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Abstract 

A periodic autoregressive time-series model assumes that the autoregressive parameters vary with the season. 
This model can also be represented by a multivariate model for the annual vector containing the seasonal 
observations. When this multivariate model contains one unit root, a time-series is said to be periodically integrated 
of order 1. In this paper we propose tests for such a single unit root. These tests for periodic integration are applied 
to a periodic model for the quarterly German consumption series. 
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I. Introduction 

A class of models that can provide useful descriptions of seasonally observed economic 
time-series is the class of periodic autoregressions (PAR), i.e. AR models with seasonally 
varying parameters. Recently, there has been a growing interest in these PAR models since 
they may reflect the behavior of economic agents with, for example, seasonally varying 
preferences, see Osborn (1988). Periodic autoregressions can be represented by a multivariate 
model for the annual series containing the observations per season, see Gladyshev (1961). 
This model facilitates an investigation into the non-stationarity aspects of a PAR. When the 
multivariate model contains a single unit root, the univariate series is called a periodically 
integrated autoregression (PIAR). 
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In this paper we propose tests for a single unit root in a multivariate model  for the annual 
vector containing the seasonal observations. First, in Section 2 we discuss notational and 
representational issues. In Section 3 we analyse the simple first-order autoregressive process. 
Using Monte Carlo simulations we find that the empirical distributions of the test statistics 
correspond to the asymptotic distributions. In Section 4 we apply tests for periodic integration 
to a periodic AR(1)  model for German non-durable consumption for 1962.1-1987.4. This 
particular example is considered since the theoretical model  in Osborn (1988) implies that 
consumption should be described by a P IAR process. Hence,  our test procedure can also be 
useful for evaluating economic theories. In Section 5 we conclude with some remarks. 

2. Notation and representation 

Consider a time-series y,, which is quarterly observed during N years, where t runs from 1 
to n = 4N, and which can be described by a periodic autoregression of order p,  PAR(p) ,  or 

P 4 4 

Yt = E E ~isDstYt-i + E l.~sDst + Et, (1) 
i = 1  s = l  s = l  

where ~bi, and/x, are periodically varying parameters with s = 1, 2, 3, 4, e, denotes a zero-mean 
uncorrelated process with constant variance 0 -2, and Ost represent seasonal dummies.  Note 
that the/x, parameters do not necessarily indicate that the underlying mean is periodic. This is 
most easily seen by considering the simple first-order model: 

Yt - 6 = ~)ls(Yt-1 - t~ ) + et , (2) 

which can be rewritten as 

y, = ~bl,y,_ ~ +/x, + e t , (3) 

where /x is a function of 6 and 4,1,. In practice, however, one estimates models like (1) 
unrestrictedly, and we will consider these in the sequel. Note that the lag order is not 
necessarily p for all seasons, i.e. the orders may be Ps in season s, where p = max(ps).  The e, 

z Unit  root in (1) can be replaced by an e,, process with seasonally varying variances Ors. 
inference is, however, not affected by this extension, and hence we do not consider it any 
further. See Pagano (1978) and Troutman (1979) for more extensive discussions of periodic 
autoregressions. 

Strictly speaking, the model  in (1) is non-stationary, since the variance, the autocovariances 
and hence the autocorrelations are not constant over the seasons. A more  convenient  
representation of (1) for investigating unit root issues is obtained by stacking the quarterly y, 
series into a (4 x 1) vector Yr of annual series, where Yr = (Yl r ,  Y2T, ]"aT, Ynr) ' ,  with Ysr as 
the observation in season s in year T, see, for example, Gladyshev (1961), Tiao and Grupe 
(1980), Osborn (1991) and Franses (1994). The model  in (1) can then be represented by 

A o Y T =  A , Y T _ ,  + "'" + AmYr_m + tZ + e r ,  (4) 
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where  Ai,  i = 0, 1 , . . . ,  m,  with m ~< 4p, are (4 x 4) pa rame te r  matrices,  /z is a (4 x 1) vector  
of pa ramete r s ,  and er is a vector  white noise process with mean  zero and covariance matr ix  
o'214 . In Eq. (7) below, the A 0 and A 1 matrix for the first-order mode l  as in (2) are given. 
No te  that  the mode l  in (4) contains constant  parameters .  

The  vector  series Yr is stat ionary when  the roots of the characteristic equat ion ,  

IZ 0 - mlz  . . . . .  Amzml = 0 ,  (5) 

are outs ide  the unit  circle. When  one root  is on the unit  disk one  says that  the Yt process in (1) 
is periodically in tegrated of order  1. In this paper ,  the focus is on a test for a single unit  root.  

3. A periodic autoregression of order one 

We start by considering the simple periodic first-order autoregressive mode l  

Yt = qblsYt-1 + et , 

where  ~bls # ~bl for all s, which can be writ ten in vector  nota t ion  as 

A o Y  T = A t Y T _  1 + ET , 

with 

E ° ° il 
A0 = - 12 1 0 

-4~13 1 
0 0 -,;b14 [i °° 

0 0 
A I =  0 0 " 

0 0 

(6) 

(7) 

Define the ( 4 x  1) pa ramete r  vector  ~b = (1~)1],~)12 , ~)13, ~)14) .  The  vector  process Yr is 
s ta t ionary if the root  of the characteristic equat ion ,  

IA0 - A lZl = (1 - ( ~ ) l l ( ~ 1 2 ( ~ 1 3 ~ b l n ) z )  ~-- 0 ,  ( 8 )  

is outs ide  the unit  circle, i.e. if < 1, where  g(~b) = ~)11~12(~13~b14 . Note  that  the values of 
some 4~1s are al lowed to exceed unity. The  process Yr is in tegrated if (8) has a unit  root ,  so 
that  

4 

H0: g(qS) = I-I ~b,s = 1 ,  (9) 
s = l  

holds.  Our  subject  is to test the null hypothesis  (9) against the al ternative that  Ig(~b)l < 1. In 
the  case of (9), the process is said to be periodically integrated of o rder  1. Otherwise ,  the 
process  y, is periodically stationary. Note  that  the m a x i m u m  n u m b e r  of unit  roots  for the YT 
process in (7) is one.  

U n d e r  the assumpt ion  that  the errors e, in (6) are normal ly  dis tr ibuted,  the m a x i m u m  
l ikel ihood (ML) est imators  of 61s are given by the ordinary least squares (OLS)  es t imators  in 
the  regression 
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4 

y, = ~ ~PlsOstYt_l + 8 t . (10) 
s = l  

Because of the orthogonality of the regressions in (10), we have 

[t l (/)ls 2 ( 1 1 )  = D s t Y t -  1 D s t Y t -  1Yt , 
- t = l  

for s = 1, 2, 3, 4. Imposing the null hypothesis leads to the restricted regression 

y, = 611OltY,_l  + q~1202,Y,_l + 613O3tYt_l + (~l1612(~13)-lO4,Y,_l -k- et, (12) 

which can be estimated by non-linear least squares (NLS). A likelihood ratio test statistic may 
be constructed as 

L R  = n . l n ( R S S  o / R S S  1 ) ,  (13) 

where R S S  o and RSS~ denote the residual sums of squares from (12) and (10), respectively. A 
one-sided test can be constructed as 

LR~ = [sign(g(~) - 1). L R  ~/2 . (14) 

Alternatively, a Wald test can be based on the t-type statistic, 

r = (~'[g(~)])-~/2 (g (~)  _ 1),  (15) 

where 

l~'[g(~)] = (Og(qb)/Ock') f"[qb](Og(~b)/06),  (16) 

and f'[q~] is the usual covariance matrix estimator, which is diagonal because of the 
orthogonality of the regressors in (10). 

T h e o r e m  1. Under  the H o in (9), and  as n ~ oo 

[/ 1/ N ( g ( ~ )  - 1) ~ B(r) 2 dr B(r)  dB(r) ,  (17) 
0 0 

L R , ,  r ~ B(r) 2 dr B(r)  dB(r) ,  (18) 
0 0 

where B ( r )  is a s tandard B r o w n i a n  mo t ion  process.  

Proo f .  See Boswijk and Franses (1994). 

The asymptotic distributions in Theorem 1 are the same as tabulated in Fuller (1976, Tables 
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8.5.1 and 8.5.2, respectively) for the non-periodic A R  model. We see that N(g(~b) -  1) 
already has an asymptotic distribution under  the null hypothesis that does not depend upon 
nuisance parameters.  So, it can be used as a test statistic alternative to r, just like the n(t~ - 1) 
statistic in the non-periodic case. Observe that g (~ )  - 1 should be scaled by N, the number  of 
years in the sample, if it is to be compared with the critical values in Fuller (1976). 

Extensions to autoregressive models that include a constant and a trend are straightforward 
and similar to the standard Dickey-Ful ler  case, provided that one considers models like 

4 

Y, = ~'~ [tzsDst + 6sDstTt + dPlsDstYt-1] + 8t , (19) 
S = I  

where T, represents a deterministic annual trend variable. The test statistics can be calculated 
along similar lines as above, and the corresponding distributions can be found in the tables in 
Fuller (1976), see Boswijk and Franses (1994) for details. 

In case the order of p in (1) exceeds one, it may be more convenient to consider the LR test 
statistic in (13), where ~b becomes a (4p x 1) parameter  vector. To illustrate its use, consider 
the periodic AR(2)  process: 

Yt = qblsYt -1  + dPesYt-2 + 6t , (20) 

which can be written as 

Y, - asYt-i = [~s (Y t -1  - ~ X s - l Y t - 2 )  + 6t , (21) 

where a_~ = an_ h, for k = 0, 1, 2. It is easy to recognize that for this model  

[A 0 - AlZ [ = (1 - O~lO~20t~30t~4z)(1 - ~ 1 1 ~ 2 ~ 3 ~ 4 z )  = 0 .  

A non-linear least squares routine can be applied to (21) and the hypothesis that o~1o~2a3o~ 4 = 1 
can be tested with the LR test in (13). See Boswijk and Franses (1994) for more  details. 

To verify whether  the asymptotic distributions for models as in (19) provide reasonable 
approximations,  we conduct a small Monte Carlo experiment.  The data generating process is a 
periodic first-order autoregressive process for a mean zero time-series without trends like (6). 
The test statistics used are the z test in (15), the LR~ test in (14) and the N(g(fb) - 1) test in 
(17). In Table 1 we report  on the empirical size of the tests for two generating processes with 
the property that (Dll(DI2(])I3(~l  4 is equal to 1. The maintained regression models contain (no) 
trends and (no) constants. From the rejection frequencies one can observe that the empirical 
size is usually too high for the z test, too low for the N(g(qb) -  1) test, and approximately 
adequate  for the LR~ test. The power of the three tests is reported in Table 2. The regression 
model  now contains no trends and no constants. The product of the four AR(1)  parameters  is 
about  0.6 and 0.8. From Table 2, it can be concluded that the power of the z test is usually the 
highest, while that of the N(g(~ )  - 1) test is the lowest. Note that Table 2 does not report  on 
size-adjusted power, and hence the latter results are likely to be caused by the incorrect size of 
the N(g(qb) - 1) test. The power of the LR~ test is quite reasonable, especially at a nominal  
size level of 10%. In summary,  we recommend the use of the LR,  test in practice. 
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Table 1 
The empirical size of the tests for periodic integration in a first-order autoregression. The data generating process is 
y, = ~bl,y,_ 1 + e,, under the restriction ~bxs~b:s~b3s~b4s = 1, where e, is drawn from a standard normal distribution. 
Sample size is 100, and the cells contain rejection percentages of the null hypothesis. The number of replications is 
1000 

Parameters in DGP Nominal Test statistic 
size 

~11 ~12 (~13 T L R .  N( g( ~b ) - 1) 

The regression model contains no constants and no trends 
0.5 0.90 1.50 5.0 6.0 4.7 2.0 

10.0 11.1 9.5 5.9 
1.1 0.91 1.05 5.0 5.5 4.3 3.3 

10.0 11.2 9.3 6.9 

The regression model contains constants and no trends 
0.5 0.90 1.50 5.0 8.6 3.9 2.4 

10.0 13.6 7.7 5.1 
1.1 0.91 1.05 5.0 9.4 5.0 2.5 

10.0 16.1 9.1 7.0 

The regression model contains constants and trends 
0.5 0.90 1.50 5.0 13.6 3.7 0.6 

10.0 19.3 7.4 2.8 
1.1 0.91 1.05 5.0 17.0 4.3 0.6 

10.0 21.2 9.5 3.2 

Table 2 
The empirical power of the tests for periodic integration in a fii'st-order autoregression. The data generating process 
is y, = ~blsy,_ 1 + e,, where e, is drawn from a standard normal distribution. Sample size is 100, and the cells contain 
rejection percentages of the null hypothesis. The number of replications is 1000. The regression model contains no 
constants and no trends 

Parameters in DGP Nominal Test statistic 
size 

~)ll ~)12 ~13 ~14 1" L R  N(g(~,) - 1) 

The product ~b11~12~13(~14 is about 0.6 
0.4 1.2 0.8 1.6 0.05 93.1 86.5 78.4 

0.10 98.6 97.7 94.0 
0.6 0.8 1.0 1.2 0.05 96.6 91.7 90.1 

0.10 98.4 97.9 98.3 

The product ~11~b12(~13~14 is about 0.8 
1.3 0.30 1.5 1.3 0.05 56.9 48.1 39.8 

0.10 74.5 70.9 63.8 
0,7 0.95 1.2 1.0 0.05 49.0 38.4 29.9 

0.10 69.8 63.3 54.6 
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4. German consumption, 1962.1-1987.4 

In this section, the tests for periodic integration will be applied to the West German 
consumption data, which cover the period 1962.1-1987.4 as they are given in Appendix E in 
Lfitkepohl (1991). The observations previous to 1962 are used as starting-values. 

The pursued model selection strategy amounts to estimating periodic autoregressive models 
as in (1) of order p,  where p is initially set equal to 4, and p is decreased when diagnostic tests 
indicate no obvious signs of misspecification. It emerges that four trends can be deleted from 
each of the models. The diagnostic checks used are LM tests for first- and fourth-order 
residual autocorrelation, FAR 1 and FAR4, LM tests for first- and fourth-order A R C H  effects, 
FARCm and FARCH4, a X2(2) test for normality of the residuals, and an LM test for first-order 
periodic autocorrelation, FpAR1. 

The specification search yields that there is an additive outlier in the second quarter in 1979, 
and hence this observation is deleted by including a dummy variable for this observation and 
for its p next data points. The final model turns out to be 

c, =/2s + d , : , _ ,  + (22) 

with 

/21 = -0 .937 ,  ~ = 0.674, /23 = 0.053 , /24 = 0.408, 

(0.077) (0.069) (0.076) (0.075) 

~11 = 1.100, ~12 = 0.922, ~13 = 0.994, ~14 = 0.961 , 

(0.010) (0.009) (0.010) (0.009) 

where the standard errors are given in parentheses. The diagnostic test values a r e  E A R  1 = 

0.880, FAR 4 = 1.344, FARCm = 0.603, EARCH 4 ~ 1.571, E p A a l  = 0.654 and X2(2) is 1.782. Note 
that this model is estimated for 104 observations and that the observations for 1979.2 and 
1979.3 have been removed to ensure white noise residuals. The point estimates in (22) do not 
change much when we do not include dummy variables for 1979.2 and 1979.3 in the model. 

The F-test for the null hypothesis that the ~b~s parameters are indeed periodic, i.e. for the 
hypothesis that (/)is = ~1 for all s, obtains a value of 66.636. This suggests that a suitable model 
for consumption is a periodic AR model of order 1. In Osborn (1988) it is derived from a 
life-cycle model, which allows for seasonally varying preferences, that a model like (22) is 
predicted from a standard life-cycle consumption theory. A further implication of that theory 
is that the PAR( l )  model is periodically integrated. This can be verified with the tests given in 
Section 2. The ~- test obtains a value of -1.682, the L R ,  a value of -1.753 and the 
N ( g ( q b ) -  1) test a value of -0.811. The results in Table 1 indicated that the ~" and the 
N(g(qb) - 1) tests can have incorrect empirical sizes, but that the L R ,  test seems to perform 
well. Taking these outcomes into account, we conclude that German consumption is 
periodically integrated, and thus that the life-cycle theory with seasonally varying preferences 
cannot be rejected for Germany. 
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5. Concluding remarks 

In this paper we have proposed three tests for a unit root  in autoregressions, which assume 
that the autoregressive parameters  are periodic, i.e. vary with the seasons. The tests follow 
standard Fuller (1976) distributions. Monte  Carlo evidence indicates that one of the tests is to 
be preferred.  This test can be used as part  of an overall strategy to investigate the seasonal 
and non-stat ionary properties of univariate time-series, see also Boswijk and Franses (1994). 
This strategy may consist of estimating a general periodic A R  process, and of selecting the 
most  appropriate model  via a sequence of tests for parameter  restrictions. Future  research 
may be directed to investigate the empirical properties of such a strategy. 

In the case when simple periodic time-series models cannot  be re jected by the data, one can 
also use the proposed tests in the present  paper  to check the predictions from an economic 
theorem based on the life-cycle hypothesis. In our empirical section we showed that the 
consumption in Germany  obeys some of the restrictions implied by that theory,  see Osborn  
(1988). 
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