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Abstract 

The present study investigated long-term drying shrinkage strains of self-

compacting concrete (SCCs). For all SCCs mixes, Portland cement was 

replaced with 0-60% of fly ash (FA), fine and course aggregates were kept 

constant with 890 kg/m3 and 780 kg/m3, respectively. Two different water 

binder ratios of 0.44 and 0.33 were examined for both SCCs and normal 

concrete (NCs). Fresh properties of SCCs such as filling ability, passing ability, 

viscosity and resistance to segregation and hardened properties such as 

compressive and flexural strengths, water absorption and density of SCCs and 

NCs were also determined. Experimental results of drying shrinkage were 

compared to five existing models, namely the ACI 209R-92 model, BSEN-92 

model, ACI 209R-92 (Huo) model, B3 model, and GL2000. To assess the 

quality of  predictive models, the influence of various parameters (compressive 

strength, cement content, water content and relative humidity) effecting on the 

drying shrinkage strain as considered by the models are studied. The results 

showed that, using up to 60% of FA as cement replacement can produce SCC 

with a compressive strength as high as 30 MPa and low drying shrinkage strain. 

SCCs long-term drying shrinkage from 356 to 900 days was higher than NCs. 

ACI 209R-92 model provided a better prediction of drying shrinkage compared 

with the other models.  
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1 Introduction  

Self–compacting concrete (SCC)  has good deformability and high resistance to 

segregation which is easily placed and compacted under its self-weight, filling in 

heavily reinforced sections with little or no vibration. It is generally accepted that 

SCC was first developed at the University of Tokyo, Japan during the late 1980s 

(Okamura and Ouchi, 2003). Basically SCC consists of the same components 

as normal concrete (NC) (cement, water, aggregates, admixtures, and mineral 

additions), but the final composition of the mixture and its fresh characteristics 

are different. In comparison with NC, SCC mixtures are usually designed with 

high volumes of paste, large quantities of mineral fillers such as finely crushed 

limestone or fly ash and high range water reducing admixtures and the 

maximum size of the coarse aggregate is smaller.   

All the special characteristics of SCC may have a significant influence on its 

shrinkage behaviour. Shrinkage of concrete is defined as the decrease of 

concrete volume with time after hardening of concrete in an unloaded 

specimen. This contraction is due to changes of moisture content of concrete. 

There are different types of concrete shrinkage; plastic shrinkage (due to loss of 

water by evaporation from concrete surface during the plastic state), chemical 

shrinkage (due to concrete hydration), autogenous shrinkage (due to self-

desiccation after final setting), carbonation shrinkage (due to chemical reactions 

between hydrated cement and carbon dioxide (CO2) present in the atmosphere) 

and drying shrinkage (due to the evaporation of internal water in hardened 
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concrete.  Drying shrinkage strains (DS) is considered as a major concern for 

concrete deterioration, it produces tensile stress within concrete leading to 

cracking, which enables harmful materials to penetrate the concrete, affecting 

long term concrete durability.  

Some discrepancy remains regarding the drying shrinkage strains of SCC 

(DSSCC) compared to drying shrinkage of normal concrete  (DSNC). For 

example, Kim et al. (1998), Rols et al. (1999), Chan et al. (2003), Klug and 

Holschemacher (2003), Chopin et al. (2003), Turcry and Loukili (2003), Heirman 

and Vandewalle (2003), Turcry et al. (2006), Loser and Leemann (2009), 

Valcuende et al. (2012) and Bhirud and Sangle (2017) pointed out that SCC can 

exhibit higher shrinkage compared with NC. However, other investigators such 

as Persson (2001), Bouzoubaa and Lachemi (2001), Pons et al. (2003), Vieira 

and Bettencourt (2003), Poppe and De Schutter (2005), Seng and Shima 

(2005), Collepardi et al. (2005), Pierard et al. (2005) and Assié et al. (2007) 

concluded that the shrinkage strains of SCC are equivalent to those of NC with 

similar compressive resistance, and in some cases it was even found that the 

shrinkage of SCC was lower than NC (Proust and Pons, 2001, Heirman et al., 

2007, Huynh et al., 2018). 

The discrepancy between the experimental results of DSCC and DSNC could 

be related to the differences in concrete mixtures studied, testing conditions, 

and testing methods (Fernandez-Gomez and Landsberger, 2007). Moreover, 

most of the previous studies took into account only DS that was determined 

after a specific time of curing or immediately after demoulding, while other 

researchers considered DS that started from the setting time, including 

autogenous shrinkage. In this investigation, in order to compare between 
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DSSCC and DSNC magnitude the environmental conditions (relative humidity, 

temperature and curing type) and concrete condition (casting and testing) were 

kept same for SCCs and NCs and the measurements of drying shrinkage strain 

were taken immediately after demoulding.  

This study was undertaken to investigate the properties of eight types of SCCs 

with different replacement ratios of fly ash (FA) for SCC mixes (20%, 40% and 

60%) by weight of the binder, and two types of NCs in the fresh and hardened 

states. The mixes were prepared with two types of water-binder ratio (w/b) 0.33 

and 0.44. The properties of the fresh state which included filling ability, passing 

ability and segregation resistance and the properties of the hardened state 

including compressive strength, flexural strength, water absorption, bulk density 

and drying shrinkage strains were measured in this study. The work was 

completed with a study of long-term DS. All of the results of SCCs are 

compared to those obtained with NCs. Prediction models proposed by 

international codes and other researchers, namely the ACI 209 R-92, ACI 209R-

92 (Huo), BS EN-92, B3, and GL2000, have been used to assess the drying 

shrinkage prediction of SCCs and NC and compared with the experimental 

results. 

2 Research significance 

Drying shrinkage produces tensile stress within concrete leading to cracking, 

enabling harmful materials to penetrate the concrete, affecting economic factors 

of construction such as durability, serviceability and long term reliability. 

Different studies have been carried out covering drying shrinkage of self-

compacting concrete (DSSCC). However, some discrepancy remains regarding 
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the drying shrinkage strain magnitudes of SCC compared to NC. Investigating 

the main parameters affecting the DSSCC and (DSNC) in the current study 

could explain that discrepancy and will increase the limited number of previous 

research studies on the drying shrinkage magnitude of SCC compared to that of 

NC. Measurements of drying shrinkage after demoulding have been monitored 

for more than two years.  

The other objective of this paper is to compare the measured drying shrinkage 

strains with five drying shrinkage strain prediction models, namely the ACI209 

R-92 model, ACI 209R-92 (Huo) model, BS EN-92 model, B3 model, and 

GL2000 model. The proper evaluation of DSSCC will provide construction 

materials engineers with a good understanding of the long term drying 

shrinkage behaviour of SCC and with the information required for the design 

process and production of high quality SCC. 

3 Experimental program 

3.1 Materials  

The materials used in various experiments are given below. 

Cement: Ordinary Portland cement (OPC), CEM I 52.5N complying with EN 

197-1:2011 was used for all of the experimental work in this study. Physical 

properties and chemical compositions of the cement as provided by the supplier 

are given in Table 1.  

Fly ash: Fly ash BS EN 450 -1, fineness category S, loss on ignition category 

B, grey colour was used as a partial replacement of Portland cement. Physical 

properties and chemical compositions of the fly ash as provided by the supplier 

are presented in Table 1.  
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Table 1 Physical properties and chemical compositions of cement and fly  

Cement replacement materials Cement (CEMI 52.5 N) Fly ash (450-S) 

Physical properties 

Specific gravity 3.15 2.15 
Blaine specific surface area, m

3
/kg 400 461 

28 days Compressive strength, ( MPa) 60.0 - 
Initial setting time (Mins) 150 - 
Soundness, expansion (mm) 1 ˂ 0.1 

Chemical composition, % 

SiO2 20.10 51 
AL2O3 5.04 29 
Fe2O3 2.28 7.6 
CaO 36.24 2.5 
MgO 2.50 1.5 
SO3 3.39 0.9 
K2O 0.62 2.36 
Na2O 0.28 - 
CI 0.05 ˂ 0.05 
LOI 2.87 1.6 

 

Admixtures: A high range water reducing admixture (HRWRA) superplasticizer 

(SP) complying with BS EN 934-2:2001 was employed to achieve a suitable 

workability for SCC mixes. A shrinkage reducing admixture (SRA 895) was used 

to reduce significantly the drying shrinkage strains of SCCs. Physical and 

chemical properties of SP and RSA provided by the supplier are given in Table 

2.  

     Table 2 Physical and chemical properties of SP and SRA 

Properties Superplasticizer 
(SP) 

Shrinkage reducing 
admixture (SRA) 

Name Glenimum C315 MasterLife SRA 895 

Form liquid liquid 

Colour yellowish colorless 

pH value 5 - 8 - 

Specific gravity 1.10 ± 0.03 1.01 ± 0.02 

Dosage range 0.10-1.10% of binder content 0.50-2.0 % of binder content 
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Aggregates: All SCC and NC concrete mixtures were prepared with a crushed 

coarse limestone aggregate (Cagg) with a maximum size of 10 mm and a local 

natural sand (Fagg) with a maximum aggregate size of 4.75 mm. For each 

aggregate, the relative density on saturated dry basis and dry, water absorption 

(% of dry mass), and apparent specific gravity were determined in accordance 

with ASTM C127-15 and bulk density of aggregates were measured in 

accordance to ASTM C29/C29M-15. The determination of the percentage of 

evaporable moisture in a sample of aggregates were tested according to ASTM 

C566-15. All materials were collected and stored in the laboratory to ensure 

their constant absorption characteristics and keep the same environmental 

conditions throughout the test program. Results obtained of physical properties 

of the aggregates are summarized in Table 3. The particle size distributions of 

coarse and fine aggregates were within the limits set by ASTM C33. Grading of 

the aggregates with the ASTM limits are plotted in Figure 1. 

           Table 3 Physical properties of coarse and fine aggregates  

Property of aggregate Coarse aggregate Fine  aggregate 

Relative density (SSD) 2.55 2.51 

Relative density (Dry) 2.58 2.54 

Absorption (% of dry mass) 0.42 0.60 

Apparent specific gravity 2.61 2.60 

Water content (kg/m
3
) 0.61 1.47 

Bulk density (kg/m
3
) 1500 1400 

Fineness modulus 7.20 2.90 
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Figure 1 Grading of coarse and fine aggregates 

3.2 Mix design proportions 

A total of 8 SCCs mixtures were designed following the SCC mix design method 

proposed by Su et al. (2001) with some modification in mix proportion.  Two 

NCs mixtures as control mixes using the weight-batching method according to 

the Building Research Establishment were also considered (Teychenné et al., 

1975). All concrete mixtures were designed at two water-binder ratios (w/b) of 

0.44 and 0.33. The replacement ratio of fly ash (FA) for SCCs mixes were 20%, 

40% and 60% by weight of the binder. For all SCCs mixes packing factor (PF), 

air content (A %) and volume ratio of fine aggregates to total aggregates are 

assumed 1.16, 1.5 and 53%, respectively. Mixture proportions of the eight 
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Table 4 Proportions of concrete mixtures per m3 

Mix ID w/b B 
 

C 
 

FA 
 

W 
 

Cagg 

 
Fagg 

 
SP SRA A 

 ratio (Kg)  (%)  

NC-0.44 0.44 466 466 0 205 924 755 0 0 1.5 

NC-0.33 0.33 622 622 0 205 883 640 0 0 1.5 

SCC-0.44 0.44 450 450 0 198 780 890 1 0 1.5 

SCC-0.33 0.33 550 550 0 180 780 890 1 0 1.5 

SCC-0.44-20 0.44 450 360 90 198 780 890 1 1 1.5 

SCC-0.33-20 0.33 550 440 110 180 780 890 1 1  1.5 

SCC-0.44-40 0.44 450 270 180 198 780 890 1 1 1.5 

SCC-0.33-40 0.33 550 330 220 180 780 890 1 1 1.5 

SCC-0.44-60 0.44 450 180 270 198 780 890 1 1 1.5 

SCC-0.33-60 0.33 550 220 330 180 780 890 1 1 1.5 

 

3.3 Mixing and specimens preparation 

All concrete mixtures were prepared in 0.08 m3 batches using a drum mixer. For 

SCC mixtures the ingredients were poured into the laboratory counter mixer in 

the following order; coarse aggregate (Cagg), fine aggregate (Fagg), cement (C), 

fly ash (FA), water mixed with admixtures (HRWRA and SRA); the same 

procedure is followed for the NC mixtures without fly ash and admixtures. This 

procedure was adopted for all of the mixes in order to minimize the risk of a 

possible disparity between the homogeneity of each mix. Dry ingredients 

(aggregates and binder (B)) were mixed for 3 minutes, then water (with HRWRA 

and SRA for SCC mixtures only) was gradually added in 15 seconds and the 

mixing continued for 3 minutes followed by a 2 minute final mix. The top of the 

mixer was covered to prevent evaporation during the mix period in accordance 

with ASTM C192/C 192M-14. For each concrete mixture, different sizes (cubes 

and prisms) of concrete specimens were prepared and cast in steel moulds for 

testing water absorption, density, compressive strength, flexural strength and 

drying shrinkage strains. All of the specimens (cubes and prisms) were not 

subjected to any compaction other than their own self weights except for NC 
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specimens. After casting, the specimens were kept covered in a controlled 

chamber at 20±20C for 24 h until demoulding and then cured as presented in 

the following sections. 

3.4 Testing procedure 

3.4.1 Fresh properties tests 

Self-compacting concrete is characterized by viscosity, filling ability, passing 

ability and resistance to segregation and it is important to keep these 

characteristics during transport and placing. The viscosity of SCC was 

evaluated using the slump flow test, the flow spread and T500 time representing 

horizontal free flow of the mass of concrete after release of a standard slump 

cone. The assessment of SCC filling ability which represent ability of fresh 

concrete to distort and flow under its own weight without vibration or extra 

assistance into the formwork was measured used V-funnel test.  

The passing ability of SCC determines how well the concrete can flow through 

confined and constricted spaces and narrow openings. It was examined using 

the J-ring test. The sieve stability test (screen stability test) for segregation 

resistance was used to measure static segregation of SCCs. All SCC fresh 

properties were determined according to the European Guidelines for SCC 

(BIBM and ERMCO, 2005). To measure the workability of NC, slump test 

accordance to ASTM C143/ C143-13 was used. 

3.4.2 Mechanical properties tests  

Compressive strength was measured by testing three cube specimens with 

100×100×100 mm size in accordance with BS EN12390-3:2009. The 

specimens were cast, left covered with plastic sheet in a controlled room at 20± 
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2 oC for 24h until demoulding. Thereafter, specimens placed in water for curing 

time until tested at 7, 28 and 91 days using the compressive strength testing 

machine  at a constant rate of 0.2 MPa/s with a maximum load capacity 3000-

KN and the results were obtained as the average.  

Flexural strength was measured by testing two prism specimens with 

100×100×500 mm size in accordance with ASTM C78/78M-13. The test was 

performed using testing machine with a constant rate of 0.05MPa/s until 

fracture. The curing condition for prism specimens were the same as those for 

the compressive strength specimens.  

3.4.3  Water absorption and density tests 

Water absorption test in accordance with BS 1881-122 was used to determine 

the amount of water absorbed which indicates the degree of porosity of 

concrete. The determination of concrete density was evaluate in accordance 

with BS 1881-114. Specimens with 100×100×100 mm cube size placed in dry 

oven at 100±5 °C for 24 h. After removing each specimen from the oven, it allow 

to cool in dry air to a temperature of 20 to 25°C and the average weight of oven 

dry specimens was recorded  and immediately after drying and cooling,  the 

specimens completely immersed in water at 21°C for 24 h. The specimens then 

were turned to saturated surface dry by removing water from the surface using 

a moist cloth. Then the average weight of specimens was taken.  The water 

absorption as a percentage was calculated as the ratio of water mass absorbed 

to that of dry mass of specimen. The density of concrete was determined as the 

ratio of dry mass to the volume mas of specimen and expressed as a 

percentage.  
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3.4.4  Drying shrinkage strains test 

The determination of drying shrinkage strain was conducted on the prisms of 

100×100×300 mm size. Specimens were cast in three layers and covered with 

a plastic sheet to prevent moisture loss then demoulded after 24 ± 2 hr and 

demec points were fixed on the top surface of the specimens by using an epoxy 

adhesive. The variation in length between these points when the specimens 

were exposed to shrinkage conditions was measured using a dial gage 

extensometer that was 220 mm long with an accuracy of 0.001 mm/division. 

The drying shrinkage strain measurements were monitored for the long term at 

4, 7, 14, 21, 28, 50, 91, 112, 224, 365, 500, 730, 900 and 1000 days after an 

initial reading at 24 hours after demoulding. At each measurement age, drying 

shrinkage of a specimen was calculated for the same side and direction as the 

other ages to reduce the error in the readings. During testing all specimens 

were left to air cure in a controlled room at 23 ± 2°C with a relative humidity of 

50± 5 %. The tests are carried out following the ASTM C157/13 for 

determination of length change in hardened cement mortar and concrete. The 

drying shrinkage strains were calculated using the formula below;  

𝜀𝑠ℎ =  
𝐶𝑅𝐷−𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝐶𝑅𝐷

𝐺
                     (1) 

where ɛsh is the drying shrinkage strain of specimen  (mm/mm), CRD is the 

difference between the comparator reading of the specimen (mm) and the 

reference bar at any age, initial CRD is the difference between the comparator 

reading of the specimen and the reference bar at first reading, G is the gage 

length (220 mm). 
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4 Experimental results and discussion  

4.1 Fresh properties  

The results of fresh properties of SCCs were evaluated by the slump flow test 

(slump flow diameter and T500mm ), J-ring test (flow diameter and T500mm ), V-

funnel (time taken by  concrete to completely exit through the funnel) and sieve 

stability test (calculated as the proportion (as%) of the sample passing through 

the sieve) according to EFNARC (BIBM and ERMCO, 2005). The values of the 

fresh properties for all SCC and NC mixes obtained in this work are shown in 

Table 5. 

The slump of NC mixes with w/b ratios 0.44 and 0.33 were 110mm and 63mm, 

respectively. All SCC mixes in this study exhibited satisfactory workability, in that 

the flow spread (diameters) for all mixes was in a range of 655 – 808 mm and 

the time which the concrete took to exit the v-funnel  was between 6.5 – 11 sec.  

A slump flow of 600± 50 – 850 mm and a funnel time of 5 – 15 sec were 

required (BIBM and ERMCO, 2005). For a J-ring value below 500 mm, the 

concrete might have had insufficient flow to pass through highly congested 

reinforcement (Nagataki and Fujiwara, 1995). The SCC mixes in this work were 

acceptable with J-ring values between 560- 795 mm. The segregation ratio for 

all mixes ranged between 10– 19 %. When the segregation ratio stays ≤ 23% of 

the weight of the sample, the resistance to segregation ability is considered 

acceptable (BIBM and ERMCO, 2005). A comparison between workability 

experimental results and specifications of European guidelines is plotted in 

Figure 1. As observed throughout this experimental work, workability SCC 

mixes containing FA were achieved with its fresh properties required at a 

constant water to binder ratio. Therefore, using FA will reduce water demand for 
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a given workability. SCCs made with w/b ratio 0.44 were more workable than 

those made with w/b ratio 0.33.  Most of the mixtures showed good 

homogeneity and cohesion. To analyse the workability results of SCCs, the 

concept of workability is presented in Figure 3 using boxes, where mixes within 

the area are acceptable SCC (Esquinas et al., 2018). The mixes inside the box 

in the section named “Proper SCC area" are regarded as suitable and 

acceptable SCCs, whereas the other mixes which located in the area named 

“marginal area” are acceptable as SCCs with a slight segregation could occur. 

None of the mixes in the present investigation were observed in unacceptable 

SCC area.  

Table 5 Workability results of NCs and SCCs  

 

Mix ID Slump 
Slump 
flow J-Ring 

                 
V- 

funnel Segregation 

(mm) 

T500 

(sec) 

d1 

(mm) 

d2 

(mm) 

T500 

(sec) 

d1 

(mm) 

d2 

(mm) sec Wp Wc % 

NC-0.44 110 . . . . . . . . . . 

NC-0.33 63 . . . . . . . . . . 

SCC-0.44 . 1.78 760 780 3.19 700 720 9.1 501  4855  10.3  

SCC-0.33 . 5.00 660 650 7.00 560 590 11 556 4710  11.8  

SCC-0.44-20 . 2.70 790 780 3.00 770 760 8.7 593 4772 12.3 

SCC-0.33-20 . 3.44 810 770 5.10  770 830 10 816 4894 14 

SCC-0.44-40 . 2.97 670 630 2.13 540 580 7.3 945 4800 14.8 

SCC-0.33-40 . 3.20 770 820 4.13 790 770 9.3 1088 4808 16 

SCC-0.44-60 . 2.50 710 740 1.6 580 570 6.5 488 4815 17 

SCC-0.33-60 . 4.00 780 835 3.61 805 785 8.1 943 4824 19 

Wp; weight of passed concrete and Wc ; weight of net concrete 
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Figure 2 Slump flow and J-ring results 
 

 

Figure 3  Workability boxes of SCC mixes 

0

100

200

300

400

500

600

700

800

900

W
o
rk

a
b
ili

ty
 (

m
m

) 

SCCs mixes 

J-ring

Slump flow

High workability 

Low workability 

0

5

10

15

20

25

30

35

500 600 700 800 900 1000

V
-f

u
n
n
e
l 
(s

e
c
) 

Slump flow (mm) 

SCC-0.44 SCC-0.33 SCC-0.44-20 SCC-0.33-20

SCC-0.44-40 SCC-0.33-40 SCC-0.44-60 SCC-0.33-60

Marginal SCC area 

proper SCC area 

Unacceptable SCC area 
 



16 
 

4.2 Compressive strength  

The compressive strengths of eight SCC mixes and two NC mixes are shown in 

Table 6. Normal concretes, NC-0.44 and NC-0.33 have achieved compressive 

strengths of 48.65 MPa and 63.65 MPa at 28 days, respectively compared with 

self-compacting concretes, SCC-0.44 and SCC-0.33 which have reached 

55.10MPa and 70.13 MPa at 28 days, respectively. It is clear that for the same 

water - binder ratio SCCs have higher compressive strength than NCs. This 

mainly attributed to the improved interface transition zone between the 

aggregate and hardened paste due to the absence of vibration of SCCs.  

It is observed that the compressive strength of SCCs decreased with an 

increase in the percentage of FA as illustrated in Figure 3 and Figure 4 This 

reduction is normally anticipated and is mostly due to the fact that FA  needs 

more time to form the sodium alumino-silicate hydrate (N-A-S-H) gels to build 

up the mechanical properties (Ismail et al., 2014). The same conclusions have 

been drawn by Khatib (2008) and Bouzoubaa and Lachemi (2001).  

All SCCs mixes have achieved acceptable 28-day compressive strengths of 

about 30 MPa. However, SCCs mixes with 60% FA and a w/b ratio of 0.44 had 

a 28-day compressive strength of 21.63 MPa. Moreover, a long term 

compressive strength at 91 days of above 30 MPa was achieved for SCC mixes 

containing up to 60% FA as cement replacement (SCC-0.44-60 and SCC-0.33-

60). As expected, the compressive strength increased as the w/b ratio 

decreased at all test ages. 
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         Table 6 Compressive and flexural strength of NCs and SCCs 

Mix ID 

Compressive strength 

(MPa) 

Flexural strength 

(MPa) 

7(days) 28(days) 91(days) 91(days) 

NC-0.44 43.2 48.65 54.09 4.66 

NC-0.33 50.90 63.47 70.25 5.85 

SCC-0.44 46 55.1 62.77 5.04 

SCC-0.33 59.7 70.13 77.51 6.18 

SCC-0.44-20 37.42 45.28 52.12 5.37 

SCC-0.33-20 42.13 53.81 66 6.57 

SCC-0.44-40 19.9 32.65 36.62 4.56 

SCC-0.33-40 39.5 42.25 61.83 5.90 

SCC-0.44-60 9.7 21.63 31.65 3.17 

SCC-0.33-60 19.9 31.56 43.51 4.07 

 

4.3 Flexural strength 

All mixes results of flexural strength are shown in Table 6. A slight increase was 

observed for flexural strength of SCCs from 5.07 MPa to 5.37 MPa with a w/b 

ratio of 0.44 and from 6.18 MPa to 6.57 MPa with a w/b ratio of 0.33 containing 

0% FA and 20% FA, respectively. However, by increasing FA from 40% to 60% 

for SCCs with both w/b ratios (0.44 and 0.33), the flexural strength decreased. A 

similar reduction in flexural strength of SCCs containing FA has been observed 

by Iqbal et al. (2017). This reduction of flexural strength of SCCs may be 

justified on the basis that the SCC compressive strength decreased which has a 

direct relationship with flexural strength of concrete. The NC flexural strengths 

were 4.66 MPa and 5.85 MPa for NCs with w/b ratios of 0.44 and 0.33, 

respectively. This relationship is graphically represented in Figure 6, from which 

this behaviour can be clearly observed.  
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 Figure 4 Effect of fly ash % on compressive strength for mixes with w/b ratio 
0.44 

 

 

 Figure 5 Effect of fly ash % on compressive strength for mixes with w/b ratio 
0.33. 
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Figure 6 91-day flexural strength for NCs and SCCs mixes with w/c ratios 0.44 

and 0.33 
 

4.4 Bulk density 

Bulk density for NCs and SCCs mixes for different w/b ratios are presented in 

Table 7. Each value of bulk density represents the average of three samples. 

The density slightly increased as the w/b ratio decreased from 0.44 to 0.33 for 

both NCs and SCCs which can be attributed to a reduction in the water content 

from 198 to 180 kg/m3. Furthermore, at the same w/b ratio, the density of SCC 

showed a systematic reduction as FA increased due to the lower density of FA 

compared with ordinary Portland cement (OPC). Even though SCC proportions 

are different to NCs, a slight difference in density of SCCs compared to NCs 

has been observed in this study, agreeing with the findings of Khatib (2005), 

indicating the good self-compaction of SCCs.  
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4.5 Water absorption 

 Water absorption is generally used as a significant factor for quantifying the 

durability of cementitious systems. The influence of various degrees of FA 

content on water absorption for NCs and SCCs is illustrated in Figure 7. It can 

be noticed that there is an increase in water absorption for SCCs with 

increasing FA content. SCC mixes showed lower absorption compared to NC 

mixes. This is an indicator of good compaction achieved by the concrete self-

weight. Due to the increase of workability of SCCs containing fly ash, the 

compaction is expected to be better All SCCs and NCs mixes having w/b ratios 

0.33 showed lower water absorption than those made with w/b ratios 0.44 this 

could be attributed to their capillary and pore networks are somewhat 

disconnected, which restrains the water penetration depth. It is observed that 

the water absorption for all mixes varied between 4.6% and 8.8%. All concrete 

mixes had low absorption characteristics (less than 10%) which is in good 

agreement with the results reported by Siddique (2013). 

                    Table 7 Bulk density of NCs and SCCs 
Mix ID  FA (%) Bulk density (kg/m

3
) 

NC-0.44  0 2230 

NC-0.33  0 2238 

SCC-0.44  0 2227 

SCC-0.33  0 2241 

SCC-0.44-20  20 2217 

SCC-0.33-20  20 2236 

SCC-0.44-40  40 2129 

SCC-0.33-40  40 2178 

SCC-0.44-60  60 2108 

SCC-0.33-60  60 2141 
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 Figure 7 Effect of FA content on water absorption of NC and SCC mixes. 
 

4.6 Drying shrinkage strains 

Long term drying shrinkage strains for NCs and SCCs are summarized in Table 

8. Drying shrinkage strain is considered as an important durability property, 

controlling the deterioration of concrete structures. The dying shrinkage strains 

for NCs and SCCs at 1000 days range between 316 and 695 microstrain. SCCs 

exhibited 10 to 15 % higher drying shrinkage strains compared to NCs for the 

same w/b ratio at different ages of drying. The effect of FA content on drying 

shrinkage strains and the variations with time for NCs and SCCs made with 

different w/b ratios (0.44 and 0.33) are illustrated in Figure 8 and Figure 9. It is 

observed that the DSNC and DSSCC were slightly similar at the very early 

ages, whereas there was a considerable change in the long-term. It can be 

seen in Figure 8 and Figure 9 that the effect of replacing the cement by FA was 

to reduce the drying shrinkage strains remarkably at 40% and 60% FA 

replacement, but for all of the compositions the drying shrinkage strain 
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(60%), the long term drying shrinkage strain (at 1000 days age) for SCCs was 

reduced to 49 % compared with the SCCs without FA which was consistent with 

the finding of Khatib (2005). The drying shrinkage of concrete depends on three 

controlling factors; w/b ratio, the volume of paste in concrete and the rate of 

hydration. In this study each of the five mixes had the same w/b ratio and paste 

volume. However, cement replacement by fly ash reduced the lime content from 

the mix as FA has a significantly low lime content in this study (2.5%). Due to 

the reduction of lime content, the rate of hydration of concrete reduced. As a 

result, fly ash concrete exhibited a lower degree of drying shrinkage compared 

to conventional concrete (Siddique, 2004, Saha and Sarker, 2017). It is clear 

that, the majority of concrete drying shrinkage strain occurred in the first three 

months. Afterwards, the long term drying shrinkage strain up to 1000 days was 

steady for all mixes. 

                       Table 8 Drying shrinkage strains for various ages (microstrain). 

Mix ID 

Age (days) 

28 

 

50 

 

112 

 

365 

 

500 

 

900 

 

1000 

NC-0.44 388 475 565 583 595 625 632 

NC-0.33 350 400 521 555 562 578 586 

SCC-0.44 425 500 600 632 645 681 695 

SCC-0.33 400 456 575 649 661 676 682 

SCC-0.44-20 365 452 525 541 555 576 585 

SCC-0.33-20 330 405 450 541 553 605 608 

SCC-0.44-40 238 286 325 354 363 374 383 

SCC-0.33-40 200 275 322 356 362 381 388 

SCC-0.44-60 194 251 275 301 321 329 341 

SCC-0.33-60 161 231 265 285 296 306 316 

 

 



23 
 

  

Figure 8 Effect of FA content on drying shrinkage strain for NCs and SCCs 
mixes with w/b ratio 0.44 at different ages 

 

 Figure 9 Effect of FA content on drying shrinkage strain for NCs and SCCs 
mixes with w/b ratio 0.33 at different ages 

 

0

100

200

300

400

500

600

700

800

0 100 200 300 400 500 600 700 800 900 1000

D
ry

in
g
 s

h
ri
n
k
a
g
e
 (

µ
s
tr

a
in

) 

Time (days) 

NC SCC SCC-20FA SCC-40FA SCC-60FA

0

100

200

300

400

500

600

700

800

0 100 200 300 400 500 600 700 800 900 1000

D
ry

in
g
 s

h
ri
n
k
a
g
e
 (

µ
s
tr

a
in

) 

Time (days) 

NC SCC SCC-20FA SCC-40FA SCC-60FA



24 
 

Figure 10 illustrates the relationship between FA content and drying shrinkage 

strain. There is a linear relation between FA content and drying shrinkage strain 

with R2 = 0.951 and 0.950 for the two w/b ratios 0.44 and 0.33, respectively 

indicating a strong correlation for both w/b ratios. Khatib (2008) reported a linear 

relationship between drying shrinkage at 56 days against FA content of R2 = 

0.96 with a reduction in drying shrinkage by increasing FA content.  

 

Figure 10 Relation between FA content and drying shrinkage at 1000 days for 
different w/b ratios. 

 

Figure 11 correlates the drying shrinkage at 1000 days with the compressive 

strength at 91 days. It is clear that SCCs with a w/b ratio of 0.44 showed greater 

drying shrinkage strains than those with a w/b ratio of 0.33.  At the same time 

SCCs with a w/b ratio of 0.33 which had higher compressive strengths exhibited 

reductions in the drying shrinkage. SCCs with the same w/b ratio displayed an 

increase in compressive strength when drying shrinkage increased and a linear 

relationship was obtained with R2 = 0.975 and 0.866 for w/b ratios of 0.44 and 

0.33 respectively, indicating a good correlation. As it is already known, by 
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increasing the w/b ratio, the compressive strength decreased. Consequently, 

drying shrinkage increased. The opposite trend was achieved in this study for  

which was similar to previous studies (Persson, 2001, Khatib, 2008) due to the 

presence of FA content which caused reductions in both compressive strength 

and drying shrinkage.  

 

Figure 11 Relation between compressive strength and drying shrinkage at 1000 
days for different w/b ratios. 

 

5 Assessment of drying shrinkage strains prediction models 

There are several empirical models that have been developed over several 
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the American Concrete Institute Committee (ACI 209R-92) model, the Eurocode 

2 (BS EN- 92) model, the model modified by Huo (ACI 209R-92 (Huo), the 

model developed by Bazant and Baweja (B3) and Gradner and Lockman model 

(GL2000). The characteristics of these models are described briefly in Table 7. 
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To assess the quality of predictive models, the influence of various parameters 

on the drying shrinkage strain as predicted by various models are studied. 

Range of parameters for each model was used to assess the models 

Limitations of variables considered for each model are listed in Table 8. The 

main parameters considered in this study were compressive strength, cement 

content, water content and relative humidity. 
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 Table 9 Summary of drying shrinkage models 

Models Equations  
A
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I 
2

0
9
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-

9
2

 

 Moist cured                                                           Steam cured 
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t; time of concrete at drying (days), tc; time of initial curing (days), 𝜀𝑠ℎ 𝑢 ; ultimate 

shrinkage strain (mm/mm), ɣ𝑠ℎ; cumulative of correction factors,  

ɣ𝑠ℎ,𝑡𝑐, ɣ𝑠ℎ,𝑅𝐻 , ɣ𝑠ℎ,𝑣𝑠, ɣ𝑠ℎ,𝑠, ɣ𝑠ℎ,𝜓, ɣ𝑠ℎ,𝑐 , ɣ𝑠ℎ,𝛼 , ɣ𝑠ℎ,𝑓´𝑐
 ;coefficients of curing time, relative 

humidity, volume to surface specimen, slump, ratio of fine to total aggregate, 

cement content, air content, 28 days compressive strength of concrete, 

respectively. 𝑘ℎ  ;  relative humidity coefficient, D; cross section thickness of 

concrete, α1; cement type coefficient, α2; curing type coefficient, αds; cement type 

coefficient,  𝑓𝑐𝑚; mean compressive strength. 
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   𝜀𝑠ℎ µ 
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Table 10 Variables range for each model 

Parameters  ACI209R-92 BSEN-92 ACI209R 
(Huo) 

GL2000 B3 

Compressive strength 
 (MPa) 

- 20-100  60-80 16-82 17-70 

Cement content  
(kg/m

3
) 

279-446 - 400-445 160-719 160-720 

Water content (kg/m
3
) - - - - 60-600 

Relative humidity (%) 40-100 40-100 40-100 20-100 40-100 

 

5.1 Effect of compressive strength on drying shrinkage using various 

models 

 

Figure 12 Effect of compressive strength on drying shrinkage strain using 
different models. 

  

Figure 12 shows the relation between compressive strength and drying 

shrinkage strain predicted by different models. Compressive strength of 

concrete is considered as the main parameter for calculating drying shrinkage 

strain using BSEN-92, ACI 209R-92 (Huo), GL2000 and B3 models. However, it 

does not considered for calculation drying shrinkage of concrete using ACI 
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209R-92. From Figure 12 it can be observed that there was a clear decrease in 

drying shrinkage strain predicted with the increase of compressive strength 

using BSEN-92, ACI 209R-92 (Huo) and GL2000 models. Moreover, a small 

reduction in drying shrinkage strain predicted using the B3 model with the 

increase in compressive strength was noted. Experimental results of DSSCC 

obtained from the current study satisfying the range of parameters considered 

were also plotted to compare with the prediction results as shown in Figure 12. 

ACI 209R-92 (Huo)’s model shows a close prediction to the experimental 

results. 

5.2 Effect of cement and water content on drying shrinkage using 

various models 

The influence of cement and water content on drying shrinkage is illustrated in 

Figure 13 and Figure 14. Cement content is considered as one of parameters 

by ACI 209R-92 and ACI 209R-92 (Huo) to calculate drying shrinkage strain and 

it does not taken into account as parameter for calculation drying shrinkage by 

other existing models used in this study. Moreover, the only model of the 

existing models used that considered water content as one of the parameters to 

calculate drying shrinkage strain is B3 model. There is an increase in drying 

shrinkage strain predicted with the increase in cement content using ACI 209R-

92 and ACI 209R-92 (Huo) models as shown in Figure 13. The increase of 

water content which was considered as one of the main parameters in the B3 

model induces an increase of the drying shrinkage strain predicted as illustrated 

in Figure 14. Some of the experimental results of DSSCC obtained from the 

current study were plotted in the same figure for comparing with predicted 

values.  
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 Figure 13 Effect of cement content on drying shrinkage strain for different 
models. 
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 Figure 14 Effect of water content on drying shrinkage using B3 model. 
 

5.3 Effect of relative humidity on drying shrinkage strain using various 

models 

 

Relative humidity (RH) is one of the more important parameters affecting long 

term drying shrinkage of concrete. Figure 15 depicts a clear reduction of drying 

shrinkage predicted by all models when RH increases. Experimental data of 

DSSCC obtained from the current investigation were plotted as shown in the 

same graph. Overall, the predictions obtained from ACI209R-2, GL2000 and 

ACI209R-92(Huo) are reasonably close to the experimental results. 

 

 

Figure 15 Effect of RH % on drying shrinkage strain using different models. 
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5.4 Evaluation of existing models using experimental work results 

Drying shrinkage strain experimental results obtained in this investigation are 

compared in Figure 16 to values calculated by ACI 209R-92, BSEN-92, ACI 

209R-92(Huo), B3 and GL2000 models. For each model four statistical 

observations; mean, standard deviation, coefficient of variation (COV %) and 

mean absolute error (MAE %) of ɳ = εExp/εpred were used to compare predictions 

with experimentally observed drying shrinkage values as summarized in Table 

8. From Figure 16 it is observed that the ACI 209R-92, BSEN-92, GL200 and 

ACI 209R-92(Huo) models have a tendency to overestimate the drying 

shrinkage values. The B3 model appeared to underestimate drying shrinkage 

values and resulted in a large scattering compared to other models with the 

highest mean 1.33 and standard deviation, COV % and MAE% of 0.44, 33.84 

and 41.40, respectively. The ACI 209R-92, GL2000 and BSEN-92 models had a 

mean predicted-to-calculated drying shrinkage ratio of 0.891, 0.847 and 0.823, 

respectively. However, ACI 209R-92 provided a better prediction of drying 

shrinkage compared to GL2000 and BSEN-92 with COV% of 9.30% 30% and 

37%, respectively. ACI 209R-92 (Huo) was found to overestimate drying 

shrinkage with a mean of 0.711 and least scatter with a standard deviation of 

0.10 and a MAE% equal to 18.40%. The variation values in statistical analysis 

results (mean, COV and MSE (%)) for all models could be related to the 

influence of various parameters on the drying shrinkage strain considered for 

each model. 

 As mention early in this study the main parameters affecting drying shrinkage 

strain of SCC are compressive strength, cement content and water to binder 

ratio. However, each model has different parameters to calculate drying 
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shrinkage strain. For example compressive strength was considered as main 

parameters to calculate drying shrinkage strain using ACI 209R-92 (Huo) and 

GL2000 models, ACI 209R-92 model considers cement content value to 

calculate drying shrinkage strain. The BSEN-92 and B3 models also consider 

compressive strength as one of main parameters to calculate drying shrinkage 

strain. However, both models have taken into their account two parameters as 

coefficients according to the cement type to calculate drying shrinkage strain.  

The experimental work in this study used one type of cement, different cement 

content and compressive strength obtained were different. This could explain 

the different in statistical result for the models. 

 

  

 

Table 9: Summary of statistical results for drying shrinkage predicted by existing 

models. 

Predictive models Mean Standard  deviation COV (%) MAE (%) 

ACI 209R-92 0.891 0.08 9.30 11.4 

BSEN-92 0.823 0.30 37.0 29.5 

ACI 209R-92(Huo) 0.711 0.10 11.6 18.4 

GL2000 0.847 0.26 30 24 

B3 1.31 0.44 33.84 41.4 
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Figure 16 Comparison between experimental and predicted drying shrinkage 
strains of SCCs using various prediction models 

 

ɳ values were used to indicate the ability of the model to either overestimate or 

underestimate the drying shrinkage strain of SCC at different age of concrete 

drying.  

 

ɳ = εExp /εPred                   (2) 

where εExp is  the experimental value and εPred  is the predicted value.  

The ɳ values of SCCs for the different predictive models at different ages are 

plotted in Figure 17 to Figure 21. ɳ values under 1 indicate that a particular 

model overestimates the drying shrinkage strains and residual values above 1 

indicate that the model underestimates them. The best model predicts drying 

shrinkage when ɳ are closely centred about the one axis and equally distributed 
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under and above one axis. In this study, the ɳ are plotted against the log time 

from 4 to 1000 days as well as distribution of the ɳ for all SCCs as percentage 

(%) are illustrated in the same figures. From Figure 17 to Figure 21 it can be 

observed that the ACI 209R-92, BSEN-92, ACI 209R-92 (Huo) and GL2000 

models overestimate most of the drying shrinkage values while the B3 model 

significantly underestimated the values and resulted in a larger scattering 

compared to the other models. The results of residual analysis of the models 

confirmed that the ACI 209R-92, BSEN-92, ACI 209R-92(Huo) and GL2000 

models provided overestimations with ɳ distributions of 72%, 59%, 80% and 

84% respectively. The BS model produced the lowest predicted drying 

shrinkage values compared to the experimental results with underestimations of 

ɳ distributions 80%.  

 

 

Figure 17 Experimental- to- Predicted values of SCC mixes against ages for 
ACI 209R-92 model 
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Figure 18 Experimental- to- Predicted values of SCC mixes against ages for 
BSEN-92 model. 

 

Figure 19  Experimental- to- Predicted values of SCC mixes against ages for 
ACI 209R-92(Huo) model. 
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Figure 20 Experimental- to- Predicted values of SCC mixes against ages for 

GL2000 model.

 
Figure 21 Experimental- to- Predicted values of SCC mixes against ages for B3 

model.  
 

It could be concluded that most of the models that were shown, overestimated 

the values but provided good predictions. However the ACI 209R-92 model 

exhibited the best estimate of drying shrinkage of SCCs among other models 

with the lowest MAE of 11.4% and the least scatter with a standard deviation of 
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6 Conclusions  

Based on the test results of the experimental program and computational work 

for comparison between five drying shrinkage models in this investigation, the 

following conclusions can be highlighted: 

1. The addition of fly ash can significantly improve the fresh properties of 

SCC. The higher the percentage of fly ash, the higher the workability of 

SCC. Viscosity, passing ability, filling ability and segregation resistance 

were accepted within the limits required. 

2. The compressive strength and flexural strength decreased with the 

increase of fly ash content due to the lack of lime content. SCCs without 

fly ash gave the highest value of compressive and flexural strength at 7, 

28 and 91 days of age. Using up to 60% of FA as cement replacement 

can produce SCC with a compressive strength as high as 30 MPa. 

3. Water absorption of SCCs is considerably increased when FA was used. 

However, bulk density of SCCs showed a systematic reduction with 

increase of FA content for all SCCs. All SCCs and NCs mixes having w/b 

ratios 0.33 showed lower water absorption than those made with w/b 

ratios 0.44.  

4. SCCs exhibited 5 to 10 % higher drying shrinkage compared with NCs 

made with a similar w/b ratio up to an age of 91 days. SCC long-term 

drying shrinkage from 356 to 1000 days was higher than NCs. 

5. FA reduced the rate of hydration and thus the drying shrinkage of SCCs 

containing FA was considerably lower than that of the control concrete. 

6. Most of the models used in this study tend to have overestimating 

characteristics.  
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7. GL2000 and BSEN-92 models overestimate the drying shrinkage of 

SCCs.  However, the coefficient of variation and the mean absolute error 

of these models are higher at 30% and 37%, respectively and the mean 

absolute error for both models are considerably higher.  

8. ACI 209R-92 provided a better predicted of drying shrinkage compared 

to the other models with the lowest coefficient of variation and mean 

absolute error of 9.5 % and 11.40%, respectively. Moreover, ACI 209R-

92-(Huo) model exhibited a good drying shrinkage prediction compared 

to BSEN-92, GL2000 and B3 models with a lower mean absolute error.  

9. The B3 model strongly appeared to underestimate the drying shrinkage 

strain and resulted in a larger scattering compared to the other models 

with the highest mean of 1.33. 

10.  The existing models used in this investigation have considered different 

parameters to calculate drying shrinkage strain of SCC. This could 

explain the different in the models accuracy and statistical result for each 

model 
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