
incident, 407
indentation level, 20
index, 125
inductance, 49
infected population, 105
infectives, 85
inflation unemployment model, 382
infodict, 107
information dimension, 450
inhibitory, 521, 558
initial value problem, 38
input vector, 521
insect population, $109,345,616$
instability, 421
instant physician, 526
integrable, 223
integrate and fire neuron, 116
Integrated Development Environment, 2, 14
integrating factor, 34
intensity, 412
interacting species, 95,626
intermittency, 203, 212, 363
route to chaos, 365
invariant, $118,201,416$
axes, 82, 98
inverse discrete Fourier transform, 479
inverted Koch snowflake, 609
inverted Koch square, 438
inverted pendulum, 322
io.imsave, 474
isoclines, 67
isolated periodic solution, 114
isothermal chemical reaction, 86
iterated function system (IFS), 440
iteration, 328

Jacobian, 171
Jacobian matrix, 78, 192, 205, 371, 502
Jaynes-Cummings model, 595
Jordan curve, 121, 286
Josephson junction
mathematical model, 573
Josephson junction (JJ), 571
jth point of period i, 357
Julia set, $386,389,434,612$
color, 390

KAM
theorem, 227
tori, 227
kernel machines, 525
Kerr
effect, 407, 413
type, 413
kinetic energy, 146
Kirchhoff's
current law, 49
laws, 532
voltage law, 49
Koch
curve, 436
snowflake, 464
square, 436
ladybirds and aphids, 99
lambdas, 315
laminarize, 494
Lang-Kobayashi equations, 310
Laplace transform, 50
large-amplitude limit cycle, 175
bifurcation, 175
laser, 182, 374, 410, 494
model, 310
LaTeX, 24
law of mass action, 86
learning process, 521
learning rate, 527
least mean squared (LMS)
algorithm, 524
legend, 23, 107
Legendre transformation, 450
Leslie
matrix, 334
model, 333
lexicographical order, 253
lie detector, 526
Liénard
equation, 248
plane, 282
system, 116, 123, 139, 260, 281
large parameter, 286
local results, 290
theorem, 293
limit cycle, 106, 114, 118, 206, 595, 611
hyperbolic, 259
neuron, 116
nonexistence, 608
3-D, 195
Lindstedt-Poincaré technique, 131
linear differential equation, 34
linear phase shift, 412, 423
linear stability analysis, 56,300 , 417
linear transformation, 187
linearization, 78
linearized system, 78
Lipschitz
condition, 53
continuous, 53
local bifurcation, 273
log-log plot, 445
logic gates, 407
logic operations, 565
logistic
equation, 38, 302
function, 6
growth, 101
map, 360, 497, 612
Lorenz
attractor, 201
equations, 199, 494
loss in the fiber, 412
Lotka-Volterra model, 99, 164, 212, 304
low-gain saturation function, 523
low pass filter, 484
lowest common multiple, 256
Lyapunov
quantity, 247
stability, 531

Lyapunov domain of stability, 155
Lyapunov exponent, 197, 366, 612
Lorenz system, 603
Lyapunov function, 151, 154, 194, 247, 284, 550, 607
Hopfield network, 532
Lyapunov quantities, 290
Lyapunov stability theorem, 152
lynx and snowshoe hares, 99

Mac OS, 2
Mackey-Glass model, 306
magnetic field vector, 405
magnetic flux, 405
magnetostrictive ribbon, 494
Mandelbrot, 443
Mandelbrot set, 389, 391, 434
manifold, 72
Maple, 26
math module, 4
Mathematica, 26
MATLAB, 26
MATLAB code to Python, 603
matplotlib, 18
maximal interval of existence, 54 , 62,118
Maxwell's equations, 404
Maxwell-Bloch equations, 406
Maxwell-Debye equations, 406
McCulloch-Pitts neuron, 522
MEA, 577
mean, 545
infectivity period, 212
latency period, 212
mechanical oscillator, 91
DDE, 321
mechanical system, 117, 176
Melnikov
function, 259
integral, 258
memory devices, 407
memristance, 52
memristor, 51, 572, 573
mathematical model, 574
meshgrid, 157
meteorology, 199
method of multiple scales, 134
method of steepest descent, 527
method of steps, 299
mgrid, 425
micro-parasite-zooplanktonfish system, 104
minimal chaotic neuromodule, 542
minimal Gröbner basis, 257
mixed fundamental memories, 537
mixing, 353
modulo, 254
monomial, 253
ordering, 253
mortgage assessment, 526
motif, 434
mplot3d, 207
multi-electrode array, 577
multidegree, 254
multifractal, 447, 472, 602
formalism, 448
Hénon map, 459
Sierpiński triangle, 459
spectra, 448
multistability, 174
multistable, 151, 175, 206, 241, 543
murder, 60
muscle model, 60
mutual exclusion, 96
myimages, 292
mylein sheath, 558
national income, 332
negative
limit set, 118
semiorbit, 118
negatively, invariant, 118
net reproduction rate, 339
network architecture, 521
neural network, $375,505,521$
DDE, 315
neuristor, 572
neurodynamics, 541
neurological assay, 577
neuromodule, 541
neuron
module, 375
neuron(s), 114, 521, 551, 558
neuronal model, 521
neurotransmitters, 558
Newton fractal, 395, 602
Newton's law of cooling, 60
Newton's law of motion, 146
Newton's method, 395, 528
noise, 497
NOLM, 404
with feedback, 410
nonautonomous system, 116, 227
nonconvex closed curve, 124
nondegenerate
critical point, 148, 246
nondeterministic chaos, 195, 492
nondeterministic system, 520
nonexistence of limit cycles, 123
nonhyperbolic
critical point, 79, 151, 607
fixed point, 371
nonlinear
center, 247
optics, 374
phase shift, 412
refractive index coefficient, 413
nonlinearity, 175, 407
nonperiodic behavior, 196
nonsimple canonical system, 67
normal form, 164, 170
normalized eigenvector, 340
not robust, 101
notebook, 14
np.mgrid, 88
nullclines, 67
numerical solutions, 42
numpy, 18
occasional proportional feedback
(OPF), 494
ODE, 34
odeint, 42, 57
OGY method, 495
ohm, 49
Ohm's law, 48
optical
bistability, 407
computer, 407
fiber, 410
fiber double ring, 410
memories, 407
oscillators, 572
resonator, 176
sensor, 408
optimal sustainable, 340
optogenetics, 578
orbit, 66,118
ordinary differential equation, 34
oscillation of a violin string, 114
oscillatory threshold logic, 563
output vector, 521
ozone production, 211
parasitic infection, 111
Parkinson's disease, 577
partial differential equations, 34
partition function, 448
Pascal's triangle, 464
passive circuit, 51
Peixoto's theorem in the plane, 164
pendulum, 147, 159, 241
double, 593
perceptron, 522
perihelion, 593
period, 259
bubblings, 368
limit cycle, 103, 119, 205
undoublings, 368
period-doubling, 203
period-doubling bifurcations to chaos, 363
period-n cycle, 195
period-one behavior, 350
period-two, 196
behavior, 350
period-three behavior, 351
periodic
behavior, 115
orbit, 259
windows, 363
periodicity, 348,353
permittivity of free space, 405
perturbation methods, 127
phase portrait, 66
phase shift, 412
physiology, 505
piecewise, 300, 315
piecewise linear function, 523
pinched hysteresis, 52, 574
pitchfork bifurcation, 167
pixels, 451
planar manifold, 187
plastics, 453
plt.axes, 292
Poincaré
compactification, 275
map, 119, 199, 216, 259, 371, 495
section, 216, 611
Poincaré-Bendixson theorem, 120, 227, 281, 287
Poisson brackets, 223
polar coordinates, 69, 276
pole placement technique, 496
pollution, 106
polymer, 453
population, 92
of rabbits, 86
population model, 614
positive
limit set, 118
semiorbit, 118
positively, invariant, 118
potato man, 394
potential difference, 48
potential energy, 146, 151
potential function, 151
pow(x,y), 315
power, 412
law, 443
spectra, 199, 203
of a waterwheel, 92
power-splitting ratio, 412
pprint, 57
Prandtl number, 200
preallocate, 20
predation, 104
rate, 101
predator-prey, 117
DDE, 304
models, 99
system, 109
probe vector, 536
propagation, 412
psychological profiling, 526
PyDDE, 298
pydelay, 298, 311
Pyragas's method, 493
Python
based exam, 607, 613
files download, 2
qth moment, 448
qualitative behavior, 66
qualitatively equivalent, 74
quasi-periodicity, 221
quasi-polynomials, 302
quasiperiodic, 544, 552
route to chaos, 203
quasiperiodic forcing, 228
quiver, 88

Rössler
attractor, 194
system, 194
radioactive decay, 610
randint(a,b), 459
random behavior, 195
Raspberry Pi, 2
rate constant, 45
rate-determining step, 45
Rational(1,2), 376
rationally independent, 221
ravel, 157
Rayleigh number, 200
Rayleigh system, 115
re, 396
reaction rate equation, 45
real distinct eigenvalues, 68
recurrence relation, 328
recurrent neural network, 524, 531
red blood cells, 374
red and grey squirrels, 96
reduced, 262
reduced Gröbner basis, 257
reflected, 407
refractive index, 407
refractive nonlinearity, 407
refuge, 106
regionprops, 477
regulator poles, 496
relative permeabilities, 406
relative permittivities, 406
repeated real eigenvalues, 70
repolarization, 559
resistance, 49
resonance terms, 173
resonant, 173
response system, 506,508
restoring coefficient, 282
restoring force, 116
restrictions in programming, 291
return map, 247, 607
reverse rate constant, 46
reversed fundamental memories, 537
RGB image, 474
rgb2gray, 477
ring, 252
ringing, 241
RLC circuit, 51, 117
roach:fish population, 338
robust, 103
Rotating Wave Approximation
(RWA), 312
rsolve, 342
rubbers, 453

S-polynomial, 256
saddle point, 69, 148
saddle-node bifurcation, 165
saddle-node on an invariant cycle bifurcation, 176
safe bifurcation, 174
save image, 472
savefig, 22
scaling, 443, 448
scatter, 425
sea lions and penguins, 96
seasonal effects, 106
seasonality, 212
second iterative method, 420 , 422, 552
second order linear difference equation, 330
second part of Hilbert's sixteenth problem, 272
second-order differential equation, 50
secular term, 131
sedimentary rocks, 453
self-similar, 448
self-similar fractal, 441
self-similarity, 434
semistable
critical point, 56
limit cycle, 118, 220, 286
sensitivity to initial conditions, 196, 348, 353, 492
separable differential equation, 35
separation of variables, 35
separatrix, 151
cycle, 261
series solutions, 42
SFR, 403
resonator, 409, 412
sharks and fish, 99
Sierpiński triangle, 439
sigmoid function, 523
signal processing, 453, 482
simple canonical system, 68
simple nonlinear pendulum, 146
simply connected domain, 123
singlet, 212
singular node, 70
Smale horseshoe map, 234, 373
Smale-Birkhoff theorem, 235
small perturbation, 56, 417
small-amplitude limit cycle, 246
soft bifurcation, 174
solar system, 492
solution curves, 36
solve, 88,258
soma, 521, 558
spatial vector, 405
spectrum of Lyapunov exponents, 197
speed of light, 406
spike train, 559
spin-glass states, 537
spirals, 355
spurious steady state, 537
SR flip-flop, 569
stability, 151, 190
diagram, 420
stable
critical point, 55, 152
fixed point, 361, 388
focus, 69
limit cycle, 103, 118
manifold, $72,79,186,191$, 495
node, 69
staircases, 356
stationary point, 55
std, 545
steady state, 51, 103
stem cell, 578
stiff system, 47, 212
stiffness, 116
stochastic methods, 520
stock market analysis, 453
stoichiometric equations, 45
Stokes's theorem, 405
strange attractor, 197
stretching and folding, 348
strictly dominant, 336
structurally
stable, 103, 164
unstable, 101, 164
subcritical Hopf bifurcation, 174, 200
subharmonic oscillations, 229
subplots, 22, 107
summing junction, 521
superconductor, 573
supercritical Hopf bifurcation, 174
supervised learning, 524
surface plot, 24
susceptible population, 105
susceptibles, 85
sustainable, 338
switches, 407
symbols, 57
sympy, 15
synaptic
cleft, 558
gap, 558
vesicles, 558
weights, 521
synchronization, 494, 505, 541
synchronization of chaos, 505
synchronous updating, 537
target vector, 524, 527
targeting, 497
$\tau(q), 449$
Taylor series expansion, 56, 78, 371, 417
tent map, 348, 608
3D plot, 23
three-dimensional system, 186
threshold, 559
logic, 564
value, 85
time series, 105, 364
chaos detection, 198
plot, 198
Tinkerbell map, 601
Toda Hamiltonian, 240
topological dimension, 448
topologically equivalent, 74
torus, 228
total degree, 253
totally
connected, 388
disconnected, 388
training, 524
trajectory, 66, 118
transcritical bifurcation, 167
transfer function, 521, 551
transient, 51
transmitted, 407
transversal, 247
transversely, 216
travelling salesman problem, 531
triangular pulse, 421
trigsimp, 130
trivial fixed point, 356
turbulence, 453, 492
2D plot, 21
two-neuron module, 533
uint8, 476
unconstrained optimization problem, 527
uncoupled, 187
uniform asymptotic expansion, 127
uniform harvesting, 341
unipolar activation function, 522
uniqueness theorem, 53
universality, 365
Unix, 2
unstable
critical point, 55, 153
fixed point, 361, 388
focus, 69
limit cycle, 118
manifold, 72, 79, 186, 191
node, 68
unsupervised learning, 524
vacuum, 405
vacuum tube oscillator, 571
value of homes in Boston, 529
van der Pol equation, 130
van der Pol system, 114, 259
vector field, 66
plot, 533
velocity of light, 413
Verhulst's equation, 38, 96
virus, mobile phone, 592
viscosity, 200
viscous fingering, 434
volt, 48
voltage drop, 48
wave equations, 404
wave vector, 406
wavelength, 406
light, 413
$W_{C}, 191$
while loop, 6, 29

Index

Windows, 2
wing rock, 175
WinPython, 14
$W_{S}, 79,191$
$W_{U}, 79,191$
X-ray spectroscopy, 453

XOR gate, 522

You Tube, 386
youngest class harvesting, 339
$Z_{q}, 448$

[^0]: Order online at springer.com / or for the Americas call (toll free) 1-800-SPRINGER /
 or email us at: customerservice@springernature.com. / For outside the Americas call +49 (0) 6221-345-4301 / or email us at: customerservice@springernature.com.
 The first $€$ price and the $£$ and $\$$ price are net prices, subject to local VAT. Prices indicated with [1] include VAT for books; the $€(D)$ includes 7% for Germany, the $€(A)$ includes 10% for Austria. Prices indicated with [2] include VAT for electronic products; 19% for Germany, 20\% for Austria. All prices exclusive of carriage charges. Prices and other details are subject to change without notice. All errors and omissions excepted. [3] No discount for MyCopy.

