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The present availability of large databases in marketing, concerning,

for example, store-level sales or individual purchases, has led to an

increased demand for appropriate econometric models to deal with

these data. The typical database contains information on revealed

preferences, measured by for example sales, market shares or brand

choices. In this thesis we study econometric models for some of these

series, to be precise, we consider market shares, purchase timing and

brand choices. These models allow us to, for example, gain insight into

the effect of marketing instruments on consumer behavior. Examples of

topics we discuss are heterogeneity in decision processes and the

development of easily interpretable models to capture dynamical

features in market shares and interpurchase times. Additionally, we

contribute to the econometric literature by extending and developing

models and estimation techniques. 
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Chapter 1

Introduction

1.1 General motivation

The present availability of large databases in marketing, concerning for example store level

sales or individual purchases, has led to an increased demand for appropriate econometric

models to deal with these data. The typical database contains information on revealed

preferences, measured by for example sales, market shares or brand choices. Sometimes

stated preferences such as opinions, attitudes and purchase intentions are also available

to the researcher through surveys.

In general, data are available at two different levels of aggregation. The data either

concern marketing measures at the aggregate level, that is, the total sales of a specific

product in a single store, or they concern a panel of households. In these panels all

purchases of a large number of households are tracked over a period of time. Additionally,

data concerning the marketing efforts of all brands in a store are available as well. One

usually has information on the actual prices of all products in all stores at each day and

information on promotional activities, such as features and displays. One of the main

goals of the application of econometric models in marketing is to gain insight into the

effects of marketing instruments on the various marketing measures.

In this thesis we will discuss marketing models at both levels of aggregation, that

is, at the household level and at the store level. The first part of this thesis deals with

models on the aggregate level, in particular we consider various extensions of the market

share attraction model. In the second part, we present models based on household panel

data, that is, models for brand choice and models for the purchase timing of individual

households. We however abstain from comparing the relative performance of the aggre-

gate and the individual level analysis. Although there still is a debate in the marketing

literature as to which level of analysis is to be preferred, we feel that both have their

relative advantages. One of the main advantages of an aggregate level analysis are the
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modest data requirements. For a study at the individual household level one needs to

track a large number of households over a period of time. Collecting such data is rather

expensive. However, based on these data one can obtain a more detailed view on the

effects of promotions than with sales or market share data. With aggregate data it is for

example difficult to see whether a sales increase is caused by more customers buying the

product or by larger purchased quantities by the customers. Our view to this issue is that

both data sources have their merits and the choice of the appropriate data depends on

the research question.

Models have been developed for all kinds of marketing data, see for example Leeflang

et al. (2000) and Franses and Paap (2001) for recent overviews of quantitative marketing

models. However, there are still a large number of unresolved issues. Some of these issues

deal with econometric aspects of existing marketing models, such as estimation, model

selection and forecasting. In this thesis we present a thorough econometric analysis of

the market share attraction model. Other unresolved issues deal with specific marketing-

theoretic questions. Examples of such issues covered in this thesis are the effects of brand

introduction, dynamic effects of promotions and structural heterogeneity.

Inference in these new or extended models is often not straightforward, and advanced

econometric techniques, such as Bayesian inference, simulation and simulated maximum

likelihood are necessary. The intention of this thesis is to provide a contribution to two,

partly overlapping, fields of research, that is, the field of applied econometrics on the one

hand and the field of quantitative marketing on the other hand. Below we give a specific

introduction and motivation for each chapter separately.

1.2 Outline

In Part I of this thesis, we focus on aggregate market response models, that is, models

for marketing measures at the level of a specific supermarket or a specific geographical

region. The typical case for this type of research is the analysis of sales or market shares

of various brands within a single category. Dependent upon the research goal, sales or

market shares may be the preferred dependent variable. In case one is interested in the

relative positioning of brands one will probably prefer the analysis of market shares. By

using market shares, one also allows for seasonal fluctuations and category expansion in

a natural way without actually having to specify these effects. In the three chapters of

Part I we will consider market shares as the focal marketing measure.

In Chapter 2 we review the market share attraction model. This model has been

a popular tool to analyze market shares for quite some time, see for example Cooper

and Nakanishi (1988). Many papers in the marketing literature have used the attraction

model. However, a thorough econometric analysis of this model is lacking. For example,
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in most studies one specific attraction specification is chosen from the wide range of

available specifications without formal testing. We show that a formal model selection

strategy based on statistical tests improves the empirical performance of the attraction

model, for in-sample fit as well as out-of-sample forecasting. Furthermore, many papers

have studied the forecasting performance of the attraction model. However, due to the

nonlinearity of the attraction model, forecasting market shares turns out not to be a trivial

issue. We demonstrate that routinely made forecasts are biased. Unbiased forecasts can

be obtained through simulation. Chapter 2 is an extended version of Fok et al. (2002a)

In Chapter 3 we extend the market share attraction model to allow for changes in

the number of brands. Such a change may occur when a new brand is introduced into

the market or when a brand is removed. We focus on the former event, although the

analysis presented in this chapter can easily be applied to the case of the exit of a brand.

As a consequence of the brand introduction several changes may take place affecting the

competition among the incumbent brands. For example, some brand managers may decide

to react to the introduction using marketing instruments. A large body of research has

investigated the issue of optimal response to market entry in the context of a market share

model. For example, Basuroy and Nguyen (1998) demonstrate that a brand introduction

should lead to price decreases. Similar studies are found in Karnani (1985) and Gruca

et al. (1992, 2001) among others. These studies are usually normative, and do not consider

empirical data. Furthermore, one usually does not account for changes in household

preferences or changes in the responses of households to marketing instruments.

We develop statistical tests with which we can explicitly test for changes in the com-

petitive structure. That is, we model the period before and after the introduction in

a single attraction model. The difficulty that arises is that the attraction model was

originally developed for a constant number of brands. The advantage of capturing both

periods in a single model is that we can easily perform statistical tests to see whether

preferences or marketing responses have changed due to the entry, while correcting for

the impact of the new brand’s marketing mix and possible competitive reactions. Next to

tests for changes in (aggregate) household behavior, we develop tests for possible changes

in the use of the marketing mix by the incumbent brands. The results of these tests can

then be used to validate the normative predictions available in the literature.

In our empirical application, we do not find evidence for the hypothesis developed in

the game-theoretic literature that prices should decrease as a reaction to the introduction.

Furthermore we find that some part of the competitive structure in the market changes,

indicating that there are consumer reactions to the introduction.

In Chapter 4, the final chapter of Part I, we discuss the analysis of dynamic effects

in the context of market shares. A flexible dynamic version of the market share model

can easily be obtained by including lagged marketing-mix instruments and lagged mar-
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ket shares in the attraction specification. However, the interpretation of the dynamical

features of such a specification is not straightforward. We show which restrictions have

to be imposed on this specification to yield an attraction model for which it is possible to

derive interesting dynamical features. The necessary restrictions turn out to correspond

well to attraction models found to be appropriate in practice.

As market shares and marketing-mix series are usually statistically stationary series

(see for example Dekimpe and Hanssens (1995a) and Nijs et al. (2001)) a temporary

promotion, for example a feature promotion or a price cut, cannot have a permanent effect

on market shares. The relevant dynamic features of a model are therefore the direct, or

short-run, effect and the cumulative, or long-run, effect of a temporary promotion. The

attraction model can be rewritten into the so-called error-correction format, in which one

can easily identify these two practically relevant features. Next to deriving an appropriate

dynamic specification, we study the relation between the short and long-run effect and

characteristics of the brand and the market. To this end, we develop a Hierarchical Bayes

model in which the short-run and long-run effects are related to these characteristics in a

second level of the model.

The resultant model is applied to a database of seven product categories in two dis-

tinct geographical areas. Our main finding is that, in absolute sense, the short-run price

elasticity usually exceeds the long-run elasticity. Furthermore, we find strong correlations

between the price elasticity and various brand and market characteristics. For example,

the price elasticity tends to be larger, in absolute sense, for higher priced brands or brands

that often issue coupons. This chapter is based on Fok et al. (2003).

Part II of this thesis also consists of three chapters. In these chapters we focus on

marketing measures at the individual level. The typical data set on revealed preferences

has the household as the unit of analysis. Therefore, we will refer to the household as the

decision maker throughout Part II of this thesis. At the household level, three variables

capture the purchase process, these are, purchase timing, brand choice, and purchased

quantity, see for example Gupta (1988). Together, these three variables determine the

market shares or sales of all brands in the market. By studying marketing measures at

the disaggregated level one may obtain more insight in household behavior compared to a

study based on sales or shares. In this thesis we will consider purchase timing and brand

choice. We leave the modeling of purchase quantity to further research.

Chapters 5 and 6 both concern the modeling of interpurchase times. These two chap-

ters are based on Fok and Paap (2003) and Fok et al. (2002b), respectively. Contrary

to the previous chapters, we now study aspects of the purchase process that are related

to the category level. Popular models to describe interpurchase timing are the Negative

Binomial model, for the discrete case, and the hazard model in case time is measured on

a continuous scale. The aim of these models is to infer the impact of household character-
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istics and marketing instruments on the purchase timing of households. Variables in the

first category are quite easy to include in a model. However, this is not the case for the

marketing instruments of brands. As purchase timing is defined at the category level, the

researcher has to somehow summarize the marketing efforts of the different brands into

a category measure. This problem is studied in Chapter 5. In this chapter we elaborate

on this issue and discuss the advantages and disadvantages of various strategies avail-

able in the literature. Furthermore, we suggest some new alternatives that are based on

summarizing the marketing mix of individual brands using brand preference probabilities

obtained through a choice model. Our findings suggest that the commonly used method

of using household-specific choice shares to aggregate the brand-level marketing mix per-

forms quite well. However, this method is not suitable when the focus of study is on

out-of-sample forecasting. In that case, the newly proposed “latent preference purchase

timing” model performs best.

In Chapter 6, we study the dynamic aspects of purchase timing. In the literature, con-

secutive interpurchase spells are assumed to be independent. However, based on findings

in, for example, the areas of consumer behavior and sales and market share modeling, one

expects correlation over time to be present. For example, consider a household persuaded

to make a purchase in a category earlier than originally planned, for example due to a large

price promotion. If the usage rate of the product is not affected, it will take the household

a longer time before the extra stock of the product is depleted. Therefore, in this exam-

ple, there is a negative correlation between interpurchase times. We develop a dynamic

version of the popular hazard model and we show how to derive the dynamic properties

of this model, thereby allowing for an intuitive and straightforward interpretation of the

model parameters.

Our empirical analysis of the purchase timing in three different product categories

indicates that there are significant dynamic effects in interpurchase times. Concerning

the dynamic effects of marketing instruments, we find substantial differences across these

categories.

Chapter 7 is a completely revised version of Fok et al. (2001). In this chapter we study

the brand choice decision of households. After having decided to make a purchase in a

specific category, the household must choose the brand to buy. However, households may

differ in the decision process they use to make this choice. The decision process used may

even differ over time for the same household.

We consider two different decision processes. Under the first decision process house-

holds actively compare the brands using price and take into account promotional activities.

We coin this decision process “responsive to marketing efforts”. Under the alternative de-

cision process the household invests less effort. In this case the household does not take

into account the promotional activities and does not pay attention to promotional pricing.
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Instead, the brand choice is driven by base preferences and state dependence, where state

dependence refers to a household’s tendency to buy the same brand as bought on the pre-

vious shopping occasion. The actual decision process used at a specific purchase occasion

cannot be observed, instead, this has to be inferred from the data. The probability of

being in the “responsive state” is related to observable characteristics, such as household

income, interpurchase time and the amount of money spent at the shopping trip.

Next to the structural heterogeneity it is important to capture differences in base

preferences across households. For the responsiveness model we choose to model the

base preferences using the normal distribution. This however does complicate the estima-

tion procedure as for such a model there is no closed-form expression for the likelihood.

To obtain parameter estimates, we maximize an approximation of the likelihood, where

the approximation is obtained using simulation. This procedure is known as simulated

maximum likelihood. However, to obtain an accurate approximation one needs many

simulation draws. To improve the accuracy of the sampler, we propose using importance

sampling. Our results show that this reduces the number of draws to a large extent.

In the empirical application we found that the responsiveness model fits rather well

on observed brand choices in the detergent category. In fact the model outperforms

various heterogenous variants of the commonly used multinomial logit model. The main

behavioral conclusions are that most households act responsive to marketing efforts, and

households buying large volumes of detergent or households buying many items on the

same shopping trip tend to be less responsive.

In Chapter 8 we conclude the thesis with a brief overview of the findings. In this

chapter we will also present some of the implications of our research and outline some

topics for further research.
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Aggregate market response models





Chapter 2

Modeling market shares

2.1 Introduction

In this chapter we will consider the econometric analysis of a popular model in marketing

research, which is the market share attraction model. This model is typically considered

for data on market shares, where the data have been collected at a weekly or monthly

interval. Compared to models for sales, market share models are useful for categories

which show instability (for example, due to rapid expansion), for which it is difficult

to compare sales figures, whereas market shares provide a natural way of performing

comparative analysis. Some studies consider the vector autoregression [VAR] model to

describe market shares, like Takada and Bass (1998) and Srinivasan et al. (2000). These

models do not explicitly impose the restriction that market shares sum to unity and that

market shares of individual brands are between zero and one. If one wants to impose this,

one usually ends up considering the attraction model.

Market share attraction models are seen as useful tools for analyzing competitive

structures, see Cooper and Nakanishi (1988) and Cooper (1993), among various others.

The models can be used to infer cross-effects of marketing-mix variables, but one can also

learn about the effects of own efforts while conditioning on competitive reactions. The

econometric analysis of the attraction model is complicated by the logical consistency

feature of the model, that is that the model rightfully assumes that market shares sum

to unity and that the market shares of individual brands are in between zero and one.

However, an attraction model can be written as a system of equations concerning all

market shares, and the parameters can then be estimated using standard methods, see

for example Cooper (1993) and Bronnenberg et al. (2000).

Interestingly, a casual glance at the relevant marketing literature on market share

attraction models indicates that there seems to have been little attention to how to specify

the attraction model, how to estimate its parameters, how to analyze it virtues in the sense
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that the models capture the salient data characteristics, and about how to use the models

for forecasting. In sum, it seems that an (empirical) econometric view in these models is

lacking. Therefore, in this chapter we aim to contribute to this view by addressing these

issues concerning attraction models when they are to be used for describing and forecasting

market shares. The first issue concerns the specification of the models. A literature check

immediately indicates that many studies simply assume one version of an attraction model

to be relevant and start from there. In this chapter we first start with a fairly general

and comprehensive attraction model, and we show how various often applied models fit

into this general framework. We also indicate how one can arrive from the general model

at the more specific models, thereby immediately suggesting a general-to-simple testing

strategy. Second, we discuss the estimation of the model parameters. We show that

a commonly advocated method is unnecessarily complicated and that a much simpler

method yields equivalent estimates. Finally, we address the issue of generating forecasts

for market shares. As the market share attraction model ultimately gets analyzed as a

system of equations for (natural) log transformed shares, generating unbiased forecasts is

far from trivial. We discuss a simulation-based method which yields unbiased forecasts.

The outline of this chapter is as follows. In Section 2.2, we first discuss the basics

of the attraction model by reviewing various specifications of the model. We discuss the

interpretation of the model in Section 2.3, and we discuss parameter estimation of the

model in Section 2.4. The topic of model selection is discussed in Section 2.5. Forecasting

market shares with the attraction model is presented in Section 2.6. Some of the practical

implications of our model selection strategy and the forecasting method are discussed in

Section 2.7. In Section 2.8, we illustrate some of the techniques using scanner data. We

conclude in Section 2.9.

2.2 Representation

In this section we start off with discussing a general market share attraction model and

we deal with various of its nested versions which currently appear in the academic mar-

keting literature. We first start with the so-called fully extended attraction model in

Section 2.2.1. This model has a flexible structure as it includes many variables. Natu-

rally this increases the empirical uncertainty about the relevant parameters. Therefore,

in practice one may want to consider restricted versions of this general model. In Sec-

tion 2.2.2, we discuss some of the restricted versions, where we particularly focus on those

models which are often applied in practice.
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2.2.1 A general market share attraction model

Let Ait be the attraction of brand i at time t, t = 1, . . . , T , given by

Ait = exp(µi + εit)
I∏

j=1

K∏
k=1

x
βkji

kjt for i = 1, . . . , I, (2.1)

where xkjt denotes the k-th explanatory variable (such as price level, distribution, adver-

tising spending) for brand j at time t and where βkji is the corresponding coefficient for

brand i. The parameter µi is a brand-specific constant. Let the error term (ε1t, . . . , εIt)
′

be normally distributed with zero mean and Σ as a possibly non-diagonal covariance ma-

trix, see Cooper and Nakanishi (1988). As we want the attraction to be non-negative, xkjt

has to be non-negative, and hence rates of changes are usually not allowed. The variable

xkjt may be a 0/1 dummy variable to indicate promotional activities for brand j at time

t. Note that for this dummy variable, one should transform xkjt to exp(xkjt) to avoid that

Ait becomes zero in case of no promotional activity.

The attraction specification in (2.1) is known as the Multiplicative Competitive In-

teraction [MCI] specification. A more general version of the attraction model uses a

transformation of the explanatory variables, that is, it uses f(xkjt) instead of xkjt. When

f(·) is taken to be the exponential function one obtains a specification known as the

Multinomial Logit [MNL] specification. The difference between the MCI and the MNL

specification is the assumed pattern of the elasticity of marketing instruments. The MCI

specification assumes that the elasticity declines with increasing values of the explanatory

variable, while the MNL specification assumes that the elasticity increases up to a specific

level and then decreases. The ultimate choice of a specification therefore depends on the

marketing instruments used. The MNL specification seems to be appropriate for adver-

tising spending, while the MCI specification would better fit pricing, see Cooper (1993) or

Cooper and Nakanishi (1988) for elaborate discussions on the choice of f(·). In order not

to complicate matters, we only consider the MCI specification, but note that all results

can be extended to the MNL specification.

The market shares for the I brands follow from the, what is called, Market Share

Theorem, see Bell et al. (1975). This theorem states that the market share of brand i is

equal to its attraction relative to the sum of all attractions, that is,

Mit =
Ait∑I

j=1 Ajt

for i = 1, . . . , I. (2.2)

The model in (2.1) with (2.2) is usually called the market share attraction model. Notice

that the definition of the market share of brand i at time t given in (2.2) implies that the

attraction of the product category is the sum of the attractions of all brands and that

Ait = Alt results in Mit = Mlt.
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An interesting aspect of the attraction model is that the Ait in (2.1) is unobserved.

As we will see below, this implies that not all the brand intercepts (µi) and not all of

the marketing-mix parameters (βkji) are identified. As we will indicate, there are many

possible model specifications for the attraction of a brand. For example, to describe po-

tential dependencies in market shares over time, which represents purchase reinforcement

effects, one may include lagged attractions Ait in (2.1). For example, one may consider

Ait = exp(µi + εit)A
γi

i,t−1

I∏
j=1

K∏
k=1

x
βkji

kjt . (2.3)

However, due to the fact that we do not observe Ait, it turns out only possible to estimate

the parameters in this model if the lag parameter γi is assumed to be the same across

brands, see Chen et al. (1994). As this may be viewed as too restrictive, an alternative

strategy to account for dynamics is to include lagged values of the observed variables Mjt

and xkjt in (2.1). The most general autoregressive structure follows from the inclusion of

lagged market shares and lagged explanatory variables of all brands. In that case, the

attraction specification with a P -th order autoregressive structure becomes

Ait = exp(µi + εit)
I∏

j=1

(
K∏

k=1

x
βkji

kjt

P∏
p=1

(
M

αpji

j,t−p

K∏
k=1

x
βpkji

kj,t−p

))
, (2.4)

where the αpji parameters represent the effect of lagged market shares on attraction and

where the βpkji parameters represent the effect of lagged explanatory variables. To illus-

trate, this model allows that the market share for brand 1 at t − 1 has an effect on that

of brand 2 at t, and also that there is a relationship between brand 2’s market share and

the price of brand 1 at t − 1. The lagged endogenous variables capture dynamics in pur-

chase behavior that cannot be attributed to specific marketing instruments. For example,

consider state dependence in behavior. If brand i is purchased at time t by consumers

who act state dependent, there will be a higher probability that they will purchase brand

i again at time t + 1. Whether the brand was chosen at time t because it was promoted

or just by chance does not influence the dynamics in the behavior. On the other hand,

part of the dynamics in the behavior can be attributed to specific marketing instruments.

As an example, consider price promotions. A well-known feature of promotions is the

post-promotional dip, see van Heerde et al. (2000). In the period after a promotion it is

often observed that sales or market shares decrease temporarily, as due to the promotion

there has been stock piling by the consumers. To capture such dynamic patterns we

include lagged exogenous variables in our attraction specification.

The flexibility of this general specification is reflected by the potentially large number

of parameters. For example with I = 4 brands, K = 3 explanatory variables and P = 2

lags, there are over 150 parameters to estimate (although they are not all identified,
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see below). It is however not necessary that the order P for the lagged market shares

and lagged explanatory variables is the same. To obtain a different lag order for the

explanatory variables, one can restrict the corresponding βpkji parameters to be zero.

The model that consists of equations (2.4) and (2.2) is sometimes called the fully

extended multiplicative competitive interaction [FE-MCI] model, see Cooper (1993). To

enable parameter estimation, one can linearize this model in two steps. First, one can

take one brand as the benchmark brand. Choosing brand I as the base brand yields

Mit

MIt

=
exp(µi + εit)

∏I
j=1

(∏K
k=1 x

βkji

kjt

∏P
p=1

(
M

αpji

j,t−p

∏K
k=1 x

βpkji

kj,t−p

))
exp(µI + εIt)

∏I
j=1

(∏K
k=1 x

βkjI

kjt

∏P
p=1

(
M

αpjI

j,t−p

∏K
k=1 x

βpkjI

kj,t−p

)) . (2.5)

In Section 2.4.2, we will discuss another approach to linearizing the model, but we will

show that both transformations lead to the same parameter estimates, while the estima-

tion procedure based on (2.5) is much simpler. Next, one can take the natural logarithm

(denoted by ln) of both sides of (2.5). Together, this results in the (I − 1)-dimensional

set of equations given by

ln Mit − ln MIt = (µi − µI) +
I∑

j=1

K∑
k=1

(βkji − βkjI) ln xkjt+

I∑
j=1

P∑
p=1

(
(αpji − αpjI) ln Mj,t−p +

K∑
k=1

(βpkji − βpkjI) ln xkj,t−p

)
+ ηit. (2.6)

for i = 1, . . . , I − 1. Note that not all µi parameters (i = 1, . . . , I) are identified. Also

for each k and p, one of the βkji and βpkji parameters is not identified. In fact, only the

parameters µ̃i = µi − µI , β̃kji = βkji − βkjI and β̃pkji = βpkji − βpkjI are identified. This is

however sufficient to completely identify elasticities, see Section 2.3 below and Cooper and

Nakanishi (1988, p. 145). Finally, one can only estimate the parameters α̃pji = αpji−αpjI .

The error variables in (2.6) are ηit = εit − εIt, i = 1, . . . , I − 1. Hence, given the

earlier assumptions on εit, (η1t, . . . , ηI−1,t)
′ is normally distributed with mean zero and

the ((I − 1)× (I − 1))-dimensional covariance matrix Σ̃ = LΣL′, where L = (II−1
...− iI−1)

with II−1 an (I − 1)-dimensional identity matrix and where iI−1 is an (I − 1)-dimensional

unity vector. Note that therefore only 1
2
I(I − 1) parameters of the covariance matrix Σ

can be identified.

In sum, the general attraction model can be written as a (I−1)-dimensional P -th order

vector autoregression with exogenous variables [sometimes abbreviated as VARX(P )],
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given by

ln Mit − ln MIt = µ̃i +
I∑

j=1

K∑
k=1

β̃kji ln xkjt+

I∑
j=1

P∑
p=1

(
α̃pji ln Mj,t−p +

K∑
k=1

β̃pkji ln xkj,t−p

)
+ ηit, (2.7)

i = 1, . . . , I − 1, where the covariance matrix of the error variables (η1t, . . . , ηI−1,t)
′ is

Σ̃. Note that the model is only valid for the observations starting at time t = P + 1.

For inference, it is common practice to condition on the first P initial values of the log

market shares and the explanatory variables as is also done in vector autoregressions, see

Lütkepohl (1993). For further reference, we will consider (2.7) as the general attraction

specification. We will take it as a starting point in our within-sample model selection

strategy, which follows the general-to-specific principle, see Section 2.5 below.

It is not possible to write the log market shares in (2.7) as a function of current and

lagged explanatory variables and disturbances only. It is even not possible to solve (2.7)

for ln Mit−ln MIt. This is mainly due to the complex dynamic structure. This means that

it is difficult to derive restrictions for stationarity of the log market shares themselves.

In practice, this may not be a serious problem. Indeed, Srinivasan and Bass (2000)

and Franses et al. (2001) consider testing for unit roots in market shares in a different

model and their results suggest that generally market shares appear to be stationary. In

Chapter 4 we will discuss modeling and interpreting dynamics in market share models in

detail.

2.2.2 Various restricted models

As can be understood from (2.7), the general attraction model contains many parameters

and in practice this will absorb many degrees of freedom. Therefore, one usually assumes

a simplified version of this general model. Obviously, the general model can be simplified

in various directions, and, interestingly, the academic marketing literature indicates that

in many cases one simply assumes some form without much further discussion. Selecting

an appropriate model may be a non-trivial exercise, as there are many possible simpler

models. One can for example impose restrictions on the β coefficients, on the covariance

structure Σ, and on the autoregressive parameters α. In this section we will discuss a

few of these potentially empirically relevant restrictions on the attraction specification

in (2.4).
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Restricted Covariance Matrix [RCM]

If the covariance matrix of the error variables εit in (2.4) is a diagonal matrix, where each

εit has its own variance σ2
i , that is, Σ = diag(σ2

1, . . . , σ
2
I ), then the covariance matrix for

the (I − 1)-dimensional vector ηit in (2.7) becomes

diag(σ2
1, . . . , σ

2
I−1) + σ2

I iI−1i
′
I−1, (2.8)

where iI−1 denotes a (I − 1)-dimensional unity vector. In Section 2.5 we discuss how one

can examine the validity of (2.8). If this restriction holds, the errors in the attraction spec-

ifications are independent, implying that the unexplained components of the attraction

equations are uncorrelated.

Restricted Competition [RC]

One can also assume that the attraction of brand i only depends on its own explanatory

variables. This amounts to the assumption that marketing effects of competitive brands

do not have an attraction effect, see for example Kumar (1994) among others. For (2.4),

this corresponds to the restriction βkji = 0 (and βpkji = 0) for j �= i. More precisely, this

RC restriction implies that (2.4) reduces to

Ait = exp(µi + εit)
K∏

k=1

xβki

kit

I∏
j=1

P∏
p=1

(
M

αpji

j,t−p

K∏
k=1

x
βpki

ki,t−p

)
for i = 1, . . . , I, (2.9)

where we write βki for βkii and βpki for βpkii. Consequently, the linearized multiple equation

model in (2.7) becomes

ln Mit − ln MIt = µ̃i +
K∑

k=1

βki ln xkit −
K∑

k=1

βkI ln xkIt+

I∑
j=1

P∑
p=1

(
α̃pji ln Mj,t−p +

K∑
k=1

βpki ln xki,t−p −
K∑

k=1

βpkI ln xkI,t−p

)
+ ηit (2.10)

for i = 1, . . . , I − 1. Notice that this means that the coefficients βkI are equal across the

(I−1) equations and that these restrictions should be taken into account when estimating

the parameters. The RC assumption in (2.9) imposes K(P + 1)I(I − 2) restrictions on

the parameters in the general model in (2.7), which amounts to a substantial increase in

the degrees of freedom. In Section 2.5 we will discuss how this restriction can be tested.

Restricted Effects [RE]

An even further simplified model arises if we assume, additional to RC, that the β pa-

rameters are the same for each brand, that is, βki = βk (and βpki = βpk), see Danaher
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(1994) for an implementation of this combined restrictive model. This model assumes

that marketing efforts for brand i only have an effect on the market share of brand i,

and also that these effects are the same across brands. In other words, price effects, for

example, are the same for all brands. It should be noted here that these similarities do

not hold for elasticities, as will become apparent in Section 2.3. One may coin this model

as an attraction model with restricted effects. Based on (2.4), the attraction for brand i

at time t then further simplifies to

Ait = exp(µi + εit)
K∏

k=1

xβk

kit

I∏
j=1

P∏
p=1

(
M

αpji

j,t−p

K∏
k=1

x
βpk

ki,t−p

)
for i = 1, . . . , I, (2.11)

and the linearized multiple equation model (2.7) simplifies to

ln Mit − ln MIt = µ̃i +
K∑

k=1

βk(ln xkit − ln xkIt)+

I∑
j=1

(
P∑

p=1

α̃pji ln Mj,t−p +
K∑

k=1

βpk(ln xki,t−p − ln xkI,t−p)

)
+ ηit (2.12)

for i = 1, . . . , I−1. This RE assumption imposes an additional K(P +1)(I−1) parameter

restrictions on the β coefficients of (2.7). Of course, it may occur that the restrictions only

hold for a few and not for all βkji parameters, that is, for only a few marketing variables.

In that case, less parameter restrictions should be imposed.

Restricted and Common Dynamics [RD, CD]

Finally, one may want to impose restrictions on the autoregressive structure in (2.4), im-

plying that the purchase reinforcement effects are the same across brands. For example,

the restriction that the attraction of brand i at time t only depends on its own lagged

market shares Mit corresponds with the restriction αpji = 0 for j �= i in (2.4). The corre-

sponding multivariate model, representing an attraction model with Restricted Dynamics

[RD], then becomes

ln Mit − ln MIt = µ̃i +
I∑

j=1

K∑
k=1

β̃kji ln xkjt+

I∑
j=1

P∑
p=1

(
αpi ln Mj,t−p − αpI ln MI,t−p +

K∑
k=1

β̃pkji ln xkj,t−p

)
+ ηit, (2.13)

for i = 1, . . . , I − 1, where we again save on notation by using αpi instead of αpii. Note

that now the αpI parameters are the same across the (I − 1) equations and hence that
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these restrictions should be imposed when estimating the model parameters. To illustrate,

Chen et al. (1994) additionally impose that P = 1 and α1i = γ, which yields the estimable

version of the attraction model in (2.3) which assumes that the purchase reinforcement

effects are the same across brands. For further reference, we will call this last restriction

the Common Dynamics [CD] restriction. It turns out that under this restriction it is

possible to derive the dynamical properties of the attraction model. This restriction will

be used in Chapter 4 where we explicitly consider the dynamics in market shares, that is,

we will consider the long-run and the short-run effects of the marketing mix on shares.

The above discussion shows that various attraction models, which are considered in

the relevant literature and in practice for modeling and forecasting market shares, are

nested within the general attraction model in (2.4). In Table 2.1 we summarize the

different parameter restrictions and we mention which studies use these restrictions. In

the literature a model specification is usually selected a priori. However, the fact that the

models are nested automatically suggests that an empirical model selection strategy can

be based on a general-to-simple strategy, see also Section 2.5.

2.3 Interpretation

As the market shares get modeled through the attraction specification, and as this implies

a reduced form of the model where parameters represent the impact of marketing efforts

on the logarithm of relative market shares, the parameter estimates themselves are not

easy to interpret. To facilitate an easier interpretation, one usually resorts to elasticities.

In fact, it turns out that the reduced-form parameters are sufficient to identify these

(cross-)elasticities.

For model (2.4), the instantaneous elasticity of the k-th marketing instrument of

brand j on the market share of brand i is given by

∂Mit

∂xkjt

xkjt

Mit

= βkij −
I∑

r=1

Mrtβkrj, (2.14)

see Cooper (1993). To show that these elasticities are identified, one can rewrite them

such that they only depend on the reduced-form parameters, that is,

∂Mit

∂xkjt

xkjt

Mit

= (βkji − βkjI)(1 − Mit) −
I−1∑

r=1∧r �=i

Mrt(βkjr − βkjI), (2.15)

see (2.6). Under Restricted Competition, these elasticities simplify to

∂Mit

∂xkjt

xkjt

Mit

= (δi=j − Mjt)βkj, (2.16)



Table 2.1: Attraction model specifications used in the literature

Model Lag

Restrictions on∗

Literature
Dynamics

Covariance
Exogenous

Lagged

matrix exogenous

I 1 RD NR RC NI Leeflang and Reuyl (1984)

Danaher (1994)

II 1 CD NR RC NI Naert and Weverbergh (1981)

Brodie and Bonfrer (1994)

Brodie and de Kluyver (1984)

Chen et al. (1994)

Kumar (1994)

III 0 - NR RC NI Chen et al. (1994)

Ghosh et al. (1984)

IV 1 CD NR RE NI Naert and Weverbergh (1981)

Brodie and de Kluyver (1984)

Leeflang and Reuyl (1984)

Chen et al. (1994)

Kumar (1994)

V 0 - NR RE NI Chen et al. (1994)

∗ RD=restricted dynamics, CD=common dynamics, RC=restricted competition, RE=restricted effects, NR=no
restrictions, NI=not included
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where δi=j is the Kronecker δ which has a value of 1 if i equals j and 0 otherwise. Under

Restricted Effects, we simply have

∂Mit

∂xkjt

xkjt

Mit

= (δi=j − Mjt)βk. (2.17)

It is easy to see that the elasticities converge to zero if the market share goes to 1.

From a marketing perspective, this seems rather plausible. If a brand controls almost

the total market, its marketing efforts will have little if any effect on its market share.

Secondly, in case the market share is an increasing function of instrument X, then if X

goes to infinity the elasticity will go to 0. These two properties may seem straightforward,

but among the best known market share models, the attraction model is the only model

satisfying these properties, see also Cooper (1993). Whether the above two properties

hold in a practical attraction model depends on the specific transformation of variables

used, although the MCI and the MNL specification both lead to elasticities satisfying

these properties.

2.4 Parameter estimation

In this section we discuss two methods for parameter estimation, and we show that they

are equivalent. The first method is rather easy, whereas the second (which seems to be

commonly applied) is more difficult.

2.4.1 Base brand approach

To estimate the parameters in attraction models, we consider the (I − 1)-dimensional set

of linear equations which results from log-linearizing the attraction model given in (2.7).

In general, these equations can be written in the following form

y1t = w′
1tb1 + z′1ta + η1t

y2t = w′
2tb2 + z′2ta + η2t

... =
... +

... +
...

yI−1,t = w′
I−1,tbI−1 + z′

I−1,ta + ηI−1,t,

(2.18)

where yit = ln Mit − ln MIt, ηt = (η1t, . . . , ηI−1,t)
′ ∼ N(0, Σ̃), and where wit are ki-

dimensional vectors of explanatory variables with regression coefficient vector bi, which is

different in each equation, and where zit are n-dimensional vectors of explanatory variables

with regression coefficient vector a which is the same across the equations, i = 1, . . . , I−1.

Each (restricted) version of the general attraction model discussed in Section 2.2.2 can be

written in this format.
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To discuss parameter estimation, it is convenient to write (2.18) in matrix notation. We

define yi = (yi1, . . . , yiT )′, Wi = (wi1, . . . , wiT )′, Zi = (zi1, . . . , ziT )′ and ηi = (ηi1, . . . , ηiT )′

for i = 1, . . . , I − 1. In matrix notation, (2.18) then becomes
y1

y2

...

yI−1

 =


W1 0 . . . 0 Z1

0 W2 . . . 0 Z2

...
...

. . .
...

...

0 0 . . . WI−1 ZI−1




b1

...

bI−1

a

+


η1

η2

...

ηI−1

 (2.19)

or

y = Xγ + η (2.20)

with η ∼ N(0, (Σ̃ ⊗ IT )), where ⊗ denotes the familiar Kronecker product.

One method for parameter estimation of (2.20) is ordinary least squares [OLS]. Gen-

erally, however, this leads to consistent but inefficient estimates, where the inefficiency

is due to the (possibly neglected) covariance structure of the disturbances. Only if the

explanatory variables in each equation are the same, or in the unlikely case that Σ̃ is a

diagonal matrix, and provided that there are no restrictions on the regression parameters

(wit = 0 for all i, t), OLS provides efficient estimates, see Judge et al. (1985, Chapter 12),

among others. Therefore, one should better use generalized least squares [GLS] methods

to estimate the model parameters. As the covariance matrix of the disturbances is usually

unknown, one has to opt for a feasible GLS procedure, where we use the OLS estimator

of the covariance matrix of the disturbances. This procedure is known as Zellner’s (1962)

seemingly unrelated regression [SUR] estimation method. Under the assumption of nor-

mality, an iterative SUR estimation method will lead to the maximum likelihood [ML]

estimator of the model parameters, see Zellner (1962).

To estimate the parameters in attraction models, and to facilitate comparing various

models, we favor ML estimation. The log of the likelihood function of (2.20) is given by

	(γ, Σ̃) = −T (I − 1)

2
ln(2π) +

T

2
ln |Σ̃−1| − 1

2
(y − Xγ)′(Σ̃−1 ⊗ IT )(y − Xγ). (2.21)

The parameter values which maximize this log likelihood function are consistent and

efficient estimates of the model parameters.

For the FE-MCI model without any parameter restrictions in (2.7), the ML estimator

corresponds with the OLS estimator, as the explanatory variables are the same across

equations. In that case,

γ̂OLS = (X ′X)−1X ′y (2.22)

such that γ̂OLS = (b̂OLS,1, . . . , b̂OLS,I−1, âOLS)′, see (2.19), and

ˆ̃Σ =
1

T

T∑
t=1

η̂tη̂
′
t, (2.23)
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where η̂t consists of stacked η̂it = yit − w′
itb̂OLS,i − z′itâOLS.

For the attraction models with restrictions on the regression parameters, that is, for

the RC model in (2.10), the RE model in (2.12), and the RD model in (2.13), one can

opt for the iterative SUR estimator which converges to the ML estimator. Starting with

the OLS-based estimator for Σ̃ in (2.23), one constructs the feasible GLS estimator

γ̂SUR = (X ′( ˆ̃Σ−1 ⊗ IT )X)−1X ′( ˆ̃Σ−1 ⊗ IT )y, (2.24)

that is the SUR estimator, see Zellner (1962). Next, we replace the estimate of the

covariance matrix ˆ̃Σ by the new estimate of Σ̃, that is (2.23), where η̂t now consists of

stacked η̂it = yit − w′
itb̂SUR,i − z′itâSUR, to obtain a new SUR estimate of γ. This routine

is repeated until the estimates for γ and Σ̃ have converged. Under the assumption of

normally distributed disturbances, the final estimates are the ML estimates of the model,

that is, they maximize the log likelihood function (2.21).

A little more involved are the restrictions on the Σ̃ matrix. To estimate the attraction

model under the restriction (2.8), one can either directly maximize the log likelihood

function (2.21) with Σ̃ = diag(σ2
1, . . . , σ

2
I−1) + σ2

I iI−1i
′
I−1 using a numerical optimization

algorithm like Newton-Raphson or one can again use an iterative SUR procedure. In the

latter approach, the new estimate of Σ̃ is obtained by maximizing

	(Σ̃) = −T (I − 1)

2
ln(2π) +

T

2
ln |Σ̃−1| − 1

2
η̂′(Σ̃−1 ⊗ IT )η̂, (2.25)

where η̂ are the residuals from the previous SUR regression. Again, we need a numer-

ical optimization routine to maximize (2.25). Especially in cases where there are many

brands, the optimization of (2.25) can become cumbersome. It can however be shown,

see Appendix 2.A, that the optimization can be reduced to numerically maximizing a

concentrated likelihood over just σ2
I where one uses

σ̂i
2 =

η̂′
iη̂i

T
− σ̂2

I for i = 1, . . . , I − 1, (2.26)

where η̂i = (η̂i1, . . . , η̂iT )′. Given an estimate of σ2
I , this relationship can be used to obtain

estimates of σ2
1, . . . , σ

2
I−1.

Finally, in all the above cases the standard errors for the estimated regression param-

eters γ are to be estimated by

V̂ar(γ̂) = (X ′( ˆ̃Σ−1 ⊗ IT )X)−1, (2.27)

where one should include the appropriate ML estimator for Σ̃. When taking the square

roots of the diagonal elements of this matrix, one obtains the appropriate standard errors.
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2.4.2 Log-centering approach

The above estimation routine is based on the reduced-form model, which is obtained from

reducing the system of equations using the base-brand approach. An alternative method

is the, what is called, log-centering method advocated by Cooper and Nakanishi (1988).

We will now show that this method is equivalent to the above method, although a bit

more complicated.

The log-centering approach is based on the following transformation. After taking the

natural logs for the I model equations, the log of the geometric mean market share over

the brands is subtracted from all equations. The reduced-form model is now specified

relative to the geometric mean. So instead of reducing the system of equations by using

a base brand, this methodology reduces the system by the “geometric average brand”.

Note that the reduced-form model in this case still contains I equations.

To demonstrate the equivalence of parameters obtained through the log-centering tech-

nique of Cooper and Nakanishi (1988) and those using the base-brand approach, we show

that there exists an exact relationship between these sets of parameters. The parameters

for the base-brand specification can uniquely be determined from the parameters for the

log-centering specification and vice versa. Given the 1-to-1 relationship the likelihoods are

the same, that is, the discussed feasible GLS estimator yields the same maximum value

of the likelihood as we can use the invariance principle of maximum likelihood, see for

example Greene (1993, page 115). All that needs to be shown is the 1-to-1 relationship

between the parameters in the two specifications.

Consider a general attraction specification, that is

Ait = exp(µi + εit)
I∏

j=1

K∏
k=1

z
βkji

kjt , (2.28)

where zkjt may contain any kind of explanatory variable, such as lagged market shares,

promotion and price. The market shares are again defined by

Mit =
Ait∑I

j=1 Ajt

. (2.29)

Written in a vector notation the model for the natural logarithm of attraction becomes

ln At :=

ln A1t

...

ln AIt

 =

µ1

...

µI

+
K∑

k=1


βk11 βk21 . . . βkI1

βk12 βk22 . . . βkI2

...
...

. . .
...

βk1I βk2I . . . βkII


ln zk1t

...

ln zkIt

+

ε1t

...

εIt


= µ +

K∑
k=1

Bk ln zkt + εt.

(2.30)
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The definition of market share in (2.29) implies that lnMit = ln Ait − ln
∑I

j=1 Ajt. In a

vector notation this gives

ln Mt :=

ln M1t

...

ln MIt

 = ln At − iI ln
I∑

j=1

Ajt, (2.31)

where iI denotes a (I × 1) unity vector.

As the model in (2.31) cannot be estimated directly due to the nonlinear dependence

of ln(
∑I

j=1 Ajt) on the model parameters, a reduced-form model should be considered.

The log-centering method now subtracts the average of the log market shares from the

equations to give a reduced-form specification. The dependent variable in this system of

equations is now

ln M1t

...

ln MIt

−


1
I

∑I
j=1 ln Mjt

...
1
I

∑I
j=1 ln Mjt

 =


1 − 1

I
−1

I
. . . −1

I

−1
I

1 − 1
I

. . . −1
I

...
...

. . .
...

−1
I

−1
I

. . . 1 − 1
I

 ln Mt

= H(lc) ln Mt,

(2.32)

where H(lc), with rank I − 1, denotes the transformation matrix corresponding to the

log-centering approach. The reduced-form model then becomes

H(lc) ln Mt = H(lc) ln At − H(lc)iI ln
I∑

j=1

Ajt, (2.33)

which equals

H(lc) ln Mt = H(lc)µ +
K∑

k=1

H(lc)Bk ln zkt + H(lc)εt (2.34)

as H(lc)iI = 0I×I . Due to the reduced rank of H (lc), the system in (2.34) contains I

equations, but it only has I − 1 independent equations.

Alternatively, the base-brand approach in Section 2.4.1 gives as the dependent vari-

ables in the reduced-form model ln M1t

...

ln MI−1,t

−

ln MIt

...

ln MIt

 =


1 0 . . . 0 −1

0 1 . . . 0 −1
...

...
...

...

0 0 . . . 1 −1

 ln Mt

= H(bb) ln Mt,

(2.35)
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with H(bb) as the relevant transformation matrix. As H (bb)iI = 0I−1×I , the reduced-form

model becomes

H(bb) ln Mt = H(bb) ln At = H(bb)µ +
K∑

k=1

H(bb)Bk ln zkt + H(bb)εt, (2.36)

which is to be compared with (2.34). This system contains only I − 1 equations.

The 1-to-1 relation between the parameters in the two approaches follows from the

fact that the equation CH (lc) = H(bb) yields a unique solution C, given by

C =


1 0 . . . 0 −1

0 1 . . . 0 −1
...

...
...

...

0 0 . . . 1 −1

1 1 . . . 1 1

 . (2.37)

Hence, the matrix C relates the “log-centered” parameters to the “base-brand” param-

eters. The inverse transformation from the base-brand specification to the log-centered

specification follows from applying the Moore-Penrose inverse of C, denoted by C+, that

is,

C+ =


1 − 1

I
−1

I
. . . −1

I

−1
I

1 − 1
I

. . . −1
I

...
...

. . .
...

−1
I

−1
I

. . . 1 − 1
I

−1
I

−1
I

. . . −1
I

 . (2.38)

Note that the matrix C+ satisfies H(lc) = C+H(bb).

The above shows that the transformations yield equivalent parameters. For example,

assume that the log-centered form of the model is estimated, giving estimates of H (lc)µ,

H(lc)Bk and H(lc)ΣH(lc)′ . By multiplying the estimated system of equations by C we

get CH(lc)µ, CH(lc)Bk and CH(lc)ΣH(lc)′C ′ as model coefficients. Using the invariance

principle of maximum likelihood and the relation CH (lc) = H(bb), these coefficients are

the maximum likelihood estimates of H (bb)µ, H(bb)Bk and H(bb)ΣH(bb)′ . These coefficients

are exactly the same as the coefficients used in the base-brand specification, see (2.36).

Using the inverse of C, the procedure can be used the other way around. We can also

obtain estimates of the coefficients in a log-centered specification from the estimates in a

base-brand specification by multiplying them with C+.

In our opinion, the main reason to prefer taking a base brand to reduce the model is

that the statistical analysis of the resulting model is more straightforward as compared to

the log-centering technique. Recall that the log-centered reduced-form model contains I

equations whereas the base brand reduced-form model only has I−1 equations. One of the
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equations in the log-centered specification is however redundant. This redundancy leads

to some difficulties in the estimation and interpretation, as estimation usually requires

the (inverse) covariance matrix of the residuals. In the log-centering case the residuals are

linearly dependent, and the covariance matrix is therefore non-invertible. Further, direct

interpretation of the coefficients obtained from the base-brand approach is easier as each

coefficient only concerns two brands, while a coefficient in the log-centering approach

always involves all brands.

Another advantage of using the base-brand approach concerns markets where the

number of brands changes over time. In this case the “geometric average” brand may

consist of different number of brands across weeks. The variability in the market share

of this average brand will fluctuate with the numbers of brands available. Using this

average brand as a base brand, as proposed in the log-centering approach, will therefore

introduce complicated forms of heteroscedasticity. If a brand is available during the

entire sample period, the base-brand approach can be straightforwardly applied without

introducing heteroscedasticity. If such a brand is not available, a different base brand can

be considered for different weeks. This will also introduce some heteroscedasticity, but of

a more manageable form than would be the case for the log-centering approach.

2.5 Model selection

Attraction models are often considered for forecasting market shares. It is usually assumed

that, by imposing in-sample specification restrictions, the out-of-sample forecasting ac-

curacy will improve. Exemplary studies are Brodie and Bonfrer (1994), Danaher (1994),

Naert and Weverbergh (1981), Leeflang and Reuyl (1984), Kumar (1994) and Chen et al.

(1994), among others. A summary of the relevant studies is given in Brodie et al. (2001).

A common characteristic of these studies, an exception being Chen et al. (1994), is that

they tend to compare one or two specific forms of the attraction model with various more

naive models. In this section we consider the question of obtaining the best (or a good)

choice for the specification from the wide range of possible attraction specifications.

There are of course many possible approaches to obtain a suitable attraction specifi-

cation. One could consider a set of popular specifications and select the optimal model

using an information criterion, like the BIC (Schwarz, 1978), or use statistical tests to

determine the “best” model. In a Bayesian setting one could even derive posterior prob-

abilities for the proposed models. One may select the model with the highest posterior

probability or one can combine several models. For example, to construct forecasts, one

can use the posterior probabilities to weight forecasts generated by the different models.

Another strategy is to start with a general model and try to simplify it using statistical
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test. In this chapter we opt for this general-to-simple model selection strategy, following

Hendry (1995).

The starting point of the model selection strategy is the most extended attraction

model, that is, model (2.7) without any restrictions. Of course, in practice the size of the

model is governed by data availability and sample size. The first step of a model selection

strategy concerns fixing the proper lag order P of the model. It is well known that

an inappropriate value of P leads to inconsistent and inefficient estimates. To perform

valid inference on the restrictions on the explanatory variables and covariance matrix it is

therefore necessary to first determine the appropriate lag order. Furthermore, imposing

incorrect restrictions on the explanatory variables and covariance matrix may lead to

selecting an incorrect lag order. Lag order selection may be based on the BIC criterion.

Another strategy may be a sequential procedure, where one starts with a large value

of P and tests for the significance of the β̃Pkji and α̃Pji parameters and imposes these

restrictions when they turn out to be valid. These tests usually concern many parameter

restrictions and may therefore have little power. Instead, one may therefore base the

lag order determination on Lagrange Multiplier [LM] tests for serial correlation in the

residuals, see Lütkepohl (1993) and Johansen (1995, p. 22). The advantage of these tests

is that they concern less parameter restrictions and hence have more power. We would

recommend to start with a model of order 1 and increase the order with 1 until the LM

tests do not indicate the presence of any serial correlation.

Once P is fixed, we propose to test the validity of the various restrictions on (2.7) as

proposed in Section 2.2.2. We test for the validity of restriction (2.8) on the covariance

matrix Σ̃ [RCM] in model (2.7). Additionally, we test in model (2.7) for restricted dy-

namics [RD], common dynamics [CD], and, for each explanatory variable k, for restricted

competition [RC], for restricted effects [RE] (2.12) and even for the absence of this vari-

able. Finally, we propose to test for the significance of the lagged explanatory variables

in the general model.

Next, we recommend to perform an overall test for all restrictions which were not

rejected in the individual tests. If this joint test is not rejected, all restrictions are imposed,

and this results in a final model that can be used for forecasting. However, if the joint test

indicates rejection, one may want to decide to relax some restrictions, where the p-values

of the individual tests can be used to decide which of these restrictions have to be relaxed.

Note that apart from the lag order selection stage we perform the individual tests in the

general model and that we do not directly impose the restrictions if not rejected. Hence,

the model selection approach in this stage does not depend on the sequence of the tests.

Furthermore, as we use a general-to-specific strategy, we do not a priori exclude model

specifications.

To apply our general-to-simple model selection strategy, we have to test for restrictions

on the covariance matrix Σ̃ and on the other model parameters (collected in γ) in (2.7). To
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test these parameter restrictions, we opt for Likelihood Ratio [LR] tests, see for example

Judge et al. (1985, p. 475). Denoting the ML estimates of the parameters under the null

hypothesis by (γ̂0,
ˆ̃Σ0) and the ML estimates under the alternative hypothesis by (γ̂a,

ˆ̃Σa),

then

LR = −2(	(γ̂0,
ˆ̃Σ0) − 	(γ̂a,

ˆ̃Σa)) ∼
asy

χ2(ν), (2.39)

where 	(·) denotes the log-likelihood function as defined in Section 2.4 and where ν is the

number of parameter restrictions.

2.6 Forecasting

There has been considerable research on forecasting market shares using the market share

attraction model. Most studies discuss the effect on the forecasts of the estimation

technique used in combination with the parametric model specification, see for exam-

ple Leeflang and Reuyl (1984), Brodie and de Kluyver (1984) and Ghosh et al. (1984),

among others. More recent interest has been on the optimal model specification under

different conditions, see, for example, Kumar (1994) and Brodie and Bonfrer (1994). The

available literature, however, is not very informative as to how forecasts of market shares

should be generated. In this section we show that forecasting market shares turns out

not to be a trivial exercise and that in order to obtain unbiased forecasts one has to use

simulation methods.

Furthermore, in empirical applications it should be recognized that parameter values

are obtained through estimation. The true parameter values are usually unknown, and

parameter values are at best obtained through unbiased estimators of the true values.

In a linear model this parameter uncertainty can be ignored when constructing unbiased

forecasts. However, in nonlinear models this may not be true. Recently, Hsu and Wilcox

(2000) addressed this issue in the context of a multinomial logit framework. These authors

study the stochastic prediction of market shares using the multinomial logit model. In

their paper they stress that in order to obtain accurate forecasts the uncertainty in param-

eter estimates should be taken into account. Upon using Monte Carlo experiments, they

demonstrate that indeed the forecast accuracy improves when uncertainty is included.

The market share attraction model differs from the multinomial logit model in an

important aspect. The multinomial logit model obtains the market share as aggregated

brand choice probabilities. For a large number of households the market shares are there-

fore deterministic. In a market share attraction model we however have two sources of

uncertainty. We have the intrinsic uncertainty due to the stochastic nature of the market

shares and we have the uncertainty induced by parameter uncertainty. Even when the

model parameters are known it is not straightforward to obtain market share forecasts.
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In Section 2.6.1 we present how to obtain forecasts without considering parameter

uncertainty. In Section 2.6.2 we discuss the case where parameter uncertainty is taken

into account.

2.6.1 Forecasting market shares

To provide some intuition why forecasting in a market share attraction model is not a

trivial exercise, consider the following. The attraction model ensures logical consistency,

that is, market shares lie between 0 and 1 and they sum to 1. These restrictions imply that

the model parameters can be estimated from a multivariate reduced-form model with I − 1

equations. The dependent variable in each of the I − 1 equations is the natural logarithm

of a relative market share. More formally, it is lnmit ≡ ln Mit

MIt
, for i = 1, 2, . . . , I − 1. The

base brand I can be chosen arbitrarily.

Of course, one is usually interested in predicting Mit and not in the logs of the relative

market shares. It is then important to recognize that, first of all, exp(E[lnmit]) is not

equal to E[mit] and that, secondly, E[Mit/MIt] is not equal to E[Mit]/E[MIt], where E

denotes the expectation operator. Therefore, unbiased market share forecasts cannot be

obtained by routinized transformations of forecasts of log relative market shares, see also

Fok and Franses (2001) for similar statements in the context of forecasting market shares

from models for sales.

To forecast the market share of brand i at time t, one needs to consider the relative

market shares

mjt = Mjt/MIt for j = 1, 2 . . . , I, (2.40)

as m1t, . . . ,mI−1,t form the dependent variables (after log transformation) in the reduced-

form model (2.7). As MIt = 1 −∑I−1
j=1 Mjt, we have that

MIt =
1

1 +
∑I−1

j=1 mjt

Mit = MItmit =
mit

1 +
∑I−1

j=1 mjt

for i = 1, 2, . . . , I − 1.
(2.41)

Note that mIt = MIt/MIt = 1 and hence (2.41) can be summarized as

Mit =
mit∑I

j=1 mjt

for i = 1, 2, . . . , I. (2.42)

As the relative market shares mit, i = 1, . . . , I − 1 are log-normally distributed by

assumption, see (2.7), the probability distribution of the market shares involves the inverse

of the sum of log-normally distributed variables. The exact distribution function of the

market shares is therefore complicated. Moreover, correct forecasts should be based on
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the expected value of the market shares, and unfortunately, for this expectation there is

no simple algebraic expression. Appropriate forecasts therefore cannot be obtained from

the expectations directly.

If we ignore parameter uncertainty for the moment, we need to calculate the expec-

tations of the market shares given in (2.42). This cannot be done analytically. However,

we can calculate the expectations using simulations. The relevant procedure works as

follows. We use model (2.7) to simulate relative market shares for various disturbances

η randomly drawn from a multivariate normal distribution with mean 0 and covariance

matrix Σ̃. In each run, we compute the market shares where parameter values and the

realization of the disturbance process are assumed to be given. The market shares aver-

aged over a number of replications now provide their unbiased forecasts. Notice that we

only need the parameters of the reduced-form model in the simulations.

To be more precise about this simulation method, consider the following. The one-step

ahead forecasts of the market shares are simulated as follows, first draw η
(l)
t from N(0, Σ̃),

then compute

m
(l)
it = exp(µ̃i + η

(l)
it )

I∏
j=1

(
K∏

k=1

x
β̃kji

kjt

P∏
p=1

(
M

α̃pji

j,t−p

K∏
k=1

x
β̃pkji

kj,t−p

))
, i = 1, . . . , I − 1, (2.43)

with m
(l)
It = 1 and finally compute

M
(l)
it =

m
(l)
it∑I

j=1 m
(l)
jt

for i = 1, . . . , I, (2.44)

where l = 1, . . . , L denotes the simulation iteration and where the FE-MCI specification is

used, see (2.4). Every vector (M
(l)
1t , . . . ,M

(l)
It )′ generated this way amounts to a draw from

the joint distribution of the market shares at time t. Using the average over a sufficiently

large number of draws we calculate the expected value of the market shares. By the weak

law of large numbers we have

plim
L→∞

1

L

L∑
l=1

M
(l)
it = E[Mit]. (2.45)

For finite L the mean value of the generated market shares is an unbiased estimator of

the market share. The estimate may differ from the expected market share, but this

difference is only due to simulation error and this error will rapidly converge to zero if

L gets large. Of course, the value of L can be set at a very large value, depending on

available computing power.

The lagged market shares in (2.7) are of course only available for one-step ahead

forecasting and not for multiple-step ahead forecasting. Hence, one has to account for
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the uncertainty in the lagged market share forecasts. One can now simply use simulated

values for lagged market shares, thereby automatically taking into account the uncertainty

in these lagged variables. Note that we assume that the marketing efforts of all market

players are known. It is possible to also model these efforts and use the estimated model

to obtain market share forecasts that also account for that uncertainty. The models

describing the marketing efforts can be used to simulate future values of the levels of the

marketing instruments. To take into account the uncertainty of future marketing efforts

for forecasting market shares, we use the simulated efforts instead of forecasted efforts to

obtain draws from the joint distribution of market shares in (2.43) and (2.44).

2.6.2 Parameter uncertainty

As the model parameters are estimated and parameter estimators are random variables,

one should take into account their associated uncertainty, see also Hsu and Wilcox (2000).

When estimated parameters are used for forecasting in combination with a nonlinear

model, we should also take into account the uncertainty of these estimates. In linear

models, the uncertainty can be ignored. To see this, consider the model y = Xβ + ε,

ε ∼ N(0, 1). The OLS estimate of β, denoted by β̂, is a stochastic variable as it is

a function of the data y. The uncertainty in this estimate however is irrelevant for

generating unbiased forecasts as E[Xβ̂] = XE[β̂] = Xβ = E[y]. In nonlinear models this

is in general not the case. Consider y = g(X, β) + ε, where g(·, ·) is a nonlinear function.

In general, E[g(X, β̂)] �= g(X, E[β̂]) = g(X, β) = E[y]. Therefore g(X, β̂) is not an

unbiased estimator of y, even when β̂ is an unbiased estimator of β. For some special cases

there are closed-form expressions for obtaining unbiased forecasts in a nonlinear models

using estimated parameters. For example, Finney (1941) and Bradu and Mundlak (1970)

consider the expectation of log-normal random variables and forecasting in log-normal

regression, respectively. Even for the rather simple case of log-normal regression, the

expressions derived for the forecasts are very involved. It is very likely that in our case,

where we have a multivariate model with a nonlinear dependence between the disturbances

and the dependent variable, a technique based on the work of Finney (1941) is not feasible.

To take account of the stochastic nature of the estimator, we again have to rely on

simulation. Unfortunately, the relevant distribution of the parameters is not known. To

overcome this difficulty, we propose to use parametric bootstrapping to draw parameters

from their distribution. Summarizing all parameters in θ, we sample θ using the following

scheme: (i) Use the estimated parameters θ̂, the realizations of the exogenous variables

and the first P observed realizations as starting values to generate artificial realizations

of the market shares; (ii) Reestimate the model based on this artificial data. The thus

obtained parameters θ̂(l), l = 1, . . . , L, where L denotes the number of draws, can be seen

as draws from the small sample distribution of θ̂. For every bootstrap realization of θ̂(l)
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we calculate the conditional expectation E[Mit| θ̂(l)], i = 1, . . . , I using the simulation

technique in Section 2.6.1. The average of the forecasts over all generated parameter

vectors constitutes unbiased forecasts of the market shares under uncertain parameters.

That is, we calculate E[Mit] as 1
L

∑L
l=1 E[Mit| θ̂(l)]. It is not necessary to use many

simulation rounds conditional on the parameters. Theoretically it suffices to use one

round for every θ̂(l).

In a classical setting we have to rely on bootstrapping techniques to account for param-

eter uncertainty. A Bayesian analysis of market share models would have the advantage

that it provides a more natural approach to account for parameter uncertainty. To obtain

the posterior distribution of the parameters of the market share attraction model one can

rely on Markov chain Monte Carlo [MCMC] methods, see Casella and George (1992) for

a simple introduction and Paap (2002) for a recent survey. As byproduct of this sampler

we can obtain forecasts which account for parameter uncertainty. See Chapter 4 for a

discussion of the market share attraction model in a Bayesian setting. Although we do

not consider forecasting in that chapter, the sampling scheme derived there can easily be

used to generate forecasts.

2.7 Marketing implications

We now develop some empirical intuition on the adverse effects of not using unbiased

forecasts and of not using a correctly specified model. To illustrate the effects of the

forecasting method, consider

Ait = exp(µi+εit) and Mit =
Ait

A1t + A2t + A3t

, i = 1, 2, 3,

(µ1, µ2, µ3)
′ = (2,−1, 1),

(ε1t, ε2t, ε3t)
′ ∼ N(0,




2 0.5 −0.5

0.5 1 −0.5

−0.5 −0.5 1


 ).

(2.46)

A tempting (but naive and incorrect) way to get market share forecasts relies on forecasts

of log market shares relative to a base brand, that is, lnmit = ln(Ait/A3t) = µi − µ3 +

εit − ε3t, where here brand 3 is chosen as the base brand. Therefore, l̂n mit = µi − µI .

From these log relative market share forecasts, market share forecasts could be obtained

from M̂it = exp(l̂n mit)/
∑3

j=1 exp(l̂n mjt). With this, the market share forecasts would

become M̂1t = 0.705, M̂2t = 0.035 and M̂3t = 0.260.

These forecasts are of course biased as the order of the expectation, the exponent and

the division operator can not be interchanged! Indeed, unbiased forecasts follow from

E[Mit] =

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

Ait

A1t + A2t + A3t

φ(ε1t, ε2t, ε3t)dε1tdε2tdε3t, (2.47)



32 Modeling market shares

where φ(ε1t, ε2t, ε3t) denotes the joint (normal) density function of the random attractions.

Evaluating the integrals using simulation yields E[M1t] = 0.616, E[M2t] = 0.048 and

E[M3t] = 0.336, and these correct forecasts clearly differ from those reported above.

To illustrate the empirical relevance of the correct forecasting procedure, consider a

marketing manager who has to decide whether or not to feature or display her brand

in the next week. This decision could be based on a comparison of the costs of the

promotion and the expected additional profit. Profit can be defined as Π = (p− c)M ×S,

with p the price, c the unit cost of the product, M the market share, and S the market

size. Assuming no category expansion due to the promotion, the expected additional

profit equals ∆Π = (p − c)(E[M | prom.] − E[M | no prom.]) × S, with E[M | prom.] and

E[M | no prom.] the expected market shares with and without a promotion, respectively.

To compare the additional profits under the two forecasting methods, we will consider

the percentage difference of the additional profits, that is, (∆Πn − ∆Πs)/∆Πs, with n

denoting naive forecasts and s denoting simulated forecasts. Note that this measure does

not depend on the price, unit cost or the market size.

To illustrate the effects for a realistic situation, we use the model selected for the

first case considered in Section 2.8. This model includes as explanatory variables prices,

display, feature, these variables one period lagged, and lagged market shares. For the

period for which the promotion decision is made, we fix the prices, lagged prices and

lagged market shares to their average value. We also assume the absence of displays and

features of competitors, to save space. Of course, the exercise could be extended in various

directions. Table 2.2 shows that using the naive forecasts yields quite substantive errors

in the expected additional profits. For the own effects, indicated in bold face in Table 2.2,

the naive method overestimates the effects for three brands and underestimates the effect

for the fourth (base) brand. The cross effects in the off-diagonal elements concern a change

in profit of brand A due to a promotion of brand B. These effects are measured highly

inaccurately when estimated using the naive method, with differences in the expected

additional profit up to 20%.

Finally, to emphasize the importance of proper specification for attraction models, we

consider a simple model with only one explanatory variable, say, the logarithm of the price

for each brand. We consider three versions of this model, that is, (i) no restrictions on the

competitive structure, (ii) restricted competition and (iii) restricted effects. We generate

data based on price series and estimated parameters from the ERIM data base on Lite

Tuna, see Section 2.8, using each of these versions. For each data generating process, the

three models are estimated. Table 2.3 shows the forecasting accuracy for each of these

models. On the brand level we measure the forecasting performance using the Root Mean

Squared Prediction Error [RMSPE]. On the market level this measure is however less

suitable as market shares, and market share forecasts, sum to one, the forecasts error will

sum to zero. As a market level measure we use the log of the determinant of the residual
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Table 2.2: Percentage bias in the effect of a feature or display. A positive percentage

indicates an overstatement of the effect estimated by the naive method.

Display Feature

Del Monte Heinz Hunts Rest Del Monte Heinz Hunts Rest

Del Monte 1.93 4.86 −10.49 −21.18 2.27 2.98 −9.80 −20.84

Heinz 11.43 5.50 16.68 3.45 12.14 3.11 16.42 5.44

Hunts −11.22 9.48 7.30 −18.09 −11.44 6.88 7.36 −16.20

Rest −23.51 −2.66 −18.81 −5.70 −23.54 −5.36 −18.33 −4.04

covariance matrix, where one brand is omitted. Due to the properties of the forecasting

errors and the determinant operator this measure is invariant for the choice of the omitted

brand. A large determinant corresponds to large forecasting errors.

We find that imposing restrictions while they are not valid is worse than the other way

around. That is, estimating a model with full competition when in fact the true model has

restricted competition yields a better performing model than when a model with restricted

effects were estimated. Moreover, standard econometric theory tells us that inappropriate

parameter restrictions imply omitted variable bias. Consequently, parameter estimates

cannot be trusted. In general marketing-mix elasticities will be biased in case a too

restrictive specification is used, whereas we will obtain unbiased estimates if too few

restrictions are imposed. However, proper restrictions increase efficiency, and subsequent

statistical analysis of parameters can be based on greater accuracy.

2.8 Illustration

For our empirical work we consider the so-called ERIM database of the University of

Chicago. Each of the available datasets contains information on market shares and mar-

keting instruments of a specific product category in either Sioux Falls (market 1) or

Springfield (market 2), USA, all collected by A.C. Nielsen. The data span 124 weeks from

July 1986 to December 1988. We have information on 14 data sets containing market

shares, prices, and two promotional 0/1 dummy variables (display and feature). The

data sets concern seven product categories, containing two, three or four brands in two

markets, see the first three rows of Table 2.4.

For each of these markets we consider our in-sample model selection strategy. Model

selection and estimation is based on the first 111 observations, so as to have 13 observations

(a quarter of a year) for out-of-sample forecasting. Table 2.4 shows the results of model
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Table 2.3: Forecast rank based on the Root Mean Squared Prediction Error for each

brand (first 3 sets of columns) and on the determinant of the covariance matrix of

the forecast errors (last 3 columns)

Data Generating Process

Brand 1 Brand 2 Brand 3 All brands

NR RC RE NR RC RE NR RC RE NR RC RE

Model Tuna market 1

NR 2 3 3 2 3 3 1 2 3 1 2 3

RC 3 2 2 3 2 2 2 1 2 2 1 2

RE 1 1 1 1 1 1 3 3 1 3 3 1

Model Tuna market 2

NR 1 2 3 1 2 3 1 2 3 1 2 3

RC 2 1 2 2 1 2 2 1 2 2 1 2

RE 3 3 1 3 3 1 3 3 1 3 3 1

RC=restricted competition, RE=restricted elasticities, NR=no restrictions.

selection. The fourth row of Table 2.4 shows the resulting lag order P of the models.

The optimal value of P turns out to be 1 for all data sets, except for Sugar market 2,

where P appears to be two. The final six rows show the restrictions (if any) on the

dynamic structure, the covariance matrix, and the exogenous variables resulting from

the model selection strategy. We notice that in most cases (11 out of 14), models with

common dynamics [CD] are preferred. Also, the restricted covariance matrix restriction

is preferred in 10 out of 14 cases. This is quite interesting as this restriction is rarely (if

ever) imposed in practice! Lagged exogenous variables are relevant in 11 out of 14 cases,

which is also in contrast with many models considered in the literature, see Table 2.1.

The main conclusion is that no single type of model is preferred for all 14 cases. Hence,

our model selection strategy arrives at a wide variety of models.

The last 13 observations are used to assess the out-of-sample forecasting accuracy of

the different models. The forecasts of the models, discovered by our model selection strat-

egy, are to be compared with the unbiased forecasts generated from the five alternative

attraction models in Table 2.1. In practice, marketing actions of competitors are not

known to a brand manager. These marketing efforts therefore also have to be forecasted.

Klapper and Herwartz (2000) suggest that, for market share forecasting, simple mod-



Table 2.4: Attraction models selected by the general-to-simple strategy

Category Catsup
Peanut Stick

Sugar Tissue Tuna
Tube

butter margarine margarine

Market 1 2 1 2 1 2 1 2 1 2 1 2 1 2

Number of brands 4 4 4 4 4 4 2 2 4 4 3 3 4 4

Lag order (P) 1 1 1 1 1 1 2 1 1 1 1 1 1 1

Valid restrictionsa

Dynamics CD CD RD NR CD CD CD CD CD RD CD CD CD CD

Covariance matrix RCM RCM RCM RCM RCM RCM NR NR RCM RCM NR NR RCM RCM

Price RE RC NR NR NR NR RE RC RC NR RE NR RC NR

Display RE RE NR NR RE NI RE RC RE NR NR NI NR NI

Feature RC NR RC RE RE RC RC NI RC RC RE RE NR RC

Lagged Exogenous IN IN IN IN IN IN IN IN NI IN NI IN IN NI

a RD=restricted dynamics, CD=common dynamics, RC=restricted competition, RE=restricted elasticities,
RCM=restricted covariance matrix, NR=no restrictions, and NI=not included IN=included.
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els for marketing instruments suffice. We follow their recommendations and use AR(2)

models for the prices and rely on logit models for feature and display. The logit models

have as explanatory variables the lagged feature and display indicators of all brands. To

accommodate for the uncertainty in these actions we base our market share forecasts on

simulated marketing efforts.

Table 2.5: Rank based on 1- and 2-step ahead forecasts using the

simulation method (1 is best, 6 is worst)

Model∗

I II III IV V VI

1-step ahead forecasting

Number of times best model 1 0 2 2 2 7

Average rank 3.07 3.86 3.93 3.71 3.79 2.64

2-step ahead forecasting

Number of times best model 0 1 2 3 1 7

Average rank 3.57 3.79 3.21 3.93 3.36 3.14

∗ Models I-V are given in Table 2.1. Model VI is selected by our model selection
strategy and details are given in Table 2.4.

Table 2.5 evaluates the out-of-sample performance of the six considered models. The

appropriate evaluation criterion is again the log of the determinant of the covariance

matrix of the forecast errors. The models selected by our strategy (model VI) deliver

the best forecasts in 7 out of 14 cases for both horizons, where for each forecast 25,000

replications are used. Furthermore, the average rank across models is lowest. Additionally,

for each model we calculate the ratio of the forecast error and the forecast error of the

best performing model. The average of this ratio over all markets gives an indication

of the improvement in forecasting performance. For models I to VI, these ratios equal

1.046, 1.055, 1.073, 1.050, 1.066, and 1.028, thereby indicating that on average the model

selected by our strategy performs 2.8% worse than the best model, whereas the other

models perform about 5% (or more) worse.
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2.9 Concluding remarks

In this chapter we have gone through part of the econometrics involved in analyzing

market share attraction models. We believe that a systematic strategy enhances the

possibility to compare various empirical findings and to understand deficiencies in case

model forecasts turn out to be inaccurate. Key issues that we have discussed are model

selection and forecasting. We have shown that the commonly applied forecasting method

yields biased forecasts and that the use of a systematic model selection procedure can

further enhance the performance of an empirical model.

There are a few more issues that we feel need concern. First of all, one may want to

allow for the event of new brands entering the market or old brands leaving it. In Chapter 3

we discuss techniques for doing so. Another area of research involves the analysis of

possibly differing short-run and long-run effects of marketing efforts, see Dekimpe and

Hanssens (1995b) and Paap and Franses (2000), among others. In Chapter 4 we discuss

this issue in the context of the market share attraction model.



38 Modeling market shares

2.A Estimation of restricted covariance matrix

Recall the log likelihood function (2.25)

	(Σ̃) = −T (I − 1)

2
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where eik is a zero vector of size (k× 1) with the i-th element equal to 1. Solving the last

equation given σ̂2
I yields

σ̂i
2 =

η̂′
iη̂i

T
− σ̂2

I . (2.51)

The concentrated likelihood is obtained by inserting (2.51) into the likelihood (2.48). The

concentrated likelihood now has to be optimized over just one parameter, that is σI .



Chapter 3

Analyzing the effects of a brand

introduction on competitive

structure using a market share

attraction model

3.1 Introduction

The introduction of a new brand in an existing market can have a large impact on the

competitive structure, which concerns the market shares, the marketing instrument elas-

ticities (as established by consumer behavior) and the use of marketing-mix instruments

by brand managers. For example, such an introduction may trigger intensified price com-

petition, thereby possibly also affecting the relative effectiveness of price promotions for

the incumbent brands. There may also be consumer reactions which can lead to a change

in the relative effectiveness of pricing strategies. Note that similar changes could occur

if a brand is removed from the market. Naturally, the effects of a changing number of

brands is not confined to price competition, as the same arguments would hold for any

other marketing instrument, like for example display or distribution. Furthermore, after

correcting for the effects of the marketing-mix variables, the new brand may turn out to

win share at the cost of only a few competitors, instead of drawing share proportionally

from all incumbent brands.

In the literature, there are several studies of the effects of the entry of a new brand

on the competitive structure. These studies can be broadly divided in two types of

approaches. One approach takes a non-cooperative game-theoretic view, while the other

is predominantly based on empirical research using time-series or panel data models.
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The first type of studies takes a normative viewpoint, that is, there is a focus on how

one should respond to an entry in an optimal way. An example is Basuroy and Nguyen

(1998), who derive the theoretical conditions under which a market share attraction model

is appropriate for equilibrium analysis. Within the context of this model, these authors

demonstrate that the entry of a new brand would establish price decreases, which would

hold true for fixed and expanding markets. For fixed markets they further show that

incumbent brands would be inclined to lower marketing expenditures, while in expanding

markets these expenditures would be set at higher levels. Other examples of similar

approaches can be found in Karnani (1985), Cubbin and Domberger (1988), and Gruca

et al. (1992, 2001). A key feature of these studies is that there is usually no focus on

empirical data. A notable exception is Shankar (1997) who studies the marketing-mix

reactions by pioneers to entry. In the studied market, the entry changes the competition

from a monopoly to a duopoly, with as a consequence that in the duopoly market, different

competitive games can be played. Next, optimal responses to entry are derived for each

case and empirical data is then used to find the actual game played in a pharmaceutical

market. Shankar (1997) concludes that the results found in for example Gruca et al.

(1992) only hold under certain competitive games, while it also has to be assumed that

marketing-mix elasticities are constant.

Good examples of the second type of research, which is more data-based, are Bowman

and Gatignon (1996) and Chintagunta (1999). This research is explicitly based on ob-

served market situations. Bowman and Gatignon (1996) study the effect of the order of

entry on market shares and the effectiveness of marketing instruments. They show that

the order of entry negatively influences the effectiveness of promotion and that it lowers

price sensitivity. The main effects of the order of entry on own market share are found to

be small, while in contrast there are strong effects of the order of entry on the effective-

ness of marketing efforts. Bowman and Gatignon (1996) do not consider the effects of an

entrant on the incumbent brands, while it would not be unlikely that a brand introduc-

tion also affects the effectiveness of marketing-mix variables of these other brands. Note

that they do assume dependence between marketing-mix elasticities and the number of

competitors, but they abstain from testing for changes in these elasticities, nor do they

consider cross effects.

An example of a study that does consider changes in the marketing-mix effectiveness

of incumbent brands is Chintagunta (1999), where the effects of entry are studied in the

context of an individual choice model. A random effects multinomial logit model is used

where brand intercepts are modeled by brand locations in attribute space with household-

specific importance weights. A new brand introduces an additional brand position in

the attribute space. As a consequence of this entry, several changes to the competitive

structure may occur. First of all, locations of extant brands or importance weights may

change, or both. It is shown that a brand introduction has a substantial impact on the



3.1 Introduction 41

importance weights assigned to attributes. Only minor changes occur in brand positions

and in the sensitivity to marketing activities. Chintagunta (1999) documents that, due to

a new brand introduction, price sensitivity tends to increase while promotional sensitivity

tends to decrease.

As can be understood from the discussion above, Bowman and Gatignon (1996) and

Chintagunta (1999) only describe the demand side of the market. That is, these studies

focus on the effects on elasticities, where these elasticities may change due to brand

repositioning or changes in preference. The behavior on the supply side, by retailers and

manufacturers, is not studied. An example of an empirical study, which does consider

the effects of new entry on this side of the market is Robinson (1988). He presents an

analysis of the reactions to an entrant in 115 different cases, where he shows that the

most common reaction pattern to entry is no reaction or only a reaction with a single

marketing instrument. However, as Basuroy and Nguyen (1998) suggest in a response to

these findings, there is a need for further empirical analysis to support the theoretical

results.

This brings us to the contribution of this chapter to the literature on the effects of

market entry. We put forward several empirical methods to examine both sides of the

market. We suggest statistical methods to validate the various predictions from normative

studies. Our techniques are designed for weekly scanner time series data on market shares.

We focus on market shares as we are interested in the relative performance of brands

when a new brand is introduced, even when this introduction would lead to an increase

in category sales. Naturally, our methods can be redesigned if one intends to focus on

sales only. Such an approach could turn out to be useful in a category in which expansion

effects play an important role. However, in a sales model, one needs to model seasonal

effects and the category expansion or category contraction explicitly.

In order to analyze changes in actual behavior of a brand manager, that is, changes

in the use of instruments like price and display, one needs methods to test for structural

changes in time series variables. Upon doing so, we build on the findings in Srinivasan

et al. (2000), who document that, except for possible level shifts, marketing time series

data seem to be stationary. Hence, we also assume stationarity of all time series under

scrutiny. Next, to examine possible changes in the effects of marketing-mix efforts, within

the context of a market share attraction model, we propose new methods. First of all, we

introduce a new estimation method that can handle a changing number of brands in the

observation period. Next, we propose a method to test whether parameter values differ

across the subsamples. To demonstrate the value added of our approach we perform a

simulation study where we compare our method with various, naive, alternatives.

To summarize, this chapter contributes to the literature by the development of mea-

surement tools to examine the effects of the entry and exit of brands, given the availability

of a sample of the relevant time series data. As the exit of a brand mirrors an entry, we
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only focus on the latter for brevity. Naturally, our methods can readily be adapted to the

exit case.

It should be mentioned that we condition our analysis on the observed entrant’s strat-

egy. Hence, we study the effects of this strategy on a specific existing competitive struc-

ture, and we therefore cannot consider the effects of different strategies. There are papers

where the entrant’s strategy is explicitly considered, see for example Gatignon et al.

(1990), Shankar (1999) and Shankar et al. (1999). However, when one were to apply

our methods to a range of data sets, one might make generalizing statements about the

observed behavior and its consequences.

We apply our methods to a set of weekly time series observations concerning the

detergent category. For this market we observe the introduction of a new brand at about

one-third of the sample. Upon application of our methods, we do not find supportive

evidence for the hypothesis that prices are lowered after the introduction of a new brand.

Next, we find that not many marketing efforts are increased, after the introduction of a

new brand, where we should bear in mind of course that we consider only one market. We

further find that part of the competitive structure changes after an introduction, thereby

providing an incentive to further examine consumer response to brand introduction.

The outline of this chapter is as follows. In Section 3.2, we discuss the testing ap-

proach verbally, that is, without explicit formulas. In Section 3.3, we briefly discuss the

attraction model, and we discuss parameter estimation in the attraction model, while

taking into account the introduction of the new brand. Technical details are relegated

to Appendix 3.A. In Section 3.4, we present a testing procedure to assess whether the

introduction of the new brand results in a different competitive structure among the in-

cumbent brands, where we put the technicalities in Appendix 3.B. Section 3.5 we present

the results of a simulation experiment in which we compare the approach suggested in

Section 3.4 with various alternatives. In Section 3.6, we discuss the testing procedure

for breaks in the level of marketing instruments. The testing and estimation procedures

are illustrated in Section 3.7 for the detergent category. We conclude this chapter in

Section 3.8 with some remarks.

3.2 Testing approach

In this section, we outline the ideas behind our empirical approach, without laying out

any technical issues. Our analysis of the effect of a brand introduction on the compet-

itive structure is guided by the notion that part of the changes in market shares might

directly be attributed to the marketing efforts of the new brand. This is in contrast to

standard structural break analysis, where there is no endogenous effect at the time of the

break. Hence, the question at hand is whether all the observed changes are due to the
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marketing efforts of the new brand or whether the consumers have changed their behav-

ior too. A third effect can be that incumbent brands adapt their marketing strategies.

For example, as a reaction to the introduction, brand managers may decide to change

their marketing strategy. Combinations of these effects are of course also possible.

Testing for changes in the use of marketing instruments is relatively straightforward.

To test whether brands make less or more use of their marketing instruments, we will

analyze breaks in the levels of the marketing instruments. This can be pursued using

relatively standard time series techniques, although we will see below that one has to take

into account that not all variables amount to continuous data.

Testing for changes in the competitive structure is more complicated, due to the fact

that changes in the marketing mix and the competitive structure can occur simultaneously.

One has to control for the direct effects of the new brands’ marketing mix and for the

effects of competitive response. For example, consider a market with two brands with an

equal market share. The introduction of a third brand may cause that one brand loses

more market share than the other. However, from this observation we cannot infer that

the first brand is affected more by brand entry, as the second brand for example could

have lowered its prices as a reaction to the entry, thereby obtaining market share from

the first brand. Also, if we observe a price cut, we cannot conclude that all differences

between the two incumbent brands can be assigned to this price change.

In sum, a substantive empirical analysis of the effects of a brand introduction calls

for a model that jointly captures the pre-introduction and the post-introduction period.

Separate models for the pre- and post-entry period are not very informative. Indeed,

only in a combined model, it is possible to perform statistical tests on the constancy

of parameters or on changes in the competitive structure. If one is only interested to

see if there might be an effect at all, one can use two independent models. Technically

speaking, all model parameters are then allowed to change, that is, the brand intercepts,

parameters concerning all marketing instruments and the covariance matrix, and due to

this, it is difficult, if not impossible, to find which aspect of the competitive structure has

really changed.

As another strategy, one might be inclined to test for changes in a model where the

new entrant is simply not included. This however is also not a good idea. The reason for

this is that marketing instruments for the new brand generally have an indirect effect on

the performance of the incumbent brands. So, even if the competitive structure among

the incumbent brands remains constant, one could find changing parameters due to the

effect of the marketing instruments of the new brand.

We therefore propose an alternative method, and our strategy can now be summarized

as follows. We propose a model that concerns the periods before and after the entry.

Below we will see that parameter estimation in such a model is not straightforward. The

main complication is that market share models are developed for a constant number of
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brands throughout the sample. To test for changes in a market, we need a model that

incorporates the influence of the new brand by describing both periods and all brands.

This chapter deals with the empirical analysis of such a model. The next three sections all

deal with the (changing) competitive structure within the context of an attraction model.

In Section 3.6, we turn to testing for changes in the use of the marketing mix.

3.3 Attraction Model

The competitive structure can be studied using either sales or shares. We choose to ana-

lyze market shares and to measure the effectiveness of marketing instruments of different

brands using the familiar market share attraction model (Naert and Weverbergh, 1981;

Leeflang and Reuyl, 1984; Cooper and Nakanishi, 1988; Bronnenberg et al., 2000). An

advantage of using market shares is that these are in general not influenced by category

expansion or contraction. Unlike sales, market shares are therefore usually stationary

series, see for example Srinivasan et al. (2000), which, by the way, also facilitates the sta-

tistical analysis. With a brand entry in an expanding market, sales of incumbent brands

may stay constant and, consequently, their market shares may fall. It may also happen

that category sales do not increase, and in that case the incumbent brands’ market shares

also fall. Hence, out of the two, it seems that market shares are the most interesting

variable to consider. An additional advantage is that market shares usually do not show

seasonal fluctuations as all brands are similarly affected by seasonal effects.

Below we discuss the representation and parameter estimation of the attraction model,

for the special case where a brand is introduced during the sample period. We focus on the

introduction of a single brand, but our method can easily be extended to the simultaneous

introduction of multiple brands, to multiple independent brand introductions and to the

exit of a brand. These extensions are not considered here to save space.

We first assume that the competitive structure does not change due to brand entry.

We focus on an attraction model with constant parameters, where only the number of

brands changes during the observation period. First, we need to introduce some notation.

Suppose that the sample spans weeks 1 to T . Without loss of generality, denote the new

brand as brand 1 and the time of the introduction of this brand as T1, 1 < T1 < T , where

T1 is known. The total number of brands in the market, after the introduction, will be

denoted by I. So, before the introduction we have brands i = 2, 3, . . . , I and after the

introduction we have the brands i = 1, 2, . . . , I.

Following Cooper and Nakanishi (1988), the overall attraction of brand i = 2, . . . , I

at time t = 1, . . . , T1 − 1, that is, prior to the introduction, is defined by

Ait = exp(µi + εit)
I∏

j=2

K∏
k=1

x
βkji

kjt , (3.1)
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see also Chapter 2. As usual, xkjt denotes the k-th marketing instrument of brand j at time

t, and the parameter associated with the effect of this instrument on brand i is denoted

by βkji. The µi are intercepts and the εit denote error terms. After the introduction of

brand 1, the attraction of brand i = 1, . . . , I at time t = T1, . . . , T is defined by

Ait = exp(µi + εit)
I∏

j=1

K∏
k=1

x
βkji

kjt . (3.2)

Note that (3.2) allows the marketing instruments of brand 1 to influence the attractions of

all incumbent brands in the post-introduction period. Further note that, for the moment,

we assume that the effects of the marketing instruments for the incumbent brands are

constant over the entire sample, as we assume the same parameters across (3.1) and (3.2).

This assumption will be relaxed in Section 3.4, where we consider parameter estimation

in a more flexible model, where the incumbent brands’ parameters are allowed to change.

As usual, we assume a normal distribution for the errors. For the pre-introduction

period we have (ε2t, . . . , εIt)
′ ∼ N(0, Σ(1)) and for the post-introduction period we have

(ε1t, . . . , εIt)
′ ∼ N(0, Σ(2)), where the (1) and (2) superscripts denote parameters before and

after the introduction, respectively. For the moment, we also assume that the covariances

of the unexplained attractions among the incumbent brands do not change due to brand

introduction. Therefore, Σ(2) can be partitioned as

Σ(2) =


σ11 σ12 . . . σ1I

σ12

... Σ(1)

σ1I

 . (3.3)

The interpretation of this restriction is as follows. The covariance can be seen as a

measure of brand similarity. If two brands have a strong positive correlation, consumers

must evaluate these brands as similar. By assuming a constant covariance, we assume

that the unobserved part of the relative positioning of the incumbent brands, that is, the

part that is not explained by observed marketing instruments, remains unchanged.

According to the market share theorem (Bell et al., 1975), a brand’s market share is

defined by its relative attraction. The market share of a brand is equal to its attraction

relative to the total attraction of the market, that is

Mit =
Ait∑I

j=2 Ajt

, i = 2, . . . , I, t = 1, . . . , T1 − 1,

Mit =
Ait∑I

j=1 Ajt

, i = 1, . . . , I, t = T1, . . . , T,

(3.4)

where Mit denotes the market share of brand i at time t. This completes the model.
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As can been seen from (3.1), (3.2) and (3.4), the attraction model is nonlinear in

its parameters. Fortunately, the model can be linearized to allow for relatively straight-

forward estimation, see also Section 2.2. By considering market shares relative to the

market share of a base brand, for example brand I, and by taking natural logs we obtain

a multi-equation model for log relative market shares which is linear in the parameters.

This reduced-form model is defined in terms of relative parameters, that is in terms of

µ̃i = µi − µI , β̃kji = βkji − βkjI and ηit = εit − εIt, where (η2t, . . . , ηIt)
′ ∼ N(0, Σ̃(1)), for

t = 1, . . . , T1 − 1 and (η1t, . . . , ηIt)
′ ∼ N(0, Σ̃(2)), for t = T1, . . . , T . It turns out that

only these differences in parameters can be identified. In Appendix 3.A, we provide the

technical details of parameter estimation and the identification.

3.4 Testing for shifts

In this section we discuss how various kinds of shifts in the competitive structure can be

translated into the context of the attraction model. We discuss how one can test for these

shifts. This section focuses on changes in aggregate consumer behavior. In Section 3.6,

we will discuss testing for changes in the use of marketing instruments.

The previous discussion of the attraction model considered a stable competitive struc-

ture among incumbent brands. More technically stated, the parameters µ̃i and β̃kji for

i = 2, . . . , I − 1, j = 2, . . . , I and k = 1, . . . , K and the covariance matrix of the at-

tractions of the incumbent brands are assumed constant during the sample period. In

practice, one is often interested in actually testing these restrictions. For example, one

might be interested in testing whether the competitive structure concerning the pricing

strategy amongst the incumbent brands is affected by the new brand. For example, if the

new brand has a very competitive price positioning, then consumers might become more

price-sensitive, possibly also due to an increase in price competition amongst incumbent

brands.

There are several interesting hypotheses that can be tested. For example, one can test

whether shifts in relative market shares have taken place among the incumbent brands

that cannot be attributed to changes in the level of the marketing instruments. This

hypothesis corresponds to the parameter restriction µ̃
(1)
i = µ̃

(2)
i , i = 2, . . . , I − 1. One

can also focus on the effect of a single specific marketing instrument, like the relative

price. In that case, the test concerns β̃
(1)
kji = β̃

(2)
kji, i = 2, . . . , I − 1 and j = 2, . . . , I

for a specific marketing instrument k. Finally, we can test for constant variance of the

unexplained attractions of the incumbent brands. As stated before, the covariances can

be interpreted as measuring the similarity of brands. Testing for the constancy of the

covariance structure can therefore be interpreted as testing for constancy of the overall

brand positioning.
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To test the various hypotheses, we rely on the Likelihood Ratio [LR] test principle.

To perform the tests, the parameters in both the restricted and the unrestricted models

need to be estimated. In the restricted model, we impose that before and after the

brand introduction the parameters are equal. For the unrestricted model, we allow some

parameters to change. Note that we can also test hypotheses without estimating the

unrestricted model by applying a Lagrange Multiplier test. However, in general we are

not only interested in whether parameters change, but also in the actual parameter values

before and after the brand introduction, or at least in the direction of change, and hence

the need to be able to estimate unrestricted models.

A less restricted specification of the attraction model, allowing only a few parameters

to change, can also be estimated using the strategy outlined in Appendix 3.A. In case of a

possible shift in the brand-specific constant attractions or a shift in marketing instrument

effectiveness, only the regressor design matrix needs to be reorganized. If the covariance

matrix is allowed to change, then the estimation procedure for the covariance matrix of

the attractions also changes. The most flexible case where all parameters, including the

covariance matrix, change is discussed in Appendix 3.B. Estimation routines for more

restricted versions are easily obtained from that discussion.

In case all parameters are allowed to change, the pre- and post-introduction models

are completely independent. In this case the models for the pre- and post-introduction

periods can be estimated independently using the usual estimation techniques. However,

in the more realistic case that one wants to test for specific changes in the competitive

structure, these standard estimation techniques do not work as the model for the pre-

introduction period is no longer independent of the model for the post-introduction period.

The estimation routine to be used for such models directly follows from the previous

discussion by reorganizing the design matrices.

To test whether parameters indeed change after the introduction of a new brand, the

value of the log likelihood at the restricted model parameter estimates is compared with

the log likelihood evaluated at the parameter estimates for the more flexible model. The

specific expressions for the likelihood functions are given in the appendices. In general,

denote the value of the log likelihood at the restricted estimates as 	r and the value of the

log likelihood at the parameter estimates for unrestricted model as 	u. Under the hypoth-

esis of constant competitive structure, the difference −2(	r−	u) ∼ χ2
J , where J equals the

number of restricted parameters in the restricted model. If the log likelihood difference is

sufficiently large, one concludes that the imposed restrictions are not valid, meaning that

part of the competitive structure changed as a reaction to the brand introduction.

For the special case where the covariance matrix is assumed to be constant, one would

be tempted to add to the model a number of dummy variables and interactions of the

dummy variables with the marketing-mix variables. However, parameter estimation for

this “dummy with interaction” model is not straightforward as the number of model
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equations change due to the introduction. However one could choose to ignore the new

brand and estimate a competitive model for the remaining brands. This approach is

theoretically less elegant, but this is probably one of the ways the analysis of the effects of

a brand introduction is done in practice. Therefore, in the next section, we will study the

relative effectiveness of our suggested approach to various alternatives using a simulation

study.

3.5 Simulation study

As an alternative to the method we suggest, one could choose to ignore some of the

technicalities and test for changes in the competitive structure using other techniques.

One of the possibilities is to ignore the newly introduced brand and estimate a competitive

model for the incumbent brands only. Dependent on the chosen functional form of the

attraction model it may matter if the researcher does or does not take into account the

marketing mix of the new brand. For example if in the competitive structure at hand

there are cross-price effects, the price of the new brand will have an effect on the relative

shares of the incumbent brands.

For the general case where cross effects are present, the approach where the marketing-

mix variables of the new brand are ignored can easily be rejected on theoretical grounds.

In this case the resulting system of equations will be subject to the “omitted variables

problem”. That is, unless the cross effects are zero or there is no correlation between

the marketing instruments, the parameter estimates for the post-introduction period will

be biased. Proper testing in this system of equations will therefore be unnecessarily

complicated in all practical settings.

Ignoring the market shares of the new brand amounts to omitting an equation in a

system of (dependent) equations. The statistical tests for changes in the competitive

structure associated with this system will be less powerful compared to a system in which

all brands are considered. For example, an often imposed restriction on the competitive

structure is that certain marketing instruments have the same effect on all attractions.

The equation corresponding to the new brand then also contains information on this

effect. Omission of this equation leads to more uncertainty in the parameter estimates,

thereby leading to less powerful tests.

There are two options for the covariance matrix of the log relative market shares in

an alternative testing approach. First, one could decide to ignore the correlation between

market shares all together and to study the market shares as independent series. An

advantage of ignoring the covariance structure is that this makes it easy to also take

into account the newly introduced brand. However, with or without considering the

new brand, such an approach will obviously give erroneous results in the case that (log
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relative) market shares do show a strong correlation. Note that even when the attractions

are independent, the log relative market shares will show correlation. Second, one can

assume that the covariance structure does not change due to the introduction. In cases

where the covariance structure does change, this approach will of course give biased results.

Summarizing, we can identify four ways to test for changes in the competitive struc-

ture, that is, (i) use our method proposed in Section 3.4, (ii) ignore the covariance ma-

trix, the new brand’s market shares, but use its marketing mix, (iii) ignore the covariance

matrix, but use the new brand’s market shares and marketing mix, (iv) account for a

(constant) covariance matrix, ignore the market shares of the new brand, but do use the

new brand’s marketing mix.

To evaluate the relative performance of these four approaches, we consider a simulation

experiment. For this experiment we consider a simple attraction model with price as the

only marketing instrument. To obtain reasonable price series, we use the prices of 5

brands from the category that will be used in the empirical part of this chapter. In this

hypothetical market four brands are observed for 37 weeks. In week 38, a new brand is

introduced. After this introduction, we observe the market for another 96 weeks. The

parameters of the model before the introduction, that is, the brand intercepts and the

price effects are randomly drawn from the standard normal distribution, N(0, 1). For

the covariance matrix of the attraction errors we use the unit matrix. Note that in the

reduced-form model for the log relative market shares this corresponds to a non-diagonal

covariance matrix. After the introduction of the new brand some of the parameters may

change. In our simulations, we add a draw from N(0, κ2) to the model parameters, where

κ controls the magnitude of the change.

First, we consider a scenario in which only the price effect changes after the introduc-

tion. For simplicity we assume that there are no cross-attraction effects of price. That

is, the price of a brand does not affect the attraction of another brand. To assess the

relative performance of the different testing methods, we simulate market shares using

our attraction model under different (randomly drawn) parameter settings. We then use

the different testing procedures to test for a change in the price effects. The first panel in

Table 3.1 gives the fraction of rejections of the null of no change in price effects of 1,000

simulations for the case where only the price effects may change. In case of no actual

change in price effects (κ = 0), we should want to reject the null in 5% of the cases. From

Table 3.1 we see that for all four tests the size of the test is close to 5%. For this simple

case the power of the four tests does not differ much. Our method, however, performs

slightly better than the three alternatives, in terms of proper size and higher power.

If we drop the assumption of a constant covariance matrix, the testing procedures do

differ substantially. In a second simulation experiment we consider the case where the

covariance matrix changes after the introduction. After a brand introduction one may

expect increased variance in market shares possibly caused by increased uncertainty in



50 Brand introductions and the market share attraction model

Table 3.1: Power and size of test on constancy of price effects

versus magnitude of change (tests at the 5% significance level)

Test Magnitude of change in price effects (κ)

method1 0 0.05 0.1 0.15 0.25 0.5 0.75

Constant brand intercepts and constant covariance matrix

(i) 0.053 0.348 0.725 0.874 0.967 0.996 0.997

(ii) 0.075 0.323 0.678 0.834 0.961 0.990 0.997

(iii) 0.078 0.326 0.679 0.837 0.960 0.990 0.996

(iv) 0.057 0.337 0.724 0.873 0.963 0.997 0.997

Changing covariance matrix2

(i) 0.063 0.259 0.628 0.830 0.951 0.991 0.997

(ii) 0.023 0.137 0.449 0.706 0.907 0.980 0.994

(iii) 0.021 0.132 0.443 0.694 0.901 0.980 0.994

(iv) 0.012 0.139 0.501 0.767 0.934 0.986 0.995

1 The test methods are defined as:
(i) Test method proposed in Section 3.4
(ii) Test based on an estimation method where the market shares of
the new brand and the covariance of the attractions are ignored.
(iii) Test based on an estimation method where all market shares are
used but where the covariance of the attractions are ignored.
(iv) Test based on an estimation method where the new brand’s market
shares are ignored, but where the covariance is taken into account.

2 The variances of the attractions are doubled after the brand introduc-
tion.

household preferences. Such a change will cause the covariance matrix of the attractions

to change. In the simulation experiment we capture this by multiplying the variances by

a factor 2. In the second panel of Table 3.1 we present the simulation results under this

scenario. The four methods now do differ substantially. First, the three alternative tests

are quite undersized, that is, when there is in fact no change (κ = 0) the test rejects the

null in fewer than 5% of the cases. In case there is a change in the price parameters, the

alternative tests reject the null in fewer cases compared to the testing method we propose.

With our method, the probability of correctly detecting a change in the price parameters

is 10% higher.
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As a final simulation experiment we consider the case where, due to the brand intro-

duction, the covariance matrix and the brand intercepts may change next to the pricing

parameter. We consider testing the constancy of the pricing parameters under four dif-

ferent scenarios. The covariance matrix of the attractions before the introduction is again

set to unity, after the introduction the variances may double. For the brand intercepts

we set κ = 0.1. For each of the four scenarios, we consider the number of rejections of the

null hypothesis when the pricing parameters are in fact constant (the column “size” in

Table 3.2) and the case where the pricing parameter changes from -2 to -1 for each brand

(the column labeled “power” in Table 3.2). If necessary, and possible, we control for the

changes in the brand intercepts and the covariance matrix when testing.

Table 3.2: Power and size of test on constancy of price

effects under four different scenarios (tests at the 5%

significance level)1

Test Σ constant Σ changing

method2 Size Power Size Power

µ
co

n
st

an
t (i) 0.056 0.281 0.072 0.246

(ii) 0.067 0.204 0.019 0.088

(iii) 0.067 0.208 0.021 0.077

(iv) 0.058 0.279 0.017 0.121

µ
ch

an
gi

n
g (i) 0.070 0.193 0.070 0.206

(ii) 0.119 0.196 0.025 0.082

(iii) 0.122 0.208 0.023 0.079

(iv) 0.075 0.181 0.006 0.052

1 Pricing effectiveness is set to -2, in the case where the effec-
tiveness changes it equals -1 after the brand introduction.
Σ, the attraction covariance matrix, is set to unity, and
doubled after the introduction in case of a change in Σ.
Finally the possible change in the brand intercepts corre-
sponds to κ = 0.1.

2 Test methods are as defined in Table 3.1.

The results in Table 3.2 clearly show that only for the case where neither the brand

intercepts nor the covariance matrix change, all methods are correctly sized. For the
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other cases, the alternative tests have quite large size distortions, with the exception of

test (iv) for the case where only the brand intercepts change. This implies that, when

using standard critical values, these tests cannot be used for valid inference. It is possible

to obtain correct critical values for each alternative test under each scenario. However,

this will require extensive simulation and the critical value will probably be different for

each data set and model specification. Concerning the power of the tests, we see that our

method generally has the best power. The largest differences are found when both the

covariance matrix and the brand intercepts change. The alternative methods correctly

identify the change in pricing parameters in at most 8% of the cases, whereas our proposed

method correctly rejects the null hypothesis in over 20% of the cases.

Summarizing, we find that the methods, alternative to ours, work reasonably well

in the case where the researcher knows that there are no changes in the competitive

structure besides the set of parameters being tested. In all other cases, these tests have

size distortions and low power compared with our method. In practice, one is therefore

more likely to fail to reject the null hypothesis of no change when in fact the competitive

structure has changed. Such a finding will also be reported in Section 3.7 for an actual

data set.

3.6 Testing for breaks in marketing efforts

In the previous section we have discussed the testing of changes in the competitive struc-

ture. Such changes can mainly be attributed to the consumers. As discussed earlier, brand

managers oftentimes also react to an entry. Next to testing whether the competitive struc-

ture has changed as a consequence of a brand introduction, one may also be interested

in testing whether the incumbent brands adapt their marketing strategy as a response to

the new competitor. For example, one may want to test whether the incumbent brands

change the frequency of their displays and whether they make more use of price cuts.

These tests may be used to provide some empirical validity to normative studies. For

example, Gruca et al. (1992) suggest that in response to an entry, non-dominant brands

having a market share smaller than 50% should lower prices and reduce their marketing

efforts such as display and feature. The tests presented in this section can be used to

empirically validate these conjectures.

To analyze the use of marketing instruments which are measured on a continuous

interval, like price and advertising spending, we recommend the use of a Chow breakpoint

test (Chow, 1960) in combination with an autoregressive model of order P [AR(P )] to

correct for possible autocorrelation. This correction is important as only testing for a shift

in the mean of the series is not sufficient. For example, consider a brand manager issuing

a temporary price cut every other week. As a reaction to the brand introduction, s/he
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might decide to have price cuts for two subsequent weeks, followed by two weeks of regular

pricing, again followed by two weeks with a price cut, and so on. The average number of

weeks with a price cut before and after the introduction is equal in this example. However,

there is a structural break in the pattern of price cuts. Only testing for the mean will

not identify this break, only if the dynamic structure of the process is taken into account

is it possible to find such breaks. A rather simple way to identify the dynamics in the

marketing process is the use of an AR(P ) model. For our purposes, it does not seem

necessary to consider very complicated models for the marketing instruments, see for

example Klapper and Herwartz (2000) who show that, when forecasting market shares,

simple models for marketing instruments work best.

The Chow test for a structural break is based on the sum of the squared errors (SSE)

of three regressions. Let SSEF denote the SSE of an AR model estimated on the full

sample of T observations. Let SSE1 denote the SSE of the same model estimated on the

sample up to (but not including) the breakpoint T1, and SSE2 denote the SSE for the

remaining sample. The test statistic is now defined as

F =
(SSEF − SSE1 − SSE2)/(1 + P )

(SSE1 + SSE2)/(T − P − 2(1 + P ))
. (3.5)

under the null of no structural break the test statistic has an F (1 + P, T −P − 2(1 + P ))

distribution. In the case of a structural break, the separate models will fit the data much

better than the model for the total sample implying that SSE1 + SSE2 will be much

smaller than SSEF . The test statistic F will therefore be large leading to a rejection of

the null hypothesis of constant parameters.

Many marketing measures, like display and feature, are usually measured as 0/1 vari-

ables. The use of a Chow test in combination with an AR model is not useful for these

variables, as the AR model typically assumes continuous data. We therefore use the

logit model to analyze these 0/1 time series, and we explicitly include dynamics. The

probability of yt = 1, say a feature at time t, is modeled as

Pr[yt = 1] = F (α +
P∑

p=1

φpyt−p) (3.6)

where P is the maximum lag used and F (·) is the usual logit transformation, that is,

F (z) =
exp(z)

1 + exp(z)
. (3.7)

With a binary series it is not possible to directly apply the Chow test as the residuals

from a logit model are not easily defined. A measure like the sum of squared errors is

therefore not easily obtained. However, we can use a test based on the Likelihood Ratio
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principle. Let 	r denote the log likelihood of a logit model estimated on the total sample

assuming constant parameters. Further, let 	u denote the log likelihood of a logit model

with two unrelated sets of parameters, one for the periods before the brand introduction

and one for the periods following the introduction. For the binary series, we use the test

statistic LR = −2(	r − 	u) to test for a possible structural break. Under the null of no

break the statistic has a χ2
1+P distribution.

For the data we use for illustration in Section 3.7, some marketing instruments cannot

be modeled by an AR(P ) or a logit model. These instruments concern weighted indicators

and are measured on the [0, 1] interval. These variables for example give the fraction of

stores having the corresponding product on display. As these variables have many zero

values and cannot be smaller than zero, straightforwardly fitting an AR model would lead

to inappropriate inference. For these series, we use the Tobit model (Tobin, 1958), that

is,

y∗
t = α +

P∑
p=1

φpyt−p + εt, where εt ∼ N(0, σ2),

yt =

{
0 if y∗

t ≤ 0

y∗
t otherwise.

(3.8)

Testing for a structural break for this model can be done along the same lines as for the

logit model.

3.7 Illustration

The use of an attraction model in case the sample contains a brand introduction is illus-

trated in this section using a data set on detergent. We also illustrate the use of some

statistical tests for changes in the use of marketing instruments or for changes in com-

petitive structure. The data set concerns twelve brands of liquid detergent, covering 134

weeks. One of these twelve brands (“Surf”) is introduced in week 38.

As explanatory variables for the market shares of the brands in this market we have

the price of each brand, denoted by Pit, which is the actual price paid by consumers.

Furthermore, we have the fraction of stores having the product on display, the fraction of

stores having featured the product and the fraction of stores in which a coupon could be

redeemed. These variables are denoted by Dit, Fit and Cit respectively.

Table 3.3 gives an overview of various data characteristics. The first columns of this

table give the average market share before and after the introduction of Surf. The average

market share of the new brand is quite substantial. In the period after the introduction,

the average share of this new brand is almost 12.5%. Many brands lose approximately 32%
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of their market share to the entrant (Bold, Cheer, Dynamo, Era and Fab). On the other

hand, some brands, Tide and Oxydol, have even gained market share. Proportionally, Solo

has lost most market share (53%). Given the discussion earlier, we cannot conclude from

these summary statistics that one brand appeared more sensitive to the introduction than

another brand. The decrease or increase in market share could for example be caused

by an (in-)efficient marketing plan to respond to the entry. More specifically, we are

interested in testing whether the loss (or increase) of market share can be explained by

the competition with the new brand, changes in the marketing strategy or by changes in

the competitive structure.

Table 3.3: Data characteristics (averages over time) of detergent market

Market share Price Display Feature Coupon

Pre Post Pre Post Pre Post Pre Post Pre Post

Surf – 12.47 – 5.04 – 1.76 – 0.99 – 6.16

Bold 5.49 3.38 5.80 5.82 0.25 0.11 0.37 0.37 5.53 3.27

Cheer 14.51 9.94 4.77 5.10 1.75 0.07 1.13 0.29 4.97 4.19

Dynamo 2.63 1.75 5.12 5.14 0.53 0.46 0.25 0.47 3.20 2.28

Era 8.79 6.11 6.15 6.18 0.39 0.46 0.41 0.40 5.27 2.52

Fab 2.17 1.49 5.21 5.40 0.02 0.05 0.22 0.21 3.79 2.34

Oxydol 10.02 10.26 5.13 5.21 0.03 0.71 0.04 0.48 4.93 4.91

Solo 2.97 1.39 6.23 6.20 0.03 0.22 0.06 0.05 5.27 1.87

Wisk 14.06 12.02 5.22 5.20 0.56 2.55 1.51 2.13 8.27 8.24

Yes 2.47 2.01 5.15 4.18 3.37 1.71 1.16 0.60 3.69 2.27

All 3.83 3.63 3.68 3.78 –1 0.06 0.20 0.17 2.30 3.04

Tide 30.88 33.37 5.13 5.06 1.12 1.53 1.14 1.14 7.06 7.39

1 Marketing instrument was not used in this period.

Marketing instruments

We first analyze the series of marketing instruments separately. As discussed in Sec-

tion 3.6, we use Chow tests to see whether brand managers have adapted their marketing

strategy in a response to the introduction. As prices are measured on a continuous scale,

we use AR models to capture the dynamics. For the display, feature and coupon variables
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we use a Tobit model to capture the fact that these variables represent a percentage of

stores.

Table 3.4 shows the p-values of Chow tests on the stability of the price, display,

feature and coupon series of the twelve incumbent brands in the focal market, where an

AR(2) model is used to correct for serial correlation in prices and where a Tobit model

with one lag is used for display, feature and coupons. These test results and the summary

statistics in Table 3.3 give an indication of the effect of the entrant on the use of marketing

instruments. For example, the Chow tests show that Yes and Cheer have significantly

changed their prices. Indeed, Table 3.3 shows that Yes has dramatically decreased its

price by almost 19% and that Cheer increased its price with 7%. The other brands seem

to have kept a constant price. Cheer and Oxydol have changed the use of displays, Cheer

has decreased displays while for Oxydol we observe an increase. All uses displays after

the introduction but did not use them before. This change can therefore also be called

significant, but note that, also after the introduction, All makes only little use of this

instrument. Most brands make little use of this instrument, while the new brand uses

display quite often. Brands are also not often featured in this market. Changes in the use

of feature are therefore not large. Again, only Cheer seems to have decreased their use

of feature. Coupons are relatively often used in the observed detergent market. The new

brand again heavily uses this instrument, although the other brands have decreased the

use of coupons (except All and Tide). We observe significant decreases in the use of

coupons for Bold, Era, Fab and Solo. A significant increase is only observed for All.

For our data set it is interesting to consider Cheer as it is manufactured by Proctor and

Gamble, while the new entrant is a Lever Bros. brand. For Cheer, we observe a significant

increase in price and significant decreases in the use of display and feature. These changes

in the use of marketing instruments are not consistent with what is expected based on the

literature. For example, Gruca et al. (1992) show that as a response to entry, dominant

brands (market share greater than 50%) should reduce prices and increase advertising

spending, while non-dominant brands should reduce prices and reduce the use of other

marketing variables. But, while we observe a decrease in the use of display and feature,

we do not find a decrease in prices for Cheer.

In general, we find that if a brand changes the use of a non-price marketing instru-

ment, it usually decreases its use. Shankar (1997) pointed out that the results in Gruca

et al. (1992) are based on the assumption of a particular competitive game and, maybe

even more important, on the assumption of no consumer reactions. Our model allows for

changing consumer reactions, and this might perhaps generate the findings. In sum, how-

ever, we find empirical support for the conclusions in Robinson (1988), which is that the

most common reaction to entry is no reaction or a reaction with just a single instrument.
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Table 3.4: p-values of Chow-tests on structural breaks in the marketing

efforts using AR(2) models for prices and Tobit models with AR(1)

structure for display, feature and coupon.

Price Display Feature Coupon

Bold 0.967 0.225 0.265 0.031

Cheer 0.012 0.009 0.050 0.285

Dynamo 0.465 0.408 0.623 0.154

Era 0.234 0.756 0.404 0.021

Fab 0.105 0.892 0.768 0.019

Oxydol 0.232 0.001 0.253 0.136

Solo 0.602 0.802 0.759 0.001

Wisk 0.830 0.391 0.601 0.267

Yes 0.005 0.728 0.970 0.310

All 0.158 -1 0.814 0.028

Tide 0.098 0.597 0.350 0.572

1 Instrument used after the introduction of Surf, but
not before.

An attraction model

To further analyze the effect of the entry of Surf on the detergent market and to find

out whether the entry affected the competitive structure, we consider a market share

attraction model. This way, we can compare the effectiveness of marketing instruments

before and after the introduction. For this illustration we use the basic attraction frame-

work in (3.1) and (3.2). To save parameters, we assume that the price of brand i does

not influence the attraction of brand j, i �= j. Note that this does not imply that the

market share of brand j is also independent of the marketing instruments of brand i, see

Section 2.2.2. In (3.1) and (3.2), this restriction gives βkji = 0 for i �= j. This restriction

implies that all remaining marketing instrument parameters are now identified, that is,

βkjj = β̃kjj and βkII = −β̃kIj, j = 1, . . . , I − 1. The competitive structure for the effects

of display and feature are even more restricted as we additionally assume an equal effect

for every brand. This restriction is necessary because all brands make little use of these

two instruments. There simply is not enough information in our data set to estimate all

brand-specific effects.
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The display, feature and coupon variables cannot be directly included in the attraction

model, as in that case zero display or zero use of feature would lead to a zero market

share, see (3.1). We apply an exponential transformation to these variables, so instead

of Dit, Fit and Cit we include exp(Dit), exp(Fit) and exp(Cit) as marketing instruments in

the attraction specification. For the moment, we use independent models before and after

the introduction of Surf. The brand intercepts, effectiveness of the marketing instruments

as well as the covariance of the unexplained attractions are allowed to change due to the

introduction.

Table 3.5 contains the estimates of the brand intercepts and marketing instrument

parameters for the reduced forms of these two models, see (3.9) and (3.10). The covariance

structures before and after the introduction are also estimated independently. However

to save space, we do not report the estimates of these matrices. The main conclusion

from a comparison between the covariance matrices is that in general the variance of the

unexplained attractions increased after the introduction. As a result of the introduction,

the uncertainty about market shares apparently has increased.

The parameters in Table 3.5 give the effect of the marketing instruments on the at-

traction of the brands. The intercepts give the relative position of a brand to the chosen

base brand Tide. Significant parameters for marketing-mix variables have the expected

sign. Price decreases the attraction of a brand. Display, feature and coupons increase the

attractiveness. The introduction of the new brand shows to have a large impact on the

model parameters. Due to the introduction, all the intercept signs have changed, hence

after the introduction all brands have lost share relative to Tide. In fact, Tide is one of

the two incumbent brands with larger market share after the introduction, see Table 3.3.

The price and coupon parameters also show major changes. The display and feature

parameters seem to be relatively constant.

Tests for constancy

To statistically test whether there are significant structural changes in the competitive

structure, we perform the tests discussed in Section 3.4 on the different parts of the

model. First, we test whether the effects of measured marketing efforts are affected by

the introduction. First, we perform the tests independently for each marketing instrument

while allowing the remaining model parameters to change at the moment of introduction.

For the detergent data set, the results show that the competition concerning price and

coupons has changed due to the introduction of Surf (p-values both very close to zero). The

p-values concerning feature and display are 0.178 and 0.696 respectively. The effectiveness

of coupons has changed quite dramatically after the introduction of Surf. Not only do

the coupons of Surf have a large impact on its market share, the effectiveness of coupons
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Table 3.5: Parameter estimates for an attraction model, where pre- and post-introduction

periods are estimated independently (standard errors in parentheses, significant parame-

ters in boldface)

Display Feature
Pre Post Pre Post

All brands 0.027 0.020 0.055 0.033
(0.012) (0.007) (0.010) (0.009)

Intercept Price Coupon
Pre Post Pre Post Pre Post

Surf −4.743 −3.093 0.108
(1.782) (0.500) (0.010)

Bold 6.442 −6.971 −2.128 −2.407 0.090 0.244
(4.050) (2.700) (1.656) (0.212) (0.009) (0.027)

Cheer 19.173 −2.362 −9.844 −4.477 0.072 0.116
(4.159) (2.402) (2.382) (1.116) (0.016) (0.010)

Dynamo 9.489 −13.608 −4.676 0.821 0.136 0.253
(3.428) (4.195) (0.954) (2.340) (0.020) (0.046)

Era 12.585 −2.862 −4.992 −3.937 0.059 0.126
(3.055) (2.953) (0.851) (1.378) (0.007) (0.017)

Fab 6.998 −7.754 −3.468 −2.700 0.206 0.321
(3.849) (2.854) (1.679) (1.421) (0.037) (0.056)

Oxydol 1.040 −3.196 1.507 −3.945 0.105 0.110
(3.943) (2.548) (1.673) (1.116) (0.013) (0.007)

Solo 12.496 −18.679 −5.790 3.501 0.098 0.332
(6.309) (5.207) (3.016) (2.709) (0.040) (0.058)

Wisk 15.954 −6.590 −7.246 −1.825 0.025 0.056
(3.090) (2.206) (1.023) (0.880) (0.009) (0.008)

Yes 2.991 −10.935 −1.102 −1.152 0.095 0.315
(4.068) (1.967) (1.857) (0.807) (0.045) (0.057)

All 21.218 −6.974 −14.275 −2.786 0.108 0.156
(10.681) (2.299) (7.956) (1.147) (0.039) (0.017)

Tide 0∗ 0∗ 2.799 −5.131 0.068 0.052
– – (1.666) (0.971) (0.008) (0.008)

∗ Restricted for identification
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also increased for all other brands (except Tide). Note that the usage of coupons did not

change much, see Table 3.3.

The changes in the effectiveness of price have different signs across the brands, see

Table 3.5. For many brands we see a reduction in the price effectiveness. For three

brands we observe an increase in price effectiveness (Bold, Oxydol and Tide), the change

appears significant for Oxydol and Tide. Note that these three brands are all owned by

Proctor and Gamble and that the entrant is a Lever Bros. brand. Apparently, Proctor

and Gamble had the opportunity to better use its price. The effectiveness of display and

feature does not change. As these two instruments are not used very often, we can only

comment on the change in the average effectiveness. It may be the case that for some

individual brands the effectiveness did change. However we cannot test for these changes

using the current data.

Imposing the constancy of display and feature, we now test whether the intercepts

and/or the covariance matrix change. The constancy of the intercepts and the constancy

of the covariance matrix are both rejected (p-values indistinguishable from zero). This

final result indicates that the relative positioning of the brands, as perceived by the

consumer, has changed. Finally, we test if the restrictions hold jointly, that is, we test for

the constancy of feature and display. This restriction cannot be rejected (p-value 0.244).

To summarize, for this data set we find that the use of marketing instruments is

less sensitive to brand introduction than would have been expected, given the prevalent

literature. Based on game-theoretic analysis using the market share attraction model

(for example Basuroy and Nguyen, 1998; Gruca et al., 1992), we would have expected

more breaks in the marketing-mix variables. But, with Robinson (1988), we conclude

that competitive response in practice can be limited. One of the reasons might be that

in practical situations the evaluation of consumers and their sensitivity to marketing

instruments may also change in reaction to a brand introduction. In game-theoretic

analysis, these consumer reactions are usually ignored. The consumers, however, so we

seem to find, do show to react strongly to the introduction, or to the unobserved changes in

the market. We find that the effectiveness of coupons strongly increased. The effectiveness

of price to influence market share has decreased for many brands. However, for two

P&G brands, we observe a significant increase in the price effectiveness. The covariance

matrix of the unexplained attractions also changed, indicating that the (unobserved)

brand positioning was also affected by the introduction. A final conclusion is that we

cannot assume constancy of the brand intercepts.

Finally we compare the results obtained with our testing procedure with the those

that were discussed and analyzed using simulated data in Section 3.5. We have performed

the same tests using the three alternative testing methods. The p-values for the tests are

presented in Table 3.6. The first row of Table 3.6 gives the earlier presented p-values. Note
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that, although our method strongly suggests the rejection of a constant covariance matrix,

none of the other methods allows for a change in the covariance matrix. Concerning price,

we see that if the covariance of the attractions is not accounted for, we would conclude

that the competitive structure for pricing had not changed due to the introduction of Surf.

The different tests for display, feature and coupon would lead to the same conclusion.

However, test (iv) would lead us to believe that some change in display effectiveness had

occurred (p-value 0.074). Imposing the constancy of display and feature competition, we

again test for constancy of the brand intercepts. The tests where the covariance matrix is

ignored again lead to different conclusions. These two tests would lead us to believe that

the brand intercepts have not changed. The final joint tests for constancy of feature and

display do not lead to different conclusions.

Table 3.6: Comparison of testing methods for the detergent category (p-values

of tests of no change in competitive structure)

Test
price display feature coupon

brand

intercepts
Σ

display &

featuremethod∗

(i) 0.000 0.696 0.178 0.000 0.000 0.000 0.244

(ii) 0.146 0.202 0.354 0.000 0.093 – 0.347

(iii) 0.126 0.209 0.330 0.000 0.076 – 0.337

(iv) 0.004 0.074 0.620 0.000 0.002 – 0.196

∗ See Table 3.1 for a description of the test methods

3.8 Conclusion and discussion

In this chapter we proposed methods to empirically analyze the effects of a brand intro-

duction on the competitive structure, where we focus on weekly observed market shares

and marketing instruments. We suggested a number of statistical tests that can be used

to judge whether or not the brand introduction affects the competitive structure among

incumbent brands. Tests for the constancy of the marketing strategies themselves were

also presented. If incumbent brands respond to the introduction by means of increased

promotion or price cuts, the market shares of different brands might change, but this does

not automatically imply that the competitive structure changes. Hence we argued that
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only changes in elasticities or cross elasticities correspond to a structural change in the

competitive structure.

To be able to statistically test for these kinds of structural breaks, we developed a

model for competition in which the pre- and post-introduction periods can be estimated

simultaneously. In this chapter we choose to relate competition to market shares. The fa-

miliar market share attraction model can then be used as a basis for the two period model.

In such a model we can allow for all kinds of different structural changes. Furthermore

we have shown that various alternative methods that ignore some of the technicalities

involved with this testing approach do not perform as good as the method we have pro-

posed.

In the illustration, we stressed the importance of jointly estimating the two periods

by showing that at least some part of the competitive structure remains unchanged. If

all available data are used, these constant parameters can be estimated more accurately.

For our illustrative data set, we do not find supportive evidence for the hypothesis that

prices decrease after an introduction, as has been suggested in game-theoretic studies. An

explanation for this could be that the reaction of consumers to the introduction is ignored

in these studies. Another explanation could be that brand managers do not respond

optimally.

The presented methodology can be used to examine the consequences of brand intro-

duction on competitive structure. Future empirical work should indicate whether gener-

alizing statements can be made about this issue.
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3.A Parameter estimation for the case of constant

parameters

The linear equivalents of (3.1) and (3.2) are

ln Mit − lnMIt = µ̃i +
I∑

j=2

K∑
k=1

β̃kji ln xkjt + ηit,

i = 2, . . . , I − 1, t = 1, . . . , T1 − 1,

(3.9)

which is an I − 2 equations model, and

ln Mit − lnMIt = µ̃i +
I∑

j=1

K∑
k=1

β̃kji ln xkjt + ηit,

i = 1, . . . , I − 1, t = T1, . . . , T,

(3.10)

which is an I − 1 equations model, where

µ̃i = µi − µI

β̃kji = βkji − βkjI

ηit = εit − εIt,

(3.11)

for i = 1, . . . , I − 1, j = 1, . . . , I, k = 1, . . . , K and t = 1, . . . , T . As market shares are

only determined by relative attractions, the levels of the parameters themselves are not

identified. In fact, one can only identify the parameters relative to a base brand.

The distributional assumptions on εit imply that the distributions for the disturbances

in the reduced-form model become η
(1)
t = (η2t, . . . , ηIt)

′ ∼ N(0, Σ̃(1)), for t = 1, . . . , T1 − 1

and η
(2)
t = (η1t, . . . , ηIt)

′ ∼ N(0, Σ̃(2)), for t = T1, . . . , T where Σ̃(1) = LI−2Σ
(1)L′

I−2 and

Σ̃(2) = LI−1Σ
(2)L′

I−1 with Lk = (Ik|− ik), with Ik a k-dimensional identity matrix and ik a

k-dimensional unit vector. The (1) and (2) notation is used to indicate vectors, matrices or

parameters concerning the pre- or post-introduction period, respectively. The covariance

matrix of the reduced-form disturbances after the introduction (Σ̃(2)) can be partitioned

similarly as Σ(2), that is,

Σ̃(2) =


σ̃11 σ̃12 . . . σ̃1,I−1

σ̃12

... Σ̃(1)

σ̃1,I−1

 . (3.12)

To facilitate the discussion of parameter estimation, we cast the reduced-form model

in a compact matrix notation. To this end, we introduce the following design matrices

X
(1)
t = (0I−2, II−2) ⊗ (1,0′

K , ln x′
2t, . . . , ln x′

It), t = 1, . . . , T1 − 1 and

X
(2)
t = II−1 ⊗ (1, ln x′

1t, ln x′
2t, . . . , ln x′

It), t = T1, . . . , T,
(3.13)
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where 0s denotes a s × 1 vector of zeros, xit = (x1it, . . . , xKit)
′ and ⊗ is the Kronecker

product. Furthermore, we introduce as vectors of dependent variables

y
(1)
t = (y2t, . . . , yI−1,t)

′, t = 1, . . . , T1 − 1

y
(2)
t = (y1t, . . . , yI−1,t)

′, t = T1, . . . , T,
(3.14)

where yit = ln Mit − ln MIt. In matrix notation, the reduced-form equations (3.9) and

(3.10) now become 

y
(1)
1
...

y
(1)
T1−1

y
(2)
T1

...

y
(2)
T


=



X
(1)
1
...

X
(1)
T1−1

X
(2)
T1

...

X
(2)
T




β̃1

β̃2

...

β̃I−1

+



η
(1)
1
...

η
(1)
T1−1

η
(2)
T1

...

η
(2)
T


(3.15)

where

β̃i = (µ̃i, β̃11i, . . . , β̃K1i, β̃12i, . . . , β̃K2i, . . . . . . , β̃1Ii, . . . , β̃KIi)
′,

η
(1)
t = (η2t, . . . , ηI−1,t)

′, for t = 1, . . . , T1 − 1 and

η
(2)
t = (η1t, . . . , ηI−1,t)

′, for t = T1, . . . , T.

(3.16)

For further reference, we denote (3.15) as y = Xβ̃ + η.

As the disturbances are assumed to be independent over time, η is normally distributed

with mean 0 and covariance matrix Ω, which is defined by

Ω =

(
IT1−1 ⊗ Σ̃(1) 0

0 IT−T1+1 ⊗ Σ̃(2)

)
. (3.17)

In case the covariance matrix Ω is known, the estimate of β̃ can be found by the GLS

estimator ̂̃β = [X ′Ω−1X]−1X ′Ω−1y. (3.18)

In general, the covariance matrix Ω is not known. In that case, we recommend the use

of an iterative estimation technique similar to SUR estimation (Zellner, 1962). Based on

an estimate Ω(n) of Ω, we use (3.18) to obtain the estimate β̃(n) of β̃, where the subscript

(n) denotes the parameter estimate in the n-th iteration of the estimation routine. Using

β̃(n) we get a new estimate Ω(n+1) by maximizing the reduced-form model log-likelihood

lnL = −(T1 − 1)(I − 2) + (T − T1 + 1)(I − 1)

2
ln 2π

− 1

2
ln |Ω| − 1

2
(y − Xβ̃(n))

′Ω−1(y − Xβ̃(n)) (3.19)
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with respect to the elements of Ω. The special structure of Ω in (3.17) establishes that

Ω−1 =

(
IT1−1 ⊗ Σ̃(1)−1

0

0 IT−T1+1 ⊗ Σ̃(2)−1

)
, (3.20)

and

|Ω| = |Σ̃(1)|T1−1|Σ̃(2)|T−T1+1. (3.21)

Finally, denote the residuals based on β̃(n) by η(n) = y − Xβ̃(n). Maximizing (3.19) is

equivalent to maximizing

−(T1 − 1) ln |Σ̃(1)| − (T − T1 + 1) ln |Σ̃(2)| − η(n)
′Ω−1η(n). (3.22)

This maximization can be done by any general purpose maximization routine like for

example the BFGS method. The maximizer of (3.22) gives Ω(n+1), a new estimate of Ω.

The iterative estimation scheme starts with taking Ω(1) equal to the identity matrix.

By iterating over (3.18) and the maximization of (3.22), we obtain the Feasible Generalized

Least Squares estimates ̂̃β and ̂̃Σ(l)

(l = 1, 2), of β̃ and Σ̃(l), respectively.
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3.B Parameter estimation in unrestricted models

In this section we discuss the estimation procedure for an attraction model with a brand in-

troduction for the case where all parameters are allowed to change due to the introduction.

Note that in this case one may also estimate models for the pre- and post-introduction

periods separately. However, when estimating the model under the restriction that some

part of the competitive structure remains fixed, the two periods are no longer independent.

Each hypothesis presented in Section 3.4 corresponds to certain parameter restrictions in

the model below.

Introduce the following reorganized design matrix for the pre-introduction period

X̄
(1)
t = II−2 ⊗ (1, ln x′

2t, . . . , ln x′
It), t = 1, . . . , T1 − 1 (3.23)

The design matrix for the period after the introduction remains unchanged, see X
(2)
t in

(3.13). In matrix notation, the reduced-form model with changing parameters is

y
(1)
1
...

y
(1)
T1−1

y
(2)
T1

...

y
(2)
T


=



X̄
(1)
1 0
...

...

X̄
(1)
T1−1 0

0 X
(2)
T1

...
...

0 X
(2)
T





β̃
(1)
2
...

β̃
(1)
I−1

β̃
(2)
1

β̃
(2)
2
...

β̃
(2)
I−1


+



η
(1)
1
...

η
(1)
T1−1

η
(2)
T1

...

η
(2)
T


, (3.24)

where β̃
(1)
i , i = 2, . . . , I − 1 denotes all parameters concerning the log relative market

share of brand i before the introduction, and β̃
(1)
i , i = 1, . . . , I−1 denotes the parameters

after the introduction. Only after the introduction we have an effect of the marketing mix

of the entrant, therefore the dimension of β̃
(1)
i is smaller than the dimension of β̃

(2)
i . For

further reference, we denote (3.24) as y = X̄β̃∗ + η. Note that there are no restrictions

on the parameters before and after T1. The covariance matrix of η is

Ω̄ =

(
IT1−1 ⊗ Σ̃(1) 0

0 IT−T1+1 ⊗ Σ̃(2)

)
. (3.25)

It is important to note that now Σ̃(1) is not a submatrix of Σ̃(2). Based on an estimate

Ω̄(n) of Ω̄, the estimator β̃∗
(n) for β̃∗ is the standard GLS estimator

β̃∗
(n) = [X̄ ′Ω̄−1

(n)X̄]−1X̄ ′Ω̄−1
(n)y. (3.26)

Again, denote the residuals by η(n) = y− X̄β̃∗
(n). A new estimate of Ω̄ can be obtained by

maximizing

−(T1 − 1) ln |Σ̃(1)| − (T − T1 + 1) ln |Σ̃(2)| − η(n)
′Ω̄−1η(n). (3.27)
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The last part, η(n)
′Ω̄−1η(n), can be rewritten as

η
(1)′
(n) (IT1−1 ⊗ Σ̃(1)−1

)η
(1)
(n) + η

(2)′
(n) (IT1−1 ⊗ Σ̃(2)−1

)η
(2)
(n). (3.28)

Using this equation and the fact that Σ̃(1) and Σ̃(2) are assumed to be completely inde-

pendent, we can analytically give the optimizers of (3.27), which are

Σ̃
(1)
(n+1) =

1

T1 − 1

T1−1∑
t=1

η
(1)
(n),tη

(1)′
(n),t

Σ̃
(2)
(n+1) =

1

T − T1 + 1

T∑
t=T1

η
(2)
(n),tη

(2)′
(n),t

(3.29)

where η
(j)
(n),t is defined as the vector of residuals in the reduced-form model at time t based

on the parameter estimates in the n-th iteration, and where j = 1 for t = 1, . . . , T1−1 and

j = 2 for t = T1, . . . , T . If we can assume that the covariance structure remains unchanged,

so that Σ̃(1) is a submatrix of Σ̃(2), the estimates in (3.29) are not appropriate. Instead

we should numerically maximize (3.27) over the elements of the largest covariance matrix

(Σ̃(2)).





Chapter 4

Explaining dynamic effects of the

marketing mix on market shares

4.1 Introduction

In recent literature on market structures it has been shown that marketing efforts, such as

for example temporary price promotions, do not have permanent effects on sales or market

shares. A prerequisite for permanent effects of temporary promotions is non-stationarity

of sales or market shares. Srinivasan et al. (2000), Nijs et al. (2001), and Pauwels et al.

(2002), among others, have shown that almost all sales series for fast moving consumer

goods are stationary. Lal and Padmanabhan (1995), Dekimpe and Hanssens (1995a), and

Franses et al. (2001) report similar results for market shares. Hence, to study dynamic

effects of the marketing mix, one needs to examine the cumulative effect of a temporary

promotion on current and future market shares. Only when the cumulative effect is

positive a promotion is worthwhile.

In this chapter we put forward a method which allows us to directly estimate the

potentially differing short-run and long-run marketing-mix effects on market shares. The

short-run effect is defined as the instantaneous effect of a promotion on current market

shares. The long-run effect is defined as the cumulative effect of a temporary promotion

on current and future market shares, see also Pauwels et al. (2002)1. If a promotion has

positive carry-over effect, the long-run effect will exceed the short-run effect. The long-

run effect will be zero if the positive direct effect of a promotion is exactly balanced by

negative carry-over effects.

1Note that this definition differs from the usual approach in the marketing literature. There, the
common definition of the long-run effect is the effect of a temporary promotion on market shares in the
distant future. However, as discussed above, such a permanent effect is hardly found. Indeed, in case of
stationarity only permanent changes of the marketing mix will affect market shares in the long run.
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The long-run and short-run effects of the marketing mix usually differ across brands

and markets. Differences in promotional intensities, price structures or market concen-

tration may lead to different market structures, see also Mela et al. (1998), Bronnenberg

et al. (2000) and Srinivasan et al. (2000). In this chapter we aim to understand the po-

tentially differing long-run and short-run marketing-mix effects on market shares. For

that purpose, we link both the short-run and the long-run effects to brand-specific and

category-specific characteristics in a second level of our model.

As market shares are in between zero and one, and also as they sum to unity, models for

these dependent variables are a little more complicated than basic regression models. One

might now be inclined to circumvent this complication by modeling own brand sales and

category sales, and simply dividing the outcomes. Fok and Franses (2001), however, show

that this might complicate matters even more as these two components of market shares

are not independent. Additionally, depending on the model specification for category

sales, this approach would also not guarantee that shares will sum to one. Another

motivation to consider market shares is that subsequent models allow us to link market

share elasticities directly to model parameters.

A useful model for market shares, when measured at, say, the weekly level, is the so-

called market share attraction model. This model has theoretically sound properties and

it is also easy to analyze in practice, see Cooper and Nakanishi (1988) for an early intro-

ductory book on this model. In Chapter 2 we have presented a review of its econometric

aspects. In this chapter we will also consider this model.

We introduce into the marketing literature two new modifications of the attraction

model. The first modification amounts to explicit expressions of long-run and short-run

effects for the reduced-form attraction model, which is typically used to estimate the

relevant parameters. This may seem like a trivial issue, but as we will demonstrate in

Section 4.2.2, it is not. The second modification concerns the introduction of a second

level in our model. That is, we propose to simultaneously analyze the attraction model

for Ic brands in category c = 1, . . . , C. This can lead to a multitude of parameters.

For parsimony, but also for interpretation purposes, we therefore correlate some of these

parameters with brand-specific and category-specific variables. The resultant model is a

Hierarchical Bayes Attraction model. As such, we extend on a similar route taken by the

rigorous study in Nijs et al. (2001), who instead consider a two-step approach and focus

on (category) sales, whereas we put everything into a single model and consider brands’

market shares. We also use explicit measures of dynamic effects, instead of derivative

measures such as the impulse-response function. That said, the empirical results obtained

from this chapter can be seen as adding to the knowledge base created by Nijs et al. (2001).

The outline of this chapter is as follows. In Section 4.2, we put forward our new

two-step attraction model in so-called error-correction format, which allows us to analyze

dynamic marketing-mix effects across categories. In Section 4.3, we apply our Hierarchical
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Bayes Attraction model to weekly data for two to four brands in seven different categories

at two locations. One of our conclusions is that only display and feature promotions are

likely to have a higher long-run effect than short-run effect, while price elasticities are,

in absolute value, higher for the short run. That is, price promotions often have nega-

tive carry-over effects, while display and feature tend to have positive carry-over effect.

In Section 4.4, we conclude with a discussion of managerial and modeling implications.

4.2 Attraction models with dynamic effects

The basic attraction model contains two components. The first component is a specifica-

tion for the (unobserved) attraction of a specific brand, which can depend on current and

past marketing-mix instruments and past market shares or past attraction. The second

component defines the market share by dividing own attraction by the sum of the attrac-

tions of all brands in a category. Together this leads to a reduced-form attraction model

with parameters that can be estimated using the relevant data.

In this section we put forward an attraction model specification with a reduced-form

model that can be converted into error-correction format. This error-correction model

[ECM] enables us to disentangle long-run from short-run effects of marketing-mix vari-

ables on market shares in a direct way. The derivation of these effects is discussed in

Section 4.2.2. In Section 4.2.3, we discuss our Hierarchical Bayes [HB] specification which

is used to summarize the information on long-run and short-run effects for a large number

of categories. By considering multiple markets in a single model, we can provide empiri-

cal generalizations concerning the dynamic effects of elements of the marketing mix in a

statistically efficient way.

Before we discuss our complete model, we first review some notational issues in Sec-

tion 4.2.1, where we confine ourselves to a single category to save notation. In this section

we furthermore consider various dynamic specifications of the attraction model.

4.2.1 Preliminaries

To model market shares we define the attraction of brand i, out of I brands in a single

category, at time t by Ait. We assume that attraction can be described by

Ait = exp(µi + εit)x
αi
it xβi

i,t−1M
ρ
i,t−1, for i = 1, . . . , I, (4.1)

where εt = (ε1t, . . . , εIt)
′ ∼ N(0, Σ), and where Mit denotes the market share of brand i,

and xit a marketing instrument. This dynamic attraction specification is often successfully

applied to model market shares, see among others Leeflang and Reuyl (1984); Cooper and

Nakanishi (1988); Kumar (1994) and Bronnenberg et al. (2000). It is however difficult to
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directly disentangle short-run effects and long-run effects of the marketing instruments on

attractions and market shares using this parameterization. Another specification that has

been suggested is based on including lagged attraction instead of lagged market share as an

explanatory variable. However it turns out that such a specification is equivalent to (4.1)

and has the same interpretation problems. Carpenter et al. (1988) and Hanssens et al.

(1989) first transform the marketing instruments using an AR model to yield so-called

effective advertising or promotion. The transformed instruments are then included in the

attraction model. The main advantage of this approach is the reduction in parameters.

The disadvantage is however that the short-run and long-run effects cannot be directly

captured into single parameters. In the remainder of this section we therefore continue

with specification (4.1) and show that it is possible to assign short-run and long-run effects

of xit to separate parameters. To keep notation simple, we present our model assuming

there is a single marketing instrument. An extension to more explanatory variables is

straightforward and will be presented in Section 4.2.3.

The second component of an attraction model amounts to the definition of market

share as the relative attraction of a brand in the market, that is,

Mit =
Ait∑I

j=1 Ajt

. (4.2)

Components (4.1) and (4.2) together lead to estimable reduced-form models.

The market share attraction model can be linearized by considering the natural logs

of the market shares relative to a base brand. The model then reduces to

ln
Mit

MIt

= ln Mit − ln MIt = ln Ait − ln AIt

= µi − µI + αi ln xit − αI ln xIt + βi ln xi,t−1 − βI ln xI,t−1

+ ρ(ln Mi,t−1 − ln MI,t−1) + εit − εIt,

(4.3)

for i = 1, . . . , I − 1 and where brand I is chosen as the base brand, see Section 2.4.

For parameter identification the choice of the base brand turns out to be arbitrary. The

reduced-form specification in (4.3) shows that not all parameters in (4.1) can be identified.

First, only the differences across the brand intercepts µ̃i ≡ µi − µI are identified. Next,

we can only identify the covariance structure of ε̃it ≡ εit − εIt, that is, the covariance

matrix of (ε̃1t, . . . , ε̃I−1,t)
′ denoted by Σ̃. The parameters in the resulting system of I − 1

equations can now easily be estimated.

4.2.2 Short-run and long-run effects

In this chapter we consider the short-run and long-run effects that are implied by the

dynamic structure of the model. This is in contrast with studies by, for example, Mela
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et al. (1998) and Jedidi et al. (1999) where dynamics enter through the model parameters.

In these studies the preferences and marketing sensitivity of households may change as

a consequence of (intensified) promotional activities. In this case the long-run effect is

defined as the impact of a promotion on the future accounting for changes in individuals

behavior. In this chapter we take a different approach and consider (aggregated) household

behavior to be constant. The dynamics in market shares are directly caused by feedback

loops in household behavior.

It is well known that it is difficult to interpret the parameters in autoregressive dis-

tributed lag models as they combine short-run and long-run effects of the explanatory

variables on the dependent variable. We will now show how to rewrite the attraction

model in the interpretable error-correction format. To our knowledge we are the first to

use the error-correction model in the context of the market share attraction model. In

the marketing literature the error-correction model, has been used by for example Franses

(1994) and Paap and Franses (2000) for new product sales and brand choice, respectively.

Consider again the attraction specification in (4.1) which leads to the I − 1 equations

in (4.3). This equation is an Autoregressive Distributed Lag [ADL(1,1)] model for the

variable (ln Mit − ln MIt). To determine the dynamic effects of lagged xit and xIt on the

market shares we solve (4.3) for (lnMit − ln MIt) by repeated substitution until the first

observation. The solution is

ln Mit − ln MIt = ρt(ln Mi0 − ln MI0)

+
t−1∑
τ=0

ρτ (µ̃i + αi ln xi,t−τ − αI ln xI,t−τ + βi ln xi,t−τ−1 − βI ln xI,t−τ−1 + ε̃i,t−τ ). (4.4)

The long-run market shares follow from (4.4) by taking t → ∞. Under the stationary

condition |ρ| < 1, the influence of the market shares at time 0 disappears over time as

limt→∞ ρt = 0. If we further set the explanatory variables at fixed values over time, that

is, xit = xi and xIt = xI for all t, the long-run market shares are now given by

ln Mi − ln MI =
µ̃i

1 − ρ
+

αi + βi

1 − ρ
ln xi − αI + βI

1 − ρ
ln xI +

∞∑
τ=0

ρτ ε̃i,t−τ . (4.5)

As E[ε̃it] = 0 for all t, the long-run expectation of (ln Mi − ln MI), given xi and xI , equals

E[ln Mi − ln MI |xi, xI ] =
µ̃i

1 − ρ
+

αi + βi

1 − ρ
ln xi − αI + βI

1 − ρ
ln xI , (4.6)

and the long-run conditional variance is given by

Var[ln Mi − ln MI |xi, xI ] =
∞∑

τ=0

ρ2τVar[ε̃i,t−τ ] =
Var[ε̃it]

1 − ρ2
. (4.7)
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This implies that, in the long-run, market shares are determined by the following attrac-

tion specification

Ai = exp

(
µi

(1 − ρ)
+ ηi

)
xγi

i for i = 1, . . . , I, (4.8)

where γi = (αi + βi)/(1 − ρ) and (η1, . . . , ηI)
′ ∼ N(0, 1

(1−ρ2)
Σ). Interestingly, as the long-

run market shares correspond to an attraction model, we can use the standard results in

Cooper and Nakanishi (1988) to compute long-run (cross)-elasticities. For example, the

long-run elasticity of xi is given by

∂Mi

∂xi

xi

Mi

= γi(1 − Mi), (4.9)

which can provide useful information for managers who need to decide on the marketing

mix.

It follows immediately from (4.4) that under stationarity (|ρ| < 1) the effect of a

temporary change of xi at time τ has no permanent impact on market shares as the

term ρτ will be zero for large τ . Only a permanent change in the value of xi will have a

permanent long-run effect on the market shares. The long-run effect on the log relative

market shares is measured by the parameter γi. A temporary change of xi does however

have a short-run effect on market shares. The direct short-run effect is measured by

αi. To disentangle the long-run effects from the short-run effects of xi on market shares,

that is, to allow for directly estimating these effects, it is convenient to rewrite (4.3) in

error-correction format, see Hendry et al. (1984), that is,

∆(ln Mit − ln MIt) = µ̃i + αi∆ ln xit − αI∆ ln xIt+

(ρ − 1)[ln Mi,t−1 − ln MI,t−1 − γi ln xi,t−1 + γI ln xI,t−1] + ε̃it, (4.10)

where γi = (αi + βi)/(1− ρ) and ∆ denotes the first-differencing operator, that is, ∆yt =

yt − yt−1. The short-run, or instantaneous, effects are given by αi as

∂ ln Mit − ln MIt

∂ ln xit

= αi. (4.11)

The long-run relation between xit and Mit is put in the so-called error-correction term

and hence long-run effects of ln xit on ln Mit are given by γi. That is, this parameter

gives the marginal effect of a permanent change in lnxit on the log relative market shares

in the long-run. The parameter (ρ − 1) is often called the adjustment parameter and

determines the speed of convergence to the long-run relation. It can be shown that γi in

error-correction model (4.10) is also equal to the cumulative effect of a temporary change
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in ln xit on current and future log relative market shares, that is, under stationarity the

following property holds

∞∑
τ=0

∂(ln Mi,t+τ − ln MI,t+τ )

∂ ln xit

= γi. (4.12)

The error-correction model is nonlinear in some parameters. This is no problem as we

can estimate (4.3) and transform the estimates to the parameters of (4.10). If one uses

a Seemingly Unrelated Regression [SUR] estimator to estimate the parameters, standard

errors can be obtained using the Delta method, see Greene (1993, p. 297). In this chapter

we will use Bayesian methods, and hence parameter uncertainty naturally follows from

our sampling output, but we will return to this issue further below.

It is perhaps of interest to mention that the reduced-form model in (4.10) can also be

derived from an alternative starting point. Consider the attraction component,

Ait = exp(µi + εit)x
αi
it xβi

i,t−1A
ρ
i,t−1, (4.13)

where now lagged attraction instead of lagged market share enters the specification. If

we take logarithms on both sides, we obtain a system of I equations

ln Ait = µi + ρ ln Ai,t−1 + αi ln xit + βi ln xi,t−1 + εi,t. (4.14)

If we solve for Ait, the long-run expectation of the attraction for brand i is given by

E[Ai|xi] = (µi + γi ln xi)/(1 − ρ) and the long-run variance is Var[Ai] = Var[εit]/(1 − ρ2).

Hence, starting from (4.13) the long-run attractions also satisfy (4.8). The error-correction

specification for the attractions is given by

∆ ln Ait = µi + αi∆ ln xit + (ρ − 1)(ln Ai,t−1 − γi ln xi,t−1) + εit, (4.15)

which implies that we can make direct statements about the attractions, and not only on

the market shares.

So far, we have only considered first order attraction model specifications. Extensions

to higher order attraction models are straightforward. The resulting error-correcting spec-

ifications are similar to (4.10) but with extra lagged values of ∆ lnMit, ∆ ln MIt, ∆ ln xit

and ∆ ln xIt. Furthermore, the model can be extended to allow for more flexible cross-

effects of marketing instruments. Above, we have assumed that the marketing instruments

of brand i do not impact the attraction of brand j (j �= i), that is, we have imposed the

Restricted Competition restriction as presented in Section 2.2.2. In case cross-attraction

effects are allowed for the marketing instruments of all brands will enter (4.10). However,

this will lead to a large number of parameters and will complicate the analysis of the long
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and short-run effects of the marketing mix. Therefore we will restrict ourselves to the

Restricted Competition specification.

Extending the model to allow for more flexible effects of lagged market shares may

also seem feasible. One may for example want to allow the ρ-parameter to differ across

brands. This will however yield a model for which it is impossible to derive the dynamical

properties. For this model it is not possible to solve the system of equations for the market

shares, like is done in (4.4). However, as we have shown in Section 2.8, in practice one

often cannot reject the hypothesis of equal ρ-parameters for all brands.

4.2.3 Hierarchical Bayes

Now we turn to an analysis of the error-correction attraction model with a large number

of categories. Let Ait(c) and Mit(c) denote the attraction and market share, respectively,

of brand i in product category c in week t. In this section we consider multiple marketing

instruments. Let xikt(c) denote the k-th explanatory variable of brand i in category c in

week t. An attraction specification of brand i in category c is given by

Ait(c) = exp(µic + εit(c))M
ρc

i,t−1

K∏
k=1

(
xikt(c)

αickxik,t−1(c)
βick

)
(4.16)

for i = 1, . . . , Ic, t = 1, . . . , Tc and c = 1, . . . , C with εt(c) ∼ N(0, Σc), where we now allow

for multiple marketing instruments indexed by k = 1, . . . , K. This attraction specification

corresponds to a similar set of Ic−1 linear equations as given in (4.3). We allow for the fact

that categories may differ in the number of brands and the number of observed periods.

The linear equations can be written in the error-correction model in a similar as (4.10),

that is,

∆(ln Mit(c) − ln MIc,t(c)) = µ̃ic +
K∑

k=1

(αikc∆ ln xikt(c) − αIc,kc∆ ln xIc,kt(c))+

(ρc − 1)
(

ln Mi,t−1(c) − ln MIc,t−1(c)+

K∑
k=1

[−γick ln xik,t−1(c) + γIc,ck ln xIc,k,t−1(c)]
)

+ ε̃it(c), (4.17)

for i = 1, . . . , Ic − 1 and t = 1, . . . , Tc and where γikc = (αikc + βikc)/(1 − ρc).

To relate the short- and long-run elasticity parameters to explanatory variables, we de-

fine K-dimensional vectors αic = (αi1c, . . . , αiKc)
′ and γic = (γi1c, . . . , γiKc)

′. The long-run

and short-run effects of the marketing mix will obviously differ across brands and across

categories. Some of these differences can be attributed to observable characteristics of the

brand and the category, such as the size of a brand and the average use of a marketing
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instrument. Another part of the effects of the marketing mix cannot be explained, either

by the fact that it is specific to the brand or that there are characteristics that we do not

observe. In sum, we propose to describe the short-run and long-run effects parameters by

αic = λ′
1zic + ηic (4.18)

γic = λ′
2zic + νic, (4.19)

where zic is an L-dimensional vector containing an intercept and L − 1 explanatory vari-

ables for brand i in category c, like promotion frequency of brand i in category c, a market

leader dummy and so forth. The L × K matrices λ1 and λ2 give the effects of the brand

characteristics on the short-run and long-run parameters, respectively. The error terms

ηic and νic are assumed as uncorrelated across brands and normally distributed with mean

0 and covariance matrix Ση and Σν , respectively. Note that there are
∑C

c=1 Ic vectors αic

and γic.

To estimate the parameters in the model (4.17) with (4.18)–(4.19), we use a Bayesian

approach. Bayesian estimation provides exact inference in finite samples. To obtain

posterior results we use the Gibbs sampling technique of Geman and Geman (1984) which

is a Markov Chain Monte Carlo [MCMC] technique. In the Appendix we derive the

likelihood function of the model together with the full conditional posterior distributions

which are necessary in the Gibbs sampler.

Another estimation strategy which is often applied in practice, is a two-step proce-

dure in which, first, individual market-level models are estimated and, in a second stage

regression, the parameters from the market-level models are related to brand and market

characteristics, see for example Nijs et al. (2001). This method is however theoretically

less elegant as the uncertainty in the first-level parameter estimates is not correctly ac-

counted for in the second stage. In finite samples, this may lead to underestimation of the

uncertainty in the parameter estimates in the second stage. At the end of our empirical

section, we will briefly discuss the relevant differences between our Hierarchical Bayes

approach and the two-step approach.

4.3 Empirical results

In this section we first discuss the data and the variables in the two components in our

HB-ECM-attraction model. Then we elaborate on a few prior conjectures about the

signs of the correlations in the second component of our model. Finally, we present the

estimation results.
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4.3.1 Data and variables

For the empirical part of this chapter we consider the so-called ERIM database of the

GSB of the University of Chicago. The data concern seven different categories in two

geographical areas. So we have 14 different markets. For each category we have weekly

observations of the market shares and of the marketing efforts of the major national

brands and a rest category. On average, we have 123 weekly observations for each cate-

gory. Two markets concerning sugar have just two brands. The tuna category has three

brands and the remaining five categories (catsup, peanut butter, stick margarine, tube

margarine and tissues) each have four brands. We model the market shares of all 50

brands simultaneously using our HB model.

As explanatory variables for the market shares in the first model component we use a

dummy variable for coupon promotion, a dummy variable for the combination of feature

and display promotion and the actual price. The price parameters therefore describe price

elasticities and not promotional price elasticities. The dummy variables cannot directly

enter our attraction specification (4.1), as in that case weeks with no promotion would by

definition have zero market shares. Instead, we use an exponential transformation for these

two 0/1 marketing instruments. Finally, we use a lag order of 1 to capture the dynamics

in the markets, which effectively leads to the model discussed in Section 4.2.3. Previous

studies show that this lag order is sufficient to capture the dynamics, see Table 2.1 for an

overview of lag orders used in the literature and Table 2.4 for the lag orders selected for

the same data set using the model selection strategy suggested in Chapter 2.

For the second model component, where we correlate the long-run and short-run effects

of the marketing instruments with category- and brand-specific variables, we construct

five covariates. Four of these covariates are brand-specific, these are, relative price, coupon

intensity, display/feature promotion intensity and a 0/1 dummy variable for the market

leader. The market leader is set as the brand having the largest market share averaged

over time. The coupon and promotion intensity variables equal the observed weekly

frequency of the use of coupons and promotions, respectively. Finally, the relative price

is defined as the average price divided by the maximum average price in the market. The

brand that, on average, has the highest price therefore has a relative price equal to one.

Note that it is important to use a relative measure of price effectiveness as some categories

are more expensive than others.

The fifth and final covariate is defined at the category level and it measures market

concentration. As the concentration index, we take the so-called entropy measure, that

is,

CIc =
Ic∑

i=1

M̄i(c) ln M̄i(c), (4.20)
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where M̄i(c) denotes the average market share of brand i in market c. If all market power

is concentrated in one brand, the concentration index equals 0. The index decreases when

power is spread over more brands.

4.3.2 Some a priori conjectures

As said, with our model we aim to provide empirical results that might add to the knowl-

edge base, created in Nijs et al. (2001), see also Raju (1992) and Jedidi et al. (1999).

Concerning the effects of price, we conjecture that a higher marketing-mix intensity has

a positive effect on instrument effectiveness, see Nijs et al. (2001). Hence, for example,

more promotions increase the effects of price changes. There are no strong theoretical

reasons why these increases should differ across the long-run and short-run impact of the

instruments.

Next, more market concentration would have a positive impact on the absolute price

elasticity. Hence, the more concentrated is the market, the more negative is the price

effect. Nijs et al. (2001) report a significant impact of market structure for short-run

effects, and an insignificant effect for those in the longer run.

Finally, for the leading brands one would expect that marketing-mix elasticities are

smaller in absolute sense. Evidence for this conjecture is found in Bolton (1989) and

Srinivasan et al. (2001), where it is shown that brands with smaller market shares tend

to have larger price elasticities.

Concerning the dynamic properties of display and feature promotion we are not aware

of any direct evidence. However, van Heerde et al. (2000) do find some dynamic effects

of display and feature promotion. They report differences in the dynamic effects of price

under four types of support (no support, feature only, display only, feature and display

support). Indirectly this implies that display and feature also have dynamic effects. From

the tables in van Heerde et al. (2000) one can conclude that display and feature have

positive carry-over effects. In our setting we therefore also expect the long-run effect of

display and feature to be larger than the corresponding short-run effect.

4.3.3 Estimation results

We estimate our model using MCMC techniques, where we use 10,000 iterations as burn-

in. Of the next 100,000 iterations, we retain each tenth draw to obtain an approximately

random sample from the posterior distribution. Our posterior results are based on the

resulting 10,000 draws.

Figure 4.1 shows a histogram of the posterior means per brand of the short-run effects

(αikc), the long-run effects (γikc) and the differences between these two effects (γikc−αikc)

for each of the marketing instruments and for all brands. Note that, in the classical
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Figure 4.1: Histograms of posterior means of marketing-mix effectiveness, for all fifty

brands

sense, these effects are not parameters of the model. They should be seen as latent

variables. The histograms show the distribution of the expected values of these latent

variables conditional on the market characteristics and the observed market shares. As

expected, most of the mean price effects are negative and most of the mean coupon and

display/feature promotion effects are positive. The posterior mean short-run effects over

all brands are −3.127, 0.414, and 0.213 for price, coupon promotion, and feature/display,

respectively. The long-run posterior mean effects equal −1.974 for price, 0.416 for coupon

promotion and 0.415 for feature/display. Interestingly, the variation of the long-run effect

of price is smaller than the corresponding short-run effect, while for feature/display we

find the opposite outcome. For feature/display, it holds that the mean long-run effects

tend to be larger than the mean short-run effects. For price, we find the opposite, that

is, the short-run effects tend to be larger (in absolute size) than the long-run effects. On

average, the long-run and short-run effects of coupon promotion seem to be equal in size.

Whether these eyeball impressions stand a statistical test will be seen below.

Figure 4.2 shows how the short-run effects are related to the long-run effects. For

all three variables, we notice a positive correlation between the short-run and long-run

effects. That is, brands for which a marketing instrument has a large short-run effect (in
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Figure 4.2: Scatter plots of long-run effects versus short-run effects (posterior means per

brand), for all fifty brands. Short-run effects are given by αic, long-run effects equal γic,

see (4.17)
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Figure 4.3: Scatter plots of posterior means of marketing-mix effectiveness

absolute sense), the corresponding long-run effectiveness is also large, on average. This

correlation seems strongest for price and the combination of feature and display.

Figure 4.3 shows scatter plots of the mean posterior effects for different combinations of

marketing instruments. For some combinations we find strong correlations. It is notewor-

thy to mention that there is strong correlation between the effectiveness of feature/display

and coupon at the short run and price and feature/display at the long run.

In Table 4.1, we present the posterior estimates of the effects of covariates on the

marketing effectiveness. For the short-run effects, we find substantive interactions between

the price effect and various brand characteristics. Higher priced brands and brands that
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Table 4.1: Posterior means of the effects of covariates on short-run and long-run effects of

the marketing mix (λ1 and λ2 in (4.18) and (4.19)), posterior standard deviation between

brackets.

Marketing-mix effectiveness

Price Coupon Display/Feature

Short-run effects (λ1)

Intercept -5.952∗∗∗ (2.010) 0.918∗∗∗ (0.233) 0.173 (0.158)

Feature/Display intensity -3.138∗ (1.566) -0.090 (0.210) -0.069 (0.129)

Coupon intensity -3.210∗∗ (1.378) -0.045 (0.169) 0.054 (0.112)

Relative price -0.222∗∗ (0.115) -0.027∗ (0.015) 0.004 (0.009)

Market concentration -5.242∗∗ (1.979) 0.372∗ (0.227) -0.062 (0.159)

Market leader 1.030 (0.836) -0.004 (0.103) -0.074 (0.065)

Long-run effects (λ2)

Intercept -3.241∗∗ (1.592) 1.185∗∗∗ (0.340) 0.472∗ (0.263)

Feature/Display intensity -0.756 (1.107) -0.435 (0.301) -0.194 (0.213)

Coupon intensity -2.632∗∗∗ (0.960) -0.062 (0.232) 0.257 (0.183)

Relative price -0.215∗∗∗ (0.072) -0.032 (0.021) 0.005 (0.016)

Market concentration -2.462 (1.567) 0.384 (0.326) 0.051 (0.267)

Market leader 0.813 (0.534) -0.127 (0.131) -0.087 (0.111)

Pr[ |Long run| > |Short run| ] 0.283 0.544 0.872

∗, ∗∗, ∗∗∗ Zero not contained in 90%, 95% or 99% highest posterior density region, respectively

more often issue coupons or are featured tend to have stronger price effects. Relative price

also has an effect on the impact of coupons. Coupons of higher priced brands are less

effective. Moreover, higher market concentration tends to lead to stronger price effects

and higher coupon effectiveness. This corresponds to what we hypothesized above.

For the long-run parameters, we only find strong results for price effects. The signs of

these effects are similar to those for the short-run. A high relative price or a high coupon

intensity is correlated with a strong price effect. For the long-run effects we do not find



4.4 Conclusion 83

substantive interactions with market concentration. This final result corresponds with

the findings in Nijs et al. (2001).

In the final row of Table 4.1, we present the posterior probability that the absolute

long-run effect of a marketing instrument exceeds the absolute value of the short-run

effect. For price there is only a 28.3% probability that the long-run effect will exceed the

short-run effect. For coupon this probability is 54.4% and for display/feature promotion

it is 87.2%. These probabilities of course correspond well to the bottom row of graphs in

Figure 4.1. Hence, price changes mainly impact the market shares in the short run, while

promotions seem to have more of a longer-run impact.

Finally, when we compare our results with those obtained from the commonly used

two-step procedure in which first individual market-level models are estimated and where

the resulting parameters are then regressed on market and brand characteristics, we find

that the signs of the estimated parameters in the second step are the same for both

methods. However, the significance levels of the estimates differ substantially. As the

uncertainty in market-level parameters in the two-step procedure is underestimated, we

find more significant second-stage parameter estimates for the two-step method. Details

can be obtained from the authors.

4.4 Conclusion

In this chapter we have put forward a new and useful model for describing market shares.

The first novelty was that we considered those attraction models which entail easy to

estimate long-run and short-run effects of marketing-mix instruments. As a consequence,

and that is the second novelty, we could explicitly link the long-run and short-run effects

with category and brand characteristics in a second level. Our resultant error-correction

Hierarchical Bayes attraction model was applied to fifty brands covering seven product

categories. The main results were that prices exercise mainly a short-run impact, while

feature promotions have a larger long-run effect. Furthermore, which is line with the

results in Nijs et al. (2001) who focused on category sales, we found that a more intensive

use of marketing instruments, and also a higher level of market concentration, leads to

stronger price effects, both in the long run and in the short run.

The model in this chapter is essentially a rather natural, and statistically proper,

framework to establish generalizing statements about dynamic effects of marketing instru-

ments on market shares. The model resembles a logit structure, and hence one possible

extension of our model could be in describing the choice between brands by households.

Next, the model can also be used to analyze marketing-mix effectiveness of new to in-

troduce brands, and also to determine optimal price levels. Finally the model we have

proposed can provide the basis of a study of (optimal) competitive effects. The long-run
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and short-run effects we have derived in this chapter are based on the assumption of no

competitive reaction. In practice this will of course not be the case. Our model could be

used to perform a scenario analysis of different competitive reactions.



4.A Bayes estimation 85

4.A Bayes estimation

Define Yit(c) = ln Mit(c) − ln MIt(c) and Xit(c) = (ln xi1t(c), . . . , ln xiKt(c))
′. Equation

(4.17) can now be written as

∆Yit(c) = µ̃ic + ∆Xit(c)
′αic − ∆XIc,t(c)

′αIc,c

+ δc(Yi,t−1(c) − Xit(c)
′γic + XIc,t(c)

′γIc,c) + ε̃it(c), (4.21)

for i = 1, . . . , Ic − 1, where δc = 1 − ρc, αic = (αi1c, . . . , αiKc)
′ and γic = (γi1c, . . . , γiKc)

′

for i = 1, . . . , Ic. Furthermore, define µ̃c = (µ̃′
1c, . . . , µ̃

′
Ic−1,c)

′, αc = (α′
1c, . . . , α

′
Ic,c)

′, γc =

(γ1c, . . . , γIc,c)
′ and the error terms

ẽit(c)(µ̃ic, δc, αc, γc) = ∆Yit(c) − µ̃ic − (∆Xit(c)
′αic − ∆XIc,t(c)

′αIc,c)

− δc(Yi,t−1(c) − Xit(c)
′γic + XIc,t(c)

′γIc,c). (4.22)

The vector of error terms is given by

ẽt(c)(µ̃c, δc, αc, γc) = (ẽ1t(c)(µ̃1c, δc, αc, γc), . . . , ẽIc−1,t(c)(µ̃Ic,c, δc, αc, γc))
′, (4.23)

and hence the likelihood of the model reads as

C∏
c=1

∫
αc,γc

Tc∏
t=2

φ
(
ẽt(c)(µ̃c, δc, αc, γc); 0, Σ̃c

) Ic∏
i=1

φ(αic; λ
′
1zic, Ση)φ(γic; λ

′
2zic, Σν)dαcdγc,

(4.24)

where φ(x; µ, Σ) is the density function of the multivariate normal distribution with mean

µ and variance Σ evaluated at x.

To obtain posterior results, we use the Gibbs sampling technique of Geman and Ge-

man (1984) with data augmentation, see Tanner and Wong (1987). An introduction into

the Gibbs sampler can be found in Casella and George (1992), see also Smith and Roberts

(1993) and Tierney (1994) Hence, the latent variables αc and γc are sampled alongside

the model parameters µ̃c, δc, Σ̃c, λ1, λ2, Ση and Σν . The Bayesian analysis is based on

uninformative priors for the model parameters. To improve convergence of the MCMC

sampler we impose inverted Wishart priors on the Ση and Σν parameter with scale pa-

rameter κ1IK and degrees of freedom κ2. We set the value of κ1 to 1
1000

and κ2 equal to 1

such that the influence of the prior on the posterior distribution is marginal, see Hobert

and Casella (1996) for a discussion.

In the remainder of this appendix we derive the full conditional posterior distributions

of the model parameters and αc and γc. In deriving the sampling distributions we build

on the results in Zellner (1971, Chapter VIII).
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Sampling of µ̃c and δc

To sample µ̃c and δc we rewrite the model in (4.21) as

∆Yit(c) − ∆Xit(c)
′αic + ∆XIc,t(c)

′αIc,c =

µ̃ic + δc(Yi,t−1(c) − Xit(c)
′γic + XIc,t(c)

′γIc,c) + ε̃it(c) (4.25)

for i = 1, . . . , Ic−1. Stacking the equations in (4.25) we obtain the multivariate regression

model

Wt(c) = Vt(c)β + ε̃t(c), (4.26)

where Wt(c) is a Ic − 1 dimensional vector containing the left-hand side of equation

(4.25), Vt(c) an (Ic − 1) dimensional identity matrix extended with a (Ic − 1) dimensional

column vector of error-correction terms (Yi,t−1(c) − Xit(c)
′γic + XIc,t(c)

′γIc,c), and where

β = (µ̃1c, . . . , µ̃Ic−1,c, δc)
′. The error term is normal distributed with mean 0 and variance

Σ̃. Hence, the full conditional posterior distribution of β is a matrix normal distribution

with mean (
Tc∑
t=2

Vt(c)
′Σ̃−1Vt(c)

)−1 ( Tc∑
t=2

Vt(c)
′Σ̃−1Wt(c)

)
, (4.27)

and variance (
Tc∑
t=2

Vt(c)
′Σ̃−1Vt(c)

)−1

. (4.28)

Sampling of Σ̃c

To sample Σ̃c we again consider the multivariate regression model (4.26). The full condi-

tional posterior distribution of Σ̃c is an inverted Wishart distribution with scale parameter∑Tc

t=2(Wt(c) − Vt(c)β)(Wt(c) − Vt(c)β))′ and degrees of freedom Tc − 1.

Sampling of λ1 and λ2

To sample λ1, we note that we can write (4.18) as

α′
ic = z′

icλ1 + η′
ic. (4.29)

and hence it is a multivariate regression model with regression matrix λ1. Hence, the full

conditional posterior distribution of λ1 is a matrix normal distribution with mean(
C∑

c=1

Ic∑
i=1

zicz
′
ic

)−1 ( C∑
c=1

Ic∑
i=1

zicαic

)
, (4.30)
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and covariance matrix Ση ⊗
(

C∑
c=1

Ic∑
i=1

zicz
′
ic

)−1
 . (4.31)

The derivation of the sampling distribution of λ2 proceeds in the same manner. The full

conditional posterior distribution of λ2 is a matrix normal distribution with mean(
C∑

c=1

Ic∑
i=1

zicz
′
ic

)−1 ( C∑
c=1

Ic∑
i=1

zicγic

)
, (4.32)

and covariance matrix Σν ⊗
(

C∑
c=1

Ic∑
i=1

zicz
′
ic

)−1
 . (4.33)

Sampling of Ση and Σν

To sample Ση we note that (4.18) is a multivariate regression model. Hence the full

conditional posterior distribution of Ση is an inverted Wishart distribution with scale

parameter κ1IK +
∑C

c=1

∑Ic

i=1(αic−λ′
1zic)(αic−λ′

1zic)
′ and degrees of freedom κ2+

∑C
c=1 Ic.

The κ terms results from the inverted Wishart prior on Ση which is used to improve

convergence of our Gibbs sampler, see Hobert and Casella (1996) for a discussion.

The sampling of Σν can be done in exactly the same manner. The parameter Σν is sam-

pled from an inverted Wishart distribution with scale parameter κ1IK +
∑C

c=1

∑Ic

i=1(γic −
λ′

2zic)(γic − λ′
2zic)

′ and degrees of freedom κ2 +
∑C

c=1 Ic.

Sampling of αc

To sample αc = (α1c, . . . , αIc,c)
′ we rewrite (4.17) as

∆Yit(c) − µ̃i − δc(Yi,t−1(c) − Xit(c)
′γic + XIc,t(c)

′γIc,c)

= ∆Xit(c)
′αic − ∆XIc,t(c)

′αIc,c + ε̃it(c), (4.34)

for i = 1, . . . , Ic − 1 which can be written in matrix notation

Wt(c) = Vt(c)αc + ε̃t(c), (4.35)

where Wt(c) is a (Ic − 1) dimensional vector containing ∆Yit(c) − µ̃i − δc(Yi,t−1(c) −
Xit(c)

′γic + XIc,t(c)
′γIc,c) and

Vt(c) =


∆X1t(c)

′ 0 . . . 0 −∆XIc,t(c)
′

0 ∆X2t(c)
′ . . . 0 −∆XIc,t(c)

′
...

...
. . .

... −∆XIc,t(c)
′

0 . . . 0 ∆XIc−1,t(c)
′ −∆XIc,t(c)

′

 . (4.36)
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Furthermore, we write the Ic equations of (4.18) as

−Uc = −IKIcαc + ηc, (4.37)

where Uc is a (KIc) dimensional vector containing the terms λ′
1zi,c and where IKIc is a

(KIc) dimensional identity matrix. The error term ηc is normal distributed with mean 0

and covariance matrix (Ic ⊗ Ση). To sample αc, we combine (4.35) and (4.37)

Σ̃−1/2Wt(c) = Σ̃−1/2Vt(c)αc + Σ̃−1/2ε̃t(c),

−(Ic ⊗ Σ−1/2
η )Uc = −(Ic ⊗ Σ−1/2

η )αc + (Ic ⊗ Σ−1/2
η )ηc.

(4.38)

Hence, the full conditional posterior distribution of αc is normal with mean(
(Ic ⊗ Σ−1

η ) +
Tc∑
t=2

(Vt(c)
′Σ̃−1Vt(c))

)−1 (
(Ic ⊗ Σ−1

η )Uc +
Tc∑
t=2

(Vt(c)
′Σ̃−1Wt(c))

)
, (4.39)

and covariance matrix (
(Ic ⊗ Σ−1

η ) +
Tc∑
t=2

(Vt(c)
′Σ̃−1Vt(c))

)−1

. (4.40)

Sampling of γc

To sample γc = (γ1c, . . . , γIc,c)
′, we rewrite (4.17) as

∆Yit(c) − µ̃i − ∆Xit(c)
′αic + ∆XIc,t(c)

′αIc,c − δcYi,t−1(c) =

− δcXit(c)
′γic + δcXIc,t(c)

′γIc,c + ε̃it(c), (4.41)

for i = 1, . . . , Ic − 1 which can be written in matrix notation

Σ̃−1/2Wt(c) = Σ̃−1/2Vt(c)γc + Σ̃−1/2ε̃t(c), (4.42)

where now Wt(c) is a (Ic − 1) dimensional vector containing ∆Yit(c)− µ̃i −∆Xit(c)
′αic +

∆XIc,t(c)
′αIc,c − δcYi,t−1(c) and

Vt(c) =


−δcX1,t−1(c)

′ 0 . . . 0 δcXIc,t(c)
′

0 −δcX2t(c)
′ . . . 0 δcXIc,t(c)

′
...

...
. . .

... δcXIc,t(c)
′

0 . . . 0 −δcXIc−1,t(c)
′ δcXIc,t(c)

′

 . (4.43)

Again, we write the Ic equations of (4.19) as

−(Ic ⊗ Σ−1/2
ν )Uc = −(Ic ⊗ Σ−1/2

ν )γc + (Ic ⊗ Σ−1/2
ν )ωt, (4.44)
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where Uc is a (KIc) dimensional vector containing the terms λ′
2zic. The distribution of

the error term ωt is normal with mean 0 and covariance matrix (Ic ⊗ Σν). If we combine

(4.42) with (4.44) it is easy to see that the full conditional posterior distribution of γc is

normal with mean(
(Ic ⊗ Σ−1

ν ) +
Tc∑
t=2

(Vt(c)
′Σ̃−1Vt(c))

)−1 (
(Ic ⊗ Σ−1

ν )Uc +
Tc∑
t=2

(Vt(c)
′Σ̃−1Wt(c))

)
, (4.45)

and covariance matrix (
(Ic ⊗ Σ−1

ν ) +
Tc∑
t=2

(Vt(c)
′Σ̃−1Vt(c))

)−1

. (4.46)





Part II

Household-level models





Chapter 5

Modeling category-level purchase

timing with brand-level marketing

variables

5.1 Introduction

In this chapter we focus on the modeling of purchase timing of households in frequently

purchased product categories. To describe purchase timing several models are proposed

in the literature, see for example Franses and Paap (2001, Chapter 8) and Seetharaman

and Chintagunta (2003) for recent overviews. If one considers time to be discrete, one

often uses a purchase incidence model. In practice this means that purchase incidences

are recorded in weekly intervals. In this case it is assumed that the interpurchase times

have a negative binomial distribution, see, among many others, Bucklin and Lattin (1991);

Ailawadi and Neslin (1998) and Bell et al. (1999). In many cases, researchers consider time

to be continuous. In theory purchases can then be made at every point in time. In this

case, proportional hazard or accelerated lifetime models are used to described purchase

timing, see, among many others, Gupta (1988); Jain and Vilcassim (1991); Vilcassim and

Jain (1991) and Helsen and Schmittlein (1993). The type of model that is used usually

depends on the frequency of the data available to the researcher.

When explaining purchase timing in an econometric model, one aims at describing the

relation between interpurchase times and various explanatory variables. These explana-

tory variables can be divided into two groups. The first group corresponds to household-

specific variables, like household size and family income, but also variables as the current

stock of the product and the time since last purchase within the product category. These

variables can be directly linked to the interpurchase times. The second group contains

marketing-mix variables, like price and the presence of promotional activities. These vari-
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ables cannot be directly linked to the interpurchase times, as marketing-mix variables are

observed at the brand level and purchase timing is modeled at the category level.

In the ideal case, we would have knowledge of the preferred brand of each household

at every moment in time. To explain purchase timing we could then use the marketing

mix of the brand that is bought or would be bought at any moment in time. In practice

this is of course infeasible. First of all the data collection would be practically impossible.

Second, the household may not have a unique preferred brand at every point in time. It is

therefore up to the researcher to somehow summarize the marketing efforts of all brands

into category-level indices. This task is exactly the research question we study in this

chapter. The key question of this chapter can be summarized as

— What to do with the marketing mix when modeling purchase timing? —

or in other words: how to construct category-level measures of marketing efforts from the

marketing mix of individual brands that can be included in a category-level interpurchase

time model?

One may think that the answer to this question is to use the marketing mix of the

purchased brand. There are however two major problems with this approach. First of all,

in the decision process of a household, the purchase timing decision precedes the brand

choice decision. To the researcher, knowledge of the purchased brand therefore includes

the information that a purchase is made in the category. Technically speaking, one there-

fore cannot use information on the purchased brand to construct explanatory variables for

a purchase timing model. A second problem is that brand choice is not available at non-

purchase moments. One may opt to use the marketing mix of the previously purchased

brand, but this is likely to be sub-optimal as households may switch brands. In fact, a

household may change preferences several times in between two purchases, especially if

the marketing mix changes in this period.

We are of course not the first to notice these problems in modeling interpurchase

time. In every purchase timing study the researcher will have to decide upon how to con-

struct category-level marketing-mix variables. An often-used solution is to use a weighted

average of brand-specific marketing-mix variables. The weights are usually household spe-

cific and obtained from choice shares of the particular household, see for example Gupta

(1988, 1991). A disadvantage of weighting the marketing mix using choice shares is that

household-specific information is required to obtain the weights. This approach is there-

fore less suitable for out-of-sample forecasting. Finally, as choice shares are by definition

constant over (periods) of time the model does not take into account that preferences may

change over time.

Another popular approach amounts to using the so-called inclusive value from a brand

choice model as a summary statistic for the marketing efforts in a category, see, among

others, Bucklin and Gupta (1992); Chintagunta and Prasad (1998) and Bell et al. (1999).
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The inclusive value has the interpretation of the expected maximum utility over all brands

in the category. The inclusive value naturally depends on the marketing mix of all brands.

A large expected utility is expected to be positively correlated with the probability of a

purchase in the category. Although theoretically appealing, this specification is rather

restrictive. In the corresponding purchase timing model there is only one parameter that

relates all marketing efforts of all brands to the purchase timing, that is, the coefficient

corresponding to the inclusive value. Moreover the effects of marketing variables are

restricted to be more or less the same on choice as on purchase timing. Another problem

may be that the relation between the inclusive value and purchase incidence may only hold

within households. Between households there may be substantial differences in inclusive

value that are not related to differences in purchase timing. A household with a strong

brand preference may have a larger inclusive value than a household with less pronounced

preferences. Of course, one cannot conclude from this that the first household will on

average have shorter interpurchase times. The between-household differences will be even

more pronounced when the brand choice model allows for unobserved heterogeneity in

brand preferences.

To meet the limitations of the above-mentioned approaches, we introduce in this chap-

ter some alternative specifications. The idea behind these specifications is to use brand

choice probabilities as indicators of brand preferences. One method to summarize the

marketing efforts of all brands to the category level is again to use a weighted average

of the marketing mix of each brand, but now using the current preferences of the house-

hold as weights. This approach is very similar to using choice shares as weights as in

Gupta (1988, 1991). However, in our case the preference weights may change over time as

they are captured by a brand choice model. Another method is to specify brand-specific

purchase incidence probabilities, or, in a continuous model, brand-specific hazard func-

tions. The category purchase probability is then obtained as the weighted average of these

probabilities using preference probabilities.

Although these solutions meet the limitations of the standard approaches in the liter-

ature, they still consider brand choice and purchase timing as separate issues. However,

the fact that a household does not make a purchase in a particular week, reveals informa-

tion about the preferences of this household. For example, consider the situation where

a household frequently purchases a certain brand that is also frequently promoted. As-

sume that this household never purchases other brands when they are promoted. If one

only considers purchase occasions one may overestimate the effect of promotions on brand

choice as the non-purchase promotional activities are completely ignored. The fact that

the household does not purchase the other brands while they are promoted implies that

it has a strong base preference for the frequently purchased brand. It would therefore be

better to integrate the interpurchase time model with a brand choice model. In this model

the brand choices of households are revealed at purchase occasions, while at non-purchase
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occasions the preferred brand is treated as a latent (unobserved) variable. In this way, we

also use information revealed by households at non-purchase occasions to model brand

choices and interpurchase timing. We will call this specification the latent preferences

purchase timing model.

To answer the question concerning the inclusion of the marketing mix in a purchase

timing model, we consider the two standard approaches (based on choice shares and based

on the inclusive value) and compare them with our two alternative approaches (based on

brand choice probabilities) and the latent preference model. In Section 5.2 we discuss

the statistical differences of the various model specifications and we discuss parameter

estimation. The analysis is done for discrete time and continuous time interpurchase time

models. In Section 5.3 we compare different specifications using data on purchases in

three product categories. The comparison is based on in-sample fit and out-of-sample

forecasting performance. Finally, in Section 5.4 we conclude. In this section we also

discuss the practical implications for modeling purchase timing.

5.2 Modeling interpurchase timing

In this section we discuss the inclusion of marketing-mix variables in a category-level

interpurchase time model. We consider the solutions put forward in the literature together

with our alternative solutions. Sections 5.2.1 and 5.2.2 deal with discrete purchase timing

models, while in Section 5.2.3 we extend the models to continuous time.

5.2.1 The discrete case

Let Pr[Dit = 1] denote the probability that a purchase is made by household i in week t,

in a specific category. Furthermore, denote by din the (calendar) time of the n-th purchase

of household i, where i = 1, . . . , I and n = 1, . . . , Ni. Given a purchase at week di,n−1 the

probability that household i’s next purchase will be in week din is therefore

Pr[Di,din
= 1] ×

din−1∏
t=di,n−1+1

(
1 − Pr[Dit = 1]

)
. (5.1)

This corresponds to a Negative Binomial distribution for interpurchase times. To relate

the purchase incidence probability Pr[Dit = 1] to observable characteristics, denoted by

wit, one can use the standard logistic function, that is Pr[Dit = 1] = G(wit), where

G(wit) =
exp(γ0 + w′

itγ1)

1 + exp(γ0 + w′
itγ1)

. (5.2)

It is obvious how household-specific variables can be included in this logistic function.

However, if one wants to include marketing instruments in the model, it is unclear which
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brand’s marketing-mix variables or which combination of brand-specific variables should

be included in wit as brand choice is only revealed at purchase occasions and not in

between. Below we present several possibilities to solve this problem. For simplicity of

notation we will assume that the model only includes marketing instruments. Other types

of explanatory variables can be included in the usual way.

Choice share weighted average of marketing mix

One may include a weighted average of the marketing mix over the J brands. As weights

one can use observed household-specific choice shares as in Gupta (1988). Hence, in this

case the incidence probability is given by Pr[Dit = 1] = G(
∑J

j=1 cijxijt), where cij denotes

observed choice share of brand j for household i and xijt denotes the marketing mix of

brand j as experienced by household i at time t.

The household-specific choice shares are usually estimated using the in-sample pur-

chases. Out-of-sample forecasts will also have to be based on the in-sample choice shares.

This approach is therefore not useful in case one wants to predict purchase timing of

households for which no purchase history is available. If this type of forecasting is one of

the aims of the analysis, one has to rely on one of the other solutions discussed below.

Inclusive value

Another frequently used approach is to include the inclusive value from a brand choice

model as an explanatory variable in the purchase incidence model. To describe brand

choice we consider a multinomial logit model

Pr[Yit = j] =
exp(αj + x′

ijtβ)∑J
s=1 exp(αs + x′

istβ)
, (5.3)

where Yit denotes the brand choice of household i at time t, αJ = 0 for identification,

and where β measures the effect of the marketing mix on brand choice. For simplicity we

again assume that there are no other explanatory variables besides the marketing mix.

Note that the household only makes a purchase in some of the periods. Therefore, Yit

is only observed for t ∈ {din}Ni
n=1. Although we only observe Yit on purchase occasions,

we assume that the choice probabilities do represent the household’s preference for the

brands at every point in time.

The inclusive or category value is defined by

Iit = ln
( J∑

j=1

exp(αj + x′
ijtβ)

)
. (5.4)

This expression has the interpretation of the expected maximum utility over all brands in

the category. Using the inclusive value as a summary statistic for the marketing efforts
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in the category, we can define the purchase incidence probability as Pr[Dit = 1] = G(Iit).

In this case γ1 in (5.2) will be only one-dimensional, that is, all marketing instruments

are summarized in Iit.

The use of the inclusive value can also be justified as a nested logit model specification,

see for example Ben-Akiva and Lerman (1985), Franses and Paap (2001) and Train (2003).

In this specification, the inclusive value captures the correlation between the purchase

timing and the brand choice decision. This approach is followed by for example Ailawadi

and Neslin (1998) and Bell et al. (1999).

Preference weighted average of marketing mix

An alternative to the choice share approach is to use a weighted average of the marketing

mix, where the weighting scheme follows from choice/preference probabilities Pr[Yit = j]

in week t. The purchase probabilities are now given by

Pr[Dit = 1] = G
( J∑

j=1

Pr[Yit = j]xijt

)
. (5.5)

The advantage of this approach over using choice shares as weights, is that this method

allows the weights to evolve over time. Changes in preferences over time, for example due

to promotions, are therefore accounted for in this weighting scheme. Additionally, this

approach can be used to construct out-of-sample weights for households with an unknown

purchase history.

Weighted average of incidence probabilities

Instead of taking a weighted average of the marketing mix, one may also consider a

weighted average of brand-specific purchase incidence probabilities. For the weighting

scheme we can again use the choice probabilities resulting in

Pr[Dit = 1] =
J∑

j=1

Pr[Yit = j]G(xijt). (5.6)

This specification is very similar to the previous one where the weighting occurs inside

the logit function G(·). However due to the nonlinearity of the logit function it will give

different results.

Latent preference purchase timing model

A more sensible approach may be to integrate the choice model and the purchase incidence

model. Hence, we jointly model brand choice and purchase incidence. The probability
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that a household purchases brand j at time t is given by the probability that the household

makes a purchase and prefers brand j at time t, that is,

Pr[Yit = j ∧ Dit = 1] = Pr[Yit = j] Pr[Dit = 1|Yit = j], (5.7)

where Pr[Yit = j] is given in (5.3) and

Pr[Dit = 1|Yit = j] = G(xijt). (5.8)

Likewise, we can define the probability that a household prefers brand j at time t, but

does not make a purchase in the category

Pr[Yit = j ∧ Dit = 0] = Pr[Yit = j](1 − Pr[Dit = 1|Yit = j]) = Pr[Yit = j](1 − G(xijt)).

(5.9)

On purchase occasions households reveal their brand preference through the brand choices.

In case no purchase is made in a week, there is theoretically no brand choice variable Yit.

However, we assume that Yit does represent the preferred brand of the household in

week t, irrespective of a purchase being made. In non-purchase weeks, this variable is

then of course latent. To determine the probability that household i does not purchase

any brand in week t, we have to sum the non-purchase probabilities with respect to the

preferred brand variable which results in

Pr[Dit = 0] = 1 −
J∑

j=1

Pr[Yit = j] Pr[Dit = 1|Yit = j]

=
J∑

j=1

(1 − Pr[Dit = 1|Yit = j]) Pr[Yit = j],

(5.10)

where again Pr[Yit = j] is given in (5.3).

5.2.2 Estimation – The discrete case

All the models in this chapter can be estimated by Maximum Likelihood. For the general

case the likelihood function reads

L =
I∏

i=1

Ni∏
n=1

Lin, (5.11)

where Lin denotes the likelihood contribution of the n-th purchase of household i. For the

different specifications of the model this likelihood contribution will of course differ. For

all specifications, but the one based on choice share weights, the likelihood contribution

contains brand choice probabilities from a logit model. Even for the models for which the

brand choice decision is defined conditional on purchase timing, we estimate the brand

choice and the purchase timing model simultaneously.
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Choice share weighted average of marketing mix

When choice shares are used as weights, one does not have to estimate a choice model.

The likelihood contribution of the n-th purchase of household i equals

Lin = G
( J∑

j=1

cijxij,din

) din−1∏
t=di,n−1+1

(
1 − G

( J∑
j=1

cijxijt

))
. (5.12)

Inclusive value

For the inclusive value specification, the likelihood contribution of the n-th purchase of

household i equals

Lin = Pr[Yi,din
= yi,din

] × G(Ii,din
)

din−1∏
t=di,n−1+1

(1 − G(Iit)), (5.13)

where yi,din
denotes the actual brand choice at the n-th purchase of household i. The

structure of this likelihood contribution is very similar to (5.12). For the inclusive value

the likelihood contribution however also includes the brand choice probability.

Preference weighted average of the marketing mix

When preference probabilities are used to aggregate the marketing mix, the contribution

to the likelihood function of a purchase by household i is given by

Lin = Pr[Yi,din
= yi,din

]×

G
( J∑

j=1

Pr[Yi,din
= j]xij,din

) din−1∏
t=di,n−1+1

(
1 − G

( J∑
j=1

Pr[Yit = j]xijt

))
. (5.14)

Weighted average of incidence probabilities

For the case where a weighted average of incidence probabilities is used the likelihood

contribution reads

Lin = Pr[Yi,din
= yi,din

]×
J∑

j=1

Pr[Yi,din
= j]G(xij,din

)

din−1∏
t=di,n−1+1

(
1 −

J∑
j=1

Pr[Yit = j]G(xijt)
)
. (5.15)
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Latent preference purchase timing model

For the latent preference model the structure of the likelihood contribution is a bit more

involved as the brand choice and the purchase incidence decisions are not considered

separately. The contribution to the likelihood function of the n-th purchase of household

i reflects the probability of no purchase in the weeks di,n−1+1 to din−1 and the purchase of

brand yi,din
in week din, in terms of (conditional) probabilities this contribution becomes

Lin = Pr[Yi,din
= yi,din

] Pr[Di,din
= 1|Yi,din

= yi,din
]

din−1∏
t=di,n−1+1

(
J∑

j=1

(1 − Pr[Dit = 1|Yit = j]) Pr[Yit = j]

)
, (5.16)

or in terms of the logit function

Lin = Pr[Yi,din
= yi,din

]G(xij,din
)

din−1∏
t=di,n−1+1

(
J∑

j=1

(1 − G(xijt)) Pr[Yit = j]

)
. (5.17)

One can interpret this likelihood expression as follows. In the weeks where household i

does not purchase the product we do not observe its preferred brand. The preferred brand

of household i in these weeks is therefore a latent variable. To take care of this latent

variable we sum over all possible realizations where we use the brand choice probabilities

as weights. In periods where a purchase is made the brand preference is observed through

the brand actually chosen.

When comparing (5.15) to (5.17) the only difference between the latent preference

model and the specification where a weighted average of incidence probabilities is used

is in the likelihood contribution of the week in which the purchase is made. Concerning

the no-purchase weeks the two likelihood functions are identical. In the latent preference

model the incidence probability takes into account the brand preference. In the other

specification this is not the case as there the brand choice decision is modeled conditional

on purchase incidence. In the next section we will see that the differences between the

two approaches is more pronounced if one decides to model purchase timing in continuous

time.

5.2.3 The continuous case

In the prev9ious section we discussed purchase timing models in discrete time. In this

section we will extend these ideas to continuous time models. One of the most popular

continuous time models for durations is the hazard model. The difficulty of using ex-

planatory variables that are measured at the brand level to explain interpurchase timing

at the category level also holds for models in continuous time. In fact it will turn out that
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Figure 5.1: Graphical representation of purchase occasion di,n, interpurchase time ti,n and

time indexes of changes in covariates τl

in this case there are some additional technicalities that make the analysis more involved.

These difficulties especially concern the latent preference model.

Again denote by din the purchase timing of the n-th purchase of household i in calendar

time, n = 0, . . . , Ni. The Ni observed interpurchase times are therefore defined as tin =

din − di,n−1, with n = 1, . . . , Ni. Note that for the continuous time models t refers to the

time in a particular duration. For the models in discrete time we have used t as a time

index in calendar time. For the continuous time models t is set to 0 at the beginning of

each duration. We again assume that the marketing-mix variables are constant within

one week, which leads to the natural assumption that the brand choice preferences of

households are constant within a week. Denote by τl, l = 1, . . . , L, the time indices of a

change in the covariates. Using this notation, week 1 corresponds to the interval [τ0, τ1].

Furthermore, denote by Kin(t) the week number corresponding to t time periods after

the start of the n-th interpurchase spell. Note that after a purchase a new “week” will

start. In Figure 5.1 we give a graphical representation of the purchase process. In this

example we have purchases in weeks 2 and 4, and in this case we would have Kin(0) = 2

and Kin(tin) = 4.

The hazard function for the n-th interpurchase time for household i is denoted by

λin(t), where t = 0 corresponds with the start of the interpurchase spell. As the ba-

sic building block of the model we now use a general hazard function g(t; win(t)) which

plays the same role as the logistic function G(wit) in the discrete case, win(t) denotes the

explanatory variables at duration t associated with the n-th interpurchase time. The spec-

ification of g(·) depends on the type of hazard model chosen, for example the proportional

hazard may look like

g(t; win(t)) = exp(win(t)′γ)λ0(t), (5.18)

where λ0(t) is a baseline hazard function, see Gupta (1991) for a similar approach. In this

specification the sign of γ gives the direction of the effect of an increase in win(t) on

the hazard. That is, if γ > 0 an increase in win results in a decrease of the expected

interpurchase time.

For brand choice/brand preference we use the same notation as before. Let yin(t) =

yi,Kin(t) denote the brand preference of household i at duration t associated with the n-th
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interpurchase time. Note that we impose that the brand preferences are constant during

weeks. Although one could consider smaller time intervals to allow for more frequent

changes in preference, the (discrete) preference process, by definition, cannot develop in

continuous time.

Again it is not clear which combination of brand-specific marketing-mix variables

should be included in the hazard specification. All specifications discussed for the discrete

time case have their continuous time equivalents.

Choice share weighted average of marketing mix

One may weigh the marketing mix over the J brands using observed market shares as in

Gupta (1991). Hence, we have

λin(t) = g(t;
J∑

j=1

cijxinj(t)), (5.19)

where cij denotes observed choice share of brand j for household i, and where xinj(t)

denotes the marketing mix of brand j at duration t of the n-th interpurchase spell of

household i. This approach has of course the same drawbacks as for the discrete case.

The likelihood contribution of the n-th interpurchase time follows from standard du-

ration theory, see for example Kiefer (1988), and is given by

Lin = λin(tin)Sin(tin) = g(tin;
J∑

j=1

cijxinj(tin)) exp(−
∫ tin

0

g(s;
J∑

j=1

cijxinj(s))ds), (5.20)

where Sin(t) = exp(− ∫ t

0
λin(s)ds) denotes the survivor function.

Inclusive value

Again one may use the inclusive value as explanatory variable in the hazard function as

in Chintagunta and Prasad (1998). In continuous time, the inclusive value equals

Iin(t) = ln
( J∑

j=1

exp(αj + xinj(t)
′β)

)
. (5.21)

Note that the inclusive value will also be constant over periods of time. The hazard

function is in this case given by λin(t) = g(t; Iin(t)). The likelihood contribution of the

n-th interpurchase spell of length tin resulting in a purchase of brand yin(tin) for this

specification reads

Lin = Pr[Yin(tin) = yin(tin)] × λin(tin)Sin(tin)

= Pr[Yin(tin) = yin(tin)] × g(tin; Iin(tin)) exp(−
∫ tin

0

g(s; Iin(s))ds).
(5.22)
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The brand choice probability enters the likelihood contribution as the inclusive value is

obtained from a brand choice model.

Preference weighted average of the marketing mix/Weighted average of haz-

ards

One may weigh the marketing mix with choice probabilities in the corresponding week

resulting in

λin(t) = g
(
t;

J∑
j=1

Pr[Yin(t) = j]xinj(t)
)
, (5.23)

or one may decide to weigh brand-specific hazards instead of the marketing mix, that is,

λin(t) =
J∑

j=1

Pr[Yin(t) = j]g(t; xinj(t)). (5.24)

For both specifications, the likelihood reads

Lin = Pr[Yin(tin) = yin(tin)] × λin(tin) exp(−
∫ tin

0

λin(s)ds), (5.25)

where either (5.23) or (5.24) is used for λin(t).

Latent preference purchase timing model

Instead of using brand choice probabilities as convenient weights, it seems more sensible

to integrate the duration model and the brand choice model. We assume again that the

brand choice of a household in a certain week is known if a household makes a purchase

in the product category. During non-purchase weeks, we do not observe brand choice but

we assume that households do have a preferred brand. The preferred brand choice is then

treated as a latent variable and takes the role of the brand choice.

To explain the model, consider the hypothetical situation where we know the preferred

brands of household in all weeks, including those where no purchase is made. Assume

that the preferred brand in week k is given by yik and that the hazard function in this

week given Yik equals λ(t|Yik = yik). The brand choice probabilities are given by the logit

probabilities Pr[Yik = yik]. The joint density function of a duration from di,n−1 to din and

preferred brands yik for weeks k = Kin(0), . . . ,Kin(t) is given by

f(t, {yik}Kin(t)
k=Kin(0)) =

λ(t|Yi,Kin(t) = yi,Kin(t)) × S(t|{yik}Kin(t)
k=Kin(0))

Kin(t)∏
k=Kin(0)

Pr[Yik = yik]. (5.26)
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In practice, the marketing-mix variables are constant during a week. We assume that the

brand preferences given the marketing mix are also constant during a week. Given these

assumptions, we can expand the survivor function to obtain

f(t, {yik}Kin(t)
k=Kin(0)) =

λ(t|Yi,Kin(t) = yi,Kin(t)) Pr[Yi,Kin(t) = yi,Kin(t)] exp

(
−
∫ t

τKin(t)−1−di,n−1

λ(v|yi,Kin(t))dv

)
×

Pr[Yi,Kin(0) = yi,Kin(0)] exp
(
−
∫ τKin(0)−di,n−1

0

λ(v|yi,Kin(0))dv
)
×

Kin(t)−1∏
k=Kin(0)+1

Pr[Yik = yik] exp

(
−
∫ τk−di,n−1

τk−1−di,n−1

λ(v|yik)dv

)
.

(5.27)

The first part of (5.27) refers to the week in which the purchase is made, the middle part

concerns the period of the start of the duration to the first change in the marketing mix.

The third part of (5.27) deals with all other periods of constant preferences and marketing

mix.

So far we have assumed that we know the preferred brands, even at weeks where

there is no purchase at all. Of course, we do not observe brand preferences at weeks

without purchases. Hence, we have to sum over all possible realizations of the latent

brand preferences in these weeks to obtain the joint density of the interpurchase time and

the brand choice at the purchase occasion. Hence, we sum (5.27) over all possible values

of yik in weeks k = Kin(0), . . . , Kin(t) − 1, that is,

f(t,yi,Kin(t)) =
J∑

yi,Kin(0)=1

· · ·
J∑

yi,Kin(t)−1=1

f(t, {yik}Kin(t)
k=Kin(0))

= λ(t|Yi,Kin(t) = yi,Kin(t)) Pr[Yi,Kin(t) = yi,Kin(t)] exp
(
−
∫ t

τKin(t)−1−di,n−1

λ(v|yi,Kin(t))dv
)
×

J∑
yi,Kin(0)=1

Pr[Yi,Kin(0) = yi,Kin(0)] exp
(
−
∫ τKin(0)−di,n−1

0

λ(v|yi,Kin(0))dv
)
×

Kin(t)−1∏
k=Kin(0)+1

(
J∑

j=1

Pr[Yik = j] exp
(
−
∫ τk−di,n−1

τk−1−di,n−1

λ(v|yik)dv
))

.

(5.28)

The likelihood contribution Lin of the n-th interpurchase time of household i resulting in

a purchase of brand yi,Kin(tin) now equals f(tin, yi,Kin(tin)).
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5.3 Empirical comparison

In this section we compare the various model specifications for the interpurchase timing

model in continuous time as given in Section 5.2.3 using household panel scanner data. For

three different categories of fast-moving consumer goods, we will estimate the five different

specifications discussed in Section 5.2.3. The performance of the different specifications

is measured using in-sample and out-of-sample criteria.

The data we use is part of the so-called ERIM database, which is collected by A.C.

Nielsen. The data span the years 1986 to 1988, and the particular subset we use concerns

purchases of catsup, laundry detergent and yogurt by households in Sioux Falls (South

Dakota, USA). We split the data sets in two parts such that the number of households is

roughly the same in both samples. The first part is used to estimate the parameters of

the various models, while the second part is used for out-of-sample evaluation. Table 5.1

provides an overview of the number of brands, households and number of purchases in

the samples. The catsup category contains the brands Del Monte, Heinz and Hunts, the

yogurt category contains Dannon, Nordica, W-B-B, Yoplait and a rest brand, while for

the detergent category we have Cheer, Oxydol, Surf, Tide, Wisk and a rest brand.

We use a standard multinomial logit model to describe brand choice and to describe

interpurchase timing we use a proportional hazard model with a log-logistic baseline

hazard, to be more precise the baseline hazard reads

λ0(t) =
αγtα−1

1 + γtα
, (5.29)

where α > 0 and γ > 0. This specification allows the baseline hazard to be monoton-

ically decreasing or inverted U-shaped. Chintagunta and Haldar (1998) show that for

modeling purchase timing this baseline hazard outperforms commonly used alternatives

as the Weibull or Erlang-2 specification. The multinomial logit model we use to model

brand choice contains brand-specific intercepts, the marketing mix of all brands in the

Table 5.1: Data characteristics of three categories of fast-moving consumer goods

Category No. brands No. households No. purchases

In-sample Out-of-sample In-sample Out-of-sample

Catsup 3 363 356 3742 3610

Detergent 6 303 295 2318 2080

Yogurt 5 210 209 4337 3605



5.3 Empirical comparison 107

category (price, display and feature) and a lagged brand choice dummy capturing state-

dependence. As explanatory variables in the hazard model we use household size and

household income as these variables are known to influence interpurchase timing. To con-

trol for inventory effects, such as stockpiling, we use the volume previously bought in the

category as an additional variable, see also Chintagunta and Prasad (1998) for a similar

approach. These variables are household specific and therefore they are not subject to

the difficulties presented in this chapter for brand-specific variables. Finally, we use the

available marketing instruments, that is, price, display and feature. The five different

ways to include the marketing mix in the hazard specification discussed in Section 5.2.3

lead to five alternative models.

In this chapter we are not so much interested in specific values of estimated parameters,

the focus lies on the comparison of the various model specifications. To this end the

analysis is split up in two parts. First, we analyze the differences in descriptive power,

where we do not allow for unobserved heterogeneity in the brand choice model. Next,

we consider the case where unobserved heterogeneity is modeled using a finite mixture

distribution. In the homogeneous case the model specification using individual choice

shares to obtain a category average of the marketing efforts of the different brands in a

category (5.19) clearly has an advantage over the other specifications. It allows for an

easy representation of between-household heterogeneity in brand preferences. Differences

in brand preferences will have a large influence on the relative importance of the marketing

mix of individual brands on the purchase incidence decision. We expect this specification

to be superior in in-sample fit. For out-of-sample prediction, individual choice shares may

not be available if we consider households outside the estimation sample. One may use

the in-sample average choice share across households as a predictor for the out-of-sample

individual choice shares. In this case the forecasting performance of the individual choice

share specification will probably be lower.

Concerning in-sample performance we expect that explicit modeling of (unobserved)

heterogeneity in brand preferences will lead to the same or an even better fit for the

alternative models compared to the specification based on choice shares. This assertion

is analyzed in the second part of this section.

No unobserved heterogeneity

First of all we compare the performance of the different specifications without control-

ling for unobserved heterogeneity. Table 5.2 shows some performance statistics of six

models for the three categories under investigation. As in-sample measures we consider

the maximum log likelihood value, the AIC and the BIC. The value of the log likelihood

function for the out-of-sample observations evaluated at the estimate based on the in-

sample observations is used to evaluate the forecasting performance of the various model
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specifications. For the choice share specification we consider two values of the out-of-

sample log likelihood. The first is based on household-specific choice shares estimated

using out-of-sample observations, while for the second the choice shares are set to the

in-sample average choice shares. This measure represents the case in which choice share

information is not available when forecasting interpurchase times.

Table 5.2 displays an overview of the results. Several conclusions can be drawn

from this table. First, if we consider in-sample measures, the specification that uses

the household-specific choice shares as weights performs best for all criteria. Note that

we did not count the choice shares as parameters in computing the information criteria,

although strictly speaking these estimated shares are to be seen as parameters. If we

would count the weights as parameters, the choice-share specification would be the lowest

in rank on the AIC and BIC measures. Secondly, the inclusive value specification turns

out to perform worst on all measures. Finally, if we ignore the choice share specification,

the latent preference model performs best for all performance measures.

If we consider out-of-sample measures we notice the same pattern. The only difference

is that for the catsup category both the weighted hazard and the weighted marketing mix

specifications outperform the latent preference model. Furthermore, if we compute the

out-of-sample log likelihood value using an average of in-sample household-specific choice

shares, the forecasting performance of the “choice share model” is almost always worse

than of the other specifications, with the exception of the inclusive value specification for

the catsup category.

Unobserved heterogeneity

We have seen that the model based on household-specific choice shares performs best on

in-sample and out-of-sample measures. As already discussed before, we expect this superi-

ority to vanish if we explicitly model heterogeneity in brand preference among households.

To validate this claim, we estimate the models while allowing for unobserved heterogeneity

in brand preferences and the average purchase rate. That is, we allow the brand intercepts

and the intercept of the hazard function to differ across households through the use of

latent segments, see Wedel and Kamakura (1999).

To reduce the probability of ending up in a local maximum of the likelihood, we

estimate the heterogeneous models with ten different starting values. The results below

are based on the best of these ten starting values.

To summarize the results we only compare the performance of the individual choice

share model with the latent preference model in detail. Note that the latent preference

model turned out to be second best in the homogeneous case. Table 5.3 provides an

overview of the results for the three product categories. If we correct for unobserved

heterogeneity the relative performance of the latent preference model versus the model
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Table 5.2: Performance measures of different interpurchase time models without correct-

ing for unobserved heterogeneity1

Duration/Choice models
choice model choice inclusive weighted weighted latent

shares2 value hazard mark. mix preferences

Catsup category
lnL −1909.36 -13872.4 -13892.5 -13883.6 -13881.9 -13878.2
AIC 3830.72 27775.9 27810.9 27799.2 27795.8 27788.3
BIC 3854.08 27838.3 27861.6 27861.5 27858.1 27850.6
out-of-sample lnL −1541.13 -13072.1 -13110.4 -13092.3 -13093.1 -13095.0

with in-sample shares -13094.1

Detergent category
lnL −2335.37 -8996.27 -9012.75 -9004.35 -9004.11 -8998.17
AIC 4688.73 18030.5 18057.5 18046.7 18046.2 18034.3
out-of-sample lnL −2254.69 -8294.79 -8317.58 -8312.68 -8312.20 -8311.87

with in-sample shares -8318.39

Yogurt category
lnL −3869.15 -13277.2 -13414.7 -13399.0 -13402.0 -13387.3
AIC 7754.30 26590.4 26859.5 26834.0 26840.0 26810.6
BIC 7784.01 26657.2 26915.2 26900.8 26906.8 26877.5
out-of-sample lnL −3707.60 -12372.7 -12408.4 -12398.6 -12397.1 -12387.7

with in-sample shares -12425.1

1 Underlined entries indicate the best performing model, per performance measure. For the out-of-
sample likelihood the best performing model based on in-sample shares is also underlined.

2 The interpurchase timing model using choice shares can be estimated independently from the brand
choice model. To allow for easy comparison, the performance statistics however show the results of
the combination of the duration model and the brand choice model.
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Table 5.3: Likelihood differences Latent preference model - Choice

shares model, both with unobserved heterogeneity (average in-

sample shares used for out-of-sample choice shares)

Number of segments

1 2 3 4 5 6

In-sample log-likelihood difference

Catsup −5.84 −12.10 −13.50 −9.90 −13.50 1.30

Yogurt −110.15 6.80 −5.00 −6.90 48.92 35.20

Detergent −1.90 −3.27 13.08 28.34 35.90 13.33

Out-of-sample log-likelihood difference

Catsup −0.87 −3.70 3.40 6.20 6.70 53.40

Yogurt 37.40 −51.80 119.10 99.30 119.00 138.49

Detergent 6.52 12.33 47.14 2.83 44.65 9.35

based on choice shares indeed improves. As we only want to illustrate that the latent

preference model with unobserved heterogeneity can outperform the choice share model,

we stop adding segments when this goal is reached in-sample as well as out-of-sample.

We see that with 6 segments the latent preference model outperforms the choice share

model both in-sample as out-of-sample for all three categories. Unreported results show

that similar results are found for all other suggested specifications, except for the inclusive

value model for catsup. For this category the inclusive value model has the worst in-sample

performance for all segments. For one to five segments the out-of-sample performance is

also worst of all, when six segments are considered the inclusive value model performs

better than the choice share specification.

To analyze the relative performance of all specifications in case of unobserved hetero-

geneity, we consider the detergent category in more detail. As can be seen from Table 5.3,

for this category it holds that up to two segments the specification based on choice shares

outperforms the latent preference model on the basis of in-sample log likelihood value.

In case three or more segments are used the advantage of the household-specific choice

shares is compensated by the heterogeneity captured by the part of the model that cap-

tures brand choice. In Table 5.4 we present the in-sample and out-of-sample log likelihood

value for the detergent category for all non-choice share models. We conclude that the

latent preference model performs relatively best for most number of segments. Only when
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Table 5.4: Performance measures for interpurchase time models with unobserved het-

erogeneity for the detergent category (largest likelihood value per number of segments

in boldface)

Number of segments

1 2 3 4 5 6

In-sample lnL
Choice model -2335.37 -2213.76 -2133.46 -2085.64 -2046.62 -2016.14

Inclusive value -9012.75 -8680.78 -8582.07 -8522.32 -8452.02 -8423.58

Weighting hazard -9004.35 -8677.84 -8583.75 -8519.96 -8459.35 -8418.73

Weighting mark. mix -9004.11 -8677.62 -8596.64 -8513.10 -8449.39 -8421.50

Latent preferences -8998.17 -8673.07 -8578.36 -8516.65 -8443.07 -8410.93

Out-of-sample lnL
choice model -2254.69 -2195.01 -2132.77 -2115.76 -2077.77 -2071.70

Inclusive value -8317.58 -8164.67 -8120.61 -8113.00 -8084.83 -8058.41

Weighting hazard -8312.68 -8154.85 -8124.28 -8097.82 -8073.05 -8063.59

Weighting mark. mix -8312.20 -8154.02 -8149.01 -8086.90 -8042.93 -8042.36

Latent preferences -8311.87 -8145.12 -8101.84 -8088.08 -8039.82 -8062.23

four segments are used it is beaten by the specification based on a weighted marketing

mix. This last specification however performs worst for three segments. The out-of-sample

performance measures show a similar pattern.

To check whether these results also hold for the other two categories, we provide in

Table 5.5 an overview of the performance of the non-choice share based models. To prevent

that our results are influenced by the number of segments imposed, we report in the final

column of the table the average rank of the model across the three product categories for

the different segment sizes. If we consider the in-sample measures, the latent preference

model specification performs best for all segment sizes. For out-of-sample measures the

latent preference model is best or second best. The final column of the table shows the

overall rank. We see that the overall rank of the latent preference model is best and that

the inclusive value specification has the largest average rank value. This result holds for

in-sample as well as out-of-sample performance.
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Table 5.5: Average ranks of heterogeneous models over three categories

(excluding choice shares specification)

1 2 3 4 5 6 overall

In-sample average rank

Inclusive value 4.00 3.33 2.33 3.00 2.67 4.00 3.22

Weighted hazard 2.67 3.33 3.33 3.33 3.33 2.67 3.11

Weighted mark. mix 2.33 2.33 3.00 2.00 2.67 2.33 2.44

Latent preferences 1.00 1.00 1.33 1.67 1.33 1.00 1.22

Out-of-sample average rank

Inclusive value 4.00 3.67 3.33 4.00 4.00 3.33 3.72

Weighted hazard 2.33 2.33 2.67 2.67 2.33 2.67 2.50

Weighted mark. mix 2.00 2.00 3.00 1.33 2.33 1.67 2.06

Latent preferences 1.67 2.00 1.00 2.00 1.00 2.33 1.67

5.4 Conclusions

In this chapter we have considered the practical question of what to do with brand-specific

marketing efforts when modeling interpurchase timing. As purchase timing is measured

on the category level, one has to somehow aggregate the brand level information. In the

literature there are two popular techniques. Category marketing efforts are often formed

by calculating a weighted average of the marketing mix of individual brands. As weights

household-specific choice shares are often used. Another approach is to summarize all

marketing-mix variables of all brands into the so-called inclusive value.

We have proposed three alternative specifications. For the first alternative we create

category level marketing instruments using household-specific weights that are obtained

from a brand choice model. The second alternative uses the same weights to aggregate over

brand-specific incidence probabilities (or hazards). Finally we suggested a specification

that integrates a brand choice model with the purchase timing.

In an empirical comparison of the resulting five specifications for three categories of

fast-moving consumer goods, we find that when unobserved heterogeneity is not accounted

for the specification using choice shares performs best. However, this specification is less

useful for out-of-sample forecasting as in this case household’s choice shares are in general

unknown. For out-of-sample forecasting the latent preference model tends to perform best.
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If unobserved heterogeneity is accounted for the latent preference model also performs best

in sample.

We conclude this chapter with a practical summary of the results. If one is only

interested in describing purchase timing and not in brand choice, one obtains the best

performance by weighting the marketing mix in the interpurchase time model using indi-

vidual choice shares. However, if one wants to use the model for out-of-sample forecasting

and out-of-sample individual choice shares are unknown, one has to use one of the other

models. In that case, information from a brand choice model can be used to weight

brand-specific marketing efforts for the interpurchase model. These models outperform

the choice share based model if one explicitly models the unobserved heterogeneity in the

brand choices. The overall performance of the latent preference model where one inte-

grates brand choice and interpurchase timing is best, although the differences with the

weighted marketing mix and weighted hazard specification are sometimes not substantial.

However, the latent preference model outperforms the inclusive value specification.





Chapter 6

A dynamic duration model

6.1 Introduction

For marketing managers it is important to understand the dynamic effects of marketing-

mix variables like promotion and advertising on marketing performance measures such

as sales, market shares and profitability. Particularly, it is relevant to understand the

long-run effects of marketing efforts, as this knowledge can for example lead to more

efficient marketing strategies. Examples of recent studies that address this issue are Mela

et al. (1997), Dekimpe et al. (1999), Jedidi et al. (1999) and Paap and Franses (2000),

to mention just a few. The literature contains two different approaches. One approach

tries to capture the (long-run) effects of marketing instruments on for example the price

elasticity (Mela et al., 1997; Jedidi et al., 1999). Dynamics are then incorporated through

the responses to marketing instruments. The second approach, which is considered in the

present chapter, focuses on dynamic effects in behavior (Dekimpe et al., 1999; Paap and

Franses, 2000).

In this chapter we address the issue of measuring the long-run and short-run impact of

marketing-mix variables on interpurchase times. The theoretical and empirical analysis

of purchase-timing behavior of households has received considerable attention in the past

and in recent years. The analysis of interpurchase timing can give interesting insights

in household behavior. Purchase timing can be especially informative to learn about in-

ventory management and consumption rate, in fact the purchase timing and the volume

bought are the only two measures related to inventory that are usually available. Fur-

thermore, we can study purchase acceleration and stock piling using interpurchase timing.

Blattberg et al. (1981) show under stringent conditions that promotions lead to purchase

acceleration. Empirical evidence for this behavior can be found in Gupta (1988) and

Helsen and Schmittlein (1992) among others, although for example Neslin et al. (1985)
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report that promotions were less likely to accelerate purchase times. A review of inter-

purchase time modeling before 1990 can be found in Jain and Vilcassim (1991, Table 1).

More recently, researchers focus on using hazard functions to analyze the effect of

promotions on interpurchase times, see among others Helsen and Schmittlein (1992, 1993),

Jain and Vilcassim (1991), Vilcassim and Jain (1991), Gönül and Srinivasan (1993a),

Chintagunta and Prasad (1998) and Vakratsas and Bass (2002). The last four studies

also incorporate unobserved household heterogeneity. An important extension to modeling

interpurchase times for two related product categories is given in Chintagunta and Haldar

(1998).

Dynamic models for interpurchase times are relatively scarce, although one might

expect strong dynamic effects in practice. For example, a promotion may shorten the

present interpurchase time, while it likely lengthens future interpurchase times due to

stock piling. An example of a study that explicitly incorporates dynamic structures in

purchase timing is Allenby et al. (1999). In that paper, dynamics in durations are modeled

by lagged interpurchase times, but no explicit separation of long-run from short-run effects

of marketing mix variables is pursued. As we believe that such differences might exist, we

aim to contribute to the literature by putting forward a dynamic model for interpurchase

times that does allow for different long-run and short-run effects. The model extends the

familiar accelerated failure-time model by including lagged interpurchase times as well as

lagged covariates. Rewriting this model as an Error Correction Model [ECM] allows us

to distinguish the long-run from the short-run effects, see Hendry et al. (1984).

The values of covariates, like price and promotion, are likely to change during inter-

purchase spells. In most marketing applications of duration models, it is assumed that

covariates remain constant during spells, which is perhaps imposed for convenience. In

contrast, in this chapter we follow a similar approach as Gupta (1991), that is, we al-

low for time-varying covariates in the hazard specification. Additionally, many studies

have emphasized the relevance of unobserved household heterogeneity, and that it should

be taken into account when analyzing purchase behavior. Therefore, we accommodate

for unobserved differences across households by a latent class approach. In many stud-

ies, unobserved heterogeneity is incorporated using a mixed proportional hazard model,

where one introduces a stochastic multiplicative factor to the hazard specification, see

Lancaster (1979) and see Gönül and Srinivasan (1993a) for an application in marketing.

In this chapter we also allow for different effects of the covariates including the marketing

mix on the interpurchase times, see also Vakratsas and Bass (2002) for a similar approach.

Indeed, such heterogeneity may be especially relevant for modeling dynamics in purchase

timing. For example, the population may contain households with very different dynamic

purchase timing patterns.
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In sum, we propose a dynamic model for interpurchase time, with possibly differing

short-run and long-run effects of covariates, which incorporates unobserved heterogeneity

and also takes care of time-varying covariates in between purchases.

The outline of this chapter is as follows. In Section 6.2, we discuss our dynamic dura-

tion model. We show how the accelerated failure-time model can be extended to allow for

time-varying covariates and possibly differing long-run and short-run effects of marketing

variables. We discuss in detail how one can interpret the parameters and estimate them

using maximum likelihood. In Section 6.3, we apply our model to purchases in three

distinct categories of frequently purchased consumption goods, that is liquid laundry de-

tergent, catsup and yogurt. One of our main empirical findings is that, for some household

segments, the short-run effects of marketing mix variables are significantly different from

the long-run effects. In Section 6.4, we conclude this chapter with a discussion of the

main results and with suggestions for further research topics.

6.2 A dynamic model for interpurchase times

In this section we put forward our dynamic model for interpurchase times, which enables

a separate evaluation of long-run and short-run effects of covariates, such as promotion

and other marketing-mix variables. In Section 6.2.1, we present the functional form of

the hazard specification and discuss how we take care of time-varying covariates. In

Section 6.2.2, we introduce autoregressive dynamics in our model. The interpretation of

the dynamic structure is discussed in Section 6.2.3. Finally, in Section 6.2.4, we consider

parameter estimation.

6.2.1 Hazard specification

Assume that a household i = 1, . . . , I purchases a certain product at time din, for n =

0, . . . , Ni over a certain period of time. The Ni interpurchase times of this household are

therefore defined by tin = din − di,n−1 with n = 1, . . . , Ni. To model the interpurchase

times, we consider a hazard specification. Denote the hazard corresponding to the n-th

purchase decision of household i by

λin(t|xin(t), θi), (6.1)

where xin(t) denotes a vector of covariates explaining the hazard of household i for the

n-th purchase decision at time t and θi is a household-specific parameter vector. The

explanatory variables are a function of time t. In this chapter, t denotes the interpurchase

time. For the n-th interpurchase spell the calendar time is given by di,n−1+t. Hence xin(t)

gives the value of the covariates at calendar time di,n−1 + t.
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When modeling interpurchase times, it is unrealistic to assume that the covariates are

constant during the spell, see Gupta (1991). In other words, it is unrealistic to assume

that households do not notice these variations at no-purchase store visits. The set of

covariates will usually include marketing instruments such as price and display. These

variables do not evolve smoothly over time, rather, they usually change on a weekly basis

or perhaps every day. Denote by τl, for l = 0, .., L, the time indexes where there is a

change in one of the covariates. For ease of exposition we assume that the covariates are

constant within a week. Week 1 then corresponds to the time interval [τ0, τ1]. Denote by

Kin(t) the week number corresponding to t time periods after the start of the n-th spell

of household i. This week then starts at τKin(t)−1 and ends at τKin(t). This notation is also

used in Chapter 5. In Figure 5.1 of that chapter we give a graphical representation of

the purchase process. In this example we have purchases in weeks 2 and 4, and we would

therefore have Kin(0) = 2 and Kin(tin) = 4.

To derive the distribution of the interpurchase times we use the fact that the sur-

vivor function Sin(t|xin(t), θi) equals exp(−Λin(t|xin(t), θi)), where Λin(t|xin(t), θi) is the

integrated hazard function. This function is defined as

Λin(t|xin(t), θi) =

∫ t

0

λin(u|xin(u), θi)du. (6.2)

Note that the integrated hazard function depends on the whole path of xin(u) for u = 0

to u = t, see Lancaster (1990) for a discussion. This integral can be decomposed by

identifying intervals in which xin(t) is constant. We decompose the integral in three

parts, that is, (i) from the start of the duration to the end of the corresponding week, (ii)

the weeks completely contained in the duration, and (iii) from the start of the final week

to the end of the duration. The integrated hazard can be decomposed as

Λin(t|xin(t), θi) =

∫ τKin(0)−di,n−1

0

λin(u|xin(u), θi)du

+

Kin(t)−2∑
k=Kin(0)

∫ τk+1−di,n−1

τk−di,n−1

λin(u|xin(u), θi)du +

∫ t

τK(t)−1−di,n−1

λin(u|xin(u), θi)du, (6.3)

see Gupta (1991) for a similar approach.

As the computation of the integrated hazard function is computationally intensive, it is

convenient to have a closed-form expression for the individual elements of (6.3). Therefore,

in this chapter we use as starting point the hazard structure of an accelerated failure-time

model with a log-logistic baseline hazard. This hazard specification leads to an analytical

expression of the integrated baseline hazard, while it allows for a non-monotonic hazard

function. Another advantage of using an accelerated failure-time specification is that it

corresponds with a linear representation for the case of constant covariates during spells,
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see Kalbfleisch and Prentice (1980), Kiefer (1988) and Ridder (1990). This facilitates the

inclusion and interpretation of an autoregressive dynamic structure in the model, see also

the Autoregressive Conditional Duration [ACD] model of Engle and Russell (1998) for

modeling financial transaction data. The hazard we consider thus reads as

λin(t|xin(t), θi) = exp(−xin(t)′βi)λ0(t exp(−xin(t)′βi)|δi), (6.4)

where θi = (βi, δi) and where λ0(u|δ) denotes the baseline hazard. In case of the log-

logistic distribution, this baseline hazard is defined as

λ0(u|δ) =
δuδ−1

1 + uδ
. (6.5)

The hazard function then becomes

λin(t|xin(t), θi) = exp(−xin(t)′βi)λ0(t exp(−xin(t)′βi))

=
δit

δi−1 exp(−xin(t)′βi)
δi

1 + tδi exp(−xin(t)′βi)δi
.

(6.6)

When the covariates for the n-th spell for household i are constant over the interval (a, b],

the integrated baseline hazard over this interval equals∫ b

a

λin(u|xin(b), θi)du =

log[1 + bδi exp(−xin(b)′βi)
δi ] − log[1 + aδi exp(−xin(b)′βi)

δi ]. (6.7)

This result can be used to compute (6.3). The density function for observation tin can be

expressed in terms of the hazard function and the integrated hazard function, that is,

fin(tin|xin(t), θi) = λin(tin|xin(t), θi)Sin(tin|xin(t), θi), (6.8)

where Sin(tin|xin(t), θi) = exp(−Λin(tin|xin(t), θi)) denotes the survivor function. Note

that the density function depends on the integrated hazard function and therefore takes

into account the complete history of the marketing instruments.

In Figure 6.1 we present an illustrative example of the accelerated failure-time hazard

model with time-varying explanatory variables. In this figure the left-hand vertical axis

gives the hazard rate, while the right-hand vertical axis gives the “score” (xin(t)′β) which

changes at calendar times τl (lower line). The smooth curve shows the baseline hazard,

that is, the hazard without correcting for the explanatory variables. Finally the kinked

top line shows how the hazard is scaled and stretched as a result of the time-varying

explanatory variables. A low “score” xin(t)′β yields a higher hazard rate and therefore

lowers the expected interpurchase time.
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Figure 6.1: Illustrative example of the hazard rate for an accelerate failure-time model

with time-varying explanatory variables.

6.2.2 Dynamics

The model discussed in the previous section is static, in the sense that interpurchase

times are only explained by current explanatory variables. It is however likely that the

interpurchase times of households are correlated over time. For example, promotional

activities may not only have an effect on current but also on future interpurchase times.

A flexible specification of these dynamic patterns is obtained by adding lagged in-

terpurchase times and by incorporating the value of the marketing instruments at the

last purchase. Technically speaking, we add ln ti,n−1 and xi,n−1(ti,n−1) to explain the n-th

interpurchase time of household i. Defining win(t) = (xin(t), ln ti,n−1, xi,n−1(ti,n−1)) and

γi = (αi, ρi, ωi), we can easily obtain the hazard specification for the dynamic case from

(6.6) by replacing xin(t)′βi with win(t)′γi.

The hazard corresponding with this dynamic duration model has to be defined as

a conditional hazard given the previous interpurchase time. This conditional hazard

function for tin given ti,n−1 reads as

λin(t|win(t), θi) =
δit

δi−1 exp(−win(t)′γi)
δi

1 + tδi exp(−win(t)′γi)δi
, (6.9)

with θi = (γi, δi) and note that win(t) contains ln ti,n−1. The density function of the timing

of the n-th purchase occasion of household i given ti,n−1 is therefore

fin(t|win(t), θi) = λin(t|win(t), θi) exp(−Λin(t|win(t), θi)), (6.10)

where Λin(t|win(t), θi) is the integrated hazard function.
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6.2.3 Interpretation of dynamics

For a straightforward interpretation of the parameters in the dynamic specification of the

duration model, it is useful to consider the effects of a promotion during a spell. More

specifically, in this section we study the dynamic effects of a promotion starting directly

following a purchase made by a focal household and the promotion will end directly

after the next purchase of this household. Under this strategy the marketing instruments

are constant during spells. The fact that marketing instruments do not change between

purchases allows for an intuitive interpretation of the parameters.

In case the covariates are constant during spells we can denote win(t) = win, further-

more the survivor function now simplifies to

Sin(t|win, θi) =
1

1 + [exp(−w′
inγi)t]δi

. (6.11)

For the distribution of t∗in = δi(ln tin − w′
inγi), we derive that

Pr[t∗in < E] = Pr[δi(ln tin − w′
inγi) < E] = Pr[tin < exp(x′

inβi + 1/δiE)]

= 1 − S(exp(w′
inγi + 1/δiE)) = 1 − 1

1 + exp(1/δiE)δi

= 1 − 1

1 + exp(E)
.

(6.12)

Hence, in the case of constant regressors, t∗in has a logistic density. As its density does

not depend on covariates and model parameters, we can linearize the duration model as

ln tin = w′
inγi + σiηin

= ρi ln ti,n−1 + x′
inαi + x′

i,n−1ωi + σiηin,
(6.13)

where σi = 1/δi, and where ηin is logistic distributed such that E[ηin] = 0. Thus, under the

restriction of constant covariates during interpurchase spells, (6.13) is an exact alternative

representation of the hazard model in (6.9).

Following ideas from the area of time-series analysis, we further rewrite (6.13) into the

so-called error-correction format, that is,

∆ ln tin = ∆x′
inαi + (ρi − 1)(ln ti,n−1 − x′

i,n−1βi) + σiηin, (6.14)

where βi = (αi + ωi)/(1 − ρi) and where ∆ is the first difference operator defined as

∆zin = zin − zi,n−1, where zin can be ln tin or xin. To exclude the implausible explosive

behavior of the interpurchase times, we impose that |ρi| < 1, for all i. The term ∆x′
inαi

in (6.14) concerns the short-run effects of a change in xin on the interpurchase time,

while the term x′
i,n−1βi in the so-called error correction part concerns the long-run effects.

Notice that we cannot estimate different short- and long-run effects of variables that do
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not change during the time period considered, like for example household size, as then

∆xin is zero and αi is not identified. We label the model in (6.14) the error-correction

model [ECM] and it will be the main specification in the rest of the chapter. The long-run

effects in this specification may differ in size or even in sign from short-run effects.

Following the usual time series terminology, see Hendry et al. (1984), there may be a

restricted specification that is relevant. First of all, we can restrict the short-run and the

long-run parameters to be equal (αi = βi). The resulting specification is known as the

common-factor specification. Under this specification, (6.13) transforms into

(ln tin − x′
inβi) = ρi(ln ti,n−1 − x′

i,n−1βi) + σiηin. (6.15)

The autoregressive parameter ρi is in this case equal to the correlation between (ln tin −
x′

inβi) and (ln ti,n−1 − x′
i,n−1βi). This specification is equivalent to a model where only

contemporaneous explanatory variables are included and where the error term follows an

AR(1) model, that is (6.15) is equivalent to

ln tin = w′
inγi + σiηin

ηin = ρiηi,n−1 + uin,
(6.16)

where uin is again an unobserved error term for which we take the same distributional

assumptions as for ηin. If we additionally impose ρi to be zero we obtain a static specifi-

cation in which there are no dynamic effects.

Effects of a promotion during spells

We next analyze the dynamic effects of the explanatory variables on interpurchase times.

The short-run effect of a marketing instrument is defined as the instantaneous effect of its

(permanent) change on the interpurchase time. The long-run effect measures the effect of

a permanent change of a marketing instrument at time t′ on the interpurchase times at t

as t → ∞. We focus on the error-correction duration model (6.14) as this model nests the

common factor representation (6.15) (αi = βi) and the static model (αi = βi and ρi = 0).

First, we consider the derivative of ln tin with respect to xin, that is,

∂ ln tin
∂xin

= αi. (6.17)

Hence, an ε change in xin, for example due to a price reduction or a promotional activity,

leads to αiε change in the log current interpurchase time. Note that if xin is for example

the natural log of a variable, we can interpret αi as an elasticity.

To analyze the effects of changes in the explanatory variables on future log interpur-

chase times, we can follow a similar procedure. The partial derivative of ln ti,n+1 with
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respect to xin is given by

∂ ln ti,n+1

∂xin

= −αi − (ρi − 1)βi + ρi
∂ ln tin
∂xin

= (ρi − 1)(αi − βi). (6.18)

An ε change in xin leads to a change of ε(ρi−1)(αi−βi) in ln ti,n+1. The derivative is zero

if αi = βi. Note that the case with ρi = 1 is ruled out to avoid explosive interpurchase

times. Hence, the common factor specification (6.15) (and of course the static model)

imposes that changes in xin have no effect on the next interpurchase time. If βi < αi,

some of the effect of the change in xin on the current interpurchase time is compensated

by an opposite effect on the next interpurchase time.

For the subsequent interpurchase time it holds that

∂ ln ti,n+2

∂xin

= ρi
∂ ln ti,n+1

∂xin

= ρi(ρi − 1)(αi − βi). (6.19)

To derive the partial derivative of ln ti,n+k with respect to xin, we note that for r > 2

∂ ln ti,n+r/∂xi,n = ρi∂ ln ti,n+r−1/∂xin and hence that

∂ ln ti,n+k

∂xin

= ρ
(k−1)
i (ρi − 1)(αi − βi). (6.20)

If |ρi| < 1 the effect of a change in xin on future interpurchase times will decline expo-

nentially, and eventually it becomes zero.

From the above exercise it can already be understood that permanent changes in

interpurchase times can only be obtained when xin changes permanently. For example,

our model implies that only a permanent lower price can generate a permanent reduction

in interpurchase times. To derive the long-run effects of a permanent change in xin, we

apply repeated backward substitution to (6.14) and obtain

ln tin = ρi ln ti,n−1 + ∆x′
inαi − (ρi − 1)x′

i,n−1βi + σiηin

= ρ2
i ln ti,n−2 + ∆x′

inαi + ρi∆x′
i,n−1αi

− (ρi − 1)x′
i,n−1βi − ρi(ρi − 1)x′

i,n−2βi + σiηin + ρiσiηi,n−1

= ρn
i ln ti0 +

n−1∑
j=0

ρj
i (∆x′

i,n−jαi − (ρi − 1)x′
i,n−j−1βi + σiηi,n−j),

(6.21)

where ti0 denotes the pre-sample starting value of tin. As |ρi| < 1, ρn
i → 0 for large n

and the influence of ln ti0 can be neglected. If we further impose that xin is fixed over

the purchase occasions, that is xi = xin = xi,n−j, j = 1, . . . ,∞, then for n → ∞, (6.21)

becomes

ln tin =
∞∑

j=0

ρj
i (−(ρi − 1)x′

iβi + σiηi,n−j) = x′
iβi +

∞∑
j=0

ρj
iσiηi,n−j. (6.22)
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Hence, as E[ηi,n−j ] = 0 for all j, the long-run expectation of ln tin given xi is

E[ln tin|xi] = x′
iβi. (6.23)

If follows from (6.23) that the long-run effect of a permanent change in xi on the log

interpurchase time is βi. In sum, our error-correction model for interpurchase times has

short-run effects αi and long-run effects βi. Note again that in the common factor model

these effects both equal βi and in the static model there are no dynamic effects at all.

Finally, to describe the dynamics in the interpurchase time model, we obtain the effects

of an unexplained shock during the n-th interpurchase time on the subsequent purchase

timings. The effect of a shock on future interpurchase times can easily be obtained from

(6.21). The effect of an ε shock during the n-th interpurchase spell on the n + k-th spell

is given by ρk
i ε.

Table 6.1 gives an overview of all the dynamic effects for several relevant versions

of the model, that is the static version (ρi = 0, αi = βi), the common factor model

(ρi �= 0, αi = βi), the error-correction model with ρi = 0 and the error-correction model

with unrestricted ρi. For ease of exposition we suppress the index i in this table. The

table clearly shows the differences across the models. The static model does not allow

for dynamic effects. The common factor model only captures the dynamics through

unexplained shocks. The error-correction model with ρi = 0 does not capture dynamics

in shocks but allows the effect of a marketing effort to carry over to the next interpurchase

spell. Depending on the estimated difference between αi and βi, the effect on this next

spell may be positive or negative. Finally, the unrestricted error-correction model allows

for dynamics through shocks, for multi-period carry-over effects of marketing instruments

and it allows that the effect of a permanent change in a marketing instrument smoothly

evolves over time.

6.2.4 Parameter Estimation

Differences in interpurchase times across households may only be partly captured by

including household-specific explanatory variables in the model. Furthermore, it is also

not unlikely that households may react differently to promotional activities. Therefore,

we allow for household-specific parameters. Using similar arguments as for brand choice,

neglecting this household heterogeneity may lead to an overestimate of the persistence (in

our case ρi) in interpurchase times. See for example Keane (1997) for a discussion of the

effects of neglecting household heterogeneity on state dependence in brand choice.

Estimation of these household-specific parameters may however be difficult if we do not

have enough observations for each household. To circumvent this problem, one usually

assumes that the parameters are draws from a certain population distribution. This
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Table 6.1: Dynamic effects of temporary and permanent changes in marketing in-

struments and of unexplained shocks in different model versions

Static Common Factor ECM (ρ = 0) ECM (0 < |ρ| < 1)

Temporary change in x at time n

∂ ln tn/∂xn β β α α

∂ ln tn+1/∂xn 0 0 −(α − β) (ρ − 1)(α − β)
...

...
...

...
...

∂ ln tn+k/∂xn 0 0 0 ρk−1(ρ − 1)(α − β)
...

...
...

...
...

∂ ln t∞/∂xn 0 0 0 0

Permanent change in x starting at time n

∂ ln tn/∂x β β α α

∂ ln tn+1/∂x β β β ρα + (1 − ρ)β
...

...
...

...
...

∂ ln tn+k/∂x β β β ρkα + (1 − ρ)β
∑k−1

i=0 ρi

...
...

...
...

...

∂ ln t∞/∂x β β β β

Effect of an ε shock at time n

ln tn ε ε ε ε

ln tn+1 0 ρε 0 ρε
...

...
...

...
...

ln tn+k 0 ρkε 0 ρkε
...

...
...

...
...

ln t∞ 0 0 0 0
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approach is followed in the brand choice models in for example Kamakura and Russell

(1989), Chintagunta et al. (1991) and Gönül and Srinivasan (1993b) among others.

A convenient choice is to assume that the parameters are draws from a finite mixture

distribution which approximates the household heterogeneity distribution, see for example

Jain et al. (1994) and Allenby and Rossi (1999), and see Vakratsas and Bass (2002) for

an application in the context of interpurchase time modeling. The density function for

household i then becomes

gi(ti1, . . . , ti,Ni
|θ) =

M∑
m=1

pmhi(ti1, . . . , ti,Ni
|θm), (6.24)

where M denotes the number of mixture components with 0 < pm < 1, m = 1, . . . ,M and∑M
m=1 pm = 1, and where θ collects the parameters and h(ti1, . . . , ti,Ni

|θm) is the density

function conditioned on segment m, defined as

hi(ti1, . . . , ti,Ni
|θm) = fi1(ti1|xi1, θm)Si,Ni

(ti,Ni
|wi,Ni

(t), θm)

Ni−1∏
n=2

fin(tin|win(t), θm), (6.25)

where the density function fin(tin|win(t), θm) is given in (6.10). The second term, involving

the survivor function, is included for the last observation of household i when it is censored

from the right, see for example Kiefer (1988) for a discussion. If there is no censoring,

one can simply remove this term and replace the upper limit of the product by Ni.

The density for the first observation is denoted by fi1(ti1|xi1, θm). For the first in-

terpurchase time we do not observe the lagged interpurchase time. Instead of fixing its

value, we choose to describe the initial observation by the long-run relation between in-

terpurchase times and the marketing instruments in (6.23). To be more specific, we take

the initial observation as

ln ti1 = µ0i + x′
i1βi + σ̃iηi1, (6.26)

where ηi1 has a logistic distribution. Note that we allow for a different intercept and scale

parameter for the initial observation for flexibility reasons.

The parameters of duration models generally can be estimated using maximum likeli-

hood [ML]. The log likelihood function is given by

	(θ) =
I∑

i=1

ln(gi(ti1, . . . , ti,Ni
|θ)), (6.27)

where gi(ti1, . . . , ti,Ni
|θ) is defined in (6.24). This log likelihood function can be maximized

using standard numerical optimization algorithms. In case of household heterogeneity

one may opt for the EM-algorithm of Dempster et al. (1977). The resulting maximum

likelihood estimator denoted by θ̂ is normally distributed with mean θ and the information



6.3 Application 127

matrix as covariance matrix. To compute this covariance matrix, we take the outer

product of gradients.

Parameter estimates for the static duration model and the common factor duration

model (6.15) can be obtained in a similar way. As both models are nested in the error-

correction model (6.14), we can use standard likelihood ratio tests to compare the three

models. For instance, under the parameter restriction αm = βm for m = 1, . . . ,M the

error-correction duration model (6.14) simplifies to the common factor model (6.15). To

compare both models, we can perform a likelihood ratio test for the hypothesis αm = βm.

The corresponding likelihood ratio test statistic, is asymptotically χ2(J) distributed under

the null hypothesis, where J denotes the number of parameter restrictions.

It should be stressed that the likelihood ratio test procedure to compare two model

specifications is only valid if the two models under consideration are nested. They should

then have the same number of mixture components M to describe household heterogeneity.

If the number of mixture components is different in the two model specifications, the test

includes a test for the number of mixture components M . Likelihood ratio tests for the

number of mixture components M are not asymptotically χ2-distributed. To illustrate

this, consider a common factor model with two mixture components (M = 2). Under

the restriction β1 = β2 the mixing proportion p1 is not identified and the likelihood ratio

test statistic for β1 = β2 is not asymptotically χ2-distributed under the null hypothesis.

This phenomenon is known as the Davies (1977) problem. We will abstain from a further

analysis of this issue here, and in our empirical work we will use the out-of-sample log-

likelihood to determine the value of M .

6.3 Application

In this section we illustrate the dynamic duration models on scanner panel data on pur-

chases of fast-moving consumer goods in three different categories. In Section 6.3.1, we

discuss the data. In Section 6.3.2, we consider the maximum likelihood estimates of var-

ious duration models and we examine the presence of dynamic effects in interpurchase

times. In Section 6.3.3, we use the estimation results to analyze the short-run and long-run

effects of promotions on interpurchase times.

6.3.1 The data

The data we use are A.C. Nielsen household scanner panel data on purchases in three dif-

ferent categories from 1985 to 1988 in Sioux Falls, South Dakota. The three categories are

liquid laundry detergent, catsup and yogurt. These three categories differ substantially in

their average purchase rate, consumption patterns and storability. The dynamic patterns

in purchase timing are likely to differ across these categories. A subset of these data
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Table 6.2: Data characteristics three scanner panel data sets (inter-

purchase time measured in weeks)

Interpurchase time

# brands # stores T a I b count mean

Catsup 3 15 139 1435 14489 10.00

Detergent 13 13 97 624 7290 6.94

Yogurt 6 13 91 585 7019 4.98

a Number of interpurchase spells
b Number of households

are analyzed in Chintagunta and Prasad (1998) using a Dynamic McFadden Model. We

aggregate marketing efforts to a weekly level as, in fast moving consumer goods markets,

these efforts tend to be constant during a week, where the week is defined from Wednes-

day to Tuesday. We do allow households to have multiple purchase occasions during one

week.

For each category we select households buying only of the top brands. The top brands

are defined as those brands that are sold frequently enough to build up the entire market-

ing effort history. This selection will delete more households in some categories than in

others. Furthermore, we select households which are observed to buy at least four times

in the observational period. Table 6.2 shows an overview of the data. This table shows

that, compared to the catsup category, there are less households for the detergent and the

yogurt categories. The main reason seems to be that there are just a few (main) brands

in the catsup category. For the other two categories there are more main brands but

also many smaller brands. Households buying such small brands have to be completely

removed from the data. The selected brands account for almost 90% of the market in all

three categories. However, the selected households, that is, those never buying another

brand, only account for 38, 35 and 59% for yogurt, detergent and catsup, respectively.

Furthermore, we trim the number of weeks to yield a period in which all brands are avail-

able. For example, for the detergent category the data contain a brand introduction and

for this category we start our analysis after this event.

For each purchase occasion, we know the timing and the volume purchased. Fur-

thermore, for each week we know the shelf price (dollars/32oz.) of all brands and which

brands are featured or displayed. As the interpurchase time is defined at the category

level we need to aggregate the marketing information over stores and brands. To keep

as much information as possible, we use household-specific weights in this aggregation.
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Table 6.3: Explanatory variables

Brand characteristics Household char.

Price ($/32 oz.) Display (%) Feature (%) Income Size Volume (32 oz.)

Catsup 1.20 1.52 2.96 6.40 3.44 1.11

Detergent 1.60 0.60 0.47 6.00 3.01 2.77

Yogurt 2.32 0.88 2.59 6.16 2.86 0.76

Following Gupta (1991), we use household-specific volume brand shares to aggregate over

brands. In Chapter 5 we have shown that, when the focus is not so much on out-of-sample

forecasting, using choice shares is good way to summarize brand specific marketing-mix

instruments. Aggregation over stores is done using household-specific store weights. Note

that, by using this weighting scheme, we use for each household only data on the relevant

store and brand options. The easier method, that is, using the marketing instruments of

the store actually visited and the brand actually chosen, is not an option here. This is

because in the weeks between purchases, we have not yet observed the brand choice and

therefore this information cannot be used. Due to this aggregation, the display and fea-

ture variables represent the percentage of stores featuring a brand, or having the brand on

display in the category. Next to information on marketing activities and purchase timing,

we also have access to some household characteristics. In our purchase timing models

we use the household size, household income and the volume purchased at the previous

purchase occasion.

Tables 6.2 and 6.3 give some summary statistics on the three categories and the ex-

planatory variables. After the above-mentioned selections, we are left with at least 585

households in each category and over 7000 observed interpurchase spells. We have the

most data for the catsup category, that is 1435 households with 14489 interpurchase spells.

The mean interpurchase time ranges from 5 to 10 weeks. Note that marketing instruments

in Table 6.3 are averaged over weeks, stores and different UPCs. The display and feature

variables therefore take values between 0 and 1. The average levels of these variables seem

quite small, but there are many weeks in which some UPCs were on display or featured.

6.3.2 Estimation results

To analyze interpurchase times, we consider three versions of our model, that is, the

commonly considered static duration model, the common factor duration model (6.15),
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and our error-correction duration model (6.14), where this last model is the most flexible.

Note that we do not intend to model brand choice or purchase quantity, at least, not

in this chapter. As explanatory variables we use household size, household income and

the volume purchased at the previous purchase occasion (divided by 32 oz.). The latter

variable is used as a proxy for “regular” and “fill-in” trips and it also accounts for the

effects of household inventory behavior on purchase timing, see also Chintagunta and

Prasad (1998). Furthermore, we use the actual price in dollars per 32 oz. Finally, two

variables are used to indicate whether brands were on display or were featured.

To select the optimal model for each category, we use the following model selection

strategy. First of all, we select the optimal number of segments to use to capture the

heterogeneity. To this end, we estimate the error-correction specification (6.14) of the

duration model for different numbers of segments. The performance of each model is

measured using the log likelihood on an out-of-sample selection of households. We use

75% of the households for parameter estimation and the remaining 25% are the out-

of-sample households. The number of segments yielding the highest out-of-sample log

likelihood is then selected. Note that by using an out-of-sample measure to select the

number of segments, we reduce the probability of overfitting the data. For the selected

number of segments, we test whether we can restrict the dynamic structure of the error-

correction model to a common factor (6.15) or to a static representation. As these last

two models are nested within the error-correction specification, we can use Likelihood

Ratio [LR] tests to test for restricted dynamic structures.

For the catsup and the yogurt category, it turns out that four segments are sufficient

to capture the heterogeneity, while for the detergent category we need six segments. Upon

using LR-tests, the static and the common-factor specification are rejected against the

error-correction model for all categories. This shows that there are indeed significant

dynamic effects in interpurchase timing. Furthermore, as the common-factor model is

rejected against the error-correction model, short-run effects apparently differ from the

corresponding long-run effects.

In Table 6.4 and Table 6.5, we present the estimation results for the three categories

for the final models. Table 6.4 shows the mean parameters over the sample, that is∑M
m=1 p̂mθ̂m. Parameters in boldface are significant at 5%. In parentheses, the table

gives the segment numbers for which the (segment-specific) parameters are significantly

different from zero. Note that the segments are ordered such that segment 1 is the largest.

Next, Table 6.5 shows the average parameter estimates over the segments for which there

is a significant effect. This table also gives the corresponding fraction of the sample. This

table will be especially useful to compare the three categories.

Tables 6.4 and 6.5 display the parameter estimates of the error-correction duration

model (6.14) for the yogurt category in the second column. As household size and income

are constant over the time period considered, we cannot estimate a different short-run and
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Table 6.4: Sample averaged ML parameter estimates for the yogurt, catsup and

detergent categories for the error-correction duration model, with household

heterogeneity. Significant estimates (at 5-% level) are given in boldface, and in

parentheses we indicate the segments for which the segment-level estimate is

significant.

yogurt detergent catsup

short-run parameters (α)

price (32 oz.) 0.629 (12 ) 0.795 ( 2 ) 1.115 (12 )

display −1.265 (1 ) −3.010 (12 4 ) −2.347 (1234)

feature −0.619 ( ) −0.920 ( 2 4 ) −1.652 (1234)

volume prev. (32 oz.) −0.020 ( 3 ) 0.135 (12 456) 0.090 ( 234)

long-run parameters (β)

price (32 oz.) 1.044 (1 3 ) 0.234 ( 2 ) −0.437 (1 )

display −0.396 ( ) −2.090 (1 ) −1.615 (12 )

feature −0.045 ( ) −0.963 ( 2 ) −2.009 (1234)

household income −0.004 ( ) −0.019 ( 5 ) 0.006 ( 2 )

household size −0.040 (1 ) −0.176 (123456) −0.188 (1234)

volume prev. (32 oz.) −0.085 ( ) 0.133 (1234 6) 0.065 (1234)

µ1 1.609 (123 ) 2.148 (123456) 2.892 (1234)

µ0 − µ1 0.067 ( 3 ) 0.037 ( 3 ) −0.018 ( )

δ0 1.637 (123 ) 2.341 (123456) 2.277 (1234)

δ1 1.732 (123 ) 2.613 (123456) 2.008 (1234)

ρ 0.199 (123 ) 0.003 ( 56) 0.010 ( )

p1 0.703 0.432 0.487

p2 0.182 0.236 0.258

p3 0.082 0.139 0.209

p4 0.034 0.099 0.046

p5 – 0.048 –

p6 – 0.047 –

In-sample 	(θ̂) -12927.33 -14968.93 -35693.80

LR-tests (p-values)

static vs ECM 0.000 0.000 0.000

common factor vs ECM 0.000 0.000 0.000
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Table 6.5: Average parameter estimates over segments for which the segment-

specific estimates are significant at 5%, with the corresponding fraction of the

sample in parentheses.

yogurt detergent catsup

short-run effects (α)

price (32 oz.) 0.648 (88.5) 1.538 (43.2) 1.356 (74.5)

display −1.836 (70.3) −3.174 (76.7) −2.347 (100)

feature – (0.0) −2.267 (33.5) −1.652 (100)

volume prev. (32 oz.) 0.414 (8.2) 0.155 (86.1) 0.232 (51.3)

long-run effects (β)

price (32 oz.) 1.369 (78.5) 0.937 (23.6) −1.014 (48.7)

display – (0.0) −4.569 (43.2) −1.933 (74.5)

feature – (0.0) −3.583 (23.6) −2.009 (100)

household income – (0.0) −0.177 (4.8) 0.025 (25.8)

household size −0.056 (70.3) −0.176 (100) −0.188 (100)

volume prev. (32 oz.) – (0.0) 0.138 (92.5) 0.065 (100)

µ1 1.664 (96.6) 2.148 (100) 2.892 (100)

µ0 − µ1 0.783 (8.2) 0.298 (13.9) – (0.0)

δ0 1.562 (96.6) 2.341 (100) 2.277 (100)

δ1 1.651 (96.6) 2.613 (100) 2.008 (100)

ρ 0.205 (96.6) 0.231 (9.5) – (0.0)

long-run effect of these variables. Price has a significant short-run effect for the first two

segments (88.5%) of the sample and a significant long-run effect for the first and the third

segment (78.5%). Display only has a significant short-run effect for segment 1. Finally,

the ρ parameter is significant for all but the smallest segment of the sample, its mean

equals 0.199. Therefore, on average, 20% of a shock to the interpurchase time is carried

over to the next spell.

The third column shows the estimation results for the detergent category. Display has

significant short-run and long-run effects for 76.7% and 43.2% of the sample, respectively,

where now the short-run effect is larger. In comparison to the yogurt category, the pur-
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chased volume has a much larger effect on the purchase timing of detergent. If a household

buys a large quantity of detergent, it is likely that the next observed interpurchase time

will be longer than on average. An obvious explanation is that this product can be easily

held on stock, in contrast to yogurt. For yogurt, one may expect the usage rate to increase

with the purchased quantity. In the detergent category, the autocorrelation parameter

ρ is only significant for the smallest categories. Averaged over these two categories the

estimate of ρ equals 0.231. Although on average there is no significant correlation, for

9.5% of the sample we do find a significant autoregressive relation.

The third category we study concerns catsup. For this category we do not find a

significant ρ-parameter for any segment. The speed of convergence to the steady state

for this category is therefore very large. Not surprisingly, this category has the largest

mean interpurchase time, see Table 6.2. Purchase occasions tend to be relatively far

apart in (calendar) time, leading to a smaller correlation between interpurchase times.

We however do find significantly different long-run and short-run effects. Surprisingly,

for the largest segment of households a price increase decreases interpurchase times on

the long-run. A possible explanation for this finding is that households may buy smaller

quantities/sizes of catsup when the price is high. A permanent increase in price will in

that case lead to smaller interpurchase times. Finally, we see that previous purchases

only have a short-run effect, thereby again illustrating that an error-correction model can

yield useful inference.

When we compare the results for the three categories in Table 6.5, we find that (i)

categories with large interpurchase times have smaller autocorrelations, that (ii) short-run

effects of marketing instruments differ significantly from the long-run effects, and that (iii)

price has most long-run effect on the perishable product.

6.3.3 Short-run effects of promotions

In this section we examine the short and long-run effects of specific promotion scenarios on

interpurchase timing. We discuss two different scenarios, one that is not very realistic and

one that is realistic but more difficult to evaluate. It will turn out that the first scenario

does provide very useful insights in the dynamics, and hence has important managerial

implications.

First of all we analyze the effects of a promotion targeted at one specific household,

the promotion starts right after an observed purchase and ends at the time of the next

purchase. Under this marketing plan, the marketing efforts are constant during the in-

terpurchase spells of this household. We can therefore use the results of Section 6.2.3 to

derive the effects of such a promotion on the future interpurchase times. Using the same

results we can evaluate the effects of a permanent promotion on the purchase timing of

this household.
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Figure 6.2: Graphical presentation of the effect of a temporary/permanent price cut or

display on interpurchase times. Results apply to the largest segment of the four-segment

error-correction specification for the yogurt category.

Figure 6.2 shows the effects of a price promotion and the effects of a display on

the interpurchase times in the yogurt category. The results are based on the parameter

estimates for the largest segment in the error-correction specification (6.14), see the second

column of Table 6.4. The top graph in Figure 6.2 shows the effects of a price cut on five

consecutive interpurchase spells, where the effect is represented by the partial derivative

of the log interpurchase time to the marketing instrument. We see that a temporary price

cut (solid line) has a strong negative effect on the first interpurchase time. The effect on

the next interpurchase times is negative as well, but the size of the effect quickly converges

to zero. Only for the first two interpurchase times does the price cut have a substantive

impact. As the carry-over effects have the same sign as the direct effect, the long-run

effect of a permanent price cut (dashed line) is larger than the direct effect.

For display, we obtain a different pattern. Although display shortens the first in-

terpurchase time the next ones are expected to be larger than normal. For display, it

therefore holds that the long-run effect of a permanent display is smaller than the direct

effect. Actually the long-run effect for display is not significantly different from zero for

any segment, see Table 6.4. Display therefore mainly has short-run effects, while price

has short as well as long-run effects.
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Figure 6.3: Graphical presentation of the effect of a promotion during one week on the

average (log) interpurchase time.

The above analysis is directly obtained from the parameter estimates. However, it only

gives the effects for a very specific situation, that is, the effects of a promotion targeted

at a single household. In practice one is interested in the effects on a more aggregate

level and the promotion will then not start at the beginning of the interpurchase spells

of all households. A more realistic setting is a promotion during one week. To assess

the impact of such a promotion, we have to rely on simulation. We use the estimated

model to simulate purchases for a number of households starting at calendar time t0,

where we have a promotion from t1 to t2, and for t < t1 and t > t2, we set the marketing

instruments to their sample mean, see Table 6.3. The size of the promotion is set to one

standard deviation. For every week, we calculate the percentage of households that would

have made a purchase. The average interpurchase time for this week is the reciprocal of

this percentage. Note that we now measure the absolute effects of promotion instead of

marginal effects as in the previous exercise.

Figure 6.3 shows the effects of a promotion during one week, again for the largest

segment of households in the yogurt category. Contrary to the previous analysis the

current scenario analysis is done in calendar time. Interestingly, this graph shows the

same general pattern as the analysis on the household level, see Figure 6.2, thereby

demonstrating how one can use the modeling results to evaluate the effects of managerial

decisions.
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6.4 Conclusion

In this chapter we proposed a dynamic model for interpurchase times, in which we can

disentangle short-run from long-run effects of marketing variables. We discussed repre-

sentation, interpretation and estimation issues. We illustrated our model for purchases

on three different categories and we found that the short-run effects of marketing-mix

variables can be significantly different from the long-run effects. Also, we found that

the effects of marketing instruments, both in the short-run and the long-run, can vary

substantially across categories. Additionally, we showed that our model can be used to

evaluate marketing strategies.

A topic of further research amounts to building on the work of Gupta (1988); Chinta-

gunta (1993); Ailawadi and Neslin (1998) and Bucklin et al. (1998), where interpurchase

times or purchase incidence decisions are combined with brand choice and purchase quan-

tity. Indeed, one could construct models for long-run and short-run effects of marketing

mix variables for all marketing performance measures jointly. In this case, we could use

the approach of Paap and Franses (2000) to capture dynamics in brand choice and the

ideas in Böckenholt (1999) to model dynamics in purchased quantity.



Chapter 7

Responsiveness to marketing efforts

7.1 Introduction

The use of brand choice models has become standard practice in marketing research

(Guadagni and Little, 1983; Chintagunta et al., 1991; Jain et al., 1994; Keane, 1997). In

many applications of these choice models, the random utility theory framework (McFad-

den, 1973, 1981) is used to represent the choice process. An often made assumption in

these models concerns homogeneity of households. That is, it is often assumed that all

households have similar tastes, and that they only differ in their (observed) characteris-

tics. In the relevant literature there is however ample evidence that households do differ.

They may differ in their preferences or in the way they make their decisions, or in both re-

spects. Differences in base preferences are usually referred to as preference heterogeneity.

Differences with respect to the decision process are labeled structural heterogeneity.

Preference heterogeneity can partly be explained by observable characteristics. This

corresponds with so-called observed preference heterogeneity. Taste is in this case usually

explicitly modeled, for example by including demographic variables (see e.g. Maddala,

1983). However, it may be that not all heterogeneity can be attributed to observed

characteristics, and hence there might be so-called unobserved preference heterogeneity.

There are two popular techniques to deal with unobserved preference heterogeneity, see

Allenby and Rossi (1999) and Wedel et al. (1999) for a discussion. These techniques are

both based on the notion that when there is unobserved heterogeneity in taste, there

is a corresponding preference distribution in the population. One approach imposes a

continuous distribution of a known form to capture the heterogeneity. The other approach

tries to approximate the unknown distribution by a discrete distribution with a fixed

number of probability masses. A choice model using the latter approach is an example of

a finite mixture model, see for example Wedel and Kamakura (1999).
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Differences across households may not be fully attributable to preference heterogeneity.

Households may also differ in the actual decision process they use to make their choices,

that is, there might be structural heterogeneity. For example, Kamakura et al. (1996)

examine brand choice within a product category where the brands carry different product

forms, like volume. A household might first choose a brand and then choose the specific

form to purchase. Another household might first choose a specific product form and only

then consider the different brands. A third household might completely ignore all this

and chooses directly from all available brand and product form combinations. Kamakura

et al. (1996) develop a model which combines preference and structural heterogeneity and

they show that the inclusion of both types of heterogeneity leads to useful managerial

insights for brand competition.

Structural heterogeneity is not only relevant to sequential choice processes as choice

mechanisms of households can differ in many respects. Yang and Allenby (2000), for

example, present a model in which households are allowed to differ in the reference point to

which options are compared. These authors use a hierarchical Bayes model to model credit

card adoption, where households are allowed to differ in their decision rule and where

behavior can change over time. Yang and Allenby (2000) show that there is heterogeneity

in decision rules and that it can be modeled using a mixture of sub-models.

In the present chapter we extend their idea to a brand choice setting. Households,

who choose amongst brands within a specific product category, may differ in their decision

rules. For example, some households will spend more time and effort while making their

choice than others do. If little time and effort is invested in the decision process, it is

perhaps less likely that the household will respond to marketing instruments. For example,

to be able to respond to price changes, one of course needs to recall the previous prices of

all brands. To be able to respond to advertising, one has to read the newspaper in which

the advertisement is printed. It may be unrealistic to assume that all households show

such a strong involvement with the product category at all purchase occasions. Hence, it

is likely that households will differ in the extent to which they are responsive to marketing

efforts. Furthermore, within a household there may be differences in the responsiveness

across purchase occasions. These differences correspond to differences in the decision rules

being used, and therefore they can be seen as an example of structural heterogeneity.

Our model is somewhat related to the work of Bucklin and Lattin (1991). They

consider a two-state model of purchase incidence and brand choice, where they distinguish

between households that plan their purchases and households which act opportunistic.

Furthermore Bucklin and Lattin (1991) assume homogeneous preferences, while our model

also incorporates preference heterogeneity.

One reason why some households are unresponsive to marketing efforts could be just

a lack of interest in marketing efforts issued by brand managers. On the other hand, eco-

nomic motivations may also explain varying responsiveness across households and across
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time. For example, search costs play an important role in the decision process of a house-

hold or an individual. As mentioned before, to be responsive to price changes one needs

to remember the prices of every option on every purchase occasion. Additionally, people

usually face time constraints. It takes time for a household to compare all prices of the

options in a specific market at the time of purchase. Consider a household planning to

buy many different items during the same shopping trip. There is obviously a limited

amount of time available for this and therefore it may be unrealistic to assume that the

household will allocate much time to each item. Following this reasoning, the more items

a household purchases at a shopping trip, the less responsive this household might be to

marketing efforts. Hence, the monetary value of all products purchased at a shopping trip

may be inversely related to the responsiveness to marketing efforts.

Taking the above arguments along, as the decision process differs across households and

across purchase occasions, the observed choice of different households cannot be explained

by the same variables. Choice behavior of responsive households can be explained by

their base preferences, by marketing efforts, and by their purchase history. Brand choice

by unresponsive households may only be described by base preferences and purchase

history. Moreover, household characteristics are rarely seen to significantly contribute to

explaining brand choice, but these might be informative for the type of decision process

used by the household. As such, household characteristics might indirectly influence brand

choice.

In this chapter we put forward a brand choice model which incorporates responsiveness

to marketing efforts as a form of structural heterogeneity. We assume that all brands are

equal in appearance so that the source of structural heterogeneity studied by Kamakura

et al. (1996) is not present, although our model can be extended to such a setting. We in-

troduce two latent segments. In the first segment the households are assumed to respond

to marketing efforts, while in the second segment households are assumed not to do so.

Whether a specific household is a member of the first or the second segment at a specific

purchase occasion is described by household-specific characteristics and characteristics

concerning buying behavior. Additionally, to capture differences in responsiveness over

time, households are allowed to switch between the two segments over time.

The remainder of this chapter contains the following. In Section 7.2, we present our

model. First of all, we discuss the modeling of responsiveness to marketing efforts as a

form of structural heterogeneity. Next, we extend the model to also capture preference

heterogeneity. In Section 7.3, we consider parameter estimation. In this section we

extensively discuss the estimation method we propose, that is, importance sampling within

simulated maximum likelihood. We show that the use of importance sampling leads

to substantially more accurate likelihood approximations compared to direct sampling.

Section 7.4 discusses the application of this model to panel data concerning purchases of
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detergent, where we also compare the performance of our model to various related choice

models. In Section 7.5, we conclude this chapter with some remarks.

7.2 Model

In this section we discuss our responsiveness model. Section 7.2.1 deals with the basic

model with only structural heterogeneity. In Section 7.2.2 we consider preference hetero-

geneity.

7.2.1 Preliminaries

To keep the presentation of the basic model simple, we will first ignore possible preference

heterogeneity and only concentrate on structural heterogeneity. We assume that house-

hold i = 1, . . . , I chooses from J brands at each purchase occasion t = 1, . . . , Ti. Note

that different households can have a different number of observed purchase occasions.

Also note that purchase occasion t of household i not necessarily corresponds to the same

period in time as purchase occasion t of household l �= i. The variable yijt denotes the

chosen alternative, that is,

yijt =

{
1 if household i purchases brand j at occasion t

0 otherwise.
(7.1)

Furthermore we will use yit ∈ {1, . . . , J} to denote the index of the chosen brand at time t.

Each household is, at any point in time, either responsive or unresponsive to marketing

efforts. In case a household is unresponsive to marketing efforts, the choice can only

be attributed to base preference, habit, state dependence and random influences. We

introduce a latent indicator variable Zit to denote the state a household is in at a specific

point in time, that is,

Zit =


1 if household i is responsive

to marketing efforts at purchase occasion t

0 otherwise.

(7.2)

Over time households may switch between responsiveness states. For example a household

may be responsive on regular shopping trips, but unresponsive on so-called filler trips

where just a few products are bought. Note that we do not observe the responsiveness

state of a household over time, and hence that these have to be inferred from the data.

To model the responsiveness, we consider a binary logit model (Maddala, 1983) which

relates Zit to household characteristics collected in Wit. These characteristics may also
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include variables concerning the shopping trip. Examples of such variables are recency of

the last purchase and the monetary amount spent on the shopping trip. The specification

of the model for the responsiveness state becomes

Z∗
it = µ(z) + Witγ

(z) + ε
(z)
it

Zit =

{
1 if Z∗

it ≥ 0

0 if Z∗
it < 0.

(7.3)

The disturbances ε
(z)
it are assumed to follow a logistic distribution, such that,

Pr[Zit = 1] =
exp(µ(z) + Witγ

(z))

1 + exp(µ(z) + Witγ(z))
. (7.4)

In case a household is responsive to marketing efforts, marketing instruments, such as

price and promotion, have an effect on the choice made by this household. We denote the

marketing instruments for brand j = 1, . . . , J , as experienced by household i at purchase

occasion t, as Xijt. To model the choice process of a marketing-responsive household

we consider the Multinomial Logit [MNL] model of McFadden (1973). Conditional on

responsiveness, the utility of brand j for household i at purchase occasion t is modeled as

U
(r)
ijt = µ

(r)
j + Xijtβ

(r) + α(r)yij,t−1 + ε
(r)
ijt , (7.5)

where ε
(r)
ijt follows a type-I extreme-value distribution and where yij,t−1 = 1 if person i

purchased brand j at purchase occasion t − 1. This last term is included to model state

dependence. State dependence refers to a dynamic property of the choice process, as

it incorporates if the household’s tendency to buy the same brand as purchased at the

previous occasion. The degree of state dependence is measured by α(r).

Of course, in case a household is unresponsive to marketing activities, the marketing

instruments will not have an effect on its choice behavior. On these purchase occasions

the brand choice will be mainly determined by base preferences, recent behavior (state

dependence), and random effects. This type of behavior can be modeled by a second

MNL model, that is,

U
(u)
ijt = µ

(u)
j + α(u)yij,t−1 + ε

(u)
ijt , (7.6)

where, obviously, the Xijt are excluded and where we allow the brand intercepts and the

state dependence parameter to be different from the responsive case. Strictly speaking

this specification does not correspond to a proper utility maximization problem. Un-

der standard utility maximization, prices must enter the (reduced-form) utility model

as prices are obviously part of a household’s budget restriction1. Our implicit assump-

tion in (7.6) is that households which are unresponsive to marketing efforts maximize

1We thank an anonymous reviewer of the Journal of Business & Economic Statistics for raising this
point.
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utility without considering the actual price differences among the brands. Instead, they

aim at an approximate utility maximization that costs less effort. In this case the av-

erage, or baseline, price for each brand is used instead of the actual price. This implies

that although “unresponsive” households do not take into account price promotions, they

will react to permanent changes in price. The utility specification in (7.6) actually reads

U
(u)
ijt = µ

(u)
j +δp̄j +α(u)yij,t−1+ε

(u)
ijt , where p̄j denotes the average long-run price of brand j.

In practically available data the long run price does not vary over time, therefore we can-

not separately identify δ and µ
(u)
j . The utility specification we use for the unresponsive

case therefore does not include prices, the brand intercepts in (7.6) give a combination of

base preferences and price effects.

In sum, household i purchases brand j at purchase occasion t when, conditional on

responsiveness, U
(r)
ijt is the maximum utility among U

(r)
ikt , k = 1, . . . , J or, when, conditional

on unresponsiveness, U
(u)
ijt is the maximum utility among U

(u)
ikt , k = 1, . . . , J . In short-

hand, brand j is purchased when(
U

(r)
ijt = max

k=1,...,J
U

(r)
ikt

)∣∣∣∣Zit = 1 or(
U

(u)
ijt = max

k=1,...,J
U

(u)
ikt

)∣∣∣∣Zit = 0.

(7.7)

As the random parts of the utilities are assumed to be independently extreme-value dis-

tributed, the probability of purchasing brand j for household i, that is responsive at

purchase occasion t, is

Pr

[
U

(r)
ijt = max

k=1,...,J
U

(r)
ikt

∣∣∣∣Zit = 1

]
=

exp(µ
(r)
j + Xijtβ

(r) + α(r)yij,t−1)∑J
k=1 exp(µ

(r)
k + Xiktβ(r) + α(r)yik,t−1)

, (7.8)

where µ
(r)
J is restricted to 0 for identification, see McFadden (1973). If the household is

unresponsive at t, the probability of purchasing brand j is

Pr

[
U

(u)
ijt = max

k=1,...,J
U

(u)
ikt

∣∣∣∣Zit = 0

]
=

exp(µ
(u)
j + α(u)yij,t−1)∑J

k=1 exp(µ
(u)
k + α(u)yik,t−1)

, (7.9)

with µ
(u)
J = 0 for identification. Finally, as we do not observe whether a household

at purchase occasion t belongs to the responsive segment or not, the probability that

it purchases brand j at purchase occasion t is obtained by summing the conditional

probabilities over the segments, that is,

Pr[yijt = 1] = Pr[U
(r)
ijt = max

k=1,...,J
U

(r)
ikt |Zit = 1] Pr[Zit = 1]

+ Pr[U
(u)
ijt = max

k=1,...,J
U

(u)
ikt |Zit = 0] Pr[Zit = 0], (7.10)
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where Pr[Zit = 1] is given in (7.4).

An interesting by-product of our model concerns the possibility to calculate the con-

ditional probability of responsiveness at purchase occasion t, that is

Pr[Zi,t =1|yijt = 1] =
Pr[Zit = 1, yijt = 1]

Pr[yijt = 1]

=
Pr[yijt = 1|Zit = 1] Pr[Zit = 1]

Pr[yijt = 1|Zit = 1] Pr[Zit = 1] + Pr[yijt = 1|Zit = 0] Pr[Zit = 0]
.

(7.11)

This expression gives the probability that household i is responsive to marketing efforts at

purchase occasion t, given the fact that brand j is purchased. In the application we will

show a histogram of these conditional probabilities to give an impression of the average

value and the dispersion of the responsiveness in the population.

7.2.2 Preference heterogeneity

The proposed model does not include unobserved preference heterogeneity. Such prefer-

ence heterogeneity can be assigned to differences in base preference. For example, some

households prefer one brand over the other, while other households may have the opposite

preference. In general, by allowing for different base preferences, one gets a more realistic

description of consumer behavior.

There is also another reason why it is important to account for heterogeneity in pref-

erences. It is known that when base preferences are not correctly taken into account in a

model with state dependence, the state dependence of households can be overestimated,

see Allenby and Lenk (1994) and Keane (1997), among others. State dependence and

differences in base preferences both describe observed persistence in brand choice, but

they refer to different patterns of behavior. State dependence refers to a causal link be-

tween brand choice at period t and brand choice at period t + 1. The fact that brand j

is purchased at time t increases the probability that brand j will be purchased again at

t + 1. Differences in base preferences also capture persistence in brand choice. In this

case however, there is no causal link between brand choice at time t and brand choice

at t + 1. Stated differently, state dependence refers to a property of the dynamics of the

choice process whereas base preferences are related to exogenous factors.

If base preferences are ignored, the model component designed to capture state de-

pendence will also capture the persistence induced by base preferences. Households with

a strong base preference for a certain brand do not switch often. Such a strong base pref-

erence may therefore easily be confused for state dependence. In general, it is therefore

important to model state dependence as well as heterogeneity in base preferences. In our

brand choice model we capture possible differences in base preferences by allowing the

intercepts in the brand choice model (µ(r) and µ(u)) to be different across households. As
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mentioned in the introduction, there are two different approaches for modeling preference

heterogeneity in choice models, see Wedel et al. (1999). In this chapter we choose to ap-

proximate the population distribution of the utility constants by the normal distribution

as in, for example, Chintagunta et al. (1991) and Jain et al. (1994).

The continuous nature of this heterogeneity distribution improves the practical iden-

tification of our model. With a mixture approach it may be difficult to separate the

(discrete) preference heterogeneity from the discrete structural heterogeneity. The utility

specifications in (7.5) and (7.6) allow brand intercepts to be different across the respon-

siveness states. The parameters of a model with a mixture distribution to capture pref-

erence heterogeneity are however identified. Identification comes from the fact that the

base preferences of a household are constant, while the household may switch between

responsiveness states over time. In the empirical section we will compare the relative

performance of the model with discrete heterogeneity with the continuous case.

As mentioned above the base preferences of households are usually assumed to be

constant over long periods of time. In the standard choice models the base preferences

are constant over the entire data range. In our model we therefore have to make sure that

the base preference for a given household does not depend on the responsiveness state of

the household on a particular purchase occasion. We cannot simply restrict the utility

intercepts of the two conditional logit models (7.8) and (7.9) to be equal as the intercepts

also correct for the means of the explanatory variables. Furthermore, for the unrespon-

sive model the brand intercepts also capture differences in baseline prices across brands.

The two conditional logit models contain different explanatory variables, and we therefore

cannot simply restrict the utility intercepts to be equal for the responsive and the unre-

sponsive households. Instead, we have to use another strategy. Denote the deviation of

the base preference of household i from the population mean by the J-dimensional vector

ωi. For the model with continuous heterogeneity, we model the population distribution

of these deviations as N(0, Σω). The MNL model combined with this heterogeneity spec-

ification is known as as the mixed MNL model, see McFadden and Train (2000) for an

extensive discussion of this model. As intercepts for the choice model conditional on re-

sponsiveness (7.8) we now use µ(r) +ωi and for the model conditional on unresponsiveness

(7.9) we use µ(u) + ωi. Hence, the household-specific vector ωi measures the deviation of

household i’s preferences from the population mean for both responsiveness states. In case

a discrete distribution would be used to capture the heterogeneity, ωi would be modeled

by a discrete distribution with a fixed number of mass points. For one of the segments,

ω has to be restricted to zero for identification.

We only observe the final choice of a household. The choice process, nor the base

preferences of the household, are observed. The probability that household i purchases

brand j at purchase occasion t now has to be marginalized on both the base preferences
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as well as on the responsiveness segments, that is,

Pr[yijt = 1] =

∫ ∞

−∞
Pr[yijt = 1| ωi]φ(ωi; 0, Σω)dωi, (7.12)

where φ(x; 0, Σ) denotes the normal density with mean 0 and variance Σ evaluated at x.

The conditional choice probability is given by

Pr[yijt = 1| ωi] = Pr[yijt = 1| ωi, Zit = 1] Pr[Zit = 1]

+ Pr[yijt = 1| ωi, Zit = 0] Pr[Zit = 0], (7.13)

where

Pr[yijt = 1| ωi, Zit = 1] =
exp(µ

(r)
j + ωij + Xijtβ

(r) + α(r)yij,t−1)∑J
k=1 exp(µ

(r)
k + ωik + Xiktβ(r) + α(r)yik,t−1)

,

Pr[yijt = 1| ωi, Zi,t = 0] =
exp(µ

(u)
j + ωij + α(u)yij,t−1)∑J

k=1 exp(µ
(u)
k + ωik + α(u)yik,t−1)

,

(7.14)

and Pr[Zit = 1] and Pr[Zit = 0] as in (7.4). Hence, the choice probability (7.12) equals

Pr[yijt = 1] =

∫ ∞

−∞

(
Pr[yijt = 1| ωi, Zit = 1] Pr[Zit = 1]

+ Pr[yijt = 1| ωi, Zit = 0] Pr[Zit = 0]
)
φ(ωi; 0, Σω)dωi, (7.15)

For the case where differences in base preferences are captured by a discrete distri-

bution similar equations hold, where the integral in the equations above is replaced by a

sum over the segments. Furthermore, the normal density function is replaced by segment

probabilities, see Fok et al. (2001) for a complete presentation of the responsiveness model

with discrete preference heterogeneity.

7.3 Inference

In this section we discuss inference in the responsiveness model with continuous preference

heterogeneity. Section 7.3.1 deals with parameter estimation. In Section 7.3.2 we consider

conditional inference on the latent variables in our model.

7.3.1 Parameter estimation

To estimate the model parameters, we use the Maximum Likelihood method. Hence, to

obtain parameter estimates we numerically maximize the log likelihood over the parameter
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space. The log likelihood function of our model (7.4), (7.8) and (7.9) is given by lnL =∑I
i=1 lnLi, where Li equals the likelihood contribution of household i, that is,

Li =

∫
ωi

Li(ωi)φ(ωi; 0, Σω)dωi, (7.16)

and Li(ωi) denotes the likelihood contribution conditional on the household’s base pref-

erence ωi, that is,

Li(ωi) =

Ti∏
t=1

J∏
j=1

Pr[yijt = 1| ωi]
yijt . (7.17)

where Pr[yijt = 1| ωi] is given in (7.13). The I integrals in the log likelihood function,

given in (7.16), cannot be evaluated analytically. Instead we will rely on simulation to

evaluate the log likelihood function. The resulting estimation procedure is called Simu-

lated Maximum Likelihood [SML], see Gourieroux and Montfort (1993); Lee (1995) and

Hajivassiliou and Ruud (1994) for a discussion of SML. A practical discussion of SML in

the context of choice models can be found in Train (2003).

Likelihood evaluation

The obvious way to approximate the integral in (7.16) is to compute the expectation of

Li(ωi) by sampling wi from the distribution of base preferences, that is,

L̃i =
1

L

L∑
l=1

Li(ω
(l)
i ), (7.18)

where L denotes the number of simulation draws used and ω
(l)
i , l = 1, . . . , L is a draw

from N(0, Σω). However the variance matrix Σω is unknown and also has to be estimated.

Hence the simulation method in (7.18) would require new draws for every value of Σω.

This complicates the convergence of the numerical optimization algorithm which is needed

to find the maximum of the log likelihood function. Therefore, one uses transformations

of draws from the standard normal distribution, that is,

L̃i =
1

L

L∑
l=1

Li(Σ
1/2
ω η

(l)
i ), (7.19)

where η
(l)
i ∼ N(0, I) and where Σ

1/2
ω denotes the Choleski decomposition of Σω such that

Σ
1/2
ω η

(l)
i ∼ N(0, Σω). With this simulation scheme we can rely on one set of draws to

calculate the likelihood function for all parameter values.
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Variance reduction by Importance Sampling

A disadvantage of using (7.19) or (7.18), is that often many draws are necessary to ob-

tain a precise evaluation of the likelihood contribution. In other words the likelihood

contribution estimates often have a large variance for moderate L. In these cases many

draws are necessary, and the numerical optimization of the simulated log likelihood may

become very computer intensive. To reduce the variance of the sampler we propose to use

Importance Sampling, see Kloek and van Dijk (1978) and Geweke (1989a). To this end

we introduce the so-called importance function g(ηi; mi, Si). For our model we choose a

normal density function with mean mi and variance Si as the importance function. We

rewrite the likelihood contribution (7.16) as

Li =

∫
ηi

Li(Σ
1/2
ω ηi)φ(ηi; 0, I)

g(ηi; mi, Si)
g(ηi; mi, Si)dηi. (7.20)

To approximate the likelihood we use

L̃i =
1

L

L∑
l=1

Li(Σ
1/2
ω η

(l)
i )φ(η

(l)
i ; 0, I)

g(η
(l)
i ; mi, Si)

, (7.21)

where η
(l)
i is a draw from g(ηi; mi, Si). Note that the same strategy is used to compute

marginal likelihood functions by Geweke (1989b), see also Neal (1994) in the discussion

of Newton and Raftery (1994).

To reduce the variance of the simulator we choose the importance function such that

it has most of its probability mass in the range of values of ηi where the likelihood

conditional on ηi is large, that is, where Li(Σ
1/2
ω ηi)φ(ηi; 0, I) is relatively large. If the

importance function is chosen to be a density, the optimal case would be to have the

importance function proportional to Li(Σ
1/2
ω ηi)φ(ηi; 0, I). For this importance function the

quotient in (7.21) would not depend on the specific draws and it would give the likelihood

contribution without simulation error. In practical settings such an importance function

is impossible to find. The task therefore is to set the values of mi and Si such that the

importance function resembles this likelihood component. To find these values we use an

iterative scheme. First we set mi = 0 and Si = I, and simulate η
(l)
i from g(ηi; mi, Si).

Next, we calculate the importance weights

w
(l)
i =

Li(Σ
1/2
ω η

(l)
i )φ(η

(l)
i ; 0, I)

g(η
(l)
i ; mi, Si)

. (7.22)

Using the importance weights w
(l)
i we can now update mi and Si to find a closer match

between the importance function and the likelihood. The match is improved by computing
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the weighted mean and variance of η
(l)
i

mi =

∑L
l=1 η

(l)
i w

(l)
i∑L

l=1 w
(l)
i

Si =

∑L
l=1(η

(l)
i − mi)(η

(l)
i − mi)

′w(l)
i∑L

l=1 w
(l)
i

.

(7.23)

This strategy can be iterated to find even better values of mi and Si. The resulting

location and scale for the importance function can then be used to calculate the log

likelihood function, which in turn is optimized over the model parameters. Note that

the optimal mi and Si will depend on the model parameters. Therefore for the best

performance the location and scale parameters of the importance function will have to

be updated a few times during the optimization of the likelihood. Geweke (1989a) shows

that
√

L(L̃i − Li) ⇒ N(0, ν), where ν can be estimated by the sample variance of the

importance weights. This result allows us to develop an easy rule to decide when the

location and scale of the importance function have to be updated. For example, one could

update the location parameters mi and Si if the sampling variance exceeds a specified

threshold value.

One of the requirements for successful use of Importance Sampling is that the impor-

tance function most be wide enough to sample all important regions of the conditional

likelihood. The location of the important areas of the likelihood function will depend

on the parameter values, during the optimization the parameter values will obviously

change. The method to calculate the location and scale parameters discussed above how-

ever depends on a single choice of the model parameters. To prevent undersampling of

important regions when the parameter values have changed we increase the variance of

the importance function using a multiplication factor. In our setting we choose to increase

the variance by a factor κ > 1.

Asymptotic distribution of parameter estimator

Under the usual regularity conditions, the SML estimator is consistent for I → ∞ and

L → ∞, see Hajivassiliou and Ruud (1994). Furthermore, the SML estimator is asymp-

totically efficient. The SML estimator is asymptotically normal distributed, with mean

the true value of the parameters and covariance matrix the inverse of the information

matrix. However, for finite L the information matrix of the simulated log likelihood will

underestimate the true covariance matrix due to simulation noise. Therefore, McFad-

den and Train (2000) recommend to use the sandwich estimator (Newey and McFadden,

1994) to compute standard errors. This estimator produces more reliable estimates of the
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standard error and is given by

V̂ar(θ̂) =

(
∂2 ln L̃
∂θ∂θ′

)−1′ [ I∑
i=1

(
∂ ln L̃i

∂θ

)′(
∂ ln L̃i

∂θ

)](
∂2 ln L̃
∂θ∂θ′

)−1

, (7.24)

where θ denotes a vector containing all parameters and where all the derivatives are

evaluated at the parameter estimates θ̂.

Performance comparison

In this subsection we illustrate the advantage of using importance sampling (7.21) over

direct sampling (7.19) to calculate the log likelihood function. The advantage of Impor-

tance Sampling is that the variance of the likelihood approximation is reduced to a large

extent, thereby reducing the need for a large number of simulation draws. That is, for a

specific set of draws the likelihood evaluation using importance sampling will be closer to

the true value than when using direct sampling.

To show how the simulator variance depends on the number of draws and the simula-

tion method, we consider the mixed MNL model for purchases of detergent, see Section 7.4

for more details on the data. We evaluate the log likelihood function at the parameter

estimates using both sampling methods and different number of simulation draws. The

location and scale parameters used in the importance sampler are set using 1000 draws

(the same as used to set these parameters in the parameter estimation in Section 7.4).

Figure 7.1 shows the distribution of the sampler for 50, 100, 250, 500 and 1000 draws

based on 100 log likelihood evaluations. The top graph shows the distributions for di-

rect sampling, the middle graph shows the distributions for importance sampling on the

same scale as for direct sampling. The lower graph in Figure 7.1 shows a close-up of the

distributions for importance sampling. Figure 7.1 clearly shows the strong reduction in

sampling variance. Even with as few as 50 draws the importance sampler has a smaller

variance than direct sampling with 250 draws. Furthermore note that for direct sam-

pling the simulation bias in the log likelihood evaluation is quite large. As we sample the

likelihood contribution to calculate the log likelihood function there will be a simulation

bias for finite L for all simulation methods. Clearly the simulation bias depends on the

variance of sampler. Therefore the Importance Sampling approach does not only yield log

likelihood evaluations with a smaller variance, the bias also tends to be smaller compared

to direct sampling.

7.3.2 Conditional inference

The responsiveness model contains several latent variables, that is, the latent base prefer-

ences and the responsiveness states. To analyze the in-sample and out-of-sample behavior
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Figure 7.1: Distribution of log likelihood evaluation

of households, it is often necessary to estimate (functions of) these latent variables. For

example, if we want to know whether a household was responsive to marketing instruments

at a particular purchase occasion, we also need an estimate of the latent base preference

of this household. Likewise, if we want to forecast out-of-sample purchase behavior we

also need to estimate the latent base preferences of households.

To estimate functions of these latent base preferences, we condition on the actual

purchases of the households. In general the above-mentioned problems can be translated

to the calculation of the conditional mean of a function h(ωi), that is,

E[h(ωi)|yi1, . . . , yiTi
] =

∫
h(ωi)f(ωi|yi1, . . . , yiTi

)dωi

=

∫
h(ωi)

Li(ωi)φ(ωi; 0, Σω)∫ Li(ωi)φ(ωi; 0, Σω)dωi

dωi

=

∫
h(ωi)Li(ωi)φ(ωi; 0, Σω)dωi∫ Li(ωi)φ(ωi; 0, Σω)dωi

≈
∑L

l=1 h(Σ
1/2
ω η

(l)
i )u

(l)
i∑L

l=1 u
(l)
i

,

(7.25)
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where f(ωi|yi1, . . . , yiTi
) denotes the conditional density function of ωi given the pur-

chase decisions {yi1, . . . , yiTi
}, where η

(l)
i are draws from g(η; mi, Si), and where u

(l)
i =

Li(Σ
1/2
ω η

(l)
i )φ(η

(l)
i ; 0, I)/g(η

(l)
i ; mi, Si) with the location and scale (mi and Si) are as de-

fined earlier.

Given (7.25) we can compute several quantities of interest. To obtain an estimate of

the base preferences of household i we set h(ωi) = ωi. The posterior probability of being

in the responsive state at purchase occasion t equals

E[Zit|yi1, . . . , yiTi
] =

∫
ωi

Pr[Zit = 1|yi1, . . . , yiTi
, ωi]f(ωi|yi1, . . . , yiTi

)dωi. (7.26)

To calculate this expectation we therefore set

h(ωi) = Pr[Zit = 1|yi1, . . . , yiTi
, ωi]

= Pr[Zit = 1|yit, ωi]

=
Pr[yit|Zit = 1, ωi] Pr[Zit = 1]∑1
z=0 Pr[yit|Zit = z, ωi] Pr[Zit = z]

.

(7.27)

Finally, if we are interested in out-of-sample forecasts of brand choice conditional on

the observed in-sample choices made by a household, that is, Pr[yij,Ti+1| yi1, . . . , yiTi
], we

have to set h(ωi) =
∑1

z=0 Pr[yij,Ti+1| ωi, Zi,Ti+1 = z] Pr[Zi,Ti+1 = z], where these last two

probabilities are given in (7.14) and (7.4), respectively.

7.4 Illustration

We apply our model to a data base containing liquid detergent purchases in Sioux Falls,

South Dakota, during the period July 1986 – July 1988. The sample contains 400 house-

holds making 2,657 purchases. The last observed purchase of each household is used as

a hold-out sample for model comparison and evaluation. All other recorded purchases

are used for estimation. The same data are analyzed in Chintagunta and Prasad (1998)

for other purposes. The households in the panel are selected to only purchase the top

six national brands, Tide, Eraplus, Solo, Wisk, All and Surf. For each purchase occasion

we know the time since the last liquid detergent purchase, the volume last purchased (in

multiples of 32 oz.), the shelf prices of the six alternatives and which brands are featured

or on display. Table 7.1 gives a brief overview of the number of purchases and the use of

marketing instruments in this market. In our sample the most popular brands are Tide

and Wisk, and these two brands are also most often featured and on display. The two

smallest brands in choice share are Solo and All, which are rarely featured. Next to these

variables, we know the chosen brand and the expenditures on non-detergent products

made on the same shopping trip. On average, households shop for detergent every 80
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Table 7.1: Data properties

Brand characteristics

Brand
Number of Avg. price

Feature1 Display1

purchases per 32 oz.

Tide 701 1.926 9.82% 9.17%

Wisk 703 1.510 14.57% 10.11%

EraPlus 507 1.952 3.34% 2.62%

Surf 406 1.702 4.65% 3.73%

Solo 253 1.901 1.90% 1.44%

All 87 1.261 0.07% 0.07%

1 Percentage of times over all observed purchase occasions that
the product was featured or on display.

days, purchase 77 oz. of detergent and spend almost $40 per shopping trip. The average

household size in our sample is 2.8. A preliminary analysis of the data using simple ver-

sions of our model, as well as using the MNL model, indicated that display does not have

a relevant effect on explaining brand choice, and hence this variable will be discarded.

7.4.1 Preference heterogeneity

First, we compare the performance of the responsiveness model with and without mod-

eling unobserved preference heterogeneity. In Table 7.2 we present the empirical fit of

the responsiveness model for four cases. The first column of Table 7.2 gives the fit for

the responsiveness model without unobserved heterogeneity. The second column gives

the performance of the model where preference heterogeneity is captured by a normal

distribution. The final two columns give the results for the case where a discrete distri-

bution is used to model the base preferences. The model with the continuous preference

distribution has by far the highest in-sample log likelihood. If out-of-sample forecasts

are made conditional on the observed in-sample choices this model also performs much

better than the other models. However, for unconditional forecasting this model does not

perform that well, as can be seen by the in-sample hit rate and the unconditional out-of-

sample hit rate. The responsiveness model without unobserved preference heterogeneity

also performs rather well. Although it has the lowest in-sample likelihood, it has the best

unconditional out-of-sample performance. The performance of the models with discrete
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preference heterogeneity is somewhere in between the basic responsiveness model and the

model with continuous heterogeneity.

Table 7.2: Goodness of fit measures for the responsiveness model for different

preference heterogeneity specifications

Homogeneous Heterogeneous preferences

preferences continuous 2 segments 3 segments

Number of parameters 19 34 25 31

logL -1403 -1189 -1338 -1308

Predicted logL1 -192.6 -267.6 -202.5 -207.3

Hit rate in-sample 77.61 70.95 76.68 75.34

Hit rate out-of-sample

conditional2 77.31 80.00 75.39 75.39

unconditional 77.31 67.31 76.15 74.62

1 Log likelihood value for out-of-sample data
2 Out-of-sample forecasts made conditional on the observed in-sample brand choices.

The choice for the optimal model is difficult to make. If one is interested in making

conditional forecasts one will prefer the model specification with continuous preference

heterogeneity. For unconditional forecasts the model with homogeneous preferences is to

be preferred. This specification also uses substantially less parameters. For completeness

we will present below the estimation results for the homogeneous and the continuous

preference heterogeneity specifications.

7.4.2 Estimation results

Table 7.3 shows the estimation results for the model equation concerning responsiveness,

see (7.4), for the model without heterogeneity and for the model with the continuous form

of preference heterogeneity. Note that the household characteristics and the marketing

efforts are all normalized to have mean 0 and variance equal to 1. The main difference

between the two specifications is in the intercepts, measuring the baseline responsiveness.

For the model with preference heterogeneity we find a much larger intercept, indicating

that under this specification households tend to be more responsive to marketing efforts.

Another difference is in the estimated effect of the household size. Under the homoge-

neous specification there is no significant effect of this household characteristic. For the
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Table 7.3: Parameter estimates in the responsiveness model

(equation (7.4)), standard errors in parentheses

Base preferences

Homogeneous Heterogeneous

Intercept (µ(z)) 0.60 (0.18) 2.70 (0.42)

Non-Detergent expenditures −0.21 (0.09) −0.47 (0.22)

Household size −0.07 (0.07) −1.03 (0.48)

Time since last purchase 0.65 (0.18) 0.99 (0.55)

Volume previously purchased −0.47 (0.09) −0.42 (0.36)

alternative specification the household size is negatively correlated with responsiveness.

The variables related to the shopping trip also influence the responsiveness. For both

specifications we find similar effects. The time since the last purchase is positively corre-

lated with the responsiveness. If a household has not purchased liquid detergent for a long

period relative to a more frequent shopper, it might spend more time thinking about the

next purchase and this may increase the responsiveness to marketing efforts. The reverse

holds for the volume of liquid detergent purchased previously. Households purchasing

large quantities may have a strong preference for one of the brands, and therefore could

be less responsive to marketing efforts of other brands. As expected, the total expendi-

tures on the shopping trip spent on products other than detergents negatively correlates

with responsiveness. If a household plans to purchase many items on a single shopping

trip, it cannot spend much time making a selection in every single category. Therefore,

the household will tend to base its decisions more on habit and base preference.

Next we elaborate upon the inferred responsiveness for a household at a specific pur-

chase occasion conditional on the observed brand choices, that is E[Zit|{yil}Ti
l=1]. Figure

7.2 gives the distribution over all observed choices of this conditional expectation. From

this figure we conclude that at a large proportion of the purchase occasions the household

was responsive to marketing efforts. For the heterogeneous preferences specification this

proportion is even larger. Especially for the homogeneous case there is quite a large frac-

tion of purchase occasions where the household was not so much responsive to marketing

efforts. In fact, the average expected responsiveness equals 0.61, the empirical standard

deviation of the expected responsiveness across all purchase occasions equals 0.26. For

the heterogenous specification the average responsiveness equals 0.86 with a standard

deviation of 0.19.
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Figure 7.2: Empirical distribution of conditional expectation of responsiveness

To evaluate whether households switch responsiveness segments, we use the condi-

tional expected responsiveness to assign households to one of the two segments for every

purchase occasion. If the conditional responsiveness probability exceeds 0.5, the house-

hold is, at that purchase occasion, assigned to the responsive segment. An analysis of

the resulting responsiveness assignments indicates that there are substantial differences

in responsiveness across purchase occasions within the same household. For the specifi-

cation with homogeneous preferences there is the most switching between responsiveness

states. Based on this specification, households switch responsiveness states on average

in 25.8% of the cases (with a standard deviation of 26.2%). If the segment membership

of a household is tracked over time, we see that of the 210 households that purchased

detergent more than once, 131 households switched from unresponsive to responsive at

least once. For the heterogeneous specification there is switching in 7.6% of the cases

(standard deviation 18.6%).

Table 7.4 presents the parameter estimates of the multinomial logit models represent-

ing the brand choice decisions made by households being either responsive or unresponsive

to marketing instruments. Again we present the results for both specifications of prefer-

ence heterogeneity.

All estimated effects of marketing efforts on purchase probabilities have the expected

sign, with price having a negative effect on brand choice and feature a positive. The effect

of price is clearly the largest. An interesting observation is that, as expected, households

which are unresponsive to marketing efforts act more state dependent than responsive

households. Choices made in the unresponsive state are more driven by habit and state

dependence than in the responsive case. Concerning these parameter estimates there are a

few differences across the two heterogeneity specifications. As expected, we find less state
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Table 7.4: Parameter estimates for models (7.8) and (7.9) under homogeneous and

heterogeneous preferences (standard errors in parentheses)

Homogeneous preferences Heterogeneous preferences

Responsive Unresponsive Responsive Unresponsive

Marketing efforts/state dependence

Price −1.35 (0.09) – – −1.65 (0.14) – –

Feature 0.45 (0.05) – – 0.50 (0.09) – –

Lagged choice 1.94 (0.13) 4.84 (0.51) 1.15 (0.22) 2.11 (0.89)

Brand intercepts

Tide 0.34 (0.13) 0.01 (0.52) 1.22 (0.38) 0.87 (1.41)

Wisk 0.37 (0.15) −0.49 (0.76) 1.04 (0.42) −0.15 (1.65)

Surf −0.04 (0.15) −2.58 (0.73) 0.38 (0.43) 0.93 (1.63)

Solo −0.69 (0.19) −0.67 (0.75) −3.23 (1.14) −7.98 (2.92)

All −2.27 (0.37) −1.14 (0.87) −6.61 (2.64) −7.68 (5.17)

EraPlus 0∗ – 0∗ – 0∗ – 0∗ –

∗ Restricted for identification

dependence for the specification with heterogeneous preferences. As discussed in Sec-

tion 7.2.2, ignored unobserved preference heterogeneity in general leads to overestimated

state dependence, and this is what we see here too.

Although the differences across the two specifications in the estimates of the brand in-

tercepts in Table 7.4 may seem very large, there are some striking similarities. Households

in the unresponsive state do not consider the brands to be very different. This is reflected

in the fact that there are almost no significant brand intercepts in the MNL models for

the unresponsive decision process. For the responsive state we do find significant brand

intercepts, indicating that households in this state do consider the brands to be different.

For the heterogeneous specification we see that a household with the average preferences

in the unresponsive state has a very low preference for the brands “Solo” and “All”. In

fact the corresponding probability of choosing one of these brands is almost zero for such a

household. However, the estimated variance across the households of the base preference

for these two brands is rather large. Although the average unresponsive household will

not choose one of these brands, there are households with different base preferences who

do consider them.



7.4 Illustration 157

Summarizing, we find for this data set that many households are responsive to mar-

keting efforts, that households purchasing large amounts are less responsive to marketing

efforts, that households who do not regularly purchase detergent are more responsive, and

that unresponsive households behave more state dependent than responsive households

do. Finally, we find that modeling unobserved preference heterogeneity only leads to

a substantial improvement in the forecasting performance when the forecasts are made

conditional on the observed in-sample brand choices.

7.4.3 Competing models

The results above show that the segmentation of purchase occasions in cases where house-

holds are responsive or unresponsive clearly separates the purchase occasions where the

household acts state dependent from the cases where the household responds to marketing

efforts. The other parameter estimates also seem to have a high face validity. All this

together leads us to believe that the concept of responsiveness seems to be empirically

useful. Of course, the ultimate test for a newly proposed model is whether it fits the

data better and generates better forecasts compared to other models. In choice modeling,

the MNL model seems to be the standard. In this section we will therefore compare our

model to various forms of the MNL model. In the MNL models, all variables used in the

responsiveness model are included, including those that are used to model the probability

of being responsive and the brand choice on the previous purchase occasion. We again

consider various forms of heterogeneity. We use an MNL model without incorporating

unobserved heterogeneity, one where the utility intercepts follow a discrete distribution,

and finally one where these intercepts are captured by a normal distribution.

Table 7.5 shows the model performance criteria for the various MNL models as well as

for the responsiveness model. The in-sample forecasting results suggest that the homoge-

neous responsiveness model outperforms all MNL models. On out-of-sample forecasting,

only the MNL model where the preference heterogeneity is modeled with a continuous

distribution beats this model when the forecasts are made conditional on the in-sample

brand choices. However the heterogeneous responsiveness model provides the best condi-

tional forecasts. The homogeneous responsiveness model performs best on unconditional

forecasting. Overall our model seems to perform much better than the MNL models,

notably with less parameters.

Additionally, we also compare the responsiveness model to an MNL model where,

next to the brand intercepts, other parameters are also allowed to differ in the popu-

lation. We consider three additional MNL models. All these models are based on the

mixture approach of modeling heterogeneity. In the first model we allow the price and

feature parameter to differ across the population. In another model we model the state

dependence parameter with a mixture distribution. Finally, we have estimated the MNL
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Table 7.5: Comparison of the new model versus various forms of the MNL model

Homogeneous preferences Heterogeneous preferences

Responsiveness MNL
Responsiveness MNL MNL mixture

continuous continuous 2 segments 3 segments

No. parameters 19 28 34 43 34 40
logL -1403 -1429 -1189 -1199 -1349 -1306
predicted logL -192.6 -213.1 -267.6 -269.6 -215.8 -217.6

Hit rate
in-sample 77.61 76.73 70.95 72.60 75.08 73.27
out-of-sample

conditional∗ 77.31 74.23 80.00 78.08 74.62 74.23
unconditional 77.31 74.23 67.31 62.31 73.47 71.92

∗ Out-of-sample forecasts made conditional on the observed in-sample brand choices.

model for the case where the brand intercepts and the price and feature parameters differ

across the households. To save space we do not report the performance measures of these

models, they can be found in Fok et al. (2001). Not surprisingly, these alternative models

outperform our homogeneous responsiveness model on in-sample log likelihood, as they

use many more parameters. None of these alternatives gives a higher in-sample likelihood

than the heterogeneous responsiveness model. With one exception, the out-of-sample

likelihood, and the in-sample and out-of-sample hit rate are not better than the homo-

geneous responsiveness model. The conditional hit rate for the MNL model where both

the brand intercepts and the marketing response parameters are modeled by a mixture

distribution with three segments is slightly better than that for the homogeneous respon-

siveness model (77.69% versus 77.31%). Again, when the out-of-sample forecasts are not

made conditional on the observed brand choices, the alternative model does not forecast

better (hit rate 73.85%). Altogether, these results seem to indicate that the concept of

responsiveness apparently captures an important part of the heterogeneity.

It is also interesting to compare the parameter estimates of some of the models. In

Table 7.6, we compare parameter estimates for the responsiveness model with and without

preference heterogeneity and the MNL model with two segments where the intercepts,

the marketing sensitivity and the state dependence parameter are allowed to differ. An

interesting observation for the 2-segment MNL model is that the second segment partly

captures the unresponsive households, as sensitivity to marketing efforts is quite low
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Table 7.6: Comparison of effectiveness of marketing instruments responsiveness

versus heterogeneous MNL(standard errors in parentheses)

Responsiveness model
2-segment MNL

Homogeneous Heterogeneous
Segment 1 Segment 2

Resp.∗ Unresp. Resp. Unresp.

Price -1.35 - -1.65 - -1.25 -0.67

(0.09) - (0.13) - (0.07) (0.10)

Feature 0.45 - 0.50 - 0.43 0.21

(0.05) - (0.09) - (0.05) (0.06)

Lagged choice 1.94 4.84 1.15 2.11 1.37 3.80

(0.13) (0.51) (0.22) (0.89) (0.12) (0.15)

∗ Resp.: Responsive to marketing efforts
Unresp.: Unresponsive to marketing efforts

compared to the first segment whereas there is a high degree of state dependence. The

main difference between this model and our model is of course that in the responsiveness

model the segment membership is correlated to household characteristics and also that

households are allowed to switch between the segments over time.

7.5 Concluding remarks

Households might not respond to marketing-mix instruments at each purchase occasion.

To be able to respond to these efforts, one needs to invest time and effort in, for example,

remembering price changes and reading newspapers and leaflets to notice advertisements.

Households differ in the amount of effort they wish to invest in a particular purchase, and

therefore they will most likely also differ in their responsiveness to marketing efforts.

The choice model we developed in this chapter incorporates the responsiveness of a

household at a specific purchase occasion as a form of structural heterogeneity. House-

holds differ in their decision-making process. In essence, we assume there are two decision

processes. Households either take marketing efforts into account or they base their choice

on base preference and their past experience. The specific decision process used can differ

across households and across purchase occasions. To explain and forecast the decision

process, used by a specific household at a specific purchase occasion, household character-
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istics can be used together with information on buying behavior. To take into account this

form of structural heterogeneity, we extended the MNL model. Basically, we introduce

two segments of households, one segment is unresponsive to marketing efforts whereas

the other segment does respond to these efforts. The segment membership is separately

modeled using a binary logit model. This “responsiveness model” can be further extended

to also include preference heterogeneity. For the estimation of the models with preference

heterogeneity we have developed a rather efficient sampling method to approximate the

likelihood. This sampling method, which is based on importance sampling, gives more

accurate likelihood evaluations compared to direct sampling.

The main behavioral conclusions from the application of our model to a six-brand

market of liquid detergent are that most households are responsive to marketing efforts,

and that large basket shoppers and large volume shoppers tend to be less responsive.

Infrequent shoppers however are more responsive. Further, an unresponsive household

seems to act more state dependent.

Finally, we compared the in- and out-of-sample performance of our model to various

forms of the MNL model where we also corrected for heterogeneity. From this comparison

we conclude that, while using the smallest amount of parameters, our model outperforms

all MNL variants on forecasting. This, together with the face validity of our parameter

results, leads us to believe that incorporating responsiveness seems to be a worthwhile

exercise.



Chapter 8

Summary and conclusion

In this thesis we have discussed a wide variety of marketing models. In the first part we

focused on aggregate market response models. The central model in this part was the

market share attraction model. The second part of this thesis dealt with household level

models. We considered modeling interpurchase timing and brand choice.

In the literature, there are more or less standard models available for each marketing

measure we have considered. However, as implicit in the definition of a model, they are

never perfect. In this thesis we worked on improving the performance of some of the

existing models. Some chapters in this thesis dealt with improvements with respect to

the econometric properties of the model and the corresponding estimation and forecasting

methods. In other chapters we focused on incorporating relevant knowledge from the

marketing literature in the models to make them more realistic. For proper inference in

the suggested models, it turned out that advanced econometric techniques are necessary.

Each chapter therefore had quite a strong econometric orientation.

Below we provide a summary of this thesis, where the focus is on the main contribu-

tions, the empirical results and topics for further research.

8.1 Summary

In Chapter 2 we have presented an extensive econometric analysis of the well-known mar-

ket share attraction model. One of the main findings in this chapter is that routinely

made forecasts are biased. Remarkably, in the literature there is no research available in

which the forecasting method is explicitly discussed. We showed that unbiased forecasts

can be obtained using simulation techniques. Another contribution of this chapter is a

formal model selection strategy to guide the choice of an appropriate attraction specifi-

cation. In practice one often selects an attraction specification without formal testing.
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We found that the use of a model selection strategy leads to an empirical model with

improved in-sample fit and out-of-sample performance.

A third issue we have discussed is parameter estimation. We have shown that the com-

monly used reduced-form specification of the attraction model is more complicated than

necessary. In this method, which is known as the log-centering approach, the reduced-

form model is specified in terms of the log of market shares relative to the geometrically

averaged market share. Due to the logical consistency feature of the market share attrac-

tion model, the reduced-form model equations are linearly dependent. This, and the fact

that the covariance matrix of the reduced-form error terms is singular leads to complica-

tions in the estimation procedure and parameter inference. An alternative reduced-form

specification is specified in terms of log market shares relative to a base brand. We have

formally shown that both reduced-form specifications lead to equivalent maximum like-

lihood estimates. However, parameter estimates are much easier to obtain if the base

brand approach is used.

Chapter 3 discussed the effects of the introduction of a new brand on an existing

market. Many studies in the literature present a normative view on this issue. The focus

is then on deriving the optimal reaction to entry. However, these optimal reactions are

usually not confronted with empirical data. Although changes in (aggregate) consumer

behavior due to the entry may have a substantial influence on the optimal strategy to

use, they are usually not considered in these studies.

We focused on developing tools to test for changes in empirical data. To this end, we

have proposed statistical tests to assess whether the competitive structure has changed

in an empirical market, where the competitive structure is summarized by the brand

preferences of the consumers and their reactions to marketing instruments. Furthermore,

we have proposed statistical tests to analyze whether the incumbent brands have changed

the use of their marketing mix as a reaction to the entry. For this analysis we have again

chosen for market shares as the focal marketing measure.

Changes in the competitive structure are reflected in observable changes in the market

shares. Some of the changes in the market shares may however be due to the marketing

instruments of the new brand or due to (efficient) marketing strategies of the incumbent

brands. Therefore, just testing for changes in the market shares is not sufficient. Instead,

one has to correct for the marketing instruments of the entrant and the existing brands.

To this end, we have extended the market share attraction model to deal with a changing

number of brands.

The testing methodology was illustrated using data on market shares of detergents.

For this market we have found fewer competitive reactions than predicted by the nor-

mative studies. We did find changes in the consumer behavior. After the introduction,

households react significantly different to price and coupon promotions. The sensitivity
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to display and feature promotions remained unchanged. Furthermore, we have tested for

changes in the relative positioning of the incumbent brands. Both the relative strength

of the brands (measured by the brand intercepts) and the brand similarities (measured

by the covariances of the unobserved attractions) changed. These changes in competi-

tive structure may explain why the normative predictions do not hold in this example.

Another explanation may be that brand managers did not respond optimally to the entry.

There are at least two promising paths for further research in this area. First of all,

the normative studies may be extended to allow for changes in consumer behavior. The

main challenge will be in the formalization of these reactions. Obviously the consumer’s

reaction will depend on the entrant’s strategy and the following competitive reactions

by the incumbent brands. Another fruitful avenue of research may focus on empirical

generalizations of the effects of introductions. This will however depend on the availability

of sufficient data.

In Chapter 4 we have studied dynamic effects in market shares. In the context of the

market share attraction model, dynamic effects can easily be captured by adding lagged

marketing instruments and lagged market shares as explanatory variables to the attrac-

tion specification. However, such a model does not easily provide insight into relevant

dynamic properties of the market at hand. We presented an alternative specification of

the dynamic market share model in which the parameters directly represent interesting

dynamic features.

The direct and the permanent effect of a temporary promotion are often considered

as interesting dynamic features. Recent literature has shown that most marketing series,

including market shares, are stationary, which implies that a temporary promotion will not

have a permanent effect on market shares. For most market share series the permanent

effect will therefore equal zero. As an alternative measure of the long-run effects of

marketing instruments we suggested the cumulative effect of a temporary promotion.

Summarizing, the dynamic features we consider to be relevant are the direct effect and

the cumulative effect of a promotion. We labeled the direct effect as the short-run effect

and the cumulative effect as the long-run effect. To allow for direct identification of the

short-run and the long-run effects of promotions, we have rewritten the market share

model in so-called error-correction format.

Interesting practical questions concern the difference between the short-run and the

long-run effect and the sign of the long-run effect itself. In the weeks after a promotion

one often observes a decrease in market shares. In case of such a post-promotional dip,

the long-run effect of a promotion will be smaller than the short-run effect. The long-run

effect can even be negative if the increase in market share at the promotional week is

more than compensated by a decrease in the weeks after.
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Next to deriving a useful econometric model to analyze the dynamic features of market

shares, we studied the extent to which differences in the dynamics across brands and

product categories can be explained by observable characteristics. The Hierarchical Bayes

framework turned out to be very useful for this purpose. The first layer of the model

corresponds to separate attraction models, one for each market. In the second layer

of the hierarchical model, the parameters representing relevant dynamic properties are

related to brand and market characteristics.

We have applied our model to a database consisting of seven different product cate-

gories in two distinct geographical regions. Across these 14 markets we found that the

long-run effects of feature and display promotions tend to be larger than the corresponding

short-run effects. In other words, display and feature promotions in general have positive

carry-over effects. For price we found the opposite. We found substantive interaction

between brand characteristics and the price effects. In general, higher priced brands and

brands that more frequently issue coupons have stronger price effects. This holds for the

short-run as well as for the long-run effect. The degree of market concentration affects

the short-run price effect, a higher market concentration leads to stronger price effects.

The short-run effect of coupons is correlated to the relative price and the market concen-

tration. Coupons of higher priced brands or of brands in markets with low concentration

are less effective.

Future research in this area may involve our model as input for a game-theoretic

study. In our model we have estimated the marketing effectiveness while correcting for

possible competitive reactions. The resulting parameter estimates can be used to assess

the optimal dynamic reaction to a competitive marketing action. The derivation of the

optimal response may be obtained analytically or by evaluating various scenarios.

Our analysis may be extended by analyzing the markets at a lower level of aggregation.

In our model we analyzed differences across categories and across different brands within

a category. Additionally, one could study differences across stores within a region or

differences across the product items that make up a brand. As the typical market may

contain a very large number of items, the advantages of the Bayesian approach become

more pronounced at this level of aggregation. At this level of aggregation, the dynamic

features may be explained by item characteristics such as the weight, packaging and flavor

of an item. In van Nierop et al. (2002) we have made a first attempt to such an analysis.

However, in this paper we did not consider disentangling the short-run and the long-run

effects.

Chapters 5 and 6 both discussed models for the purchase timing decision of households.

In Chapter 5 we took on quite a technical perspective, and studied the optimal way to

include explanatory variables. As the purchase timing process is defined on the category

level, explanatory variables in an econometric model should also be defined on this level.
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Marketing-mix variables should therefore somehow be aggregated. In the literature a

number of ad-hoc methods are available. In Chapter 5, we proposed three alternative

methods. We furthermore have studied the relative merits of all these methods.

The most popular method in the literature seems to be to use a weighted average of the

marketing mix across the available brands, where the weights are household-specific choice

shares. The main disadvantage of this approach is that it is not very suitable for out-of-

sample forecasting. The advantage of this method is that differences in brand preferences

across households are captured without having to explicitly model them. Changes in

the preferences of households, for example induced by promotional activities, are not

accounted for. Another popular approach is to summarize the marketing efforts by the

so-called inclusive value. Our results indicated that this method is quite restrictive and

performs poorly on in-sample and out-of-sample fit. The three alternative methods we

have introduced are based on using weights obtained from a choice model to weigh the

marketing instruments. The most elaborate model we have discussed actually integrates

the brand choice model with the purchase timing model by considering the preferences of

households to be latent variables in the weeks where no purchase is made.

We have compared the empirical performance of the different methods using data on

three product categories. The main finding from our comparisons is that when unobserved

heterogeneity in brand preferences and in purchase timing is not explicitly accounted for

the popular method based on choice shares has the best in-sample performance. Our

“latent preference” model tends to perform best for out-of-sample forecasting. This model

also performs best in-sample when unobserved heterogeneity is captured by the model.

The practical conclusion from this chapter is that in case one is not so much interested

in forecasting, the approach based on choice shares is sufficient. However, if the object of

the study is forecasting, one of the alternatives should be used. Although the differences

between the various models are sometimes small, the latent preference model performs

best.

Future research in this area may involve extending the model for the purchase planning

process of a household to include the choice of the store in which the purchases are made.

The difficulties involved with the store choice decision in a purchase timing model closely

resemble those concerning brand choice. The researcher somehow has to aggregate the

marketing efforts in each store to obtain, for example, an overall index of price. By

integrating a model for store choice and a purchase timing model one may improve upon

the popular method where marketing instruments are averaged over stores with household-

specific weights.

In Chapter 6 we studied dynamic features in interpurchase times. A review of the

literature showed that consecutive interpurchase spells are usually assumed to be inde-

pendent. In practice, however, we would expect a correlation over time. Correlation
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between spells could, for example, be induced by purchase acceleration effects or alternat-

ing periods of heavy and low use. Another feature that could lead to a positive correlation

is unaccounted unobserved heterogeneity. Such correlation has no relation to behavioral

characteristics and is usually referred to as spurious correlation. We have explicitly mod-

eled possible unobserved differences in interpurchase times by allowing the intercepts of

the model to differ across households.

Identifying dynamic effects in interpurchase timing is also relevant for practical pur-

poses. We have shown that the effects of marketing instruments are not confined to the

interpurchase spell in which the efforts are made. To assess the total effect of a marketing

action a manager should also take into account the “carry-over” effects. The model we

have proposed exactly fits this need. Using similar time-series techniques as in Chapter 4,

we shape our model in such a way that allows for easy identification of the direct effect

and the cumulative, or long-run, effect of specific marketing efforts.

Our results showed that there are significant dynamic effects in interpurchase times.

Furthermore, the short-run effects of marketing instruments turned out to be signifi-

cantly different from the long-run effects. We have analyzed three different categories of

fast-moving consumer goods. Across these categories we found large differences in the

short-run and long-run effects of marketing instruments. For the yogurt category we find

that the short-run effect of price is smaller than the long-run effect, where both effects are

positive. However, for the detergent category we found the opposite and for catsup we

found a negative long-run price effect for a large fraction of households. The interpretation

of this last finding is that if price would be permanently increased, the average interpur-

chase time will decrease for these households. Note that this does not mean that the sales

of catsup would increase. Households could also choose to keep the consumption rate

constant and purchase smaller package sizes. In general, feature and display promotions

shorten interpurchase times. For the yogurt category we do not find any effect of feature.

For this category there is also no long-run effect of display. That is, for this category the

direct purchase accelerating effect of a display on is compensated by a decelerating effect

on future interpurchase spells.

Again, there are a number of topics for future research. Further research into possible

practical uses of the model for marketing managers seems useful. In the end marketing

managers will be interested in long-run sales or market share. An interesting extension of

the model is to capture purchase timing, brand choice and purchase quantity in a single

dynamic model. In the literature there are a number of integrated models of these three

marketing measures available. However, these models do not allow for a straightforward

identification of relevant dynamic features. Future research could integrate our model with

dynamic models for choice and purchase quantity to obtain a single dynamic framework

in which all marketing measure on the household level are included. For the choice model

we could use the model in Paap and Franses (2000), for purchase quantity one could
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build on Böckenholt (1999). An alternative model that captures dynamics in these three

measures simultaneously is Erdem et al. (2003). This paper focuses on forward looking

behavior by households as the main source of dynamics.

In Chapter 7, we have studied the brand choice decision at the household level. In this

chapter we have focused on two different decision processes that could be used by house-

holds at different purchase occasions. Under the first decision process, which we named

“responsive to marketing efforts”, the household actively compares the different available

brands while taking into account promotional pricing and other marketing stimuli. Un-

der the alternative decision process, households do not take into account the marketing

mix. Brand choice decisions are in this case solely based on preferences, habit formation

and baseline prices. Promotional price cuts do not influence the decisions made by these

households.

The actual decision process used by a household at a specific purchase occasion is in

general not observed. We infer the decision process used at a specific purchase occasions

from the typically available choice data. The probability that a household is responsive

at a specific purchase occasion depends on household characteristics, such as family size

and household income, and characteristics of the shopping trip, for example the amount

of money spent.

Next to modeling structural heterogeneity, that is, the fact that decision processes may

differ, it is important to capture differences in base preferences that cannot be attributed

to observable characteristics. In our model we have captured this preference heterogeneity

by imposing a normal distribution on the brand intercepts. As a consequence of this, the

likelihood function no longer evaluates to a closed-form expression. Consequently, the

estimation of the resulting model requires advanced econometric techniques. An appealing

approach is based on Simulated Maximum Likelihood [SML], where an approximation of

the likelihood function is optimized over the parameter space. With SML the likelihood

function is approximated using simulation. Usually, many simulation draws are necessary

to obtain an accurate approximation. We have used importance sampling to improve the

efficiency of the simulator. With importance sampling the number of draws needed to

obtain an accurate approximation can be drastically reduced.

Our application of the model to the detergent category showed that the responsiveness

model performs very well. Compared to various variants of the multinomial logit model,

our model provides better forecasts. Concerning the responsiveness to marketing efforts,

we found that most households tend to be responsive. On purchase occasions where

many different items are bought, households are less responsive. The interpurchase time

is positively correlated with the probability to respond to marketing efforts.

Models that incorporate different unobserved decision processes by households are also

useful in other areas. For example, in an on-line environment, our approach could be used
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to assess the likelihood of consumers to use the advice obtained from a so-called agent to

make their decisions. For this analysis only data on the actual choices would be necessary.

As in the responsiveness model, under both decision rules (use the agent or do not use

the agent) different explanatory variables will play a role. This distinction will allow us

to assess the likelihood of the agent being used.

The estimation method we have proposed seems very promising. Future research can

be devoted to analyze the general properties of performing simulated maximum likelihood

using importance sampling. This approach seems particularly useful in non-linear models

with unobserved heterogeneity for which it is not possible to calculate the likelihood by

analytic integration. The responsiveness model is an example of such a model. Another

example, is a heterogeneous panel version of the diffusion model which we consider in Fok

and Franses (2002).
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(Summary in Dutch)

Voor marketingmanagers is het belangrijk het effect te weten van marketinginstrumen-

ten, zoals bijvoorbeeld prijs en promotie, op het koopgedrag van consumenten. Wat is

bijvoorbeeld het effect van een 10% prijskorting op de totale verkochte hoeveelheid van

een product? Men is niet alleen gëınteresseerd in het effect van de eigen instrumenten,

maar ook in die van de concurrenten. Een belangrijke vraag is bijvoorbeeld of een toena-

me in het marktaandeel van een concurrent ten koste gaat van het eigen marktaandeel of

vooral van het marktaandeel van andere concurrenten.

Om de effecten van marketinginstrumenten te meten zijn verschillende technieken be-

schikbaar. Binnen de kwantitatieve marketing worden gegevens van promoties en gereali-

seerde aankopen uit het verleden gebruikt om het effect van toekomstige marketingacties

in te schatten. In bijna alle supermarkten worden de gemaakte aankopen geregistreerd

via het scannen van streepjescodes. Van elke aankoop wordt opgeslagen welk merk ge-

kocht is, hoeveel er gekocht is en wanneer de aankoop is gemaakt. Eventueel wordt er

ook geregistreerd wie de aankoop heeft gedaan. De identificatie van huishoudens gebeurt

in dat geval via persoonlijke klantenkaarten, of via speciale onderzoeksprogramma’s. De

huishoudens die aan zo’n programma deelnemen, scannen bij thuiskomst zelf nogmaals

hun aankopen. Naast deze aankoopgegevens worden de prijzen en eventuele promoties

van alle merken bijgehouden. De combinatie van deze twee databases bevat enorm veel

informatie over het koopgedrag van consumenten. Het is echter niet eenvoudig om nut-

tige informatie uit de vaak zeer grote databases te halen. Econometrische modellen en

technieken vormen handige gereedschappen hiertoe.

In dit proefschrift behandelen wij een aantal econometrische marketingmodellen. In het

eerste deel van dit proefschrift staan modellen voor data op een geaggregeerd niveau cen-

traal. In het bijzonder betreft dit modellen voor de marktaandelen van alle merken binnen

een productcategorie. Het tweede deel behandelt modellen op het niveau van individue-

le huishoudens. Om precies te zijn, deze modellen beschrijven de aankoopplanning van

huishoudens en hun merkvoorkeur.
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Modellen op marktniveau

In hoofdstuk 2 presenteren wij een uitgebreide econometrische analyse van het bekende

attractiemodel. Dit model beschrijft de relatie tussen de marktaandelen van alle merken

binnen een productcategorie en de marketinginspanningen van deze merken.

Een veel gestelde eis aan een marktaandeelmodel is dat het model logisch consistente

voorspellingen dient te genereren. Voorspelde marktaandelen moeten tussen 0 en 100%

liggen en de som van de voorspellingen over alle merken moet 100% bedragen. Hoewel het

attractiemodel één van de weinige modellen is dat aan deze voorwaarde voldoet, is er geen

formeel econometrische analyse van dit model beschikbaar. In hoofdstuk 2 bespreken wij

een aantal aspecten van dit model. Eén van de bevindingen is dat de meest populaire

voorspellingsmethode geen zuivere marktaandeelvoorspellingen geeft, met andere woor-

den, gemiddeld gesproken zijn de voorspellingen ongelijk aan de werkelijke marktaandelen.

Wij presenteren een alternatieve, op simulatie gebaseerde, voorspellingsmethode die wel

zuivere voorspellingen genereert.

Een andere bijdrage van hoofdstuk 2 is de ontwikkeling van een modelselectiestrate-

gie. In de praktijk wordt meestal uit de vele varianten van het attractiemodel slechts één

specificatie gekozen. Onze analyse toont echter aan dat het gebruik van een modelselectie-

strategie over het algemeen een model oplevert met betere voorspelkracht in vergelijking

tot een vaste, vooraf gekozen, modelspecificatie.

In hoofdstuk 3 wordt het attractiemodel gebruikt om het effect van een merkintro-

ductie op de concurrentie tussen bestaande merken te evalueren. De marketingliteratuur

bevat vele studies naar de optimale competitieve reactie op een merkintroductie. Studies

naar de werkelijke reacties in een markt zijn echter relatief schaars. Verschillen tussen

de optimale en de werkelijke reacties kunnen erop wijzen dat managers niet optimaal

hebben gereageerd. Een andere verklaring voor eventuele verschillen kan zijn dat de voor-

geschreven strategieën in de praktijk niet optimaal zijn. Een gebruikelijke aanname bij

het afleiden van de optimale reactie is namelijk dat de introductie geen effect heeft op

de voorkeuren en het gedrag van consumenten. In de praktijk is het echter niet onwaar-

schijnlijk dat de introductie, of de daaropvolgende competitieve reactie, wel invloed heeft

op het consumentengedrag. Een zeer competitieve prijsstelling van het nieuwe merk kan

de consument bijvoorbeeld prijsgevoeliger maken.

In ons onderzoek concentreren wij ons op het ontwikkelen van methoden om te toetsen

of er veranderingen hebben plaatsgevonden ten gevolge van een merkintroductie. Hier-

bij beschouwen wij zowel veranderingen in consumentengedrag als competitieve reacties

van bestaande merken. Het gedrag van consumenten kan samengevat worden door de

parameters van een marktaandeelmodel; veranderingen in consumentengedrag vertalen

zich in veranderingen van de modelparameters. Via het marktaandeelmodel kunnen we
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veranderingen in consumentengedrag onafhankelijk van mogelijke competitieve reacties

bestuderen. Voor het implementeren van deze toestingsstrategie moet het standaard at-

tractiemodel aangepast worden zodat het toepasbaar is voor markten waarbij het aantal

beschikbare merken verandert, hetgeen immers gebeurt bij een introductie. In hoofdstuk 3

bespreken wij deze uitbreiding in detail.

Competitieve reacties van merken zijn eenvoudiger te identificeren. Hiervoor beschou-

wen wij redelijk eenvoudige modellen voor de geobserveerde tijdreeksen van marketingin-

strumenten. Een verandering in het gebruik van een marketinginstrument correspondeert

met een verandering in de parameters van zo’n model.

De bovenstaande technieken passen wij toe op een database met de marktaandelen van

12 merken wasmiddelen. Hoewel de bestaande literatuur over optimale reacties een prijs-

daling voor de bestaande merken voorspelt, vinden wij dit niet in deze markt. Over het

algemeen vinden wij weinig competitieve reacties. Er zijn wel significante veranderingen

in het gedrag van consumenten. De prijs- en coupongevoeligheid en de basispreferenties

voor de merken veranderen sterk als gevolg van de introductie. Deze veranderingen zijn

een mogelijke reden waarom de gevonden competitieve reacties niet overeenkomen met de

voorspellingen op basis van speltheoretische studies.

In hoofdstuk 4 besteden wij aandacht aan dynamische effecten in marktaandelen. Er

is veel bewijs voor de stelling dat de effecten van marketinginstrumenten niet beperkt zijn

tot de periode waarin ze gebruikt worden. Een bekend voorbeeld hiervan is de zogenaamde

post-promotie dip. In weken na een promotie vinden we vaak een lager marktaandeel dan

gewoonlijk. Een gedeelte van de aankopen die in deze weken gemaakt zouden zijn, zijn

namelijk reeds in de week van de promotie gemaakt. Het is dus onverstandig om alleen

het directe effect van een promotie te beschouwen, immers, alleen als het cumulatieve

effect positief is is de promotie waardevol.

In het attractiemodel kunnen dynamische effecten eenvoudig gemodelleerd worden

door vertraagde marktaandelen en marketinginstrumenten uit vorige perioden als verkla-

rende variabelen op te nemen. De interpretatie van de dynamische effecten is in dit model

minder eenvoudig. Uit de parameters van het model is bijvoorbeeld niet direct af te lezen

wat het totale effect van een promotie is. Wij stellen een alternatieve formulering van

het model voor, waarbij de parameters praktisch relevante dynamische eigenschappen re-

presenteren. Deze formulering staat bekend als het foutencorrectiemodel. De parameters

in dit model representeren het directe effect en het cumulatieve effect van een promotie.

Deze twee parameters geven, samen met de snelheid waarmee het effect van een promotie

uitdooft, alle relevante informatie over de dynamische effecten van een marketinginstru-

ment.

Naast het meten van de effecten van marketinginstrumenten zijn we ook gëınteresseerd

in het verklaren van mogelijke verschillen in deze effecten tussen merken. Hiertoe breiden
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wij ons model uit met een extra laag. In deze tweede laag worden de dynamische effecten

van marketinginstrumenten gerelateerd aan markt- en merkkarakteristieken. Belangrijke

karakteristieken zijn bijvoorbeeld de concentratiegraad van de markt en de relatieve prijs

van een merk.

Wij passen de besproken methode toe op een database van zeven productcategorieën in

twee Amerikaanse steden. Totaal hebben wij de marktaandelen en marketinginstrumenten

van 50 merken. De resultaten laten zien dat het lange termijn (cumulatieve) effect van

prijs over het algemeen kleiner is dan het korte termijn (directe) effect. Voor feature en

display promoties geldt het omgekeerde. Voor coupons geldt dat het directe effect ongeveer

gelijk is aan het cumulatieve effect. Verder vinden wij dat een intensiever gebruik van

marketinginstrumenten en een hogere marktconcentratie leidt tot sterkere prijseffecten,

zowel op de korte als op de lange termijn.

Modellen op huishoudniveau

In het tweede deel van dit proefschrift staan modellen op huishoudniveau centraal. Via

speciale onderzoeksprogramma’s, of met behulp van klantenkaarten, wordt het aankoopge-

drag van een groot aantal huishoudens tot in detail in kaart gebracht. Van elk huishouden

in het programma is bekend wanneer en waar een aankoop is gemaakt, welk merk gekozen

is en hoeveel er van het product is gekocht. Uit de combinatie van deze gegevens en het

gebruik van marketinginstrumenten kan veel informatie over individueel consumentenge-

drag afgeleid worden. In het algemeen zijn er drie belangrijke vragen. Ten eerste is men

gëınteresseerd in de aankoopplanning van huishoudens. Belangrijke aspecten hierbij zijn

de consumptiesnelheid en de invloed van marketinginstrumenten op de aankoopbeslissing.

Een tweede belangrijk punt is de merkkeuzebeslissing van consumenten. Tot slot is de

aangekochte hoeveelheid van een product een interessante variabele. In dit proefschrift

besteden wij aandacht aan de aankoopplanning en de merkkeuze.

In hoofdstuk 5 bestuderen wij de aankoopplanning van huishoudens. Om de tus-

senaankooptijden van huishoudens in een bepaalde productcategorie te verklaren en te

beschrijven zijn verschillende modellen beschikbaar. Een gemeenschappelijk probleem

van alle modellen is echter dat marketinginstrumenten niet eenvoudig als verklarende va-

riabelen opgenomen kunnen worden. De aankoopbeslissing wordt namelijk op het niveau

van de productcategorie gemodelleerd, terwijl de marketinginstrumenten per merk wor-

den gemeten. Een onderzoeker zal dus de marketinginspanningen van de verschillende

merken moeten aggregeren. Er bestaat nog geen consensus over de beste methode voor

deze aggregatie.

Wij bespreken een aantal bestaande aggregatietechnieken en verder stellen wij drie

nieuwe alternatieven voor. Alle methoden worden zowel in discrete als in continue tijd
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besproken. Naast een vergelijking op theoretische gronden, presenteren wij een vergelij-

king van de empirische prestaties van de modellen in continue tijd.

De resultaten wijzen uit dat wanneer niet-verklaarde verschillen in merkpreferenties,

zogenaamde niet-waargenomen heterogeniteit, genegeerd worden, de standaard aanpak in

de literatuur het beste werkt. In deze aanpak worden huishoudenspecifieke keuzeaandelen

gebruikt om voor elk huishouden de marketinginstrumenten over de merken te aggrege-

ren. Voor het voorspellen van tussenaankooptijden van nieuwe huishoudens werkt deze

methode niet optimaal. Voor dit soort voorspellingen blijkt één van de nieuwe modellen

het beste te werken. Dit model beschouwt de aankoopplanning en de merkkeuze tegelijk.

Ook wanneer er wel rekening gehouden wordt met niet-waargenomen heterogeniteit blijkt

dit model het beste te werken. Een andere conclusie is dat het populaire model gebaseerd

op de zogenaamde “inclusive value” over het algemeen matig presteert.

In hoofdstuk 6 presenteren wij een meer inhoudelijke studie naar tussenaankooptij-

den. In dit hoofdstuk zijn wij vooral gëınteresseerd in mogelijke afhankelijkheden tussen

opeenvolgende tussenaankooptijden. Een gebruikelijke aanname is dat de planning van

opeenvolgende aankoopbeslissingen onafhankelijk zijn. Op basis van kennis uit andere

onderzoeksgebieden lijkt deze aanname niet realistisch. Beschouw bijvoorbeeld een con-

sument die door een promotie verleid wordt om een aankoop eerder te maken dan was

voorzien. Deze consument heeft nu extra voorraad van dit product, en als de consump-

tiesnelheid constant blijft zal het langer dan gebruikelijk duren voordat deze voorraad is

verbruikt. De volgende aankoop zal dus worden uitgesteld. In dit voorbeeld is er een

negatieve correlatie tussen de twee opeenvolgende aankooptijden. Dit voorbeeld toont

ook aan dat de effecten van marketinginstrumenten niet altijd beperkt zijn tot de lopende

aankoopbeslissing. Om het effect van marketingacties goed te kunnen inschatten is het

dus belangrijk om ook dynamische effecten in ogenschouw te nemen.

In dit hoofdstuk breiden wij het populaire “accelerated failure-time” model uit om

ook afhankelijkheden tussen aankooptijden te kunnen beschrijven. Opnieuw gebruiken

wij hiertoe een variant van het uit de tijdreeksanalyse bekende foutencorrectiemodel. Het

gebruik van deze modelspecificatie leidt tot eenvoudig interpreteerbare parameters. In

dit geval geven de parameters het directe effect van een marketingactie op de huidige

tussenaankoopperiode en de som van de effecten op alle toekomstige aankoopbeslissingen.

Dit laatste effect is gelijk aan het effect van een permanente promotie (bijvoorbeeld een

permanente prijsverlaging) op tussenaankooptijden in de verre toekomst.

In dit proefschrift worden het model en de interpretatie ervan uitgebreid besproken.

Daarnaast presenteren wij toepassingen van het model op drie verschillende productca-

tegorieën. De resultaten tonen aan dat opeenvolgende tussenaankooptijden wel degelijk

afhankelijk van elkaar zijn. Tevens vinden wij significante dynamische effecten van marke-

tinginstrumenten. De directe effecten van marketinginstrumenten verschillen significant
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van de lange termijn (cumulatieve) effecten. Over de productcategorieën heen blijken

verder grote verschillen te bestaan met betrekking tot de dynamische effecten.

In hoofdstuk 7 staat de merkkeuzebeslissing van huishoudens centraal. Nadat een

huishouden besloten heeft een aankoop te doen in een bepaalde productcategorie wordt de

keuze voor een bepaald merk gemaakt. Deze keuze kan bëınvloed worden door de actuele

prijzen van de merken en eventuele promotionele activiteiten. Het beslissingsproces dat

gebruikt wordt, hoeft niet voor elk huishouden en op elke aankoopmoment hetzelfde te

zijn. Wij onderscheiden twee verschillende beslissingsprocessen. Binnen het eerste proces

weegt het huishouden alle verschillende merken actief tegen elkaar af. Hierbij houdt het

huishouden rekening met zijn basispreferenties voor de verschillende merken, de prijzen

en promotionele activiteiten. Deze strategie vergt echter relatief veel inspanning van het

huishouden. Het is daarom niet waarschijnlijk dat elk huishouden bij elk winkelbezoek

voor elke productcategorie zo’n weloverwogen beslissing zal maken. Wij introduceren een

alternatief beslissingsproces dat minder inspanning vereist. Binnen dit proces laat het

huishouden zich vooral sturen door gewoonte en basisvoorkeuren. Marketinginstrumenten

spelen bij dit beslissingsproces geen rol. Voor beide beslissingsprocessen staan wij verder

toe dat eerder gemaakte keuzes invloed hebben op de huidige keuze.

Uit de beschikbare aankoopgegevens is niet direct af te leiden welk beslissingsproces

het huishouden daadwerkelijk heeft gebruikt. Wel kunnen we uitspraken doen over de

waarschijnlijkheid dat een bepaald proces is gebruikt. Deze waarschijnlijkheid hangt af

van eigenschappen van het huishouden en van eigenschappen van het winkelbezoek, zoals

bijvoorbeeld de grootte van het huishouden, de tijd sinds de laatste aankoop en het bedrag

dat tijdens het bezoek wordt uitgegeven.

In het hoofdstuk wordt het model uitgebreid besproken en er is bijzondere aandacht

voor het schatten van de parameters. De combinatie van verschillen in het gebruik-

te beslissingsproces en mogelijke verschillen in basispreferenties over de huishoudens en

aankoopmomenten leiden tot een complex model. Geavanceerde simulatietechnieken zijn

nodig voor het schatten van de parameters van dit model. Eén van de bijdragen van dit

hoofdstuk is een verbetering van de standaard simulatiemethode. Wij stellen een ver-

nieuwde, efficiëntere, simulatietechniek op basis van “Importance Sampling” voor. Naast

de technische punten, presenteren wij een toepassing op de merkkeuzes binnen de was-

middelencategorie.

Uit de toepassing blijkt dat huishoudens tijdens de meeste, maar niet alle, winkel-

bezoeken gevoelig zijn voor promoties. Huishoudens die veel verschillende items tegelijk

kopen, grote volumes aankopen of zeer frequent aankopen doen, zijn over het algemeen

minder gevoelig. Naast deze gedragseigenschappen vinden wij dat ons model betere voor-

spellingen genereert dan concurrerende modellen waarin de gevoeligheid voor marketing-

instrumenten niet is meegenomen.
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Samenvattend, in dit proefschrift bespreken wij modellen voor verschillende marketing-

maatstaven. Naast een bijdrage aan de marketing, bijvoorbeeld door de geboden inzichten

in structurele heterogeniteit in keuzeprocessen en in dynamische effecten in marktaandelen

en tussenaankooptijden, draagt dit proefschrift ook bij aan de econometrische literatuur

door de uitbreiding en ontwikkeling van modellen en schattingstechnieken.
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