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� INTRODUCTION

Many quarterly economic time series display trending and seasonal patterns
which do not appear to be constant over time� A representation of time series
that accounts for time�varying trends and seasonals assumes the presence of
stochastic trends at the zero and seasonal frequencies� Formulated otherwise�
for several economic time series one can assume the presence of nonseasonal
and seasonal unit roots� Hylleberg et al� ������ propose formal test statistics
to investigate these roots in univariate time series� Given a set of economic
time series� it is of interest to study whether these have stochastic trends at
certain frequencies in common� Hence� a usual next step in analyzing a set
of quarterly time series involves testing for cointegration at the nonseasonal
and seasonal frequencies� Engle et al� ����	� suggest so�called residual�based
tests for seasonal cointegration� while Lee ����
� proposes tests for similar
purposes based on a fully speci�ed multivariate time series model�

Inference on cointegration and on common stochastic trends can be shown
to depend critically on the presumed empirical model and on the determin�
istic regressors included in the auxiliary test regressions� See Johansen ������
for a detailed treatment of the role of the constant and linear terms in analyz�
ing cointegration at the nonseasonal frequency� This role is important since
under the null and alternative hypotheses the constant and linear variables
may have di
erent implications� For example� an unrestricted constant in
a model with imposed cointegration among two variables implies that the
driving stochastic trend contains a drift� In the present paper� we consider
the role of four seasonal intercepts in the seasonal cointegration model for
quarterly data� Although the seasonal cointegration model with seasonal
dummies is analyzed in Lee and Siklos ������� the role of the four intercepts
is not discussed� We show that the inclusion of unrestricted seasonal inter�
cept parameters can lead to an undesirable feature of the data� and hence�
that one may obtain inappropriate empirical results� This feature is that in
case of cointegration at a seasonal frequency� the data are assumed to have
deterministic trends that vary with the season� To overcome this� we propose
a simple modi�cation of the standard seasonal cointegration analysis�

The outline of this paper is as follows� In Section 
� we start with a
discussion of the representation of seasonal cointegration with the inclusion
of seasonal intercepts� We examine the role of these intercepts and summarize
the main results in a proposition� In the second part of Section 
� we propose






an alternative empirical strategy to test for seasonal cointegration� We also
provide new tables with critical values for several empirically relevant cases�
In a sense� our strategy simply amounts to a partial cointegration analysis
per frequency� where the intercept �with a speci�c form for each frequency�
is restricted under the null hypothesis of cointegration� In Section 	� we
report some experiments which we conduct in order to assess the potential
improvement in test power by using the new procedure� In Section �� we
illustrate our approach for a four�dimensional macroeconomic system of the
Austrian economy� and we compare our results with those obtained using the
Lee ����
� method� In Section �� we conclude our paper with some remarks�

� SEASONAL COINTEGRATION

AND SEASONAL INTERCEPTS

In this section we discuss the representation of a seasonal cointegration
model� The key results on the impact of unrestricted and restricted sea�
sonal intercept terms are summarized in a proposition� Our results clearly
indicate a useful empirical modeling strategy for seasonal cointegration� In
Section 
�
� we present this strategy and we provide several tables with crit�
ical values�

��� Representation

A general representation of an autoregressive process for an n � � vector
time series Xt �t � �� ���� N�� which allows for cointegration at seasonal and
nonseasonal frequencies is�

�	Xt � ����S�B�Xt�� � �
�
A�B�Xt�� � �����
Xt�


�
	X

i��

di�
i
t�	
�t����	� � �t � ���

where �t is an n�� vector white noise process� The �it�	
�t����	� in ��� concern
the conventional seasonal dummy variables� The Kronecker symbol expresses
the structure of the deterministic seasonal dummies that can be equated to t
mod �� ��� is used to denote the largest integer or entier function� The di
er�
encing �lter �k� k � �� 
� ��� is de�ned by �k � ���Bk�� where B is the usual

	



backward shift operator de�ned by BkXt � Xt�k� Model ��� is more special
than the most general form that would allow for non�synchronous seasonality
at �	
 and it has the form used by Lee ����
�� For ease of exposition� a pos�
sible short�run autoregressive in�uence has been excluded that would allow
for VARs of any �nite order p� An unrestricted vector autoregression for Xt

that corresponds to ��� is of order �� The matrices �i and �i are assumed to
have full column ranks ri with � � ri 
 n� The operators S�B� and A�B� are
de�ned as S�B� � ��B �B
 �B� and A�B� � ��B �B
 �B�� where
S�B� can be interpreted as the seasonal moving average smoothing operator
and A�B� as the alternating�signs summing operator� hence �S� and �A��

The matrix ���
�

� corresponds to nonseasonal cointegration at the zero
frequency� The matrix �
�

�


 concerns seasonal cointegration at the bi�annual
frequency� whereas the matrix ���

�

� relates to seasonal cointegration at the
annual frequency� See Lee ����
� for additional discussions of model ����

Given ��� and �xed starting values for the Xt vector process� Xt has a
representation in starting values� innovations �s� and deterministic contribu�
tions Ds for s � t� Formally� this representation is achieved by inverting
the seasonal operator �	 in ���� For the now classical case of zero�frequency
cointegration� the mathematical derivation of such a representation is sum�
marized in the Granger Representation Theorem �cf� Engle and Granger�
������ In the present case of a seasonal cointegration model as in ���� the
in�uence of the deterministic terms is however more involved� and hence a
representation theorem for seasonal cointegration contains complex struc�
tures �cf� Johansen and Schaumburg� ������ To highlight this phenomenon�
we decompose the deterministic part Dt of ��� into three components� i�e��
Dt � �� at � rt� Averaging over the seasonal cycle yields the time�constant
drift � � �d� � d
 � d� � d	�	�� with the di parameters as de�ned in
���� The sum of the remaining components is then � over the four�quarter
cycle� Similarly� at is found by applying the alternating operator A�B� to
the sequence of seasonal constants� This results in at � a cos ��t� �� with
a � �d� � d
 � d� � d	�	�� The remainder rt has a distinct pattern of al�
ternating constants of type �b� c��b��c� b� c� ����� with b � �d� � d��	
 and
c � �d
 � d	�	
� Then�

rt � b cos
�



�t� �� � c cos

�



�t� 
� �

From the de�nition of Dt � ��at�rt� where �� at� and rt are de�ned above�

�



it is clear that formal application of the inverse operator ���
	 has di
erent

e
ects on the three deterministic components� For example� ���
	 � yields

four parallel linear time trends that perpetuate the original seasonal starting
pattern� Such a pattern does not seem unusual for seasonal and trending
series observed in practice� In striking contrast� at and rt generate divergent
linear trends� In the case of at and� e�g�� a � �� parallel positive trends
appear for even t and parallel negative mirror images for odd t� In the case
of rt� the patterns look even more strikingly counterintuitive� However� in the
multivariate model such divergent trends do not appear necessarily� Hence�
the key problem addressed in this paper is how one should accommodate
for and possibly restrict the deterministic part of seasonality in seasonal
cointegration analysis such that the aforementioned implausible features are
avoided�

For illustrative purposes� we start with a simple VAR��� model with coin�
tegration at the zero frequency� This model reads as

��Xt � �� �Xt�� � �� 
t � �
�

From integrating �
�� it is clear that Xt depends on a linear trend through
���� only� where �� denotes the orthogonal complement to �� Hence� even
if � is not � but ���� ��� there is no linear trend in the multivariate process
Xt� For a similar property in the seasonal cointegration model� let us �rst
re�write ��� with decomposed deterministic terms� i�e�� with Dt � ��at� rt�
as�

�	Xt � ���
�

�S�B�Xt�� � �
�
�


A�B�Xt�� � ���
�

��
Xt�
 � �

�a cos ��t� �� � �b� c�
�
cos

�



�t� ��� cos

�



�t� 
�

��
� �t �	�

where �b� c� is an n � 
 matrix expressing the in�uence of the two annual
dummies� each one of type ��������������������� with one of them lagged one
quarter� Obviously� �	� has exactly the same number of parameters as ����
since ��� a� b� c� replaces �d�� ���� d	�� It is now possible to show that the un�
wanted and implausible divergent seasonal trends appear in the represent�
ation of Xt through ���
 a and ���� �b� c� only� We state this result in the
following proposition�

PROPOSITION� If a vector autoregression is given by ��� or equivalently
�	� and Xt has four �xed consecutive starting values� then� in general� its

�



deterministic part consists of an n�dimensional linear time trend proportional
to ���� �� linear time trends diverging over the seasonal cycle proportional to
���
 a and ���� �b� c�� and a periodic pattern of constants� If ���
 a � � and
���� �b� c� � �� the deterministic part only contains a linear trend and four
seasonal constants�

Proof� We use a result developed by Tsay and Tiao ������ who build on
previous work by Chan and Wei ������� We re�write the VAR system in
state�space form�

�
���
Xt

Xt��

Xt�


Xt��

�
��	 �

�
���
�� �
 �� �	

I � � �

� I � �

� � I �

�
��	

�
���
Xt��

Xt�


Xt��

Xt�	

�
��	�

�
���
�t
�
�
�

�
��	

or X�

t � �X�

t�� � ��t � ���

where �j� j � �� 
� 	� � are matrices directly depending on �i and �i of ����
With deterministic terms in ���� one must add additional terms to the right
of ���� again with block zeros except in the �rst n�block as in ��t � Tsay
and Tiao ������ use the Jordan canonical form of the state transition matrix
� � T

��
DT to rotate the system into T�Xt�Xt���Xt�
�Xt��� � TX�

t �
Yt � where T denotes a transition matrix� The vector process Yt is a �n
�dimensional process� naturally ordered according to the eigenvalues of the
original transition matrix� One could� e�g�� consider Yt with an �n � r���
dimensional subvector corresponding to the eigenvalue of ��� continue with
an �n�r
��dimensional subvector corresponding to the eigenvalue of ��� which
is the unit root that concerns the bi�annual frequency and a pair of �n� r���
dimensional vectors corresponding to i� which are the complex unit roots that
concern the annual frequency� The real and imaginary parts of these latter
vectors can also be interpreted in the real numbers as real eigenvectors to the
eigenvalue of �� in the squared transition matrix� The remaining eigenvalues
are less than � in modulus� The matrix T contains the �left� eigenvectors�
i�e�� T � �T�� ����T	�

� with the components Ti�i � �� ���� � corresponding to
������ i� and the remainder� Hence� the �rst �n � r���component of Yt is a

�



random walk of the form

Wt � Wt�� �T
�

�



BB�


t
�
�
�

�
CCA�T

�

�



BB�

�� at� rt
�
�
�

�
CCA � ���

This representation shows that it is only the �rst n�part of the eigenvectors
comprisingT� that has any further in�uence on the deterministic components
in the rightmost term� We denote this �rst part as T��� If a starting value
for W� is given� then ��� can be inverted� The generated random walk is
superimposed with a time trend of the form T

�

���t� The seasonal variables
at and rt generate an additional cycle of constants� The whole system can
be transformed into the original Xt by the inverse transformation matrix
T
��� The contribution of the subsystem ��� is then a stochastic random

walk component� a linear trend proportional to T�

���� and a basic repetitive
pattern of constants� Hence� ��� yields a plausible impact of intercepts�

The second component has dimension n� r
 and looks like

�Wt � � �Wt�� �T




BB�


t
�
�
�

�
CCA�T




BB�

�� at� rt
�
�
�

�
CCA � ���

This is an �n � r
��dimensional random jump process� We again denote
the �rst section of T
 by T
�� Inverting the representation ��� using one
starting value leads to �ve parts� Firstly� the purely stochastic altern�
ating sum of white noise� Secondly� an alternating in�uence of the form
�T�


��� ��T
�


��� ��T
�


��� �� ����� Thirdly� two diverging trends at odd and even
indices t corresponding to T

�


�at� i�e� di
erent trends for di
erent seasons�
Fourthly� a cyclical pattern of constants corresponding to the rt in�uence�
Fifthly� an alternating additional term deriving from the starting conditions�
The diverging seasonal trends in the third in�uences deserve further atten�
tion� since it is this e
ect that may not be present in empirical data� That
in�uence� however� is strictly rooted in T

�


�a� Re�transforming with T
��� it

can be shown that there is a stochastic seasonal cycle of periodicity � in the
original process depending on T
� and an additional deterministic feature
proportional to T�


�a�

�



In order to continue with our proof of the proposition� we need the �rst
sections of the eigenvectors of the transition matrix � in ��� with respect to
the unit eigenvalues� To this aim� we directly express � as

� �

�
�����
���

�

� � �
�
�



���

�

� � �
�
�




����
�

�
���

�

� � �
�
�



���

�

� � �
�
�




����
�

� � I

I � � �

� I � �

� � I �

�
����	

A �left� eigenvector for the eigenvalue of �� is then de�ned by the property

�x� � �x

Partitioning �x �


�x� �x
 �x� �x	

�
� we obtain the equation system

�x�
�
���

�

� � �
�
�




�
� �x
 � �x�

�x�
�
���

�

� � �
�
�


 � ���
�

�

�
� �x� � �x


�x�
�
���

�

� � �
�
�




�
� �x	 � �x�

�x�
�
���

�

� � �
�
�


 � ���
�

� � I
�

� �x	

which� summed up� yields directly

��x����� � � � �x� � ��� �

A similar technique for the seasonal root of �� con�rms the conjecture that
the �rst part of the corresponding eigenvector is proportional to ��
 � It
follows directly that the other part of the n� n�dimensional space� �
� does
not in�uence the possibly undesirable feature of expanding trends� as it dis�
appears after the transformation into the Jordan coordinates�

For the complex root pair of �i� we have the basic condition �x� � i�x �
i�e��

�x�
�
���

�

� � �
�
�




�
� �x
 � i�x�

�x�
�
���

�

� � �
�
�


 � ���
�

�

�
� �x� � i�x


�x�
�
���

�

� � �
�
�




�
� �x	 � i�x�

�x�
�
���

�

� � �
�
�


 � ���
�

� � I
�
� i�x	

�



Subtracting the third from the �rst equation and the last from the second
yields

�x
 � �x	 � i ��x� � �x��

�x����

�

� � �x� � �x� � i ��x
 � �x	�

�
� �x����

�

� � �

and hence the proposed condition also holds for the complex pair� Note that
this proof gets slightly more involved if the general seasonal model instead of
speci�cation ��� is considered� Due to arguments entirely analogous to the
previous cases� only ���� rt is able to generate the possibly implausible feature
of seasonally expanding trends� Hence� if ���� �b� c� � �� model �	� is free of
that undesirable feature� This completes the proof of our proposition� �

Some additional remarks can be made� The �rst is that one should note
that the remaining 	n components of the eigenvectors � which are not used
in the proof � are not trivial� For example� for the root ��� we obtain

�x �


��� ��� �I� �
�

�


� ��� �I� ���
�

�� ��� �I� �
�
�


 � ���
�

��
�
�

This means that� if one wants to extend Granger�s de�nition of a com�
mon trend in zero�frequency cointegrated systems to this seasonal case�

�x�
�
X

�

t �X
�

t���X
�

t�
�X
�

t��

��
may be preferable to simple ���� Xt � as the former

is a multivariate random walk while the latter is not� The second remark is
that our proposition can easily be generalized to higher�order systems of the
form

�	Xt � ���
�

�S�B�Xt�� � �
�
�


A�B�Xt�� � ���
�

��
Xt�


�

pX
i��

�i�	Xt�i �
	X

i��

di�
i
t�	
�t����	� � �t �

which extends ��� by the inclusion of p lags of �	Xt variables� by a straight�
forward extension of the proof� For more details on the Representation The�
orem for the seasonal case� see Johansen and Schaumburg �������

��� An alternative empirical method

In practice one may want to test for seasonal and nonseasonal cointegration
in a model framework which does not allow for diverging seasonal trends in
the data� for example� simply because many macroeconomic time series do

�



not display this feature� For that purpose� we use our proposition to re�write
�	� in a simple form that permits exclusion of such diverging trends� i�e��

�	Xt � ���
�

�S�B�Xt�� � �
��
�


A�B�Xt�� � a� cos ��t� ��� ���

���f�
�

��
Xt�
 � �b�� c��
�
cos

�



�t� ��� cos

�



�t� 
�

�
g� �� �t

for t � �� 
� ���� N � Note that in most empirically relevant cases a linear time
trend generated by � is perfectly admissible� as most economic time series are
trending� Further note the change in dimensionality between a� b� c in �	� and
a�� b�� c� in ���� In ���� the row dimensions of the vectors are only r
 and r�
whereas in �	� they have row dimension n� Approximate maximum�likelihood
estimation of ��� is straightforward and it amounts to a reduced�rank system
regression of �	Xt� in analogy to the traditional estimation of frequency�zero
cointegrated models� Johansen ������ points out that� in such cases� the rank
of e�g� �
�

�


 is determined by the canonical correlations between �	Xt and
�A�B�Xt��� cos ��t � ���� conditional on remaining in�uences� Hence� the
right�hand side set of variables is to be extended by the deterministic in�u�
ences� For the nonseasonal case this deterministic term is �� in our case of
seasonal cointegration at the bi�annual frequency it is cos ��t���� Lee ����
�
outlines that the three terms S�B�Xt� A�B�Xt� and �
Xt are asymptotically
independent� hence tests on the various ranks can be conducted by condi�
tioning on the complete set of remaining variables� In the absence of rank
restrictions at other frequencies� conditioning can be conducted e�ciently
by auxiliary least squares regressions preliminary to the canonical analysis�
Relative to exact maximum�likelihood estimation� a certain loss in e�ciency
may occur due to the fact that the rank at di
erent frequencies may not
be full but also restricted� Lee ����
� argues that this loss of e�ciency is
negligibly small�

Because of the independence of the three terms S�B�Xt� A�B�Xt� and
�
Xt� the asymptotic distribution of the likelihood�ratio test statistic for
testing hypotheses on the rank of the matrices does not depend on the re�
maining frequencies� As a consequence� tests for the rank of �
�

�


 can be
based on Z �

�

�dB�F

�Z �

�

FF

��� Z �

�

F �dB� �

where F denotes the extended �n�r
��dimensional limit process of a process

��



of the type
Xt � �Xt�� � �t �

The limit process of this Xt is� however� standard Brownian motion again�
Replacing every other �t by ��t� this is obvious from symmetry arguments�
Using the same symmetry argument� we can show that extending such a
process by the alternating at variable is tantamount to extending the usual
random walk by �� Hence� for the frequency �� the standard table ���
 of
Johansen ������ can be used� For the frequency �	
� however� we need a
slightly di
erent set of critical values�

Based on ������ Monte Carlo replications� signi�cance points for the trace
test statistic

�i � �N
nX

j�n�i��

log��� �j�

for the i smallest squared canonical correlations at the respective frequencies
are given in the upper panels of Table �a�f for the cases i � �� ���� �� The
distribution depends on i only� If there are only two variables� i�e�� n � 
�
the situation is as follows� The statistic �� tests for the null hypothesis of
integration at the respective frequency against the alternative of no integra�
tion at that frequency� while �
 tests the null hypothesis of no cointegration
against the alternative of cointegration or no integration� If� in the second
case� the maintained hypothesis is integration at that frequency� a variant
called the �max test should be used� It is based on the test statistic

�i � �N log ��� �n�i���

We tabulate signi�cance points for this �max test statistic in the lower panels
of Tables �b�f� For i � �� the two statistics are equivalent�

The critical values in Tables �a�f lead to a few remarks� The �rst is that
spuriously augmenting lags �i�e�� the cases where p � �� tends to decrease
critical values slightly at � � � and � � �	
 but not at � � �� Secondly
we note that all cases �drift or no drift� spurious augmenting lags present or
absent� produce the same asymptotic distribution for � � �� and a di
erent
asymptotic distribution is obtained for � � �	
� This property can be seen
from a straightforward extension of the proofs provided by Lee ����
� and Jo�
hansen ������� The theoretical result seems to be con�rmed by the simulated
fractiles� Thirdly� whereas the asymptotic distribution for � � � depends on

��



the presence or absence of a drift only� lag augmentation does not seem to
have much e
ect for smaller i but appears to dominate the dependence on
the drift for larger i� Fourthly� the di
erences between N � ��� and N � 
��
are not very pronounced� Smaller N are probably uninteresting because of
the low power of the tests� larger N are unlikely to occur in quarterly eco�
nomic time series� Finally� for � � � and � � �� correspondence to existing
tables of simulated signi�cance points �see Johansen� ����� and Osterwald�
Lenum� ���
� is close� An exception is the no�drift design for � � �� where
the statistics are considerably larger even for N � 
��� Correspondence to
published tables is a good indicator of the strength of �nite�sample cross
e
ects between frequencies� Lee ����
� demonstrated that these cross e
ects
disappear for N � �� and our results show that they also play little role
for �nite N � con�rming the general conjectures expressed by Lee ����
� and
Lee and Siklos �������

� TEST POWER

To assess the power of the testing procedure which is based on restricting
the seasonal constants �henceforth the RS procedure for restricted seasonals�
relative to the unrestricted estimation procedure by Lee and used by Lee
and Siklos �henceforth the US procedure for unrestricted seasonals�� some
Monte Carlo simulations are conducted� We use a bivariate and a trivariate
design� Particularly in the former case �Section 	���� we use the technique of
nuisance randomization�

To explain nuisance randomization� let us consider a parametric prob�
lem with the parameter space � 	 
k�l� A null hypothesis is de�ned by
� � ����� �
� with a given �xed value of the k�dimensional ��� We want to
investigate the power of a test procedure against the alternative �� �� ��� �
We suspect that the power properties may depend to a certain but presum�
ably low degree on the l�dimensional �
 which is usually regarded as nuisance�
Faced with the problem of a possibly high�dimensional �
� a power simulation
for the test can adopt the following two strategies� Firstly� one may �x the
nuisance at a certain plausible value ��
 and possibly repeat the experiment
for some other ��
 � Secondly� one may de�ne a weighting prior distribution
on the nuisance and draw from that distribution randomly� To assess the ro�
bustness of the weighting prior design� one could then repeat the experiment

�




with di
erent weighting priors� An advantage of nuisance randomization is
the potentially exhaustive treatment of the nuisance�

The technique can easily be modi�ed if one is interested in evaluating
test power as a function of a certain nuisance parameter� Then� we vary
this nuisance parameter of interest over a �nite set of speci�ed values and
randomize the remaining part of �
� It may also be convenient to �x other
parameters in �
 and the decision on whether to keep a certain parameter at
a speci�ed value or to randomize it will be guided by considerations of its
presumed in�uence on the rejection rate� of the speci�c aim of the experiment�
and of simplicity requirements�

An example where we opted for non�randomized nuisance is provided
by our trivariate design �Section 	�
�� Here we assume the presence of one
cointegrating vector at all frequencies and test for the presence of a second
one at � � �� It seems that� e�g�� the intensity of error correction by the �rst
vector should not be randomized as our interest rather focuses on the power
properties conditional on that parameter� We could have used randomization
with respect to a rotation of the vector but we felt that it would have made
the design too complicated�

��� The bivariate simulations

We conduct a variety of simulation experiments to investigate the in�uence
of drifts and seasonals in the DGP on �nding cointegration at the three
frequencies �� �� �	
� We also explore the in�uence of the sample size on
test power by extending the basic sample size of ��� observations to 
���
In the interest of brevity we only report three representative experiments
in more detail� In experiment I� we generate processes with drift and one
cointegration vector at � � � that operates with the intensity parameter
� explained below� Since Lee and Siklos report their signi�cance points
for data�generating processes without drift� we generated new signi�cance
points for both procedures from the same experimental design with � � ��
We note that the two test procedures are equivalent with respect to �nding
cointegration at frequency ��

For experiment I� we use the following data�generating process design�
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We set �� � �
 � �� In an unreported experiment we also tried random�
ization of the drift parameter but this hardly a
ected the results� The two
nuisance parameters �� and �
 are drawn from a standard Gaussian distri�
bution� These parameters can be interpreted as random rotations of the
system coordinates� Also for ��t and �
t we used ��� mutually and serially
independent draws from a standard Gaussian law� The 
�
 matrix �
�

�


 has
two eigenvalues� one at � and one at �� such that the �strength� of attraction
to the equilibrium vector does not depend on ��� �
� only on �� We use ������
replications and report the rejection frequency of the tests as a function of
�� For � � ��� power attains almost ���!� if a �! signi�cance level is used
for the decision� The interesting range for � is therefore �������� We increase
� in steps of ���� The resulting rejection frequencies are reported in Table 
�

By construction� for � � � nominal and actual size coincide and for
� � � both RS and US face the same rejection rate� Both procedures have a
satisfactory power at the frequency � and both face only slight size distortions
at the other frequencies� particularly for larger � and for � � �	
� The
RS procedure is slightly more vulnerable to size distortions than the US
procedure but� on the whole� di
erences remain small� We also �nd that the
power in the direction of cointegration at � � � is very similar to the power
at � � � for the case of no drift� Since there is no seasonal drift� this outcome
is plausible�

In experiment IIa� we introduce deterministic seasonality in the data�
generating process� As we do not believe in the presence of unstable expand�
ing seasonal cycles in the real world � this was the original motivation for
introducing our procedure � we exclude their occurrence in the simulation
design� In other words� in these experiments we evaluate if the introduction
of restricted seasonals leads to a change in power and"or to a change in size�
We use�
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�
 measures the intensity of seasonal error correction at the frequency � � ��
as � does in Experiment I� �� measures the in�uence of the deterministic sea�
sonal term cos��t�� The case �� � �
 � � corresponds to the null hypothesis
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of the test� whereas �
 � � describes the alternative irrespective of whether
�� � � or �� �� �� The case �� �� �� �
 � � leads to an implausible seasonal
expansion of the process trajectories and is not investigated� If �
 � �� the
in�uence of the seasonal constants is contained in the cointegrating relation�
ship� If �
 � � the condition of being contained in the loading space cannot
be ful�lled by the deterministic seasonal part�

Although we do not report results on the misspeci�ed case �
 � �� �� �� ��
this case deserves attention� as it in�uences test behavior in the adjacent
region� in particular where �
 is small� �� is large� and N is small� In large
samples� the RS test responds to the misspeci�cation by rejection� Note that
the misspeci�ed boundary case does not make part of our null hypothesis and
hence the rejection rate of the test procedures should not be interpreted as
test size� The US test is expected to ignore the peculiarity of the situation and
to seemingly accept seasonal non�cointegration in this non�admissible case�
In contrast� the RS procedure� conditioning out only part of the seasonal
structure� seemingly �nds �spurious� seasonal cointegration at frequency ��

An analytic demonstration helps in understanding the behavior of the
RS test at �
 � �� �� �� � in this experiment IIa� Suppose we are given the
univariate process

�	Xt � ��� �b� c� �cos ��t	
� � cos �� �t� �� 	
��� � a cos ��t� � �t

with �t assumed as i�i�d� N������ The terms in square brackets do not a
ect
the limit distribution and we will omit them for convenience� In the univari�
ate case� the canonical correlation for the test corresponds to the squared
correlation between �	Xt and A�B�Xt��� conditional on S�B�Xt��� �
Xt���
�
Xt�
 and the deterministic terms at frequencies � and �	
� We �rst note
that �de�ning St�

A�B�Xt � a����tt�
tX

i��

����i�t�i � a����tt� St �

Then we note that conditioning does not a
ect �	Xt nor A�B�Xt��� and
hence that all regression coe�cients on conditioning variables converge to
�� The only exception is the constant term which corrects A�B�Xt by a
periodically changing constant that is proportional to a and by the empirical
mean of the stochastic random walk part St� The squared sample correlation
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evolves from dividing the square of the cross�sums

X
�	Xt

�
A�B�Xt�� � �N � ����SN��

�
�

X
�a cos ��t� � �t�

�
a����t���t� �� � S�

t��

�
�

with � denoting the demeaned sum� by the product of the sums of squares�
For the numerator we note

X
a cos��t�a����t���t� �� � �

a
N




�Op�N�X

a cos��t�S�

t�� � a
X

�N � t��t � Op�N�

The �rst term dominates and we have established that the �squared� numer�
ator diverges at a rate of N	�a		��� As for the denominator sums of squares�
the �rst one is

X
�a cos ��t� � �t�


 � N
�
a
 � �

�
� op

�
N��


�

and the other one is
X�

a����t���t� �� � S�

t��

�

� a
N�		 �Op�N

��
�

It follows that the ratio converges to

	

��� � a�
�
����

The correlation is therefore non�zero and the test� which is consistent under
the alternative� rejects asymptotically with probability �� Unreported Monte
Carlo simulations show that the asymptotic value in ���� is fairly accurate
for N � ��� and a � ���� In the multivariate cointegration problem� the
asymptotic behavior in the presence of an uncontrolled expansion is very
similar� Hence� �cointegration� is typically found in the multivariate and
�stationarity� in the univariate case�

Figure � compares the test power of both procedures in the interesting
area f���� �
� � ��� ����� ����
�� ����g at a nominal signi�cance level of �! in
the direction of cointegration at frequency � � �� We see that the conjectures
are corroborated by the simulation� This feature is well in line with the basic
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idea of the RS test� As the RS test rejects in the non�admissible limit for
�
 � �� it has higher power for small �
 and large ��� We used a �ner grid
than for Experiment I and Table 
� The considerable gains in power by using
RS instead of US for small �
 come at the cost of a slightly lower power for
large deviations from the null� We further note that also for the US test�
which formally would treat the inadmissible case �� �� �� �
 � � as belonging
to the null hypothesis� the rejection rate does not correspond to the nominal
size� For �
 
 ���� the test power of the US test increases considerably as the
deterministic in�uence �� increases� which for this unrestricted test indicates
that the deterministic seasonal structure is eliminated incompletely due to
the small sample� Interestingly� in stark contrast to the RS test� we found
that the rejection rate of the US test in the unstable case is even slightly
smaller than the size� This inadmissible boundary case was excluded from
the �gures in order not to distort the picture unduly��

Experiment IIa appears to be particularly interesting as it provides clear
evidence on di
erences among the two test procedures� Therefore we repeat
it for the larger sample size of 
�� observations �experiment IIb� with ran�
domized deterministic seasonal in�uences ��� The parameter �� is drawn
from a standard N����� distribution� hence test power depends on � � �

only� This allows reporting the results in tabular form� To this aim� we sim�
ulated new critical values from ��� for a constant drift of ��� and N � 
��� In
Table 	 we report the results for a �ner � grid around � than in Experiments
I and IIa in order to focus on the interesting features�

In the limiting case � � � we now have a higher rejection rate for the
RS test but no important changes for the US test� We note the better test
power of the RS procedure for all � 
 ���� Its rejection frequency reaches a
minimum somewhere in the range ����
������� depending on the signi�cance
level� For � � ��� and � � ����� the rejection frequencies are the same at a
risk level of �!� However� for � � ���� the distribution of the RS statistic is
considerably �atter toward its distributional center� On the other hand� for
� � ��� both the RS and US statistic obey the laws dictated by the Ornstein�
Uhlenbeck process �see Phillips� ����� and Johansen� ����� Ch����� We also
note that the small di
erences in test size between the two tests have now
disappeared but that a slight gain in power is still there for larger � if the
US procedure is used�

In other unreported experiments we focus on the test power in the direc�
tion of cointegration at the frequency �	
� The design parallels the reported
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experiments I and II but� in accordance with the theoretical part of our paper
we only allow for cointegration of the static type at lag 
� Static cointegra�
tion at lag � is not possible and we did not want to extend our analysis and
methods in the direction of dynamic cointegration� It turned out that test
power in the direction of cointegration at frequency �	
 is much lower than
at the frequencies � or �� Detailed results can be obtained from the authors�

Finally� for experiment III� we augmented the seasonal cointegration
model at �	
 by a non�expanding seasonal pattern�
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We could add another seasonal part based on the shifted cosine function
cos���t � ��	
� but this is unlikely to change the main results� As in ex�
periment II� the boundary case � � � is not data�admissible� The rejection
frequencies are displayed in Table �� It appears that the RS test has higher
power in the whole reported range for ��

��� The trivariate simulations

In the trivariate experiment we assume the presence of one cointegrating vec�
tor at all frequencies � � �� �� �	
 and we test for the presence of a second
vector at � � �� In contrast to the bivariate experiment� the restriction im�
posed by the RS procedure is then non�trivial both under the null hypothesis
and under the alternative� Therefore we expect a larger di
erence between
the two testing procedures�

In detail� the following design was used�
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This design results in the rejection frequencies reported in Table ��
All size biases remain small but the RS procedure is clearly superior� We

note that the US procedure has almost zero power for � � ���� whereas RS
would reject in 
	! of the cases if a �! signi�cance point were used� Similar
di
erences can be noted for � � ���
� We also modi�ed design ���� by adding
deterministic seasonal structures but this had no impact on the results�

��� Empirically determined lag structures

In practice� the lag length p is unknown and has to be determined from the
data� unless economic theory suggests such a p� which is rarely the case�
Supposing that there is a true �nite lag length p� that has generated the
data under investigation� such empirical order selection can make mistakes
of two kinds� Firstly� the estimated #p may be smaller than p�� This should
result in insu�cient conditioning on short�run in�uences �	Xt�i and may
entail a tendency toward blown�up values of canonical correlations� This
may result in a positive size bias� Secondly� #p may be larger than p�� which�
by conditioning on too many terms in the preliminary step of calculating
the test statistic� may lead to under�rejection� Thirdly� sampling variation
and small�sample distortions in all coe�cient estimates may cause size�bias
e
ects in any direction� Also the �rst two e
ects are uncertain a priori� as
cases of under�tting and over�tting may be related to certain combinations
of the coe�cient parameters or to certain characteristics of trajectories in
small samples whose e
ects are di�cult to assess�

The experiments reported here are to be interpreted with care only�
mainly for two reasons� Firstly� the real�life economic variables are unlikely
to have been generated by Gaussian vector autoregressions with any �nite p��
Assuming p� to grow with N does not capture the full problem either� as em�
pirical series typically su
er from a variety of deviations from the Gaussian
VAR framework� such as non�Gaussian errors� local outliers� change in struc�
ture� non�linearities etc� The Gaussian VAR framework can be seen as an
approximation to real life at best� Secondly� even within the Gaussian VAR
framework� rejection frequencies in small samples depend on the complete
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vector of model parameters� This study can only provide a convenient sum�
mary of the e
ects� based on assumed parameter con�gurations which need
not correspond to good approximations to the observed data� We therefore
cannot recommend to make arbitrary adjustments to the signi�cance points
as presented in Tables �a�f based on the simulations reported in the following�

We base the simulations on the empirically determined lag orders on a
variant of Experiment IIa� We extend the model design ��� by two short�run
lags �p � 
���
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Note that the coe�cient matrices are diagonal� We randomize the nuisance
parameters ���� ��
� �
�� �

 on the basis of uniform draws from the stability
area for univariate second�order regressions

S
 � f��i�� �i
j�i
 � ��� �i� � �i
 
 �� �i
 � �i� 
 �g ����

where i � �� 
 �cf� Box et al�� p����� Not all combinations of parameters thus
generated yield seasonally integrated but otherwise stable models in conjunc�
tion with the seasonally cointegrating structures� Therefore� the absence of
explosive roots had to be checked separately� Explosive cases were rejected
and re�drawing was conducted� hence the e
ective design does not exactly
correspond to uniform drawings from S
�

Akaike�s information criterion AIC is maybe the most frequently used
criterion for empirical lag order selection� hence we used it for our �rst ex�
periment� In detail� lag orders were selected from $level� vector autoregres�
sions between �p � � and �p � �� which appears natural for quarterly data
and a sample size of N � ���� Note that lag orders less than �p � � are
not possible� Added deterministic terms were a constant and the seasonal
variables cos��t� and cos��t	
�� cos���t � ��	
� All lags and deterministic
regressors were added in an unrestricted way� hence the true data generation
mechanism is strictly embedded in the search design and the identi�ed lag
orders are independent of the testing method used in the sequel�
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For the null�hypothesis model with �� � �
 � �� the correct number of
p � 
 was identi�ed in ��! of the cases� In �! of the cases� p � � was found
and hence no lagged di
erences would be added� in �! of the cases p � �
was found and one di
erence would be required� Hence� under�tting was
relatively infrequent� as was expected from the asymptotically inconsistent
AIC criterion� On the other hand� one spurious lag was suggested in ��!
of the cases and even two spurious lags in ��!� At �rst sight� the achieved
precision appears to be satisfactory in a sample of N � ���� The frequencies
of identi�ed lag orders are widely una
ected by changes in �� and �
 and are
therefore valid for the models under the alternative also�

Unfortunately� the AIC search leads to a substantial size bias if the sug�
gested lag orders are used in seasonal cointegration testing� At the frequency
� � �� the tests overreject� This rate of overrejection is the same for both the
RS and US tests and is also widely una
ected by changes of �� and �
 on the
alternative� One may conjecture that the �! of the cases� where under�tting
occurs� are mainly responsible for this e
ect� Indeed� any arti�cial increase
in under�tting� as by restricting the maximum lag order by �p � �� increases
the size bias� At the frequency � � �� the RS test reproduces the correct
rejection rates� whereas the US test again overrejects� The additional unres�
tricted conditioning on seasonal deterministic terms in the US test appears
to generate this bias� At the frequency � � �	
� both tests underreject� This
negative size bias is worse for the RS test than for the US test� This e
ect is
only partially due to the 
�! cases of over�tting� It rather seems to re�ect
the high probability of complex roots in the simulation design ��	�� The
presence of stable complex roots in the data generation mechanism poses an
empirically relevant problem to seasonal unit�root and seasonal cointegration
tests� It is worse at frequency �	
 than at �� as only 
� full $annual� cycles
are observed in a sample of ��� observations� In summary� incorrect spe�
ci�cation of lag orders leads to a variety of counteracting e
ects� We point
out once more that these e
ects are relatively robust with respect to the
introduction of cointegration at one of the frequencies�

We now tentatively re�adjust the �! signi�cance levels on the basis of
the AIC�search levels in the experiment with ���� �
� � ��� �� and report the
relative power of the two tests at � � �� Figure 
 can be compared with
Figure � but note that larger values of the parameter �� are now investigated�
Rejection frequencies are hardly a
ected for �� � � and small �
� i�e� near
the null hypothesis� whereas there is a considerable drop in power for larger
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�
� i�e� stronger seasonal error correction� The most striking e
ect of the
AIC lag order determination is the drop in power in the RS test for strong
deterministic seasonality with large ��� The US test dominates the rival
test over a large area of the parameter space f���� �
� � ��� ���� � ��� ����g�
excluding only �� values around ��� and very small values of �
� The e
ect is
partially rooted in the strong drift of ��� in the simulations and gets slightly
weaker if the drift is reduced or randomized �unreported experiments��

Another commonly used information criterion is the BIC in the version
de�ned by Schwarz ������� Unlike the AIC� BIC is consistent� In smaller
samples� BIC has a strong tendency to identify too parsimonious models and
hence AIC is preferred in applications where a slight overparameterization
appears to be the lesser risk� In our simulation design ��	�� BIC achieves a
much higher frequency of correct model selection� For ���� �
� � ��� ��� ��!
of all ������ processes are detected correctly at p � 
� In ��! of the cases�
p � � is selected� and in �! of the cases� p � � is chosen� The probability of
�tting a too large model with p � 	� � remains extremely low� This overall
picture hardly changes when the main parameters �� and �
 are varied� In
summary� seasonal cointegration poses no threat to lag order determination
and BIC has a much bigger chance of �nding the correct model� We add that
some of the randomized autoregressive coe�cients have been close to � and
that therefore some under�tting of lag orders appears very reasonable�

The e
ect of the BIC search on test power for the RS and US tests can be
seen in Figure 	� For most combinations ���� �
�� test power increases con�
siderably relative to the AIC search displayed in Figure 
� The gain in power
is stronger for the RS than for the US test� The RS test dominates clearly
for �� around � and small �
� i�e�� if the deterministic seasonal in�uence is
of a magnitude similar to the drift and innovations variance� The US test
dominates for larger �� and �
 around ��
� This dominance for large seasonal
error correction and strong deterministic cycles is a paradox and is rooted in
the ine�cient preliminary estimation of the deterministic seasonality in the
US test procedure� The restriction ���
 a � � is ignored and the ine�cient
primary regression entails a higher rejection rate� Correct identi�cation of
the lag length reduces this relative e
ect but we note that it is still present
at a sample size of N � 
���

With N � 
��� BIC �nds the correct p � 
 in ��! of the cases� Rejection
frequencies of both the US and RS tests are very similar for most combin�
ations of ���� �
�� RS has higher power for �� around ��� but US preserves







its dominance if both �� and �
 are large� The unpleasant lesson from this
unreported experiment is that there is a persistent negative size bias at the
frequency � � �	
� Increasing �� and �
 reduces this size bias e
ect but
the e
ect is present in all experiments even for larger N � The e
ect hits the
US and RS test similarly and is probably rooted in �nite�sample phase shifts
of the cointegrating structures at the annual frequency� Note that in our
model only correlations between �
Xt�
 and �	Xt are investigated whereas
the information on correlations between �
Xt�� and �	Xt is ignored� This
causes underrejection at fairly large sample sizes� although we are aware of
the asymptotic results of Lee ����
� who �implicitly� proves that both the
US and RS test have correct size for N �� if p is the true value�

� AN APPLICATION

As an empirical example� we use a macroeconomic system of four time series
from the Austrian national accounts� gross domestic product �Y�� private
consumer expenditures �C�� gross �xed investment �I�� and gross wages �W��
All variables are in real terms and logarithms of original series have been
used� We used quarterly data from ������ to ������� This data extends
a subset of the data set used originally by Kunst ����	�� The addition of
one conditioning lag was suggested by AIC and also by some goodness�of��t
statistics� Among these four variables� economic theory may suggest two
or three cointegrating vectors at frequency �� representing �xed long�run
proportions of consumption and investment to total output and also wages
growing in proportion to output� However� it has already been found by
Kunst and Neusser ������ that these ratios do not seem to be constant� Also�
all four variables show very strong seasonality that appears to be changing
over time and which may be captured by seasonal unit roots�

��� Testing for cointegration

An application of the standard seasonal cointegration tests in the spirit of Lee
����
� and Lee and Siklos ������ results in the evidence displayed in Table
�� For the no�dummies case we use the table ���	 of Johansen ������ for
the frequency � and those of Lee and Siklos for the other frequencies� which
results in � nonseasonal cointegrating vector at ��! risk level� 
 cointegrating


	



vectors at frequency � at �! risk level� and also 
 cointegrating vectors at
frequency �	
 but only at a ��! risk level� Also for the dummies case
in the second part of Table � one must use the table ���	 of Johansen for
the frequency � and those of Lee and Siklos for the other frequencies� We
again �nd � nonseasonal cointegrating vector at ��! risk level� whereas the
numbers of cointegrating vectors at � � � and � � �	
 both increase to
	 at a �! risk level� Finally� for the restricted dummies case� we use the
Tables �a�d� At � � �� no cointegrating vector is found though the test
statistic comes close to the ��! fractile� At � � �� the third cointegrating
vector is now signi�cant at ��! only� whereas still 	 vectors are found at
� � �	
 at the usual risk level of �!� It is obvious that restricting the
seasonal e
ects plays a role for testing� The cointegrating vector at � � �
became insigni�cant and the third vector at � � � also lost support� We
note that the �rst e
ect is due to the modi�cation of signi�cance points and
it occurs even though the trace statistic at � � � remains unchanged�

��� Estimating the cointegrating structures

Restricting the in�uence of seasonal constants does not only change the iden�
ti�ed cointegrating ranks at the di
erent frequencies� it also changes the es�
timated cointegrating vectors� In Table � we compare the canonical vectors
found by the US and by the RS procedures� We note that the RS vectors
are extended by the deterministic seasonal variables� With respect to the
identi�ed signi�cance of the structures as cointegrating vectors� we refer to
Table � and to the last subsection� This change in the identi�ed seasonal
structures can be quite important for forecasting projections�

As in other empirical examples� the canonical vectors are di�cult to inter�
pret economically� However� we see that the �rst vectors at both frequencies
� � � and �	
 appear to link seasonality in wages to seasonality in output
�Y�� The other two signi�cant vectors then relate all four variables in such a
way that there seems to exist just a single source of stochastic seasonality in
the system� With regard to the RS method� it is also interesting to see the
comparatively strong in�uence of the deterministic part in the third vectors�
This can be interpreted as follows� For example at � � �� the �rst two coin�
tegrating relationships succeed in establishing variables with both stochastic
seasonality at � � � and their deterministic cycle cos��t� completely absent�
On the other hand� the third cointegrating relationship de�nes a variable


�



that has a very strong deterministic cycle of the form cos��t�� Roughly the
same argument holds also for � � �	
�

� CONCLUDING REMARKS

In this paper we have shown that unrestricted seasonal intercepts in a sea�
sonal cointegration model can lead to diverging seasonal trends� Since such
seasonal trends may be implausible in certain practical occasions� we pro�
posed an alternative empirical method to investigate seasonal cointegration
where we impose restrictions on the seasonal intercept parameters� We tab�
ulated critical values for the various test statistics in the case of one to six
variables� A comparison of the standard method and our proposed restricted
method to four quarterly macroeconomic aggregates for Austria was used to
show that our method can lead to di
erent estimates of the rank of long�run
matrices and to di
erent estimates of the cointegrating vectors�

The analysis in the present paper can be extended in at least two ways�
Firstly� it seems interesting to re�evaluate earlier empirical studies of seasonal
cointegration to investigate the robustness of the �ndings to the restriction
of seasonal dummy parameters� Indeed� the �nding of more or less similar
results across the two methods may yield additional con�dence in the repor�
ted outcomes� Secondly� since estimated ranks and cointegration vectors can
di
er across the methods applied� it seems relevant to study the forecasting
performance of both approaches in practice� A �rst attempt of such a study
appears in Kunst and Franses �������


�



REFERENCES

Box� G�E�P�� Jenkins� G�M�� and Reinsel� G�C� ������� Time Series Ana�

lysis� Forecasting and Control� Prentice�Hall�

Chan� N�H� and Wei� C�Z� ������� $Limiting distributions of least squares
estimates of unstable autoregressive processes�� Annals of Statistics Vol�
��� pp� 	�������

Engle� R�F� and Granger� C�W�J� ������� $Co�integration and error correc�
tion� Representation� estimation and testing�� Econometrica Vol� ���
pp� 
���
���

Engle� R�F�� Granger� C�W�J�� Hylleberg� S� and Lee� H�S� ����	�� $Sea�
sonal cointegration� The Japanese consumption function�� Journal of
Econometrics Vol� ��� pp� 
���
���

Hylleberg� S�� Engle� R�F�� Granger� C�W�J� and Yoo� B�S� ������� $Seasonal
integration and cointegration�� Journal of Econometrics Vol� ��� pp�

���
	��

Johansen� S� ������� $The role of the constant and linear terms in cointeg�
ration analysis of nonstationary variables�� Econometric Reviews Vol�
�	� pp� 
���

��

Johansen� S� ������� Likelihood�Based Inference in Cointegrated Vector

Autoregressive Models� Oxford University Press�

Johansen� S�� and Schaumburg� E� ������� $Likelihood Analysis of Seasonal
Cointegration�� EUI Working Paper ECO No� ��"��� European Uni�
versity Institute� Florence�

Kunst� R�M� ����	�� $Seasonal Cointegration in Macroeconomic Systems�
Case Studies for Small and Large European Countries�� Review of Eco�

nomics and Statistics LXXV� 	
��		��

Kunst� R�M�� and Franses� P�H�F� ������� $The impact of seasonal con�
stants on forecasting seasonally cointegrated time series�� Journal of
Forecasting ��� ��� �
��


�



Kunst� R�M�� and Neusser� K� ������� $Cointegration in a Macroeconomic
System�� Journal of Applied Econometrics Vol��� 	���	���

Lee� H�S� ����
�� $Maximum likelihood inference on cointegration and sea�
sonal cointegration�� Journal of Econometrics Vol� ��� pp� �����

Lee� H�S�� and Siklos� P� ������� $A note on the critical values for the
maximum likelihood �seasonal� cointegration tests�� Economics Letters

��� �	������

L%utkepohl� H� ������� Introduction to multiple time series analysis�
Springer Verlag� Berlin�

Osterwald�Lenum� M� ����
�� $A note with quantiles of the asymptotic
distribution of the maximum likelihood cointegration rank statistics�
Four cases�� Oxford Bulletin of Economics and Statistics Vol� ��� pp�
������
�

Phillips� P�C�B� ������� $Regression Theory for Near�Integrated Time
Series�� Econometrica ��� ��
�������

Schwarz� G� ������� $Estimating the dimension of a model�� Annals of Stat�
istics �� ��� ����

Tsay� R�S� and Tiao� G�C� ������� $Asymptotic properties of multivariate
nonstationary processes with applications to autoregressions�� Annals
of Statistics ��� 

��
���


�



TABLES

Table �a

Simulated signi
cance points �based on ������ Monte Carlo replications� for trace

test statistics �� under the restriction of no diverging seasonal trends� i�e�� model

��� in text� The data generating process is �	Xt � � � �t� where �t is univariate

Gaussian with �
 � ��

� � � � � � � � ���
N p � ��� ��� ��� ��� ��� ��� ��� ��� ���

��� � � ��� ��� ���� ��� ��� ���� ���� ���� ����
��� � � ��� ��� ���� ��� ��� ���� ���� ���� ����
��� � � ��� ��� ��� ��� ��� ���� ���� ���� ����
��� � � ��� ��� ��� ��� ��� ���� ���� ���� ����
��� � � ��� ��� ���� ��� ��� ���� ���� ���� ����
��� � � ��� ��� ���� ��� ��� ���� ���� ���� ����
��� � � ��� ��� ��� ��� ��� ���� ���� ���� ����
��� � � ��� ��� ��� ��� ��� ���� ���� ���� ����

Notes� The �� test statistic considers the hypothesis of integration at frequency

� against the alternative of no integration at that frequency� N is the number of

observations� p denotes whether the auxiliary regression ��� includes an additional

lag of �	Xt ��� or not ���� and � is the constant term in the DGP�


�



Table �b

Simulated signi
cance points �based on ������ Monte Carlo replications� for trace

test statistics �
 and eigenvalue statistic �
 under the restriction of no diverging

seasonal trends� i�e�� model ��� in text� The data generating process is �	Xt �

���	 ��� � �t� where �t is bivariate Gaussian with � � I�

� � � � � � � � ���
N p � ��� ��� ��� ��� ��� ��� ��� ��� ���

trace statistic �

��� � � ���� ���� ���� ���� ���� ���� ���� ���� ����
��� � � ���� ���� ���� ���� ���� ���� ���� ���� ����
��� � � ���� ���� ���� ���� ���� ���� ���� ���� ����
��� � � ���� ���� ���� ���� ���� ���� ���� ���� ����
��� � � ���� ���� ���� ���� ���� ���� ���� ���� ����
��� � � ���� ���� ���� ���� ���� ���� ���� ���� ����
��� � � ���� ���� ���� ���� ���� ���� ���� ���� ����
��� � � ���� ���� ���� ���� ���� ���� ���� ���� ����

eigenvalue statistic �

��� � � ���� ���� ���� ���� ���� ���� ���� ���� ����
��� � � ���� ���� ���� ���� ���� ���� ���� ���� ����
��� � � ���� ���� ���� ���� ���� ���� ���� ���� ����
��� � � ���� ���� ���� ���� ���� ���� ���� ���� ����
��� � � ���� ���� ���� ���� ���� ���� ���� ���� ����
��� � � ���� ���� ���� ���� ���� ���� ���� ���� ����
��� � � ���� ���� ���� ���� ���� ���� ���� ���� ����
��� � � ���� ���� ���� ���� ���� ���� ���� ���� ����

Notes� The �
 test statistic considers the hypothesis of r � n � � at frequency �

against the alternative of r 
 n�� at that frequency� The �
 test statistic considers

the alternative r � n�� at frequency �� N is the number of observations� p denotes

whether the auxiliary regression ��� includes an additional lag of �	Xt ��� or not

���� and � is the constant term in the DGP�


�



Table �c

Simulated signi
cance points �based on ������ Monte Carlo replications� for trace

test statistics �� and eigenvalue test statistic �� under the restriction of no diverging

seasonal trends� i�e�� model ��� in text� The data generating process is �	Xt �

���	 �	 ��� � �t� where �t is ��variate Gaussian with � � I�

� � � � � � � � ���
N p � ��� ��� ��� ��� ��� ��� ��� ��� ���

trace statistic ��
��� � � ���� ���� ���� ���� ���� ���� ���� ���� ����
��� � � ���� ���� ���� ���� ���� ���� ���� ���� ����
��� � � ���� ���� ���� ���� ���� ���� ���� ���� ����
��� � � ���� ���� ���� ���� ���� ���� ���� ���� ����
��� � � ���� ���� ���� ���� ���� ���� ���� ���� ����
��� � � ���� ���� ���� ���� ���� ���� ���� ���� ����
��� � � ���� ���� ���� ���� ���� ���� ���� ���� ����
��� � � ���� ���� ���� ���� ���� ���� ���� ���� ����

eigenvalue statistic ��
��� � � ���� ���� ���� ���� ���� ���� ���� ���� ����
��� � � ���� ���� ���� ���� ���� ���� ���� ���� ����
��� � � ���� ���� ���� ���� ���� ���� ���� ���� ����
��� � � ���� ���� ���� ���� ���� ���� ���� ���� ����
��� � � ���� ���� ���� ���� ���� ���� ���� ���� ����
��� � � ���� ���� ���� ���� ���� ���� ���� ���� ����
��� � � ���� ���� ���� ���� ���� ���� ���� ���� ����
��� � � ���� ���� ���� ���� ���� ���� ���� ���� ����

Notes� The �� test statistic considers the hypothesis of r � n � � at frequency �

against the alternative of r 
 n�� at that frequency� The �� test statistic considers

the alternative r � n�� at frequency �� N is the number of observations� p denotes

whether the auxiliary regression ��� includes an additional lag of �	Xt ��� or not

���� and � is the constant term in the DGP�

	�



Table �d

Simulated signi
cance points �based on ������ Monte Carlo replications� for trace

test statistics �	 and for eigenvalue test statistic �	 under the restriction of no

diverging seasonal trends� i�e�� model ��� in text� The data generating process is

�	Xt � ���	 �	 �	 ��� � �t� where �t is ��variate Gaussian with � � I�

� � � � � � � � ���
N p � ��� ��� ��� ��� ��� ��� ��� ��� ���

trace statistic �	
��� � � ���� ���� ���� ���� ���� ���� ���� ���� ����
��� � � ���� ���� ���� ���� ���� ���� ���� ���� ����
��� � � ���� ���� ���� ���� ���� ���� ���� ���� ����
��� � � ���� ���� ���� ���� ���� ���� ���� ���� ����
��� � � ���� ���� ���� ���� ���� ���� ���� ���� ����
��� � � ���� ���� ���� ���� ���� ���� ���� ���� ����
��� � � ���� ���� ���� ���� ���� ���� ���� ���� ����
��� � � ���� ���� ���� ���� ���� ���� ���� ���� ����

eigenvalue statistic �	
��� � � ���� ���� ���� ���� ���� ���� ���� ���� ����
��� � � ���� ���� ���� ���� ���� ���� ���� ���� ����
��� � � ���� ���� ���� ���� ���� ���� ���� ���� ����
��� � � ���� ���� ���� ���� ���� ���� ���� ���� ����
��� � � ���� ���� ���� ���� ���� ���� ���� ���� ����
��� � � ���� ���� ���� ���� ���� ���� ���� ���� ����
��� � � ���� ���� ���� ���� ���� ���� ���� ���� ����
��� � � ���� ���� ���� ���� ���� ���� ���� ���� ����

Notes� The �	 test statistic considers the hypothesis of r � n � � at frequency

� against the alternative of r 
 n � � at that frequency� The �	 test statistic

considers the alternative hypothesis r � n� � at frequency �� N is the number of

observations� p denotes whether the auxiliary regression ��� includes an additional

lag of �	Xt ��� or not ���� and � is the constant term in the DGP�

	�



Table �e

Simulated signi
cance points �based on ������ Monte Carlo replications� for trace

test statistics �� and for eigenvalue test statistic �� under the restriction of no

diverging seasonal trends� i�e�� model ��� in text� The data generating process is

�	Xt � ���	 ���	 ��� � �t� where �t is ��variate Gaussian with � � I�

� � � � � � � � ���
N p � ��� ��� ��� ��� ��� ��� ��� ��� ���

trace statistic ��
��� � � ���� ���� ���� ���� ���� ���� ���� ���� ����
��� � � ���� ���� ���� ���� ���� ���� ���� ���� ����
��� � � ���� ���� ���� ���� ���� ���� ���� ���� ����
��� � � ���� ���� ���� ���� ���� ���� ���� ���� ����
��� � � ���� ���� ���� ���� ���� ���� ���� ���� ����
��� � � ���� ���� ���� ���� ���� ���� ���� ���� ����
��� � � ���� ���� ���� ���� ���� ���� ���� ���� ����
��� � � ���� ���� ���� ���� ���� ���� ���� ���� ����

eigenvalue statistic ��
��� � � ���� ���� ���� ���� ���� ���� ���� ���� ����
��� � � ���� ���� ���� ���� ���� ���� ���� ���� ����
��� � � ���� ���� ���� ���� ���� ���� ���� ���� ����
��� � � ���� ���� ���� ���� ���� ���� ���� ���� ����
��� � � ���� ���� ���� ���� ���� ���� ���� ���� ����
��� � � ���� ���� ���� ���� ���� ���� ���� ���� ����
��� � � ���� ���� ���� ���� ���� ���� ���� ���� ����
��� � � ���� ���� ���� ���� ���� ���� ���� ���� ����

Notes� The �� test statistic considers the hypothesis of r � n � � at frequency �

against the alternative of r 
 n�� at that frequency� The �� test statistic considers

the hypothesis of r � n � � at frequency �� N is the number of observations� p

denotes whether the auxiliary regression ��� includes an additional lag of �	Xt ���

or not ���� and � is the constant term in the DGP�

	




Table �f

Simulated signi
cance points �based on ������ Monte Carlo replications� for trace

test statistics �� and for eigenvalue test statistic �� under the restriction of no

diverging seasonal trends� i�e�� model ��� in text� The data generating process is

�	Xt � ���	 ���	 ��� � �t� where �t is ��variate Gaussian with � � I�

� � � � � � � � ���
p � ��� ��� ��� ��� ��� ��� ��� ��� ���

trace statistic ��� N � ���
� � ����� ����� ����� ����� ����� ����� ����� ����� �����
� � ����� ����� ����� ����� ����� ����� ����� ����� �����
� � ����� ����� ����� ����� ����� ����� ����� ����� �����
� � ����� ����� ����� ����� ����� ����� ����� ����� �����

trace statistic ��� N � ���
� � ���� ���� ����� ����� ����� ����� ����� ����� �����
� � ���� ����� ����� ���� ����� ����� ����� ����� �����
� � ���� ���� ����� ���� ����� ����� ����� ����� �����
� � ���� ����� ����� ���� ����� ����� ����� ����� �����

eigenvalue statistic ��� N � ���
� � ���� ���� ���� ���� ���� ���� ���� ���� ����
� � ���� ���� ���� ���� ���� ���� ���� ���� ����
� � ���� ���� ���� ���� ���� ���� ���� ���� ����
� � ���� ���� ���� ���� ���� ���� ���� ���� ����

eigenvalue statistic ��� N � ���
� � ���� ���� ���� ���� ���� ���� ���� ���� ����
� � ���� ���� ���� ���� ���� ���� ���� ���� ����
� � ���� ���� ���� ���� ���� ���� ���� ���� ����
� � ���� ���� ���� ���� ���� ���� ���� ���� ����

Notes� The �� test statistic considers the hypothesis of r � n � � at frequency

� against the alternative of r 
 n � � at that frequency� The �� test statistic

considers the alternative hypothesis r � n� � at frequency �� N is the number of

observations� p denotes whether the auxiliary regression ��� includes an additional

lag of �	Xt ��� or not ���� and � is the constant term in the DGP�

		



Table �

Rejection of the US and RS tests in the case of cointegration at � � �� For � � �

or at � � �	 ��� the rejection frequencies can be interpreted as size� for � 
 � and

� � � the frequencies can be interpreted as power of the test� Sample size is ����

� � � ��� ��� ��� ���
size US RS US RS US RS US RS US RS

� � �
�� ���� ���� ����� ����� ����� ����� ����� ����� ����� �����
�� ���� ���� ����� ����� ����� ����� ����� ����� ����� �����
��� ��� ��� ����� ����� ����� ����� ����� ����� ����� �����

� � �
�� ���� ���� ����� ����� ����� ����� ����� ����� ����� �����
�� ���� ���� ����� ����� ����� ����� ����� ����� ����� �����
��� ��� ��� ����� ����� ����� ����� ����� ����� ����� �����

� � ���
�� ���� ���� ����� ����� ����� ����� ����� ����� ����� �����
�� ���� ���� ����� ����� ����� ����� ����� ����� ����� �����
��� ��� ��� ����� ����� ����� ����� ����� ����� ����� �����
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Table �

Rejection of the US and RS tests in the case of cointegration at � � � with super�

imposed seasonal cycle� At � � �	 ��� the rejection frequencies can be interpreted

as size� For � � � the model is not data�admissible� For � 
 � and � � � the

frequencies can be interpreted as power of the test� Sample size is ����

�
� ����� ����� ���� ���

� size US RS US RS US RS US RS US RS

� �� ����� ����� ����� ����� ����� ����� ����� ����� ����� �����
�� ����� ����� ����� ����� ����� ����� ����� ����� ����� �����
��� ����� ����� ����� ����� ����� ����� ����� ����� ����� �����

� �� ����� ����� ����� ����� ����� ����� ����� ����� ����� �����
�� ����� ����� ����� ����� ����� ����� ����� ����� ����� �����
��� ����� ����� ����� ����� ����� ����� ����� ����� ����� �����

��� �� ����� ����� ����� ����� ����� ����� ����� ����� ����� �����
�� ����� ����� ����� ����� ����� ����� ����� ����� ����� �����
��� ����� ����� ����� ����� ����� ����� ����� ����� ����� �����

	�



Table �

Rejection of the US and RS tests in the case of cointegration at � � ��� with

superimposed seasonal cycle� For � � � and �� the rejection frequencies can be

interpreted as size� for � � ��� the frequencies can be interpreted as power of the

test� For � � � the generated process is not data�admissible� Number of simulated

observations is ����

� � ��� ����� ���� ���
� size US RS US RS US RS US RS

� �� ����� ����� ����� ����� ����� ����� ����� �����
�� ����� ����� ����� ����� ����� ����� ����� �����
��� ����� ����� ����� ����� ����� ����� ����� �����

� �� ����� ����� ����� ����� ����� ����� ����� �����
�� ����� ����� ����� ����� ����� ����� ����� �����
��� ����� ����� ����� ����� ����� ����� ����� �����

��� �� ����� ����� ����� ����� ����� ����� ����� �����
�� ����� ����� ����� ����� ����� ����� ����� �����
��� ����� ����� ����� ����� ����� ����� ����� �����

	�



Table �

Trivariate design ���� with one cointegrating vector at all frequencies� Rejection of

the US and RS tests in the case of a second cointegration vector at � � ���� For

� � � and for � � � and �� the rejection frequencies can be interpreted as size�

for � � ��� the frequencies can be interpreted as power of the test� Number of

simulated observations is ����

� � ��� ���� ���� ���� ���
� size US RS US RS US RS US RS US RS

� �� ����� ����� ����� ����� ����� ����� ����� ����� ����� �����
�� ����� ����� ����� ����� ����� ����� ����� ����� ����� �����
��� ����� ����� ����� ����� ����� ����� ����� ����� ����� �����

� �� ����� ����� ����� ����� ����� ����� ����� ����� ����� �����
�� ����� ����� ����� ����� ����� ����� ����� ����� ����� �����
��� ����� ����� ����� ����� ����� ����� ����� ����� ����� �����

��� �� ����� ����� ����� ����� ����� ����� ����� ����� ����� �����
�� ����� ����� ����� ����� ����� ����� ����� ����� ����� �����
��� ����� ����� ����� ����� ����� ����� ����� ����� ����� �����

	�



Table �

Results of seasonal cointegration tests for four�dimensional Austrian macroeco�

nomic data set� Trace test statistics�

no dummies unrestricted dummies restricted dummies
� � � � ��� � � ��� � � ���

n � � ���� ���� ���� ���� ���� ���� ���� ���� ����
�� ��� ��� ��� ��� ���� ���� ��� ���� ����
�� ��� ��� ��� ��� ��� ���� ��� ��� ����
��� ��� ��� ��� ��� ��� ��� ��� ��� ����

n � � ���� ���� ���� ���� ����� ����� ���� ����� �����
�� ���� ���� ���� ���� ���� ���� ���� ���� ����
�� ���� ���� ���� ���� ���� ���� ���� ���� ����
��� ���� ���� ���� ���� ���� ���� ���� ���� ����

n � � ����� ����� ����� ����� ����� ����� ����� ����� �����
�� ���� ���� ���� ���� ���� ���� ���� ���� ����
�� ���� ���� ���� ���� ���� ���� ���� ���� ����
��� ���� ���� ���� ���� ���� ���� ���� ���� ����

n � � ����� ����� ����� ����� ����� ����� ����� ����� �����
�� ���� na na ���� na na ���� ���� ����
�� ���� na na ���� na na ���� ���� ����
��� ���� na na ���� na na ���� ���� ����

Notes� The auxiliary regression in ��� includes � lag of �	Xt� The solid numbers are

test statistics calculated from the data� the numbers in italics denote signi
cance

points� For columns � and �� these were taken from Table ���� in Johansen ������


for columns �� �� �� �� we consulted Lee and Siklos ������
 columns � to � correspond

to our Tables �a��d�

	�



Table �

Canonical vectors in the Austrian data set as identi
ed by the methods of unres�

tricted and restricted seasonal dummy variables�

� � � �both methods�

variable Y C I W

vector � ���� ���� ����� �����
vector � ����� ���� ���� ����
vector � ������ ����� ���� ����
vector � ����� ���� ���� �����

� � �

variable Y C I W cos��t�

unrestricted dummies
vector� ���� ����� ����� ����
vector� ���� ����� ���� ����
vector� ����� ���� ���� ����
vector� ����� ����� ���� ����

restricted dummies
vector� ����� ���� ���� ����� ����
vector� ����� ���� ���� ����� ����
vector� ���� ����� ����� ����� ����
vector� ����� ����� ���� ���� ����

� � ���

variable Y C I W cos��t
 � cos���t���
 �

unrestricted dummies
vector� ����� ����� ����� ����
vector� ����� ����� ���� ����
vector� ����� ���� ���� ����
vector� ����� ����� ���� �����

restricted dummies
vector� ���� ���� ����� ����� ����� �����
vector� ����� ���� ����� ����� ���� ����
vector� ���� ����� ����� ����� ���� ����
vector� ���� ���� ����� ���� ����� �����
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FIGURES

��



Figure �� Simulated rejection frequencies of RS and US testing procedures as
a function of �
 �seasonal cointegration� and �� �deterministic seasonality��
Sample size is ����

��



Figure 
� Simulated rejection frequencies of RS and US testing procedures as
a function of �
 �seasonal cointegration� and �� �deterministic seasonality�
if lag length is determined by AIC� Sample size is ����

�




Figure 	� Simulated rejection frequencies of RS and US testing procedures as
a function of �
 �seasonal cointegration� and �� �deterministic seasonality�
if lag length is determined by BIC� Sample size is ����
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