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Abstract 
 

This paper outlines a nonstationary, heterogeneous Markov model designed to 
estimate entry and exit transition probabilities at the micro-level from a time 
series of independent cross-sectional samples with a binary outcome variable. 
The model has its origins in the work of Moffitt (1993) and shares features with 
standard statistical methods for ecological inference. We show how ML estimates 
of the parameters can be obtained by the method-of-scoring, how to estimate 
time-varying covariate effects, and how to include non-backcastable variables in 
the model. The latter extension of the basic model is an important one as it 
strongly increases its potential application in a wide array of research contexts. 
The example illustration uses survey data on American presidential vote 
intentions from a five-wave panel study conducted by Patterson (1980) in 1976. 
We treat the panel data as independent cross sections and compare the estimates 
of the Markov model with the observations in the panel. Directions for future 
work are discussed.   
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1 Introduction 

Surveys that trace the same units across occasions provide the most powerful sorts of data 

for dynamic electoral analysis. However, on many political issues repeated observations 

are simply unavailable and those panel data sets that do exist are typically of limited time 

coverage. This shortcoming combined with potential drawbacks like nonrandom attrition 

and conditioning limits the use of panel data for the analysis of long-term political change.  

In the absence of suitable panel data, repeated cross-sectional (RCS) surveys may 

provide a viable alternative. There exists an abundance of high-quality RCS data and many 

are available for relatively long time periods. Given the importance of dynamics in 

electoral studies and the paucity of panel data, it would be of great advantage if such data 

could be used for the estimation of longitudinal models with a dynamic structure. The 

objective of this paper is to explore those possibilities. Specifically, our purpose here is to 

discuss a nonstationary, heterogeneous Markov model for the analysis of a binary 

dependent variable in a time series of independent cross-sectional samples. The model has 

its origins in the work of Moffitt (1993) and shares features with standard statistical 

methods for ecological or cross-level inference as outlined, for example, by Achen and 

Shively (1995) and King (1997). It offers the opportunity to estimate individual-level entry 

and exit transition rates and to examine the effects of time-constant and time-varying 

covariates on the hazards. Previous brief discussions of specific versions of the model 

include Mebane and Wand (1997) and Pelzer, Eisinga, and Franses (2001). 

The following section presents the basic Markov model for RCS data along with 

parameter estimation and various extensions of Moffitt’s approach. Section 3 provides an 

example application using panel data on American presidential vote intentions from a five-

wave survey conducted by Patterson (1980) in 1976. We treat these data as independent 

cross sections and compare the predictions of the Markov model for RCS data with the 

actual transitions in the panel. The calibration results suggest that the model can provide a 

useful tool for inferring individual-level transition probability estimates in the absence of 

transition data in cross-sectional samples. A discussion of intended extensions of the 

model concludes the paper.  
 

2 Estimating transition probabilities with RCS data  

It is assumed in the sequel that the population is closed with respect to in- and out-

migration, that the responses are observed at evenly spaced discrete time intervals 
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,...2,1=t , and that the samples at periods jt  and kt  are independent if kj ≠ . The symbol 

it  is commonly used to indicate repeated observations on the same sample element i . To 

simplify notation, this paper uses the symbol it  to also index individuals in RCS samples.  

Suppose we have a two-state Markov matrix of transition rates in which the cell 

probabilities sum to unity across rows. For this 2x2 table, we define the following three 

terms, were itY  denotes the value of the binary random variable Y  for unit i  at time point 

t : 

  

)1( == itit YPp , )01( 1 === −ititit YYPµ  and )10( 1 === −ititit YYPλ . 

 

These marginal and conditional probabilities respectively give rise to the well-known flow 

equation 

 

                         111 )1()1()( −−− +=−+−== ititititititititit ppppYE ηµλµ ,                      (1) 

 

where ititit µλη −−= 1 . This accounting identity is the elemental equation for estimating 

dynamic models with repeated cross-sections as it relates the marginal probabilities ip  at 

t and 1−t  to the entry )( itµ  and exit )( itλ  transition probabilities. Clearly, the major 

difficulty with using RCS data for dynamic analysis is that the surveys are ‘incomplete’ in 

the sense that they do not assess directly the state-to-state transitions over time for each 

individual unit. In RCS data one only observes at each of a number of occasions a different 

sample of units and their current states, that is ity  is observed but 1−ity  is not. This 

information gap implies that some identifying restrictions over i  and/or t must be 

imposed to estimate the unobserved transitions.  

A rather restrictive approach frequently applied in the statistical literature is to a 

priori assume that the transition probabilities are time-stationary and unit-homogeneous, 

hence µµ =it  and λλ =it  for all i  and t . It is easy to show that in this case the long-run 

outcome of itp  is )/( λµµ +=itp  as t  goes to infinity. Some early references relating to 

this steady-state model include those that estimate transition rates from aggregate 

frequency data (Kalbfleish and Lawless 1984 1985, Lawless and McLeish 1984, Lee, 

Judge, and Zellner 1970). The formulation has also been applied in various economic 
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studies (Topel 1983, McCall 1971), in the famous mover-stayer model of intra-

generational job mobility (Bartholomew 1996, Goodman 1961), and in electoral studies on 

voter transitions (Firth 1982). However, the assumption that individual differences in 

transitions are not present in the population lacks plausibility in many applications. 

Consequently, as noted by Hawkins and Han (2000), studies that assume a time-

homogeneous Markov evolution with a common transition probability matrix have found 

their estimates to be extremely inefficient.  

A flexible approach that facilitates a more accurate representation of the transition 

probabilities without imposing some presumed structure is provided by the reduced-form 

dynamic version of eqn. (1). If we let the initial probability 00 =ip  (or ∞→t ), it is 

straightforward to show that the reduced form for itp  is  

 

∑ ∏
−

= +=










+=

1

1 1

t t

s
isiititp

τ τ
τ ηµµ ,                                              (2) 

 

where isisis µλη −−= 1 . By explicitly allowing for time-dependence and unit-

heterogeneity, this reduced-form dynamic model is better suited to yield an informative 

representation of the transition probability estimates. It will therefore be maintained in the 

ensuing approach. 

The framework Moffitt (1993) proposed to estimate eqn. (2) is based on a simple 

observation. While RCS data lack direct information on transitions in opinions, preferences, 

choices and other individual behaviors, they often do provide a set of time-invariant and 

time-varying covariates itX  that affect the hazards. If so, the history of the covariates (i.e., 

11 ,,, iitit XXX !− ) can be employed to generate backward predictions for the transition 

probabilities ( 2111 ,,,and,,, iititiitit λλλµµµ !! −− ) and thus for the marginal 

probabilities ( 11 ,,, iitit ppp !− ). Hence the key idea is to model the current and past itµ  

and itλ  in a regression setting as functions of current and backcasted values of time-

invariant and time-varying covariates itX . Parameter estimates for the covariates are 

obtained by substituting the hazard functions into eqn. (2).  
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The hazard functions themselves are specified as )( βµ itit XF=  and 

)(1 *βλ itit XF−= , where F  - in the current paper - is the logistic link function. Hence, it 

is assumed that  

 

βµ itit X=)(logit  and *)1(logit βλ itit X=− , 

 

where β  and *β  are two potentially different sets of parameters associated with two 

potentially different sets of covariates itX . This regression setup offers the opportunity to 

estimate transition probabilities that vary across both individuals and - if the model 

includes time-varying covariates - time periods. Maximum likelihood estimates of β  and 

*β  can be obtained by maximization of the log likelihood function 

 

[ ]∑∑
= =

−−+=
T

t

n

i
itititit

t

pypyLL
1 1

)1log()1()log( , 

 

with respect to the parameters, where tn  is the number of observations of cross section t  

and T  is the number of cross sections. As Moffitt (1993) notes, obtaining itp  by means of 

eqn. (2) is equivalent to ‘integrating out’ over all possible transition histories for each 

individual i  at time t  to derive an expression for the marginal probability estimates. To 

convey this idea, compare the contribution to the likelihood by the i th case at time point t  

in panel data with the likelihood contribution in RCS data. For a first-order transition model 

of binary recurrent events the contribution can be written as 

 

1111 )1()1)(1()1(* )1()1(),( −−−− −−−− −−= itititititititit yy
it

yy
it

yy
it

yy
ititL λµλµββ  

 

(e.g., Stott 1997). Hence, conditional on ty  and 1−ty , the likelihood contribution 

simplifies to a single transition probability estimate. For RCS data with a binary outcome, 

however, the contribution from the i th case is given by  
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* )1)(1()1()1(),( λµλµββ . 

 

In this formulation the likelihood contribution does not collapse to a single rate estimate 

but rather to a weighted sum of two hazards. Also note from this comparison that estimates 

of the parameters of the hazard functions in RCS data are likely to be less efficient than they 

would be in a comparable panel data set. To summarize the model a graphical presentation 

is given in Figure 1, omitting the subscript i  for clarity.  

 

Figure 1 about here 

 

The marginal probability itp  depends on the set of all possible transition histories for each 

individual i  up to time t . The unobserved transition probabilities in their turn are modeled 

as functions of current and backcasted values of time-invariant and time-varying covariates 

itX . As Mebane and Wand (1997) point out, an important characteristic of the model is 

that the transition probabilities are estimated as a function of all the available cross-

sectional samples rather than simply the observations from the current time period. This 

full information strategy expresses the notion that in RCS data different groups of 

individuals are observed over time, but individuals with similar covariate values are 

exchangeable in the sense their transition histories are assumed to be identical.  

 

2.2 Extensions and modifications of the basic model 

ML estimation. Moffitt (1993) offers no discussion of the computation of the maximum 

likelihood parameter estimates. A convenient optimization technique, implemented in our 

program CrossMark, is Fisher’s method-of-scoring (Amemiya 1981). If we suppress the 

subscript i  for the moment to avoid cumbersome notation and define 00 =p , the first 

order partial derivatives of LL  with respect to the parameters β  and *β  are easily 

established as  
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where )1(/ tttt x µµβµ −=∂∂  and )1(/ *
tttt x λλβλ −−=∂∂ . The ML estimators are the 

values of the parameters for which the efficient scores are zero, i.e., 

0// * =∂∂=∂∂ ββ LLLL . Let θ  denote the stacked column vectors β  and *β , then the 

method-of-scoring uses the iterative estimation algorithm 

)/)ˆ(()]ˆ(Î[ˆˆ )(1)()()1( θθθεθθ ∂∂+= −+ kkkk LL . The parameter ε  denotes an appropriate 

step length that scales the parameter increments and )ˆ(Î )(kθ  is an estimate of the Fisher 

information matrix ]/)([)(I 2 θθθ ∂∂Ε−= LL  evaluated at )(ˆ kθθ = , where θθ ∂∂ /)(2LL  is 

the Hessian. The method-of-scoring also provides, by design, an estimate of the asymptotic 

variance-covariance matrix of the model parameters, given by the inverse of the estimated 

Fisher information matrix evaluated at the values of the maximum likelihood estimates.  

 

Non-backcastable covariates. The estimation strategy proposed by Moffitt (1993) involves 

searching the cross-sectional data files for variables taking known values in the past. 

Clearly, time-invariant characteristics such as sex, race, cohort, completed education, 

etcetera are candidates and time-specific aggregates measurable in the past may also enter 

the model. But variables like age are usable too, as are age-related variables such as the 

number of children at different ages, since knowledge of the current age implies 

knowledge of age in any past year. Given current information, each age and time-invariant 

variables relevant for preceding years are known.  

In many applications settings, however, we have time-dependent covariates that the 

basic model would omit because the past histories are unknown. To incorporate these 

‘non-backcastable’ variables, we adopt a model with two different sets of parameters for 

both itµ  and itλ , i.e., one for the current transition probability estimates and a separate 

one for the preceding ones. Define itZ  as a vector of non-backcastable variables with 

itit ZZ =  for cross section t  and 0=itZ  for the cross sections 1,,1 !−t  and ζ  as the 

associated parameter vector. One can then write  
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where ++= βββ ** . A similar model with non-backcastable covariate effects on the exit 

rates may be specified for itλ . This specification offers the opportunity to express the 

current transition probability estimates as a logistic function of both backcastable and non-

backcastable variables. The expression obviously also affords a test – useful for efficiency 

gains - of the hypothesis 0:H0 =+β , using the restriction ββ =** .  

 

Time-varying covariate effects. Another potential drawback of the basic model is that it 

assumes that the effects of the covariates are fixed over time. This restriction may not be 

valid for long time periods and thus potentially biases the estimated effects. Of course, 

modifying continually the values of the parameters - so as to allow the model to adapt itself 

to ‘local’ conditions - produces problems of overparametrization. We aim to avoid such 

problems by assuming the parameters to be constant across a limited number of time 

periods. An alternative specification, not pursued in this paper, is to allow the regression 

coefficients to become polynomials in time using the expression 
d

dt ttt γγγγβ ++++= "2
210 , where d  is a positive integer specifying the degree of the 

polynomial. For this parametric setup, too, it will be desirable to have models with low 

degree polynomials that avoid nonexistence of unique ML estimates.  

 

First observed outcome. Moffitt (1993) defines the first observed outcome of the process, 

)1( 1 =iYP , to equal the transition probability 1iµ . However, in many applications it will be 

more plausible to take )1( 1 =iYP  to equal the state probability 1ip . That is, one 

conveniently assumes that the 1iY 's are random variables with a probability distribution 

)()1( 1 δiti XFYP == , where δ  is a set of parameters to be estimated and F  is the logistic 

link function. The δ -parameters for the first observed outcome at 1=t  are estimated 

simultaneously with the entry and exit parameters of interest at Tt ,,2 != . Note once 

again that the probability vector at the beginning of the Markov chain is estimated as a 

function of all cross-sectional data, rather than simply the observations at .1=t   
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Unequal sample sizes. We may also relax the implicit assumption that the cross-sections at 

each time t  are of the same sample size. To ensure a potentially equal contribution of the 

cross-sectional samples to the likelihood, we use the weighted log likelihood function 

[ ]∑∑
= =

∗ −−+=
T

t

n

i
ititititi

t

pypywLL
1 1

)1log()1()log( , where ti nnw /= , with 

Tnn T
t t /1∑ == , tn  is the number of observations of cross section t  and T  is the number 

of cross sections. 

 

Shrinking logical bounds. The partition equation (1) implies the familiar restriction, 

customarily attributed to Duncan and Davis (1953), 

 

it
it

it

it

it
it p

p
p
p κµ

)1()1( 1

1

1 −

−

− −
−

−
=  and it

it

it

it

it
it p

p
p
p µκ

1

1

1

)1(

−

−

−

−−= , 

 

where itit λκ −= 1 . These identities were used by King (1997) to construct a so-called 

tomography plot. The axes of this plot represent the parameters itκ  and itµ  and the linear 

constraint on each individual i  inherent in eqn. (1) is represented by a tomography line 

with intercept )1/( 1−− itit pp  and slope )1/( 1−−− itit pp  that goes through the point 

),( itit µκ . The lines have a limited range of angles (i.e., all have a negative slope) and they 

all intersect the 45◦ line of itit κµ =  at ),( itit pp . Since the estimated probabilities are 

guaranteed to lie in the )1,0(  range, we have that ),( ititit UL µµµ ∈  and 

),( ititit UL κκκ ∈ , where the lower ( L ) and upper (U ) bounds of these intervals are 

defined by the min and max operators  
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(King 1997). Hence the estimated values of itµ  and itκ  are constrained to lie on that part 

of the tomography line that intersects the feasible region defined by the logical boundary 

points. Since the limits are related  
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the tomography lines correspond to the main diagonal of the rectangular region defined by 

the lower and upper bounds. Because the estimates produced are restricted to lie on the 

diagonal they satisfy itititit ba µκ −= , where 1))(( −−−= ititititititit LULLUUa µµκµκµ  

and 1))(( −−−= ititititit LULUb µµκκ  (Chambers and Steel 2001).  

Our estimation procedure implicitly takes into account the bounds and thereby 

restricts the range of feasible estimates of itµ  and itκ . This is accomplished simply by 

constraining the individual probabilities to lie within the admissible range )1,0( . Clearly, 

explicit assumptions about the relative magnitude of itµ  and itκ  would allow one to 

narrow the bounds beyond the logical limits. For example, in studies of US interparty 

electoral transition it may be assumed, in the spirit of Shively (1991), that the probability 

that a Democrat at 1−t  repeats a vote for that party at t  is greater than the probability that 

a non-Democrat at 1−t  shifts to the Democrats at t . This assumption translates into the 

restriction that itit µκ >  (i.e., 0>itη ). Such a restriction is difficult to justify in general, 

however, and we would not expect it to be the case for every single voter. Because there is 

also no algebraic requirement in eqn. (1) that 0>itη , we would not recommend using this 

assumption universally. Also note that if the entry and 1-exit transitions are equal to each 

other (i.e., itit κµ = ), identity (1) reduces to ititp µ= . 

 

Quantities of interest. The model presented above may be used for different purposes. One 

is to understand the individual level relation between covariate effects and transitions in a 

binary response variate, under Markov assumptions. Another potential goal is to estimate 

transition probabilities when individual sequence information is not available. The 

empirical application below illustrates how the model can be used to provide information 

on individual electoral transitions and the role of voting-related covariates when exact 
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voting sequences are unknown. While our illustration example uses bimonthly panel data 

the model is obviously designed for estimating transition probabilities from repeated cross 

sections covering relatively long-term periods. An example of when such a formulation is 

most relevant includes an analysis of the labor force participation decisions of Dutch 

women over the 1986-1995 period by Pelzer, Eisinga and Franses (2001).  

 

3. Application 

Our empirical illustration employs election-year panel data on US presidential vote 

intention drawn from the campaign study conducted by Patterson (1980) in Erie, PA, and 

Los Angeles, CA, in 1976. These five-wave bimonthly panel data were also used by 

Sigelman (1991) in his panel ecological inference study. Obviously, the purpose of this 

example is to illustrate the model rather than to provide a definitive analysis of the data. 

The panel data were treated as if they were a temporal sequence of cross sections of the 

electorate. That is, no information on the cov ( 1, −tt yy ) is available in the data file used for 

analysis. The application uses panel data because they provide a check of the ability of the 

Markov approach to recover known party-switching transitions. Some caution is warranted 

in interpreting the results, however, as the individual transition probability estimates are 

based on observations that are not independent. Consequently, in this particular application 

the variance-covariance matrix of the first derivatives may not be a consistent estimator of 

the Hessian and hence the parameter standard errors. The binary outcome variable ity  is 

defined to equal 1 if the voter i  prefers the Democratic party or candidate (i.e., Carter) at 

time period t  and 0 otherwise (i.e., Republican party or candidate (Ford) and others).  

 

Table 1 about here 

 

Table 1 provides some summary descriptive statistics. It gives the number of observations 

including panel inflow and outflow, the marginal distribution of ity  over time, and the 

observed entry and exit transitions rates in the panel. The table shows that, despite 

substantial bimonthly turnover with values ranging from .138 to .248, almost half of the 

respondents continue to prefer the Democratic presidential candidate. The bottom part of 

the table presents the (non)participation patterns across the five waves of data and the 

number of sample members attriting from the panel. Because some nonrespondents from 
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one wave are recruited back into the sample at subsequent waves, both monotone and 

nonmonotone attrition patterns arise. It is important to note that the analysis includes both 

attritors and nonattritors. 

Next to voting intention, the survey provides information on socio-demographic 

characteristics and attitudes towards presidential candidates. The analysis presented here 

uses only covariates that would generally be available in repeated cross-sectional surveys. 

As backcastable variables, the analysis employs vote choice at the preceding election (i.e., 

whether the respondent voted for either Nixon or Ford in 1972), race, education, age, and 

sex. All these covariates are assumed to be fixed over the surveys’ duration. In addition to 

these time-constant variables the analysis includes several non-backcastable covariates. 

These include (i) whether the respondents identify themselves as Democrat or not, (ii) 

responses to the statements “It doesn’t make much difference whether a Republican or a 

Democrat is elected President” and “All in all, Gerald Ford has done a good job as 

President”, (iii) measures of (un)favorable feelings towards the candidates Ford and Carter, 

and (iv) opinions about their specific qualities, i.e., very (un)trustworthy, excellent/poor 

leader, and great deal of/almost no ability. The responses to the two statements and the 

candidate images were all registered on seven-point Likert-type scales, running from 

“strongly disagree” to “strongly agree”, from “unfavorable” to “favorable”, etcetera. 

 

3.1 Model estimation 

First a time-stationary Markov model with constant terms only was applied to the data. 

This model produced the parameters )( 1>tµβ  = -.238 and )( 1
*

>tλβ  = .034 and a 

corresponding maximum log likelihood value of *LL = -2643.56. These estimates imply 

constant transition rates of =µ .44 and =λ .51; hence implausibly high values that amply 

exceed the observed rates reported in Table 1. The model was thereupon extended to a 

nonstationary, heterogeneous Markov model (model 1) by including the backcastable 

covariates reported above. The results are shown in Table 2.  

 

Table 2 about here 

 

The parameters in the first column show the effects of the backcastable variables on the 

probability of a Democratic vote at 1=t , 1ip , estimated for all observations. As can be 
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seen, the parameters are well determined with a Democratic preference positively affected 

by being black and a vote for McGovern in 1972 and negatively by education and a vote 

for Nixon at the 1972 election. The second column of Table 2 presents the effects of the 

backcastable variables on the transitions from non-Democratic (i.e., Republican and 

others) to Democratic. Whereas a previous vote for McGovern is significant in 

encouraging entry into a Democratic preference, education, age, and a 1972 vote for Nixon 

negatively affect the entry decision. The third column gives the effects on the transitions 

into non-Democratic. We find that the exit rates are negatively affected by a vote for 

McGovern in 1972,  being black and age and positively by sex (female). 

The right-hand side of the table (model 2) reports the regression estimates of a 

transition model that also includes the non-backcastable variables with unknown covariate 

history. Wald and likelihood ratio tests revealed no significant difference between the 

effects of the backcastable variables on the current transitions and their effects on the past 

transitions. The table therefore presents a single parameter for the backcastable covariates. 

Further, because there are substantive arguments to anticipate that the effects of the non-

backcastable covariates may vary over the period leading up to the election, several tests 

with different time-varying-coefficient models of varying degrees of simplicity were 

applied to the data. The model shown in Table 2 describes the data best in terms of 

goodness-of-fit. The likelihood-ratio statistic may also be computed to assess the statistical 

significance of the improvement in fit that results from including the non-backcastable 

variables. But it is clear from the log likelihood values in Table 2 that the enlarged model 

provides a much better fit.  

The columns pertaining to model 2 again show the estimated effects on the state 

probability 1ip . Whereas the effects of a 1972 vote for McGovern and identification with 

the Democrats turn out to be positive, the effects of a vote for Nixon, favorable feelings 

towards Ford and indifference towards the future president’s leaning are negative. The last 

two columns of Table 2 provide the effects on the entry and exit rates respectively with 

respect to a Democratic vote. The columns labeled t  indicate the time periods pertaining 

to the (time-varying) parameters. For example, favorable feelings towards Carter has an 

effect of .35 at 3,2=t  and an effect of 1.14 at 5,4=t . Most of the parameters are again 

well determined and consistent with those commonly reported in the literature. In short, 

positive attitudes towards the Republican (Democratic) candidate Ford (Carter) decrease 
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(increases) the entry rates and increases (decreases) the exit rates. The stronger respondents 

think of themselves as being Democrat, the higher (lower) their entry (exit) transition rates. 

The tomography lines for one time period are singled out for discussion purposes. 

Figure 2 shows for all i  at 5=t  the lines 544455 )1/()1/( iiiiii pppp κµ −−−= , where 

55 1 ii λκ −= .  

 

Figure 2 about here 

 

The 691 lines all have a negative slope and they all intersect the 45◦ line of 55 ii κµ =  at 

),( 55 ii pp . The permissible range of the parameters for an individual can be obtained by 

projecting each line onto the horizontal (for 5iκ ) and vertical (for 5iµ ) axes. Note that 

while most of the point estimates are below the 45◦ line, for a substantial number of the 

estimates 5iµ  exceeds 5iκ . In fact, almost 25% of the observations fail to conform to the 

restriction that itit µκ > . Hence incorporating the external substantive assumption that 

party loyalty rates are greater than defection rates would most likely lead to incorrect 

conclusions. Visual inspection of the figure also suggests a strong relationship between 

5iµ  and 5iκ , with low (high) entry rates corresponding with high (low) exit rates. Also 

note that most of the predictions tend to the basically ideal situation of either extremely 

high or extremely low transition probability estimates.   

 

3.2 Model validation 

To understand how well the model reproduces the panel observation we may examine its 

efficacy in a variety of ways. One is to assess the fit of the model in terms of prediction 

errors, using the panel data and various summary measures, i.e., the mean squared error 

(MSE), the mean value of minus log likelihood error (MML), and the mean probability of 

correct allocation (MCA). Details are given in Table 3.  

 

Table 3 about here 

 

The prediction error measures can be seen as analogues to the R-squared measure in OLS 

regression. The MSE and MML tend to zero if itµ ( itλ ) tends to 0 or 1 and the smaller the 



 15 

error rate, the better the model predicts. Table 3 indicates that the mean squared errors and 

the mean minus log likelihoods are remarkably low and gradually lean to the ideal situation 

of perfect separation between the 0=ity  and 1=ity  groups. The average probability of 

correct allocation also reveals that the ability of the model to recover the observed 

transitions is very good, ranging from a low of .736 to a high of .899. Note that the 

summary measures suggest that the model does somewhat better in terms of predicting 

entry than it does in predicting exit. 

Another way to examine the performance of the model is to compare the actual 

sample frequency of all possible bimonthly (0,1) voting sequences with the estimated 

expected frequency of each sequence. The latter were computed as follows. With T sample 

periods, we have ∑ =

T

t
t

1
2  different (0,1) sequences (which in the present application equals 

62) ranging in length from 1 (e.g., ‘0’) to T (e.g., ‘11111’) . We define the probability of a 

sequence of length t for each observation i  of cross section t as 

)~~()~,...,~(~
111 tititi yYyYPyyp =∩∩== ! , where 1,0~,,~1 =tyy ! . Hence  

 

)1)(~1(~)~()~(~
1111111 iiii pypyyYPyp −−+=== , 

 

where 1ip  is )1( 1 =iYP . For 1>t , we have  

 

∏ =
+++= t

iti ppppypyyp
2 1110010011 )()~(~)~,...,~(~

τ
, 

 

where )1)(~1)(~1( 100 τττ µiyyp −−−= − , τττ µiyyp ~)~1( 101 −−= , τττ λiyyp )~1(~
110 −= − , and 

)1(~~
111 τττ λiyyp −= − . The mean value of )~,...,~(~

1 ti yyp  for all observations of cross section t 

was obtained as t
n

i tit nyypyyp t /)~,...,~(~)~,...,~(~
1 11 ∑=

= . The estimated expected absolute 

frequency )~,...,~(~
1 tyyf  of each participation sequence was thereupon computed by 

evaluating ttt nyypyyf )~,...,~(~)~,...,~(~
11 = . 

An initial examination of the frequencies is to compare the expected with the 

observed first-order transitions (i.e., tt yy ,1− ) over the time period of our data. Before 

embarking on the findings it is important to note that while model 2 predicts the current 

probabilities at time point t  (i.e., itp , itµ  and itλ ) very well, it does not in general 
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reproduce the past probabilities at 1−t , 2−t , etcetera equally well. The reason is that the 

past probabilities are predicted by the backcastable variables only and these are not very 

good predictors. This obviously hampers the estimation of the expected frequencies. We 

therefore decided to ‘backcast’ the nonbackcastable variables a single time period - by 

assuming them to be constant for the two consecutive cross sections at 1−t  and t  - and 

subsequently compute the expected frequencies. Table 4 shows the relative frequencies of 

the observed and the estimated expected first-order voter transitions between parties.  

 

Table 4 about here 

 

As can be seen, both the observed and the predicted frequencies are concentrated in the 

continuous Democratic vote (11) and the continuous non-Democrat vote (00) categories. 

Also note that the partisan changes seem to decline over time leading up to the presidential 

election. Further, the discrepancies between the predicted and the observed frequencies are 

all relatively small and not significant at the .05 level. This implies that both loyal and 

defection categories are predicted well.  

A final examination of the goodness-of-fit reported here is to compare the 

estimated expected and actually observed absolute frequencies of all 62 (0,1) voting 

sequences. They are tabulated in Table 5.  

 

Table 5 about here 

 

The longitudinal voting profiles indicate that most voters remain loyal to their initial 

preference and that proportionally few change their vote intention frequently. What is 

encouraging is the ability of the model to recover sequence membership, even in the 

presence of relatively extreme patterns of vote switching. Table 5 indicates quite clearly 

that for most sequences the estimated expected frequencies predicted by the RCS transition 

model match the observed frequencies in the panel data well. The only notable exceptions 

are the highly populated consecutive Democratic vote categories (i.e., the sequences of 

1’s). However, even for these sequences model performance is quite good. Hence overall 

our findings illustrate that the model is well able to recover the actual transitions in the 

panel. 
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4. Conclusion 

The Markov model for cross-level inference presented here can help us better understand 

binary transitions when it is either impossible or impractical to collect panel information 

on the exact sequences. Our example application shows that the model captures voters 

with very different entry and exit transitions probabilities. More important, it yields 

transition frequency estimates remarkably consistent with the observations in the panel. 

The results thus demonstrate that the proposed model can be used to accurately identify 

transition probabilities solely on the basis of repeated cross sections and hence to coax 

panel conclusions out of non-panel data. 

Although the above model promises to be useful in different settings, there are 

some extensions that we are currently exploring that may further enhance its applicability. 

One next step is to allow for unobserved heterogeneity. The model specification assumes 

that individual heterogeneity is due to the observed variables. It is likely, however, that 

unobserved and possibly unobservable variables are also a source of heterogeneity. 

Ignoring this over-dispersion is unlikely to change point estimates in any radical way, but 

estimates of standard errors will be underestimated and tests will be in error. It is thus 

important to try to account for it. Another extension of interest is to use Bayesian methods, 

in the spirit of King, Rosen, and Tanner (1999) and Rosen, Jiang, King, and Tanner 

(2001), next to ML estimation. A limitation of ML is that it is basically a large-sample 

inferential approach. With small or moderate-sized data sets, the likelihood may have a 

nonnormal shape and asymptotic theory may not work well. It is unknown, however, how 

large the sample should be for the standard errors based on the information matrix of the 

present model to yield reliable inferences. One approach to study this small sample 

problem is to analyse the data by MCMC using Gibbs or Metropolis sampling.  

Finally, it has frequently been argued that King’s ecological inference solution can 

fruitfully be adapted to repeated cross sections (Penubarti and Schuessler 1998, King, 

Rosen, and Tanner 1999, Davies Withers 2001). Despite the steady development in 

ecological analysis in the direction of more sophisticated statistical modeling, little has 

been done to date on developing models that draw panel inference from non-panel data 

(Sigelman 1991 and Penubarti and Schuessler 1998 are notable exceptions). It is our 

believe that the approach presented here has the potential to make a significant 

contribution to political (and other) inquiry. 
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Table 1: Marginal fraction of Democratic vote intention, observed entry and exit 

transition rates and panel attrition  

———————————————————————————————————— 

 year month  tn  inflow outflow ty  01 =−tt yy   11 =−tt yy  
———————————————————————————————————— 

 
 1976  02 856   .384    
     04   790 142 208 .460 .248 .178  
  06 792 153 151 .471 .170 .176  
  08  727 90 155 .465 .203 .229  
  10 691 80 116 .457 .140 .138 
 
 
  panel attrition patterns and number of observations across waves*  
 
11111 412 10111 26 01111 57 00111 56 
11110 50 10110 6 01110 8 00110 22 
11101 33 10101 2 01101 9 00101 8 
11100 56 10100 13 01100 14 00100 20 
11011 31 10011 10 01011 12 00011 7 
11010 10 10010 7 01010 6 00010 7 
11001 9 10001 6 01001 1 00001 12 
11000 47 10000 138 01000 35  
     
———————————————————————————————————— 
*1=observed, 0=missing. The figures were obtained after listwise deletion (for each time point separately) of 
respondents who exhibit item nonresponse. 



 

Table 2: Markov repeated cross-section estimates for transitions into and out of Democratic vote intention *  

—————————————————————————————————————————————————————————— 
 model 1    model 2 
   )( 1=tpδ  )( tµβ   - )(*

tλβ  )( 1=tpδ  )( tµβ  t  - )(*
tλβ  t  

Backcastable variables 
Voted Nixon in 1972 -1.14 (.00)  -1.36 (.00)    -0.92 (.00)  -0.51 (.04) 2,4 1.59 (.02) 2,4  
Voted McGovern in 1972  1.30 (.00) 1.58 (.00) -.56 (.04)   0.57 (.01)  0.88 (.00) 2 
Black .96 (.00)   -2.29 (.00)     1.29 (.00) 2 
Education -.29 (.00) -.23 (.00)          0.71 (.00) 2,3,4 
Age -.01 (.01) -.08 (.00) -.10 (.00)  
Female     .73 (.00) 
Constant .82 (.00)  3.47 (.00) 2.67 (.00)  -1.37 (.00)  -1.11 (.00) 2,3,4,5 -4.60 (.00) 2,3,4,5 
 
Non-backcastable variables 
Self-identification as Democrat          1.87 (.00)  2.38 (.00) 2,3 -3.09 (.00) 3   
             1.44 (.01) 5 -2.95 (.00) 4   
Indifferent towards Democratic or Republican president       -0.19 (.00)        0.45 (.00) 2,3,4 
Ford:  
 - good job as president              -0.36 (.02) 4,5 0.64 (.00) 2,3,4 
 - favorable feelings           -0.28 (.00)  -0.29 (.00) 2 0.99 (.00) 5   
             -1.21 (.00) 4 
 - trustworthiness             -1.04 (.00) 5 1.43 (.00) 4   
 - leadership             -0.35 (.00) 3     
 - ability                1.34 (.00) 2,5  
Carter:  
 - favorable feelings               0.35 (.00) 2,3 -0.69 (.00) 3,4  
             1.14 (.00) 4,5 -1.81 (.00) 5   
 - trustworthiness              1.26 (.00) 4,5     
 - leadership                -0.78 (.01) 4   
 - ability                -1.28 (.02) 2   
Constant              -1.12 (.00) 2,3 3.28 (.00) 3   
              -1.85 (.01) 4 2.82 (.00) 4   
               -1.57 (.04) 5 
Log likelihood *)(LL    -2142.48         -1431.17 
—————————————————————————————————————————————————————————— 
* p -values in parentheses. The β -parameters represent the effect on tµ , *β  the effect on )1( tλ−  and thus - *β  the effect on tλ . The columns labeled t 
indicate the discrete time periods pertaining to the parameters.     



 

Table 3: Prediction error measures*  

——————————————————————————————————————— 
t       2 3 4 5  
 

MSE ∑ = −
− −=tn

i ittitt yyn 1
2

1
1 ))0|((: µµ  .146 .123 .068 .049   

 ∑ = −
− −=tn

i ittitt yyn 1
2

1
1 ))1|((: λλ  .155 .121 .126 .069 

 

MML ∑ = −−
− −=−+=− tn

i ittitittitt yyyyn 1 11
1 )1ln())0|(1(ln)0|(: µµµ  .437 .378 .235 .162  

 ∑ = −−
− −=−+=− tn

i ittitittitt yyyyn 1 11
1 )1ln())1|(1(ln)1|(: λλλ  .607 .412 .495 .250 

 

MCA ∑ = −−
− −=−+=tn

i ittitittitt yyyyn 1 11
1 )1))(0|(1()0|(: µµµ  .736 .756 .879 .899  

 ∑ = −−
− −=−+=tn

i ittitittitt yyyyn 1 11
1 )1))(1|(1()1|(: λλλ  .788 .803 .817 .867  

 
——————————————————————————————————————— 
* MSE is the mean squared error, MML is the mean value of minus log likelihood error (Van Houwelingen 
and Le Cessie 1990), and MCA is the mean probability of correct allocation (Kay and Little 1986). 
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Table 4: Frequencies of observed (obs) and estimated expected (exp) (non-)Democratic 
vote transitions )( 1 tt yy −  at sample period t * 
 
——————————————————————————————————— 
 
 t  tn  (00)  (01)  (11)  (10)  2χ  
   obs exp obs exp obs exp obs exp   
  
 2 670  309 296  102 104  213 219 46 51  1.2 
 3 643  279 270 57 73 253 253 54 47  5.0 
 4 642  271 269 69 70 233 239 69 64  0.7 
 5 617 288 305 47 42 243 236 39 34  2.7 
 
*1=Democratic, 0=non-Democratic. The frequencies were only obtained for respondents with a valid 
score on both ty  and 1−ty . 
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Table 5: Frequencies of observed (obs) and estimated expected (exp) (non-)Democratic vote  
intention sequences * 
 
——————————————————————————————————————— 
sequence  obs  exp  ∆  
 0  527 524 -3 
 1  329  332   3 
 00  309 296 -13 
 01  102 104 2 
 10  46 50 4 
 11    213 219 6 
 000   223 207 -16 
 001  37 40 3 
 010  26 20 -6 
 011  66 69 3 
 100  25 26 1 
 101  13 14 1 
 110  20 20 0  
 111  160 174 14 
 0000  160 157 -3 
 0001  30 24 -6 
 0010  12 18 6 
 0011  14 14 0  
 0100  13 13 0  
 0101  10 4 -6 
 

 0110  15 12 -3 
 0111  43 40 -3 
 1000  12 19 7 
 1001  5 2 -3 
 1010  5 6 1 
 1011  4 5 1 
 1100  12 11 -1 
 1101  4 6 2 
 1110  23 13 -10 
 1111  114 132 18 
 00000  140 138 -2 
 00001  7 9 2 
 00010  9 3 -6 
 00011  14 13 -1 
 00100     9 13 4 
 00101     2 2 0 
 00110     2 3 1 
 00111      11 8 -3 
 01000     8 10 2 
 01001    5 1 -4 
 01010    3 0 -3 
 

 01011     4 2 -2 
 01100      10 7 -3 
 01101      4 3 -1 
 01110     4 5 1 
 01111     33 29 -4 
 10000     9 18 9 
 10001     3 2 -1 
 10010     1 1 0  
 10011      4 1 -3 
 10100     3 5 2 
 10101    2 1 -1 
 10110     0 2 2 
 10111    4 2 -2 
 11000    9 6 -3 
 11001    0 1 1 
 11010     1 0 -1 
 11011     3 3 0  
 11100      9 7 -2 
 11101     11 3 -8 
 11110     9 12 3 
 11111    91 114 23 
 

——————————————————————————————————————— 
* A binary digit represents a spell occurring over the sample periods t , where 1 refers to Democrat and 
0 to non-Democrat. The first spell starts at 1=t  and the sequences end at the observation period t . The 
frequencies were only obtained for respondents with a valid score on 1y  through ty  in the panel. 
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Figure 1: Graphical illustration of Markov model for RCS data  



 
 

Figure 2: Tomography plot for current entry and 1-exit transitions at sample period 5=t  


