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Abstract-In this paper, a vector autoregressive model is developed for a sample of ocean dry bulk freight 
rates. Although the series of freight rates are themselves found to be non-stationary, thus precluding the use 
of many modelling methodologies, evidence provided by cointegration tests points to the existence of stable 
long-term relationships between the series. An assessment of the forecasts derived from the model suggests 
that the specification of these long-term relationships does not improve the accuracy of short- or long-term 
forecasts. These results are interpreted as a corroboration of the efficient market hypothesis. 0 1997 Elsevier 
Science Ltd 

INTRODUCTION 

Freight rates have been a topic of interest in the shipping industry for a long time. Due to the 
ongoing uncertainty in international shipping and especially the volatile nature of freight rates, 
members of the shipping community have always expressed a strong interest in quantitative ana- 
lyses of freight rates. Some evidence of this claim can be found in the large and ever-growing body 
of literature on pricing models in shipping, in the abundance of freight rate data that is made 
available to the shipping industry and in the existence of various software packages that produce 
freight rate forecasts. A notable example of such a package is the so-called ‘Freight Forecaster’, 
developed by Maritime Strategies International Ltd in the United Kingdom. Until recently, the 
quantitative approach mainly consisted of attempts to model freight rates and other variables 
of interest together with their determinants in linear regression systems; for some examples, 
see Hawdon (1978) Strandeness (1986) and Beenstock and Vergottis (1993). An exception is 
Cullinane (1992), where the Box-Jenkins methology is applied to generate forecasts in dry bulk 
shipping. 

This paper presents a relatively new approach to modelling freight rates in shipping, an 
approach which uses only the freight rate data themselves. In other words, we consider a multi- 
variate time series model. The intention is to build a model for freight rates that is meaningful in 
terms of established microeconomic theory. The model development is preceded by a descriptive 
analysis of the univariate data to examine the overall structure of shipping freight rates. 

The main justification for modelling freight rates in a multivariate time series model is that 
shipping markets are assumed to be approximately efficient. In fact, the conditions for perfect and 
competitive markets all hold to a considerable extent in shipping [see, for instance, Evans (1994)], 
since aspects that might disturb efficiency in perfectly competitive markets like externalities and 
informational asymmetry are resolved in one way or another. For instance, informational asym- 
metry, i.e. the situation where one contract partner has less information than another partner, may 
emerge in the shipping operation. However, the charter party, the transportation contract between 
a charterer and a shipowner, solves many such information gaps by accurately specifying the speed 
of the ship, the number of days allowed for loading and unloading, the consumption of fuel, the 
payments that have to be made if the ship is late or early and so forth. 
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Assuming that the market is efficient, it can be argued that the relevant freight rates contain all 
publicly available information; see Fama (1970) for the various forms of market efficiency and 
Nicholson (1989, p. 258) on market efficiency in general. Thus, in that case, no extra variables 
beyond freight rates are necessary for model building. Given the obvious linkage of freight rates 
over time, one might expect that the freight rates of different parts of the shipping industry are 
correlated. One can try to identify the underlying structure which can be summarized in a multi- 
variate time series model for a set of freight rates. The resulting model can then serve two purpo- 
ses. The first is to generate forecasts, the second is to identify the long-term trend behind the 
freight rates. In this paper we pursue both purposes. A third purpose of our paper is to investigate 
whether our multivariate time series model outperforms the no-change forecasting model. If not, 
we may feel confident with the efficient market hypothesis for our freight rates. 

The structure of this paper is as follows. The next section presents the testing techniques that are 
used to analyze the freight rates; i.e. stationarity and cointegration tests. In this section we also 
describe the data and present the estimation results. The next section contains the results that con- 
cern the stochastic trend, which we estimate from the data. In the next section, we forecast freight 
rates using the obtained structure. The next section presents the evaluations of the forecasts. In the 
final section conclusions are drawn. All calculations concerning estimation and data analysis 
(including the cointegration tests) are performed through standard options in Eviews-TSP for 
Windows, version 1.0. Forecasts and stochastic trend calculations are performed using some rou- 
tines in the matrix language Gauss, version 3.1. 

DATA ANALYSIS 

As is usual in applied economic time series modelling, the data analysis consists of several parts. 
First we describe and plot the data. From the graphs, one can obtain a first indication of the 
structure in the data. Second, a univariate time series analysis is performed using formal statistical 
techniques. This analysis provides information on unit roots and the general dynamic structure of 
the individual series. Having arrived at this point, a multivariate model can be hypothesized. 
Subsequently, the parameters in this model are estimated. 

Data analysis of the univariate series 
The data were kindly made available by Clarkson Research Studies Ltd in the United Kingdom, 

a company that collects, processes and maintains much data on the shipping industry, including an 
extensive number of freight rate series over a large span of time. We use their database of dry bulk 
freight rates. As with all other sources of freight rate data, during the late eighties, Clarksons made 
some changes to the reported freight rate series. This was due to larger ships being more regularly 
used on certain routes, some unreported routes becoming more important and trade declining on 
some of the reported routes. These changes in reported freight rate series make it difficult, 
although not impossible, to obtain data series that stretch over 15 or more years. Series that were 
reported before and after the period in which changes were made can sometimes be adequately 
combined into longer series. In the Clarkson database this was possible with the series presented in 
Table 1. Further details on the construction of the data can be obtained from the corresponding 
author. In this paper we analyze the data after taking natural logarithms. This overcomes com- 
parability problems in the data, since the series originate from quite different sections of the dry 
bulk shipping industry. Taking logarithms also stabilizes the variances of the series, and reduces 
the impact of heteroscedasticity. For ease of reference, the first three series in Table 1 are termed 

the ‘Capesize series’ and the second three are termed the ‘Panamax series’. The Capesize and 
Panamax variables are plotted in Figs 1 and 2, respectively. 

The striking feature of these graphs is that the patterns of the series seem similar. This feature by 
itself justifies that there may be some economic structure that ties the series together. In order not 
to complicate the analysis, we assume that this structure is linear. 

The strength of the relationship between the series is further established through the correlations 
presented in Table 2. From this table, we also observe that the mean values are equally spaced 
within the two size groups and the standard deviations are quite alike. 

The sample for the six series defined in Table 1 covers the period September 1983 to February 
1995. In order to save actual observations for an ex-ante evaluation of forecasting performance, 
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Table I. Description of series used in the analysis 

Route cargo Old New Series name 

The Capesize series“ 
I. Tubarao-Rotterdam 

iron ore 
2. Tubaroa-Japan 

iron ore 
3. Hampton Roads/Richards Bay-JapanC 

coal 

The Panamax serief 
4. Roberts Bank-Japan 

coal 
5. US Gulf-Rotterdam 

grain 
6. Hampton Roads-Rotterdamd 

coal 

80 000 dwt” 
(before 1988) 
130000 dwt 

(before 1989) 
100000 dwt 

(before 1989) 

50 000 dwt 
(before 1989) 

50 000 dwt 
(before 1989) 

50 000 dwt 
(before 1989) 

145000 dwt 
(after 1988) 
145000 dwt 
(after 1989) 
132000 dwt 
(after 1989) 

YICAP 

YZCAP 

Y3CAP 

64OOOdwt 
(after 1989) 
54 500 dwt 
(after 1989) 
I22000 dwt 
(after 1989) 

Y4PAN 

YSPAN 

Y6PAN 

PThe terms ‘Cape&e’ and ‘Panama%’ used here, are the same as the terms used to de-scribe ships of a certain size range in 
the dry bulk shipping industry. 
*Dead weight ton. 
‘The full description of this route is Hampton Roads (U.S. West Coast)/Richards Bay (South Africa)-Japan. 
“This route changes from a Panamax to a Cape& route after 1989. 

we set the estimation sample for the model to cover the shorter period of September 1983 to 
August 1993, yielding a sample of 120 monthly observations. 

Testing for unit roots in univariate time series has become a standard tool in modern econo- 
metric data analysis. Since conventional statistical analysis assumes that the time series at hand are 
stationary, and since a unit root implies non-stationarity (see Mills, 1990), it is important to test 
for unit root. Stationarity implies that the theoretical mean and variance of a time series process 
are constant over time and that the autocovariances and autocorrelations only depend on the time 
difference between the observations involved, see Mills (1990, p. 64.) One type of non-stationarity 
is the so-called unit root non-stationarity. This type of non-stationarity can be established through 
a formal test on the presence of a unit root in the series. Testing for unit roots enables direct 
inference on the degree of non-stationarity and the subsequent degree of differencing to transform a 
time series to stationarity. Several tests are available in the literature. In this study, we restrict our 
attention to the augmented Dickey-Fuller (DF) test, since it is widely applied (see Mills, 1990 for 
details and Dickey and Fuller, 1979 for the original derivation). The null hypothesis for the DF test 
is that a time series is non-stationary with a unit root, possibly with a non-zero growth rate or drift. 

1984 1986 1988 1990 1992 1994 1996 

Time 

Fig. I. Cape&e series. 
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1984 1986 1988 1990 1992 1994 1996 

Time 

Fig. 2. Panamax series. 

Table 2. Correlations”. Series in logarithms 

YICAP YZCAP Y3CAP Y4PAN YSPAN Y6PAN MEAN s.d. 

YlCAP 1.00 0.98 0.93 0.87 0.87 0.85 2.47 0.28 
YZCAP 1 .oo 0.92 0.83 0.87 0.85 2.22 0.29 
Y3CAP 1 .oo 0.92 0.82 0.78 1.72 0.25 
Y4PAN 1 .oo 0.82 0.15 1.74 0.23 
YSPAN 1.00 0.91 2.11 0.21 
Y6PAN 1 .oo 2.33 0.27 

“Estimation sample is September 1983-August 1993 (120 observations). 

The results from Table 3 show that all series are non-stationary at the 1% level, and that two 
series seem stationary at the 5% level. For further analysis, assume, however, that all six univari- 
ate series have a unit root. 

Econometric model 
The correlations, the unit root test results and the graphs in the previous tables and figures are 

all evidence that the series may have common properties. A straightforward way of describing 
these properties is by assuming a multivariate time series model, or vector autoregressive model 
(VAR) model, that explains the six freight rate series through their own lagged values and which is 
somehow restricted to reflect the common features. Since the DF tests indicate that the series are 
all non-stationary, this VAR model may hold for the differences of the series. However, building a 
VAR model based only on differenced variables is statistically undesirable, since information 
about possible long-run relationships between the variables is lost (see, for instance, Engle and 
Granger 1987). 

Table 3. Unit root tests results series in logarithms the null hypothesis corresponds to unit-root stationarity, while the 
alternative hypothesis concerns covariance-stationarity 

Series YlCAP Y2CAP Y3CAP Y4PAN YSPAN Y6PAN 

t-statistic -1.77 -1.60 -2.67 -2.79 -2.96“ -3.08” 
Number of lags 1 0 1 1 I 1 

‘Indicates that the test statistic is significant at the 5% level and hence that the null hypothesis of a unit root can be rejected. 
The reported tests are performed in a regression which includes a constant. Critical values for the unit root tests without a 
trend are -3.49, -2.89 and -2.58 for the 1, 5 and 10% level, respectively, see MacKinnon (1991). ‘Number of lags’ indicates 
the number of lagged differenced variables that are included in the regression to whiten the errors. The number of lags is 
decided upon by applying conventional tests for residual correlation. 
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Table 4. Unit root test results for the variable z, = x, - yI. where x, and y, concern the variables in Table 1 (in logs) 

Series YZCAP Y3CAP Y4PAN YSPAN Y6PAN 

YlCAP -5.56 -3.28 -2.63 -3.68 -2.19 
YZCAP -2.58” -2.45” -3.52 -3.48 
Y3CAP -3.90 -4.49 -2.8 I 
Y4PAN -1.71” -2.69 
Y SPAN -4.92 

“Indicates that non-stationarity cannot be rejected at the 10% level. Critical values for the Dickey-Fuller unit root tests 
with a constant and no trend are -3.47, -2.88 and -2.58 for the I, 5 and 10% level, respectively [see MacKinnon (1991)]. 
Lags of differenced left-hand side variables were added for the combinations Y4PAN-Y6PAN and YSPAN-Y6PAN. 

There are many possible hypotheses of the underlying long-run relationships between the freight 
rate series, of which only a few have an economic interpretation. One plausible set of relations 
would be that all series are related in pairs of two in such a way that the unweighted difference of 
two series is stationary. This amounts to the assumption that pairs of series are cointegrated (with 
a unit cointegration vector) (see Engle and Granger 1987). Cointegration implies that although 
two series are non-stationary, or integrated, such that first differences are required to obtain sta- 
tionarity, a linear combination of these series can be stationary. Since an unweighted difference 
between two series x and y, i.e. x-y, can also be described as the vector product (1, -l).(x,y), one 
can call these differences (1, -1) linear combinations. For six series, as in our case, pairwise (1, -1) 
cointegration would lead to five so-called coinfegration relations. To test if these assumptions are in 
any way reasonable, unit root tests are performed on the unweighted differences between all pos- 
sible combinations of two out of the six series, a total of 15 possibilities. The unit root test results 
are presented in Table 4. 

The results in Table 4 convincingly show that almost all unweighted differences between any two 
of the six series are stationary. 

Alternative to the above (pairwise) approach, one may also investigate cointegration amongst 
all six variables in one step. In this paper, we use the test methodology of Johansen (1991) for this 
purpose. If a cointegration relation between a set of series can be established, the Granger Repre- 
sentation Theorem states that the VAR can be written as a vector error correction (VEC) model, 
and vice versa [see Engle and Granger (1987) for the original formulation of this theorem]. Thus, 
the existence of cointegration relations implies that ‘disequilibrium errors’ are corrected in sub- 
sequent periods, and this again indicates that the series are closely linked. 

The cointegration test procedure of Johansen is executed by estimating a VEC model, see eqn (1) 
below. The number of cointegration relations is established by a sequential likelihood ratio test on 
the rank of an estimated parameter matrix from the VEC model. This rank test is based on the 
eigenvalues of the parameter matrix. In Table 5, where the results of the cointegration tests of the 
six freight rates are reported, we present these eigenvalues together with the likelihood ratio statistic. 

The test results in Table 5 seem to indicate the presence of three cointegration relations at the 
5% level. The failure to reject the null hypotheses of three and four cointegration relations may, 
however, be due to the typical low power of the test statistics in cases where many parameters have 

Table 5. Co-integration test results series in logarithms 

Number of co-integration 0 1 2 3 4 5 
relations of at most, n 

Likelihood ratio 123.72 80.38 49.54 25.54 8.97 2.72 
Eigenvalue 0.30 0.23 0.18 0.13 0.05 0.02 
I % critical value 103.18 16.07 54.46 35.65 20.04 6.65 
5% critical value 94.15 68.52 47.21 29.68 15.41 3.16 
10% critical value 89.48 64.84 43.95 26.79 13.33 2.69 
Tests outcome * l + 

The null hypothesis of 0 co-integration relations is tested against the alternative hypothesis of at most n co-integration 
relationships. 
* Means that the null hypothesis is rejected at the I % level. 
+ Means that the null hypothesis is rejected at the 5% level. The sample period is September l983-August 1993. Critical 
values are obtained from Osterwald-Lenum (1992). The test option with a constant, but no trend in the data or the coin- 
tegration relation is used. The order of the VAR model is equal to one. The order of the VAR is based on diagnostic tests 
for residual correlation. 
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Table 6. Estimated cointegration parameters in the case of five co-integration relations 

Relation 

I 
2 
3 
4 

YlCAP 

1.00 

YZCAP 

1.00 

Y3CAP 

1 .oo 

Y4PAN 

1.00 

YSPAN 

1.00 

Y6PAN C 

-1.50 -0.68 
-1.54 -1.01 
-1.05 -0.48 
-0.86 -0.05 
-1.36 -0.53 

to be estimated. Given the large values of the test statistics for four and five cointegration rela- 
tions, we accept that there are five cointegration relations. If we consider five such relations within 
the VAR model, we obtain the estimated cointegration parameters as presented in Table 6, where 
the cointegration relations are normalized on the sixth variable, Y6PAN. 

Table 6 shows that the cointegration parameters are quite close to unity and, hence, that (1, -1) 
long-run relationships (which we presumed in Table 4) may indeed be valid. The hypothesis that 
these cointegrated variables are zero-mean stationary can be tested through a likelihood ratio test. 
In the cointegration test methodology of Johansen, given our data set and the assumption of five 
cointegration relations, we estimate the following VEC model: 

~~~j=~+~~~.~~~~~].~~]+~~ (1) 

Here the variables as introduced in Table 1 are extended with a time index, A is the first differ- 
encing filter, c is a (6x 1) vector of constants, et is a (6x 1) vector of white noise residuals, 01 is a 
(6 x 5) matrix of so-called adjustment parameters, & are the cointegration parameters in Table 6 
and Ci are the constants in the cointegration relation (i = 1,2,3,4,5). The explanatory variables on 
the right hand side of the model are stationary, as previously shown in Table 5. The likelihood 
ratio test of the model in (1) with the restrictions 0, = 1 and ci = 0; versus an unrestricted VEC 
model with five cointegration restrictions obtains a value of 15.6. Comparing this with fractiles of 
the X2(10) distribution, it is clear that we cannot reject our hypothesis at the 5% level. 

Final Estimation results 

When we estimate the parameters in the VEC model by ordinary least squares, we obtain 

-0.24 0.13 

0.33 -0.42 

0.10 -0.04 

0.06 -0.10 

0.05 0.08 

-0.06 0.07 

-0.03 0.14 -0.14 

0.07 -0.01 0.14 

-0.22 0.18 0.08 

0.09 -0.07 -0.09 

-0.09 0.10 -0.11 

0.03 0.07 -0.15 I 
. YlCAP,_, 

Y2CAP,_ I 

MCAP,_ I 

Y4PAN,_, 

YSPAN,_, 

. Y6PAN,_l 

(2) 

CoelIicients that are significantly different from zero are indicated in bold. 
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We find that only four adjustment coefficients (in ct) are significantly 
forecasting exercise, we set all other parameters to zero. 

THE COMMON STOCHASTIC TREND 

453 

different from zero. In our 

A phenomenon that can often be observed when modelling ocean freight rates (see in our case 
Figs 1 and 2) is that different freight rates exhibit quite similar patterns. This similarity may 
indicate the existence of a common drive or common stochastic trend, that forms the basis of the 
freight rates in shipping and may determine the general pattern of freight rates. 

A condition for one common trend to exist for six freight rates is that there are five cointegra- 
tion relations in the set of freight rates [see Johansen (1991)]. To find an expression for the sto- 
chastic trend, and to discover a way of calculating that trend, we consider again the VEC 
specification of our VAR(1) model, which can be summarized as 

AY, =c+@‘Yt_, +E~ (3) 

Here Y, is a vector of n series, in our case YlCAP, Y2CAP, Y3CAP, Y4PAN, YSPAN and 
Y6PAN, c is a vector of constants, ct and /3 are n x r matrices, where I is the rank of these matri- 
ces, and ct is the error term. Notice that n = 6 and r = 5 in our application. In this model, the 
relationships p’Y,_i (i.e. the cointegration relations) define the underlying economic relationships. 
We can now define full rank matrices (rl and /lo of dimensions n x (n-r), which form the solution 
to (Y’CX~ = 0 and @PI = 0. If the matrix o’,Sl also has full rank, then (3) can be solved as 

Y, = YO+Mct+MC6ifXr (4) 
i 

with 

A4 = Bl(a;BI)-‘a; (5) 

and Y, is some initial value, and X, is a stationary series. 
The structure of the coefficient matrix M is such that the cumulative effect of all shocks to the 

system is given by a: Cc. Indeed, multiplying both sides of eqn (4) with a> gives the required 
expression. This expression is defined in Johansen (1994) as the set of common trends. In case of a 
VAR(1) with one common trend, we can represent this trend simply by U: Y,. 

For our empirical exercise, we have the a! matrix as in (2). To obtain the stochastic trend, we 
calculate (rl and multiply it with Y,. The (Ye for eqn (2) is: (-0.308, -0.188, 0.382, 0.230, -0.543, 
0.613). In Fig. 3, we depict the underlying stochastic trend driving our six series. 

The stochastic trend is unforecastable, since by definition it is a random walk process. It simply 
portrays the unexplained part of the data when deterministic or common relationships in the data 
set have been removed. From Fig. 3 it seems, that the stochastic trend contains an irregular 
cyclical pattern over the years, which may be generated by random economic events in the 
world economy such as wars and oil crises. In addition, we observe an upward swing in 1994/1995. 
When we analyse data before that period and we try to forecast this swing, we cannot expect 
a successful forecast record. On the other hand, we find considerable deterministic relationships 
(i.e. cointegration) in the data set. These deterministic relationships could help in forecasting 
changes in freight rates over a short- to medium-term period. This will be pursued in the next 
section. 

FORECASTING 

A forecasting equation can easily be derived on the basis of the general model in eqn (3). To 
derive a forecasting equation for the variable Y, (as compared to the variable AY,), we write 
eqn (3) as: 

Y,,, = c + (I + c$? Y, + Er+l (6) 
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01 ’ 
1905 1987 1989 1991 1993 

Time 

Fig. 3. Stochastic trend. 

I I 

d , 8 
1995 

where Z is a (6 x 6) identity matrix. Since forecasts for et + t, equal zero, the general expression for an 
h-step ahead forecast is: 

Y r+l, = Ah Y, (7) 

where the expression (I + ctfl’) in (6) is replaced by A. In eqn (7), the vector of constants is 
ignored, because some preliminary (but unreported) calculations of forecasts showed that the 
constants dominate the forecasts very quickly. This is undesirable, especially because most of the 
constants are not significantly different from zero. Standard errors for the forecasts calculated with 
eqn (7) can be obtained by taking the square root from the diagonal elements of the covariance 
matrix of the forecast errors. This covariance matrix can be calculated using the estimated values 
in the matrix A, according to the following formula: 

h-l 

C/(h) = CA~QP 
i=O 

[see Mills (1990)] where Q(h) is the covariance matrix of the h-th step forecast and C, the cov- 
ariance matrix of the residuals of the forecasting model. With these standard errors, 95% confi- 
dence bounds for the forecasts can be computed. 

To obtain a proper forecast, the matrix A should contain only those coefficients in a that can 
reasonably contribute to the forecasts. Thus, the forecast mode1 is different from the estimated 
model in eqn (2). The procedure to obtain the sparser forecasting model is to set insignificant 
coefficients equal to zero step by step. This procedure is followed until as many coefficients as 
possible are set to zero while, at the same time, as many coefficients that contribute considerably 
are retained. These last coefficients are mostly those with the larger coefficient values. Thus, the 
forecasting mode1 may contain some coefficients that were insignificant in eqn (2) but are signifi- 
cant in the forecasting model. We justify our simplified model by calculating likelihood ratio tests 
to jointly test all zero restrictions. 

Our final forecasting model has the same structure as eqn (2). After stepwise simplification we 
find that the elements of a are estimated as 

i -0.12 o.oso 0.34 0 0 0 -0.39 0 0 0 0 -0.18 00 000 0 0 0 0.10 0 0 0.18 0.10 0.0s 0.15 0.14 0.19 

(9) 
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The underlined coefficients in eqn (9) are actually not significantly different from zero. However, 
observing the size of the estimated parameters, the model may be able to improve upon a naive 
forecasting strategy, especially for the first two or three series, since the equations corresponding 
to these variables contain several relevant non-zero coefficients. A likelihood ratio test of the 
hypothesis that 18 of the 30 coefficients in ct in the model in eqn (2) could indeed be set equal to 
zero [as we do in eqn (9)], gives an LR value of 24.88. This statistic does not exceed the 5% critical 
value of the x2(18) distribution. The model with the a-matrix as in (9) is the smallest forecasting 
model that can be statistically justified. Deleting one more (insignificant) variable immediately 
leads to a rejection of the joint hypothesis that 19 coefficients can be set equal to zero. 

Forecasts for the period September 1993 to February 1995 can be generated in several different 
manners. We confine ourselves to dynamic forecasts for 1 up to 18 periods ahead (in the sense that 
forecasts are generated using previous period forecasts as inputs) and to forecasts for 1 period 
ahead for the each of the 18 periods. These forecasts will be compared with the naive forecasting 
method where the observation in the previous period is used as a forecast. The actual observations 
for the six series serve as a basis for the forecasting errors. The forecasts produced by the dynamic 
forecasting method (where we transform the forecasting values back to levels by taking exponen- 
tials) are presented in Figs 4 and 5. 

EVALUATION OF FORECASTS 

The forecasts in Figs 4(a)-(c) and 5(a)-(c) do not seem to pick up the actual freight rate move- 
ments. On the other hand, we observe that the realized observations are usually well within the 
95% forecasting intervals. A normal feature of VAR models is that the longer term forecasts tend 
towards the estimated average of the series in the model, and this can also be observed from the 
graphs in Figs 4 and 5. Another reason why the mode1 may not perform well in the long term is 
illustrated by the stochastic trend in Fig. 3. This trend shows a steady increase in freight rates in 
the forecasting sample. 

In Table 7, forecasting evaluation criteria for the dynamic method and the one-period method 
are presented. Forecasting errors are averaged over the applicable number of periods. For the 
dynamic method, this means that the average errors are calculated for eighteen forecasts ranging 
from one to eighteen periods ahead. For the one-period forecasts, the averages are calculated over 
eighteen single period forecasts. On the basis of the information in Table 7, it is clear that our 
proposed multivariate VEC model with 5 cointegration relations is defeated by a naive forecasting 
strategy for both the short and long term forecasts. 

CONCLUSIONS 

In this paper, a model has been proposed that represents the structure between a number of 
ocean bulk freight rate series. Statistical examination of the series has led to evidence of non-sta- 
tionarity and cointegration relations between the series. Based on formal statistical tests, we 
assumed that there are five cointegration relations between the six series and we formulated a VEC 
model. This model has the attractive feature that the first differences of the six freight rate series 
are explained by simple differences between the freight rate series. On the basis of this model, we 
formulated two applications; an estimation of the underlying stochastic trend and the calculation 
of forecasts for the freight rate series. The stochastic trend proved to be quite similar to all six 
series. This means that a large part of the general pattern of the freight rate series is stochastic in 
nature and therefore cannot be forecasted. This result was further strengthened by the second 
application. It proved to be difficult to obtain reliable forecasts with the proposed model. 

The results presented in this paper indicate that an economically meaningful structure exists in a 
set of ocean dry bulk freight rates; that is, there are stable long-run relationships between such 
freight rates. On the basis of this structure, the stochastic trend behind the freight rates can be 
uncovered. It turns out that a substantial part of the movement in freight rates is stochastic in 
nature. Our results do not seem to be in conflict with the efficient market hypothesis as it applies to 
ocean freight rates. Even though there appear to be long-run relationships between freight rates, 
we find that such relationships do not result in improved forecasts. 

Whether our results are due to the fact that we only consider time series models, i.e. models 
without exogenous explanatory variables, is left for further research. 
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Table 7. Forecasting errors0 

YICAP YZCAP Y3CAP Y4PAN Y SPAN Y6PAN 

Dynamic forecasts 
Model 

Absolute error 
Percentage error 
Mean squared error 

Naive methodb 
Absolute error 
Percentage error 
Mean squared error 

One-period forecasts 
Model 

Absolute error 
Percentage error 
Mean squared error 

Naive methodb 
Absolute error 
Percentage error 
Mean squared error 

0.493 0.348 0.221 0.198 0.254 0.155 
18.20 14.18 12.31 10.98 9.66 6.94 
0.381 0.180 0.071 0.056 0.125 0.029 

0.177 0.186 0.211 0.198 0.161 0.101 
6.72 7.86 11.50 10.98 6.15 4.49 
0.050 0.050 0.067 0.056 0.050 0.013 

0.084 0.104 0.088 0.073 0.068 0.046 
3.27 4.54 5.10 4.19 2.77 2.05 
0.012 0.015 0.011 0.008 0.007 0.003 

0.062 0.074 0.087 0.073 0.072 0.035 
2.44 3.20 4.96 4.19 2.91 1.54 
0.007 0.009 0.011 0.008 0.008 0.002 

“The evaluation criteria employed are absolute forecast error, percentage error and mean squared error. 
qhe naive forecasting method uses the last known observation as a forecast. 
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