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l)RELIABILITY AND RANKINGS

Questionnaires are an important way to gather information about large populations
for both qualitative and quantitative research. Hence, the value of a good questionnaire
design and the quality of questionnaire data cannot be emphasized enough. This thesis
discusses some aspects of the statistical analysis of measurement data obtained via
questionnaires.

In the first part of this thesis we focus on maximizing scale reliability. We derive the
asymptotic distribution of maximal reliability measures to construct confidence intervals in
order to assess the adequacy of the measure. We stress the use of confidence intervals
accompanying single measures that summarize the parameters to assess the adequacy of
the measure. The results can lead to better designs of questionnaires, which in turn lead to
more precise survey outcomes.

The second part of this thesis proposes methodologies to perform statistical analysis of
stated consumer preferences measured as rankings data, especially in the context of
conjoint measurements. Our statistical models allow for the efficient use of partial
rankings to collect preference data. As a partial rankings task amount to a smaller burden
for respondents than a complete ranking task, they may be more motivated to complete
the task and as such the quality of the obtained data may improve. Moreover, we show
that our model is able to extract sufficient preference information from partial rankings
data to take into account respondents' heterogeneity in their choice and preference
behavior, which is generally assumed in marketing. This certainly will help marketers to
identify and target consumers by understanding their preference behavior, and to
implement a more efficient and optimal marketing strategy.
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Chapter 1

Introduction

1.1 Motivation

Questionnaires are an important way to gather information about large populations for

both qualitative and quantitative research. Hence, the value of a good questionnaire

design and the quality of questionnaire data cannot be emphasized enough. This thesis

discusses some aspects of the statistical analysis of measurement data obtained via

questionnaires.

The quality of the questionnaire data depends on the precision of the measurements.

Typically, a questionnaire is composed of multiple items, where each item is an indepen-

dent attempt to measure the same underlying construct of interest. For example, multiple

statements independently measure consumer satisfaction. A measured test score can be

decomposed into an unobserved true score and a random error (Lord & Novick, 1968).

The amount of agreement between the observed test score and the unobserved true score

is an indicator of the reliability of the measurements of the items. Since the true score

cannot be observed and only the test score is directly observable, we are unable to directly

estimate the reliability of a test. Fortunately, we may use the dependence between the

individual item scores in order to indirectly evaluate the reliability of a test.

The most widely used indirect measure for assessing scale reliability is Cronbach’s

coefficient alpha (Cronbach, 1951). In special cases coefficient alpha coincides with

reliability, but actually it should be regarded as a lower bound of reliability (see Novick &

Lewis, 1967). One can question why one should use a lower bound and not maximize the

reliability coefficient (see for instance Li, Rosenthal, & Rubin, 1996). Several methods

allow for improving reliability by using a weighted sum of the individual item scores as a

test score rather than an unweighted sum (see for example Knott & Bartholomew, 1993;
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Li, 1997; Yuan & Bentler, 2002; Raykov & Penev, 2006). The optimally weighted test

score is referred to as the maximal reliability of the test (Lindsey, 1996).

A crucial issue concerns the evaluation of the value of each reliability measure that is,

which values are high and which are low. For example, the adequacy of an obtained alpha

is often based on Nunnally’s recommendations (Nunnally & Bernstein, 1994) regarding

minimally acceptable reliability, either in support or criticism. In much marketing

research, rules of thumb are used, like “more than 0.8” is good. This practice is of course

not very rigorous. Particularly, nothing is known about the accuracy of the measure,

and moreover no judgements can be made about the significance of differences between

obtained reliability measures. Cortina (1993) mentions that there seems to be no real

metric for judging the adequacy of the statistic. The answer to this is to provide confidence

intervals for the test statistic. The additional information included in the interval allows

for a more critical assessment of the statistic. In this thesis we stress the importance of

confidence intervals accompanying single measures for summarizing the parameters of a

model.

In the first part of this thesis we focus on maximizing scale reliability. We derive the

asymptotic distribution of maximal reliability measures to construct confidence intervals

in order to assess the adequacy of the measure. We design various simulation experiments

to demonstrate the adequacy of these results, and we also illustrate the merits of our

findings using actual survey data. The results can lead to better designs of questionnaires,

which in turn lead to more precise survey outcomes.

The second part of this thesis proposes methodologies to perform statistical analysis

of stated consumer preferences measured as rankings data, especially in the context of

conjoint measurements. Metric measurements such as rating and matching may be less

reliable due to respondents’ limited ability to accurately report degrees of preferences

(Ben-Akiva, Morikawa, & Shiroishi, 1992). That is, respondents are able to prefer

alternative A over B, however they are rarely able to express how much more they prefer

A over B. Rankings are scale-free measures that are often used in marketing to evaluate

products, brands, and services. Other examples are rankings of academic journals,

business schools and so on. Rankings are easy to understand and easy to collect. However,

task difficulty increases substantially with the number of alternatives to be ranked. It

has been widely recognized that individuals face difficulties, or even become dissatisfied,

when having to compare too many choice options. Iyengar and Lepper (2000) in their

famous experiment showed that too much choice can be de-motivating for consumers. In

a marketing context, Boatwright and Nunes (2001) demonstrated that a reduction of the
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assortment is in fact felt as beneficial to consumers, a finding which has been supported

by Chernev (2003) and Gourville and Soman (2005), among others. In another context,

DeShazo and Fermo (2002) showed that consumers experience task complexity when

choice options are plenty, see also Sandor and Franses (2009). In sum, consumers may find

it difficult to rank preferences across too large an amount of alternatives. The problem of

task complexity can be alleviated by asking respondents to evaluate all alternatives but

only to give preference rankings for a subset of the alternatives. We shall refer to such a

ranking as a partial ranking.

Partial rankings are essential in practical conjoint analysis to collect data efficiently to

relieve respondents’ task burden. Moreover, as in Louviere, Henser, and Swait (2000), one

does not need complete rankings to obtain extra preference information. When collecting

conjoint measurement data, individuals often need to compare many objects on many

attributes with each many levels. This is a difficult task for various reasons mentioned

above. Consider a consumer who is asked to compare products and the product with the

highest utility is appreciated most. However, the utilities are latent in the sense that the

consumer is unable to express them, but nevertheless influence his/her behavior.

There are at least two advantages of our approach to analyze partial rankings. First,

our statistical models allow for the efficient use of partial rankings to collect preference

data. Partial rankings may also be dictated by the experimental design of the conjoint

study. Second, given that a partial ranking task amounts to a smaller burden for

respondents than a complete ranking task, they may be more motivated to complete the

task and as such the quality of the obtained data may improve. This certainly will help

marketers to identify and target consumers by understanding their preference behavior,

and to implement a more efficient and optimal marketing strategy.

1.2 Outline

This thesis can be divided into two parts. The first part consist of Chapter 2 and

Chapter 3, and focuses on the reliability of questionnaires. Chapter 2 is based on

Lam, Koning, and Franses (2009) and Chapter 3 is joint work with Alex Koning and

Philip Hans Franses. In these chapters we bridge the gap between on the one side the

very restrictive parallel model and at the other side the extremely permissive model,

without any assumptions made on the underlying structure of items’ variance. The

motivation lies in discovering the structure of the covariance matrix of the items. Ignoring

the structure in the covariance matrix will neglect valuable information. Without any
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assumptions, nothing can be said about the true score variance and error variance of

the items as these parameters are not estimated. However, these unique variances for

each of the item components are particularly interesting to improve measurement scales

and contain valuable information. One should always prefer a model which provides the

most information. We discuss the issue of estimating the maximal reliability in the tau-

equivalent and the congeneric model and acquire insights in how corresponding confidence

intervals can be improved. We point out possible anti-conservatism of existing confidence

intervals for maximal reliability, which may give the impression that we have estimated

with sufficient accuracy. Our simulation experiments show that this indeed occurs. We

derive new confidence intervals for the maximal reliability and compare them to existing

intervals by means of coverage curve analysis. It turns out that confidence intervals where

variance stabilization techniques are applied, are less prone to Type II error. This interval

has a coverage for the true value which is approximately equal to the confidence level.

We advocate the use of variance stabilization also in more complicated models to improve

confidence intervals.

The second part of the thesis consists of the remaining chapters and focuses on the

analysis of partial rankings. All cases that may arise in the assignment of ranks, such

as the existence of ties and missing values, are incorporated. In Chapter 4 we propose

a tool which examines whether the overall preference rankings differ from randomness.

Moreover, we introduce a multiple comparison procedure to examine which alternatives

actually differ. In a preliminary analysis of preference rankings when there are too many

alternatives, the proposed methodology reduces the amount of alternatives in an easy

and understandable way, such that irrelevant alternatives can be removed from further

analysis. This chapter is partly based on Lam, Koning, and Franses (2010a).

In subsequent chapters, we analyze rankings data in the context of conjoint measure-

ment analysis. As there is only a finite number of possible rankings, the rankings have

a discrete distribution. In principle, standard methods for analyzing discrete data apply

here, see Marden (1995, p. 140). However, probability models for rankings become very

complex, as the computation of each ranking probability usually requires high-dimensional

integration when the number of stimuli becomes large. In the literature an abundance

of ranking models is available, see Critchlow, Fligner, and Verducci (1991, Section 3)

and also Marden (1995, Chapter 5). In Chapter 5, we show that any Thurstone order

statistics model may be approximated by a simpler model and this allows for a unified

approach. We adapt general ranking models to conjoint experiments by introducing a
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linear model which allows for modeling the dependence of the rankings on the stimulus

characteristics. Chapter 5 is joint work with Alex Koning and Philip Hans Franses.

In marketing and other social sciences it is generally assumed that individuals are

heterogeneous in their choice and preference behavior. To adequately model this het-

erogeneity, in Chapter 6 we present a finite mixture ranking model for analyzing full

and partial ranking data in the presence of respondent heterogeneity. We show that our

model is able to extract sufficient preference information from partial ranking data to

take respondents’ heterogeneity into account. Chapter 6 is joint work with Alex Koning

and Philip Hans Franses.

All chapters contain various illustrations to demonstrate how the methods work. In

the final chapter of this thesis we conclude with an overview of our main findings in the

individual chapters, and a discussion of the implications, limitations and recommendations

for further research.
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Reliability





Chapter 2

Confidence Intervals for Maximal

Reliability in Tau-Equivalent

Models∗

Abstract
Subjective probabilities play an important role in marketing research, for example where

individuals rate the likelihood that they will purchase a new to develop product. The tau-
equivalent model can describe the joint behavior of multiple test items measuring the same
subjective probability. In this paper we stress the use of confidence intervals to assess
reliability, as this allows for a more critical assessment of the items as measurement
instruments. To improve the reliability one can use a weighted sum as the outcome of
the test rather than an unweighted sum. In principle, the weights may be chosen so as
to obtain maximal reliability. We propose two new confidence intervals for the maximal
reliability in the tau-equivalent model and we compare these two new intervals to intervals
derived earlier in Yuan and Bentler (2002) and Raykov and Penev (2006). The comparison
involves coverage curves, a methodology that is new in the field of reliability. The existing
Yuan-Bentler and Raykov-Penev intervals are shown to overestimate the maximal reliability,
whereas one of our proposed intervals, the stable interval, performs very well. This stable
interval hardly shows any bias, and has a coverage for the true value which is approximately
equal to the confidence level.

2.1 Introduction and motivation

Marketing researchers often conduct tests to learn about individuals’ preferences, opinion

and attitudes. Opinions may often be expressed by subjective probabilities. A person’s

∗This chapter is based on Lam et al. (2009).
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subjective probability is the degree of belief a person holds regarding a statement or an

event, that is, it is a person’s personal judgment about how likely a particular statement

is or how likely a particular event is to occur. Subjective probabilities play a role in

marketing, for example when potential consumers are asked how likely it is that they will

purchase a new to develop product.

Most subjective probability scales are similar to psychological measurement scales, see

Wallsten and Budescu (1983). In line with classical test theory, in subjective probability

theory it is assumed that the observed test score U can be decomposed into an unobserved

true score T and a random error score.

The reliability of the test is defined to be the amount of agreement between U and T ,

as captured by the squared correlation, see Lord and Novick (1968). Since, T cannot be

observed, we are unable to estimate the reliability of a test directly. Therefore, a test is

composed of multiple items. Each item score Yj is an independent attempt to measure

the same construct of interest T . The observed test score U is usually the unweighted

sum of the individual item scores Yj. We may use the dependence between the individual

item scores in order to evaluate the reliability of a test indirectly.

Cronbach’s coefficient alpha, see Cronbach (1951), the most widely used indirect

technique for assessing reliability, compares the variance of the test score with the sum

of the variances of the individual item scores. Cronbach’s alpha should be regarded as a

lower bound of the reliability of a test, and in certain special situations it coincides with

reliability, see Novick and Lewis (1967).

Despite its popularity, the interpretation of Cronbach’s alpha in practice is quite

arbitrary. Nunnally’s thresholds, see Nunnally and Bernstein (1994) are often taken as

recommendations regarding minimally acceptable reliability, although one may argue that

it is rather subjective to compare alpha to an arbitrary threshold.

Moreover, such an approach does not take into account the accuracy of the estimated

alpha. In this paper we advocate the use of confidence intervals to assess reliability, as

the additional information included in the interval allows for a more critical assessment

of the statistic.

In the literature we find two types of intervals for Cronbach’s alpha. The first type

is derived under the so-called parallel model. In the parallel model each of the item

scores Yj is assumed to be the sum of the true score T and a measurement error εj

with population mean zero and common population variance ψ. Moreover, the random

variables T, ε1, . . . , εk are assumed to be independent. As a consequence, the parallel model

imposes strong restrictions on the population covariance matrix of the item scores. The
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statistical theory needed to derive confidence intervals for Cronbach’s alpha in the parallel

model appeared in Kristof (1963); Feldt (1965), but it remained relatively unnoticed.

Van Zyl, Neudecker, and Nel (2000) draws new attention for confidence intervals

for Cronbach’s alpha, see Iacobucci and Duhachek (2003); Duhachek, Coughlan, and

Iacobucci (2005), and leads to a second type of confidence intervals for Cronbach’s alpha.

These intervals are derived under the so-called saturated model, which does not impose

any restriction on the population covariance matrix of the item scores.

It should be stressed that between the extremely restrictive parallel model on the one

hand, and the extremely permissive saturated model on the other hand, other models

exist. As both extreme cases have their problems, in this paper we restrict ourselves

to the so-called tau-equivalent model. The tau-equivalent model can be obtained from

the parallel model by relaxing the assumption that the measurement errors εj have

common population variance ψ. Thus, the respective population variances ψ1, . . . , ψk

of the measurement errors ε1, . . . , εk may differ. In other words, the tau-equivalent model

allows nonhomogeneous error variances.

By measuring the probability that a same event will occur with different methods,

one can say something about the quality of the measured probability. Hence, the tau-

equivalent model can describe the joint behavior of multiple test items measuring the

same subjective probability. In case of subjective probabilities, a tau-equivalent model is

more plausible than the extremely restrictive parallel model and also more informative

than the extremely permissive saturated model.

In the parallel model as well as in the tau-equivalent model, Cronbach’s alpha coincides

with reliability. By using a weighted sum W rather than an unweighted sum U as the

outcome of the test reliability can be improved. One may show that choosing the weight

for Yj equal to 1/ψj yields a test score W =
∑k

j=1 Yj/ψj which has maximal reliability,

which is

ϕ = 1 − 1

1 +
∑k

j=1 λ
2/ψj

,

where λ2 is the true score variance. The quantity ϕ is referred to as the maximal reliability

of Y1, . . . , Yk.

Remark that under the parallel model the optimal weights have a common value 1/ψ,

which implies that the unweighted sum U yields maximal reliability. Thus, in the parallel

model maximal reliability coincides with reliability and Cronbach’s alpha.

In this paper we aim to derive confidence intervals for maximal reliability in the tau-

equivalent model. In Yuan and Bentler (2002) and Raykov and Penev (2006) different

expressions for the standard deviation of the maximum likelihood estimator ϕ̂ of the
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maximal reliability ϕ are given, from which confidence intervals for ϕ are readily derived.

However, as they propose an unstable variance this may lead to anti-conservative confi-

dence intervals. We propose new methods to derive confidence intervals and compare two

new derived intervals to the Yuan-Bentler and Raykov-Penev intervals.

The structure of this paper is as follows. In Section 2.2 we present the four confidence

intervals, and show that their coverage is asymptotically equal to the requested confidence

level. In Section 2.3 we apply the four confidence intervals to real data involving measures

of subjective probability. Section 2.4 discusses the results of an extensive simulation

experiment. In Section 2.5 conclusions are drawn. Proofs are relegated to the Appendix.

2.2 Confidence intervals for the tau-equivalent model

The maximum likelihood estimator of ϕ is given by

ϕ̂ = 1 − 1

1 + ζ̂
,

with

ζ̂ =
k∑

j=1

λ̂2/ψ̂j,

where ψ̂j and λ̂2 are the maximum likelihood estimators of ψj and λ in the tau-equivalent

model. The confidence intervals for ϕ involve

s2 = 2 + 2
ζ̂ + 1

ζ̂ − 1

Q̂

1 + Q̂
,

with

Q̂ =
ζ̂ − 1

ζ̂2

k∑
j=1

{
λ̂2/ψ̂j

}2

1 + ζ̂ − 2λ̂2/ψ̂j

,

and let n denote the sample size. Choose a confidence level 0 < γ < 1, and determine

z(1−γ)/2 so such that

P
(−z(1−γ)/2 < Z < z(1−γ)/2

)
= γ.

with Z denoting a standard normal random variable. Next, we present several asymptotic

100γ% confidence intervals for the maximal reliability coefficient ϕ.
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2.2.1 Available results

In Yuan and Bentler (2002) a confidence interval for maximal reliability is proposed in

general terms. According to Raykov and Penev (2006) it is “(a) rather laborious and

tedious in routine behavioral research in need of interval estimation of maximal reliability,

(b) involves taking by the researcher of multiple partial derivatives of this reliability

coefficient with respect to model parameters, (c) has the inconvenient property that the

number of these derivatives increases with increasing length k of the initial composite

of interest (as could be repeatedly the case when one is involved in scale development

and revision), and (d) can be viewed as based on a first-order approximation of maximal

reliability as a function of model parameters”. However, by taking the computations in

Yuan and Bentler (2002) for the tau-equivalent model, the problem of taking multiple

partial derivatives is eliminated. This yields that the endpoints of the Yuan-Bentler

interval are given by

ϕ̂± z(1−γ)/2 (1 − ϕ̂)
s√
n

(2.1)

Raykov and Penev (2006) proposed a “second-order” alternative to the Yuan-Bentler

interval. In the tau-equivalent model, the endpoints of the Raykov-Penev interval are

given by

ϕ̂± z(1−γ)/2 (1 − ϕ̂)
s√
n

√
1 + 2

s2

n
. (2.2)

Note that the Yuan-Bentler interval is always contained in the Raykov-Penev interval.

2.2.2 The unstable interval

If n tends to infinity, it is shown in the Appendix that

√
n

ζ̂ − ζ

(1 + ζ)
√

2 + 2 ζ+1
ζ−1

Q
1+Q

→d N (0, 1) , (2.3)

with

ζ =
k∑

j=1

λ/ψj, (2.4)

Q =
ζ − 1

ζ2

k∑
j=1

{λ/ψj}2

1 + ζ − 2λ2/ψj

. (2.5)
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Note that s is a consistent estimator of
√

2 + 2 ζ+1
ζ−1

Q
1+Q

. As

ϕ = 1 − 1

1 + ζ
,

it follows from (2.3) that

lim
n→∞

P

(
−z(1−γ)/2

s

(1 − ϕ̂)
√
n
< ζ̂ − ζ < z(1−γ)/2

s

(1 − ϕ̂)
√
n

)
= γ,

which implies that

ζ̂ ± z(1−γ)/2
s

(1 − ϕ̂)
√
n

are the endpoints of an asymptotic 100γ% confidence interval for ζ. As ϕ is a monotone

function of ζ, we obtain that

1 − 1

1 + ζ̂ ± z(1−γ)/2
s

(1−ϕ̂)
√

n

= 1 − 1
1

(1−ϕ̂)
± z(1−γ)/2

s
(1−ϕ̂)

√
n

= 1 − 1 − ϕ̂

1 ± z(1−γ)/2
s√
n

(2.6)

are the endpoints of an asymptotic 100γ% confidence interval for ϕ. We shall refer to

(2.6) as the unstable interval.

The unstable interval is related to the Yuan-Bentler interval in (2.1) and the Raykov-

Penev interval in (2.2). Note that the derivative of 1− (1 + ζ)−1 with respect to ζ equals

(1 + ζ)−2. Combining (2.3) with the delta method yields that

√
n

ϕ̂− ϕ

(1 − ϕ)
√

2 + 2 ζ+1
ζ−1

Q
1+Q

→d N (0, 1) .

It follows that

lim
n→∞

P

(
−z(1−γ)/2 (1 − ϕ̂)

s√
n
< ϕ̂− ϕ < z(1−γ)/2 (1 − ϕ̂)

s√
n

)
= γ,

which implies that

ϕ̂± z(1−γ)/2 (1 − ϕ̂)
s√
n

are the endpoints of an asymptotic 100γ% confidence interval for ϕ. This interval coincides

with the Yuan-Bentler interval.
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To obtain an asymptotic confidence interval for ϕ̂ − ϕ in Raykov and Penev (2006),

properties of the normal distribution and the second order approximation

ϕ̂− ϕ =
ζ̂ − ζ

(1 + ζ)2 −
(
ζ̂ − ζ
)2

(1 + ζ)3 ,

are needed. This yields

lim
n→∞

P

(
−z(1−γ)/2 (1 − ϕ̂)

s√
n

√
1 + 2

s2

n
< ϕ̂− ϕ < z(1−γ)/2 (1 − ϕ̂)

s√
n

√
1 + 2

s2

n

)
= γ,

which implies that

ϕ̂± z(1−γ)/2 (1 − ϕ̂)
s√
n

√
1 + 2

s2

n

are the endpoints of an asymptotic 100γ% confidence interval for ϕ. This interval coincides

with the Raykov-Penev interval.

2.2.3 The stable interval

Although, the left hand side of (2.3) converges in distribution to a standard normal

random variable as the number of observations n becomes large, it may well have a very

different distribution for a given value of n. Figure 2.1 illustrates that this is indeed the

case.

To motivate our remedy for this problem, we assume that the items of the test are

drawn at random from a large test battery. That is, the values ψ1, . . . , ψk are drawn

independently from the distribution of some non-negative random variable, say E. In

addition, we assume that the variance of E−1 is finite. It follows by (2.4) and (2.5) that

the quantities ζ and Q depend on the number k of items drawn. In the appendix it is

shown that

lim
k→∞

ζ + 1

ζ − 1

Q

1 +Q
= 0. (2.7)

It follows by (2.3) that for large k the asymptotic variance of
√
n
(
ζ̂ − ζ
)

is approximated

by 2 (1 + ζ)2. Thus, the variance of ζ̂ depends on ζ, and this does not disappear when k

tends to infinity. That is, the variance of ζ̂ is not stable. As the variance is proportional to

(1 + ζ)2 for k sufficiently large, the theory of variance stabilizing transformations suggests

the use of ln
(
1 + ζ̂
)

for constructing confidence intervals.
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Figure 2.1: Normal probability plot of simulated values of the left hand side of (2.3) with k = 6,
ϕ = 0.6, n = 25. The plot approaches the line with intercept 0 and slope 1 only in the center,
there is a marked deviation in the tails.
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It can be shown that

√
n

ln
(
1 + ζ̂
)
− ln (1 + ζ)√

2 + 2 ζ+1
ζ−1

Q
1+Q

→d N (0, 1) . (2.8)

Figure 2.2 illustrates that the standard normal distribution provides a far better fit to the

distribution of the left hand side of (2.8)) than to the distribution of the left hand side of

(2.3).

It follows from (2.8) that

lim
n→∞

P

(
−z(1−γ)/2

s√
n
< ln

(
1 + ζ̂

1 + ζ

)
< z(1−γ)/2

s√
n

)
= γ,
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Figure 2.2: Normal probability plot of simulated values of the left hand side of (2.8), with k = 6,
ϕ = 0.6, n = 25. The plot approaches the line with intercept 0 and slope 1, even in the tails.
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which implies that (
1 + ζ̂
)

exp

{
±z(1−γ)/2

s√
n

}
− 1

are the endpoints of an asymptotic 100γ% confidence interval for ζ. As ϕ is a monotone

function of ζ, we obtain that

1 −
exp
{
±z(1−γ)/2

s√
n

}
1 + ζ̂

= 1 − (1 − ϕ̂) exp

{
±z(1−γ)/2

s√
n

}
(2.9)

are the endpoints of an asymptotic 100γ% stable confidence interval for ϕ. This stable

confidence interval is the interval which we wish to advocate in the present paper.
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2.3 Illustration

In Wallsten and Budescu (1983) it is assumed that measures of subjective uncertainty

can be written as the sum of two independent random variables, a fixed true measure

and a variable error. Thus, if the subjective probability of a given event is measured by

different methods, then a tau-equivalent model seems plausible.

In Ofir and Reddy (1996) the psychometric properties of three measures of subjective

uncertainty are investigated. The 117 respondents were asked to express the subjective

probability of the event “The stock market will rise during 1991 by at least 10%” on each

of the following measurement scales:

StckP a seven-point “probabl” rating scale with categories Highly Improbable, Improb-

able, Somewhat Improbable, Equally Probable, Somewhat Probable, Probable and

Highly Probable;

StckL a seven-point “likelihood” rating scale with categories Very Unlikely, Unlikely,

Somewhat Unlikely, Equal Likelihood, Somewhat Likely, Likely, Very Likely.

StckC a subjective probability scale ranging from zero to one hundred.

The rating scales StckP and StckL were transformed to 0-100 scales by using the trans-

formation 100(x− 1)/6, where x is the value on the seven-point scale.

Table 2.1 reports the covariance matrix of these three measures of the subjective

probability of the event “The stock market will rise during 1991 by at least 10%.” Indeed,

the tau-equivalent model fits the data [χ2 = 3.161, df = 2, P = 0.206]. However, the

parallel model is clearly rejected [χ2 = 14.679, df = 4, P = 0.005]. In the tau-equivalent

model, the estimated true variance is 541.563, and the estimated error variances are

72.454, 67.065 and 162.962. Thus,

StckP

72.454
+

StckL

67.065
+

StckC

162.962

is an estimate of the weighted composite of StckP, StckL and StckC yielding maximal

reliability.

The corresponding 95% confidence intervals for maximal reliability ϕ are found in

Table 2.2. Note that the Yuan-Bentler and the Raykov-Penev intervals are symmetric

around ϕ̂, whereas the stable and the unstable interval are not. Moreover, the Raykov-

Penev interval contains the Yuan-Bentler interval. The lower endpoint of the unstable

interval is smaller than the lower endpoint of the stable interval, which in turn is smaller
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Table 2.1: Covariance matrix of a zero-to-hundred subjective probability scale and two seven
point rating scales measuring the subjective probability of the event “The stock market will rise
during 1991 by at least 10%”, compiled from Appendix A in Ofir & Reddy (1996). There are
117 respondents.

StckP StckL StckC
StckP 638.790
StckL 562.214 620.501
StckC 509.735 501.765 619.956

Table 2.2: Asymptotic 95% confidence intervals for maximal reliability ϕ, derived from the data
in Table 2.1. The estimator ϕ̂ takes the value 0.9496805.

Interval Lower Upper
Unstable 0.926 0.962
YuanBentler 0.933 0.966
RaykovPenev 0.934 0.967
Stable 0.930 0.964

than the lower endpoint of the Raykov-Penev interval. Similarly, the upper endpoint of

the unstable interval is smaller than the upper endpoint of the stable interval, which in

turn is smaller than the upper endpoint of the Raykov-Penev interval.

2.4 Simulation results

The above illustration for actual data showed that there are differences between confidence

intervals, but these do not necessarily have to be very large. To further our understanding

of the differences between the four confidence bounds, we rely on simulation, to be

discussed in this section.

In the simulations, we let k take the values 2, 3, 4, 5, 10, 15, and n take the values

25, 50, 100, 200, 400. We expect that the simulation results largely depend on the quanti-

ties μ1 and μ2, where

μ1 =
1

k

k∑
j=1

1

ψj

, μ2 =
1

k

k∑
j=1

(
1

ψj

− μ1

)2

. (2.10)
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In order to be able to confirm this expectation, we generate the ψi’s using various patterns.

In particular, we choose
1

ψj

= a+ bg

(
j

k + 1

)
,

where g is one of the three following functions:

g1 (s) = s− 1
2
,

g2 (s) = s2 − 1
3
,

g3 (s) =

{
−1 for s < 1

2
,

+1 for s ≥ 1
2
,
.

Here a and b are chosen so as to satisfy (2.10) for given μ1 and μ2. Throughout the

simulations we set λ equal to 1. As μ1 = (1/k)
∑k

j=1 1/ψj, we may show that μ1 =

(kλ2)−1ϕ/(1 − ϕ). In our simulations we set μ1 equal to values which correspond to

maximal reliability 0.60, 0.75, 0.90 and 0.95. Finally, we set μ2 equal to 1
2
μ2

1, μ
2
1 and 2μ2

1.

First, we investigate the extent in which the standard normal approximations (2.8)

and (2.3) are valid for small to moderate sample sizes n. As Figure 2.3 illustrates, these

approximations are truly asymptotic in nature when the number of test items k is equal

to 2. When k = 3, the approximations are reasonably accurate, except for the sample

size n = 25. Recall that the standard normal approximations (2.8) and (2.3) provide

the probabilistic basis for all confidence intervals discussed in this paper. Hence, in the

remainder of this section we shall restrict ourselves to situations in which k ≥ 3 and

n ≥ 50.

Next, we examine the simulated coverage curves of the four intervals. The coverage of

a confidence interval for a given hypothetical value of ϕ is defined as the probability that

this hypothetical value is contained in the interval. The coverage curve is the curve that

the coverage follows as the hypothetical value of ϕ ranges through an interval of possible

values of ϕ. The ideal shape of the coverage curve is as follows:

• if the hypothetical value of ϕ equals the true value, then the coverage should be

equal to the confidence level;

• if the hypothetical value of ϕ differs from the true value, then the coverage should be

as low as possible. In particular, the coverage should be lower than the confidence

level.
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Figure 2.3: Normal probability plot of simulated values of the left hand side of (2.8), with k = 2,
ϕ = 0.95, n = 400. Although the sample size n is large, the plot clearly deviates from the line
with intercept 0 and slope 1.
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There are various ways in which a coverage curve may deviate from the ideal shape.

In our examination of the performance of the confidence interval, we shall in particular

consider the unbiasedness of a confidence interval. A confidence interval is called unbiased

if for every hypothetical value of ϕ the coverage of the interval does not exceed the coverage

for the true value of ϕ.

If an interval is unbiased, the next issue to consider is whether the coverage for the true

value equals the confidence level. If this coverage is larger than the confidence interval,

the unbiased confidence interval is called conservative; if this coverage is smaller than

the confidence interval, the unbiased confidence interval is called anti-conservative. Being

conservative is considered less harmful than being anti-conservative.

Statistical testing theory yields an alternative way to interpret coverage curves. Note

that for every confidence interval for ϕ, there exists a related statistical test of the

null hypothesis H0 : ϕ = ϕ0; this test does not reject the null hypothesis if the
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hypothetical value ϕ0 lies inside the confidence interval, and rejects the null hypothesis if

the hypothetical value ϕ0 is outside the confidence interval. Now, if the true value of ϕ

differs from the hypothetical value ϕ0, then the coverage of the hypothetical value ϕ0 is

equal to the probability of a type II error of the related statistical test of H0 : ϕ = ϕ0.

Thus, by subtracting the coverage curve from 1, we in fact obtain the power curve of the

related test. In fact, the description of the ideal shape of the coverage curve given above

is a direct translation of generally accepted rules involving the ideal shape of the power

curve.

Evaluating the coverage not only under the null hypothesis, but also under the

alternative hypothesis provides a much more comprehensive view of the behavior of the

various confidence intervals.

The simulated coverage curves depend on the sample size n, the true value of the

maximal reliability ϕ, the number of items k and on the quantities μ1 and μ2.

• For fixed values of n, ϕ, k, μ1 and μ2, there is little difference between the coverage

curves.

• The sample size n has a positive effect on the performance of all confidence intervals,

see Figure 2.4. That is, the confidence intervals perform better for large n.

• The true value of the maximal reliability has a positive effect on the coverage of

all confidence intervals, see Figure 2.5. That is, the coverage of the confidence

intervals becomes higher when the true value of ϕ approaches 1. If the true value

of the maximal reliability is small, the confidence intervals are anti-conservative.

When the true value of ϕ approaches 1, the coverage of the true value increases.

As a result, the anti-conservatism diminishes in most situations. However, in some

situations (especially k = 3) the anti-conservatism turns into conservatism.

• The number of items k has a positive effect on the performance of all confidence

intervals, see Figure 2.6. That is, the confidence intervals perform better for large

k.

The simulated coverage curves yield the following general findings with respect to the

differences in performance between the four confidence intervals.

• There is little difference between the Yuan-Bentler and the Raykov-Penev interval.

Both intervals show a positive bias, and thus overestimate the the true maximal

reliability. This bias is more marked when the true value of maximal reliability is

low.
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Figure 2.4: Coverage curves of stable interval (solid line), unstable interval (dashed line), Yuan-
Bentler interval (dotted line) and Raykov-Penev interval (dotted-dashed line) for ϕ = 0.90, k = 3
and n = 25, 50, 100, 200.
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• The unstable interval shows a negative bias, and thus underestimates the true

maximal reliability.

• Except for extreme conditions (that is, a combination of a small sample size, a

small number of items k and a high true value of the maximal variability), the

stable interval hardly shows any bias, and has a coverage for the true value which

is approximately equal to the confidence level.

Finally, we remark that we could not have detected the positive bias of the Yuan-

Bentler and the Raykov-Penev without the construction of coverage curves, that is, eval-
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Figure 2.5: Coverage curves of stable interval (solid line), unstable interval (dashed line),
Yuan-Bentler interval (dotted line) and Raykov-Penev interval (dotted-dashed line) for ϕ =
0.60, 0.75, 0.90, 0.95, k = 3 and n = 50.
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uating the coverage under the null hypothesis as well as under the alternative hypothesis.

We highly recommend the use of coverage curves in other studies on confidence intervals.

2.5 Conclusion

We have shown that a tau-equivalent model is plausible when measuring subjective

probabilities, which play an important role in marketing research. To improve the

reliability of the test we use a weighted sum of individual item scores rather than an
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Figure 2.6: Coverage curves of stable interval (solid line), unstable interval (dashed line), Yuan-
Bentler interval (dotted line) and Raykov-Penev interval (dotted-dashed line) for ϕ = 0.90,
k = 2, 3, 4, 5, 10, 15 and n = 50.
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unweighted sum. In principle, the weights may be chosen so as to obtain maximal

reliability, and these optimal weights may be estimated from the data.

We stressed the use of confidence intervals rather than point estimators to assess

reliability, as the additional information included in the interval allows for a more critical

assessment of the quality of the items as measurement instruments of the underlying

subjective probability.

We have derived two new confidence intervals for maximal reliability in the tau-

equivalent model. We motivated that the confidence intervals as derived in Yuan and

Bentler (2002) and Raykov and Penev (2006) may be anti-conservative as they do not

have a stable variance.

To compare the confidence intervals, we introduced coverage curves, a methodology

that seems new in the field of reliability. That is, we have not only considered the coverage

of the true maximal reliability, but the coverage of hypothetical values which differ from

the true maximal reliability as well.

It turns out that the Yuan-Bentler and the Raykov-Penev intervals are closely related

to each other. In fact, the Yuan-Bentler interval is always contained in the alternative
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interval proposed in Raykov and Penev (2006). Interestingly, the similarity in behavior of

the two intervals is in contrast with the remarks in Raykov and Penev (2006) with regard

to the Yuan-Bentler interval. Moreover, it seems that the additional complexity of the

Raykov-Penev interval does not pay off, as a clear advantage of using this interval over

the Yuan-Bentler is lacking. Both intervals show a positive bias, which is more marked

for low values of the true maximal reliability. This might be due to a ceiling effect that

cuts down the positive biases of these two intervals when the true value of reliability is

high.

We have also examined the performance of the two new intervals proposed in this

article. Though the unstable interval shows a considerable negative bias, the stable

interval performs considerably well. Except for extreme conditions the stable interval

hardly shows any bias, and has a coverage for the true value which is approximately equal

to the confidence level. This shows the advantage of the use of a stabilization technique

in constructing confidence intervals. In further applications in marketing we therefore

recommend the use of this new stable confidence interval.

The advantage of stabilization should not only hold in the tau-equivalent model. This

raises the issue whether variance stabilization is of use in the parallel model as well. In

the parallel model an unstable interval is given in Van Zyl et al. (2000), see also Iacobucci

and Duhachek (2003). It would be interesting to compare those intervals using coverage

curves. In addition, our results suggest that variance stabilization techniques might also

improve confidence intervals for maximal reliability in more general models as congeneric

models and factor analysis models.
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2.A Proofs

Proof of (2.3). The tau-equivalent model implies that the population covariance matrix

of Y1, . . . , Yk is given by

λ2ιι� + Ψ,

where ι is the k-dimensional vector with each element having value 1, and Ψ the diagonal

matrix with diagonal elements ψ1, . . . , ψk.

Let θ denote the k+1-dimensional parameter vector (ψ1, . . . , ψk, λ)�, and let θ̂ denote

the maximum likelihood estimator of θ. It follows from the theory of covariance structures,

see Browne (1984); Kano, Berkane, and Bentler (1990), that

√
n
(
θ̂ − θ
)
→d Nk (0,Ω) ,

with

Ω =

(
Ωψψ Ωψλ

Ωλψ Ωλλ

)
.

Here, the 1 × k matrix Ωψλ and the k × 1 matrix Ωλψ are given by

Ωψλ = Ωλψ
� = −Ωψψ

(
k∑

j=1

(1/ψj)

)−2

Ψ−2ι,

the 1 × 1 matrix Ωλλ is given by

Ωλλ = 2

(
1 + ζ∑k

j=1 (1/ψj)

)2

+

(
k∑

j=1

(1/ψj)

)−4

ι�Ψ−2ΩψψΨ−2ι,

and the k × k matrix Ωψψ is given by

Ωψψ = 2Ψ
(
D + vv�

)−1
Ψ,

with

D =

(
I − 2λ2

1 + ζ
Ψ−1

)
, v =

λ

ζ

√
ζ − 1

ζ + 1
Ψ−1ι. (2.11)

The Sherman-Morrison-Woodbury formula, see Hager (1989), yields

(
D + vv�

)−1
= D−1 − (1 + v�D−1v

)−1
D−1vv�D−1.
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It follows that

v�D−1v =
ζ − 1

ζ2

k∑
j=1

{λ/ψj}2

1 + ζ − 2λ2/ψj

= Q. (2.12)

Now, note that we may view ζ as a function h of ψ1, . . . , ψk, λ. Define the vector ḣ as

(ḣ�ψ , ḣ
�
λ )
�
, where

ḣψ =

⎛
⎜⎜⎜⎜⎝

∂h
∂ψ1

∂h
∂ψ2

...
∂h
∂ψk

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

−λ (ψ1)
−2

−λ (ψ2)
−2

...

−λ (ψk)
−2

⎞
⎟⎟⎟⎟⎠ = −λΨ−2ι,

ḣλ =
∂h

∂λ2
=

k∑
j=1

1

ψj

.

The delta method yields √
n
(
ζ̂ − ζ
)
→d N

(
0, ḣ�Ωḣ

)
, (2.13)

with

ḣ�Ωḣ = (1 + ζ)2

{
2 + 2

ζ + 1

ζ − 1

v�D−1v

1 + v�D−1v

}
, (2.14)

where D and v are defined in (2.11). The combination of (2.12), (2.13) and (2.14) yields

(2.3). �

Proof of (2.7). We have that the values 1/ψ1, . . . , 1/ψk are drawn independently from the

distribution of the non-negative random variable E−1, which has finite variance. Hence,

the limits

m1 = lim
k→∞

1

k

k∑
j=1

1

ψj

, (2.15)

m2 = lim
k→∞

1

k

k∑
j=1

{
1

ψj

− 1

k

k∑
j=1

1

ψj

}2

(2.16)

exist, and are finite. Moreover, one may show

lim
k→∞

max
j=1,...,k

1/ψj∑k
j=1 1/ψj

= 0. (2.17)
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It immediately follows from (2.15) that

lim
k→∞

1

k
ζ = m1.

Moreover, it follows from (2.15)–(2.17) that

lim
k→∞

1

k

k∑
j=1

{λ/ψj}2

1 + ζ − 2λ2/ψj

= m2 + (m1)
2.

Now, (2.7) readily follows.

�





Chapter 3

Confidence Intervals for Maximal

Reliability in Congeneric Models

Abstract
In this paper we discuss the issue of estimating the maximal reliability in the congeneric

model. The aim is to acquire insight in how confidence intervals for the maximal reliability
can be improved. We point out possible anti-conservatism of existing confidence intervals
for maximal reliability. Two new confidence intervals for the maximal reliability are derived
and compared to intervals derived in Yuan and Bentler (2002) and Raykov and Penev
(2006). We introduce coverage curve analysis to compare confidence intervals. Simulation
experiments show that among the two new confidence intervals, the new stable interval is
less prone to Type II error than the existing candidates. This stable interval has a coverage
for the true value which is approximately equal to the confidence level. This raises the
issue whether variance stabilization is of use in more complicated models as well to improve
confidence intervals.

3.1 Introduction and motivation

Measurements play an important role in research and much has been written about scale

development. However, this is not the case for scale reliability maximization and especially

the accuracy of the reliability estimation in general.

The precision of measurements is affected by the portion of random error. In classical

test theory it is assumed that observed uncertainty is given by the sum of the true score

and a random error. Typically, a test is composed of multiple items, where each item

is an independent attempt to measure the same construct of interest T ; that is, the

measurement errors corresponding to the items are assumed to be independent. The

outcome of the test U is usually the unweighted sum of the individual item outcomes Yj.
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We shall refer to T , U and Yj as the true score, the test score, and the jth item score,

respectively. Without loss of generality we assume that the true score, the test score, and

the item score all have zero expectation.

The amount of agreement between the test score U and the true score T , as captured

by the squared correlation between U and T , is defined to be the reliability of the test, see

Lord and Novick (1968). However, as T cannot be observed, we are unable to estimate

the reliability of a test directly. Fortunately, we may use the dependence between the

individual item scores in order to evaluate the reliability of a test indirectly.

The most widely used indirect technique for assessing reliability, Cronbach’s coefficient

alpha (see Cronbach, 1951), compares the variance of the test score with the unweighted

sum of the variances of the individual item scores. Actually, coefficient alpha is a lower

bound estimate of reliability if the assumption of essential tau equivalency is violated,

(see Novick & Lewis, 1967). However, if the assumption of uncorrelated errors is violated,

coefficient alpha may yield spuriously high estimates of reliability, see S. B. Green and

Herschberger (2000); S. B. Green and Yang (2009) and also Sijtsma (2009). It is important

to measure with high reliability.

Several methods allow for improving reliability by using a weighted sum W rather

than an unweighted sum U as test score for instance, (see Knott & Bartholomew, 1993;

Li, 1997; Yuan & Bentler, 2002; Raykov & Penev, 2006). We shall denote the reliability of

the optimally weighted test score by ϕ, and we shall refer to it as the maximal reliability

of Y1, . . . , Yk.

The least restrictive linear model involving a one-dimensional true score, is the

congeneric model. The congeneric model assumes that each of the item scores Yj is the sum

of λjT and a measurement error εj with population mean zero and population variance

ψj depending on j. The coefficients λj and ψj are unknown. To avoid identification

problems, we assume without loss of generality that the variance of T is equal to 1.

One may show that the optimal weight for Yj equals λj/ψj to obtain maximal

reliability. This yields a test score W =
∑k

j=1 λjYj/ψj which has maximal reliability

defined as

ϕ = 1 − 1

1 +
∑k

j=1 λ
2
j/ψj

. (3.1)

One may show that these optimal weights are proportional to the weights used to compute

regression scores or Bartlett scores in the factor analysis model (see Lawley & Maxwell,

1971, Section 8.2 and 8.10).

In Yuan and Bentler (2002) and Raykov and Penev (2006) asymptotic confidence

intervals for ϕ are derived by using the maximum likelihood estimator ϕ̂ as pivotal
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quantity. Different expressions for the standard deviation of ϕ̂ lead to different confidence

intervals.

However, the pivotal quantity ϕ̂ does not have a stable variance; that is, a variance not

depending on ϕ, see Hoaglin, Mosteller, and Tukey (1983). It is well-known that using an

unstable variance may well yield anti-conservative confidence intervals. Anti-conservative

confidence intervals have an attained coverage less than the required coverage and hence

may falsely give the impression that ϕ is estimated with sufficient accuracy.

In this paper we propose new methods to establish confidence bounds for the maximal

reliability (3.1). We advocate the use of a variance stabilizing transformation technique in

constructing confidence intervals in the congeneric model and compare this interval with

unstablized intervals to which the Yuan-Bentler and Raykov-Penev intervals also belong.

We use coverage curve methodology to compare the performance of the intervals.

The structure of this paper is as follows. First, we present four confidence intervals,

and show that their coverage is asymptotically equal to the requested confidence level.

Proofs are relegated to the Appendix. Second, we apply the four confidence intervals to

real data. Third, the results of an extensive simulation experiment are discussed. Finally,

conclusions of this study are drawn.

3.2 Confidence intervals for the congeneric model

Let ψ̂j and λ̂j be the maximum likelihood estimators of ψj and λj. Then, the maximum

likelihood estimator of ϕ is given by

ϕ̂ = 1 − 1

1 + ζ̂
, (3.2)

with

ζ̂ =
k∑

j=1

λ̂2
j/ψ̂j. (3.3)

Choose 0 < γ < 1, and determine z(1−γ)/2 so as to satisfy

P
(−z(1−γ)/2 < Z < z(1−γ)/2

)
= γ.
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We next present several asymptotic 100γ% confidence intervals for the maximal reliability

coefficient ϕ. The confidence intervals for ϕ involve

ŝ2 = 2 + 2
Q̂

1 + Q̂
, (3.4)

with

Q̂ =
1

ζ̂

k∑
j=1

{
λ̂2

j/ψ̂j

}2

ζ̂ − 2λ̂j/ψ̂j

.

Let n denote the sample size.

3.2.1 Available intervals

The first interval is proposed in general terms in Yuan and Bentler (2002). By taking their

computations for the congeneric model, this yields that the endpoints of the Yuan-Bentler

interval are given by

ϕ̂± z(1−γ)/2 (1 − ϕ̂)
ŝ√
n

(3.5)

In Raykov and Penev (2006) a “second-order” alternative to the Yuan-Bentler interval

is proposed. Here, the endpoints of the Raykov-Penev interval are given by

ϕ̂± z(1−γ)/2 (1 − ϕ̂)
ŝ√
n

√
1 + 2

ŝ2

n
. (3.6)

Note that the Yuan-Bentler interval is always contained in the Raykov-Penev interval.

3.2.2 The unstable interval

The first new interval is related to the Yuan-Bentler interval and Raykov-Penev interval.

In the Appendix it is shown that

√
n

ζ̂ − ζ

(1 + ζ)
√

2 + 2 Q
1+Q

→d N (0, 1) , (3.7)

with

ζ =
k∑

j=1

λj/ψj, (3.8)
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and

Q =
1

ζ

k∑
j=1

{
λ2

j/ψj

}2
ζ − 2λj/ψj

. (3.9)

Note that ŝ is a consistent estimator of
√

2 + 2 Q
1+Q

. We shall refer to the left hand side

side of (3.7) as the unstable asymptotic pivotal quantity.

As the derivative of 1 − (1 + ζ)−1 with respect to ζ equals (1 + ζ)−2, combining (3.7)

with the delta method yields that

√
n

ϕ̂− ϕ

(1 − ϕ)
√

2 + 2 Q
1+Q

→d N (0, 1) . (3.10)

It follows that

lim
n→∞

P

(
−z(1−γ)/2 (1 − ϕ̂)

ŝ√
n
< ϕ̂− ϕ < z(1−γ)/2 (1 − ϕ̂)

ŝ√
n

)
= γ,

which implies that

ϕ̂± z(1−γ)/2 (1 − ϕ̂)
ŝ√
n

are the endpoints of an asymptotic 100γ% confidence interval for ϕ. This interval coincides

with the Yuan-Bentler interval in (3.5).

In Raykov and Penev (2006) properties of the normal distribution and the second

order approximation

ϕ̂− ϕ =
ζ̂ − ζ

(1 + ζ)2 −
(
ζ̂ − ζ
)2

(1 + ζ)3 ,

are used to obtain an asymptotic confidence interval for ϕ̂− ϕ. This yields

lim
n→∞

P

(
−z(1−γ)/2 (1 − ϕ̂)

ŝ√
n

√
1 + 2

ŝ2

n
< ϕ̂− ϕ < z(1−γ)/2 (1 − ϕ̂)

ŝ√
n

√
1 + 2

ŝ2

n

)
= γ,

which implies that

ϕ̂± z(1−γ)/2 (1 − ϕ̂)
ŝ√
n

√
1 + 2

ŝ2

n

are the endpoints of an asymptotic 100γ% confidence interval for ϕ. This interval coincides

with the Raykov-Penev interval in (3.6).
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We now turn to our two new confidence intervals for ϕ. From (3.1) and (3.8), it follows

from (3.7) that

lim
n→∞

P

(
−z(1−γ)/2

ŝ

(1 − ϕ̂)
√
n
< ζ̂ − ζ < z(1−γ)/2

ŝ

(1 − ϕ̂)
√
n

)
= γ,

which implies that

ζ̂ ± z(1−γ)/2
ŝ

(1 − ϕ̂)
√
n

are the endpoints of an asymptotic 100γ% confidence interval for ζ. As ϕ is a monotone

function of ζ, we obtain that

1 − 1

1 + ζ̂ ± z(1−γ)/2
ŝ

(1−ϕ̂)
√

n

= 1 − 1
1

(1−ϕ̂)
± z(1−γ)/2

ŝ
(1−ϕ̂)

√
n

= 1 − 1 − ϕ̂

1 ± z(1−γ)/2
ŝ√
n

(3.11)

are the endpoints of an asymptotic 100γ% confidence interval for ϕ.

3.2.3 The stable interval

We believe that there is a serious drawback to the direct use of (3.7) in constructing

confidence intervals for ϕ. Although we know that the left hand side of (3.7) converges

in distribution to a standard normal random variable as the number of observations n

becomes large, the convergence may well be slow.

In order to motivate our remedy for this problem, we assume in a first instance that

the items of the test are drawn at random from a large test battery. That is, the values

ψ1, . . . , ψk are drawn independently from the distribution of some non-negative random

variable, say E. In addition, we shall assume that the variance of E−1 is finite. The

quantities ζ and Q depend on the number k of items drawn. One may show that

lim
k→∞

(
ζ + 1

ζ

)2
Q

1 +Q
= 0, (3.12)

It follows by (3.7) that the asymptotic variance of
√
n
(
ζ̂ − ζ
)

is approximated by

2 (1 + ζ)2 for large k. Thus, the variance of ζ̂ depends on ζ, and this dependence does

not disappear when k tends to infinity. That is, the variance of ζ̂ is not stable. As the

variance is proportional to (1 + ζ)2 for k sufficiently large, the theory of variance stabilizing
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transformations suggests the use of ln
(
1 + ζ̂
)

for constructing confidence intervals (see

e.g. Hoaglin et al., 1983). It can be shown that

√
n

ln
(
1 + ζ̂
)
− ln (1 + ζ)√

2 + 2 Q
1+Q

→d N (0, 1) . (3.13)

We shall refer to the left hand side side of (3.13) as the stable asymptotic pivotal quantity.

It follows from (3.13) that

lim
n→∞

P

(
−z(1−γ)/2

ŝ√
n
< ln

(
1 + ζ̂

1 + ζ

)
< z(1−γ)/2

ŝ√
n

)
= γ,

which implies that (
1 + ζ̂
)

exp

{
±z(1−γ)/2

ŝ√
n

}
− 1

are the endpoints of an asymptotic 100γ% confidence interval for ζ. As ϕ is a monotone

function of ζ, we obtain that

1 −
exp
{
±z(1−γ)/2

ŝ√
n

}
1 + ζ̂

= 1 − (1 − ϕ̂) exp

{
±z(1−γ)/2

ŝ√
n

}
(3.14)

are the endpoints of an asymptotic 100γ% confidence interval for ϕ.

3.3 Illustration

We will illustrate the above interval estimation for maximal reliability with real data.

Three hundred respondents have expressed their agreement on a five point scale consisting

of six items. The items are statements concerning actions to be taken to reduce the effect

of the financial crisis on the respondent’s company.

The congeneric model fits the data well [χ2 = 6.049, df = 9, P = 0.735]. The estimator

for the maximal reliability ϕ̂ takes the value 0.8770 and the corresponding 95% confidence

intervals for the maximal reliability ϕ are found in Table 3.1.

Note that the Yuan-Bentler and the Raykov-Penev intervals are symmetric around ϕ̂,

whereas the new interval 2 and the new interval 1 are not. Moreover, the Raykov-Penev

interval contains the Yuan-Bentler interval. The lower endpoint of the new interval 1

is smaller than the lower endpoint of the stable interval, which in turn is smaller than
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Table 3.1: Asymptotic 95% confidence intervals for maximal reliability ϕ. The estimator ϕ̂ takes
the value 0.8770.

Interval Lower Upper
Unstable 0.833 0.903

YuanBentler 0.844 0.910
RaykovPenev 0.844 0.910

Stable 0.840 0.906

the lower endpoint of the Raykov-Penev interval. Similarly, the upper endpoint of the

new interval 1 is smaller than the upper endpoint of the stable interval, which in turn is

smaller than the upper endpoint of the Raykov-Penev interval.

Due to the relatively large sample size, the differences between the confidence intervals

in Table 1 are not very large. To further our understanding of the differences between the

four confidence intervals, we rely on simulations, to be discussed in the next section.

3.4 Simulation results

In the simulations, we let k take the values 3, 5, 8, 10, 15, 20, and n take the values

25, 50, 100, 200, 400. The number of replications in the simulations is 10000. We define

the quantities μ1 and μ2 as

μ1 =
1

k

k∑
j=1

λ2
j

ψj

, μ2 =
1

k

k∑
j=1

(
λ2

j

ψj

− μ1

)2

. (3.15)

Note that we may also write μ1 = k−1ϕ/(1 − ϕ). In our simulations we set μ1 equal to

values which correspond to the maximal reliability 0.60, 0.75, 0.90 and 0.95. Next, we set

μ2 equal to 0.05μ2
1, 0.1μ2

1 and 0.15μ2
1.

We expect that the simulation results largely depend on the quantities μ1 and μ2.

In order to be able to confirm this expectation, we generate the λ2
i /ψi’s using various

patterns. In particular, we choose

λ2
i

ψi

= a+ bg

(
i

k + 1

)
,

where g(x) is one of the three following functions:

g1 (x) = x− 1
2
,
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Figure 3.1: Normal probability plot of simulated values of the left hand side of (3.7) with k = 5,
ϕ = 0.9, n = 100. The plot approaches the line with intercept 0 and slope 1 only in the center,
there is a marked deviation in the tails.
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Here a and b are chosen so as to satisfy (3.15) for given μ1 and μ2.

The parameters in the congeneric model may be estimated by any statistical program

capable of performing either exploratory factor analysis or confirmatory factor analysis.

First, we investigate the extent in which the standard normal approximations (3.13)

and (3.7) are valid. It turns out that these approximations are troublesome when the

number of test items k is small. When k = 5, the approximations are reasonably accurate,

except when both n and ϕ are small. Recall that the standard normal approximations

(3.13) and (3.7) provide the probabilistic basis for all confidence intervals discussed in this

paper. Hence, in the remainder of this section we shall restrict ourselves to situations in

which k ≥ 5 and n ≥ 50. As is to be expected, the distribution of the stable asymptotic

pivotal quantity is closer to normal than the distribution of the unstable asymptotic

pivotal quantity as illustrated by Figures 3.1 and 3.2.
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Figure 3.2: Normal probability plot of simulated values of the left hand side of (3.13), with
k = 5, ϕ = 0.9, n = 100. The plot approaches the line with intercept 0 and slope 1, even in the
tails.
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We have also examined the validity of the limiting approximation when item scores

are discrete. It turns out that for reasonable n, it is already possible for k ≥ 5 to achieve

the normal approximation. However, ϕ should not be too near to one, say ϕ ≤ 0.95.

Hence, though we assume a standard normal distribution, it is sufficient that the

pivotal quantity (3.13) converges to a standard normal distribution. As long as this is

the case, the confidence intervals derived from this pivotal quantity remain asymptotically

valid; consequently, the assumption that the data follow a multivariate normal distribution

may be relaxed somewhat.

Next, we examine the simulated coverage curves of the four intervals. The coverage of

a confidence interval for a given hypothetical value of ϕ is defined as the probability that

this hypothetical value is contained in the interval. The coverage curve is the curve that

the coverage follows as the hypothetical value of ϕ ranges through an interval of possible

values of ϕ. The ideal shape of the coverage curve is as follows:

• if the hypothetical value of ϕ equals the true value, then the coverage should be

equal to the confidence level;



3.4 Simulation results 41

• if the hypothetical value of ϕ differs from the true value, then the coverage should be

as low as possible. In particular, the coverage should be lower than the confidence

level.

There are various ways in which a coverage curve may deviate from the ideal shape.

In our examination of the performance of the confidence interval, we shall in particular

consider the unbiasedness of a confidence interval. A confidence interval is called unbiased

if for every hypothetical value of ϕ the coverage of the interval does not exceed the coverage

for the true value of ϕ.

If an interval is unbiased, the next issue to consider is whether the coverage for the true

value of ϕ equals the confidence level. If this coverage is larger than the confidence level,

the unbiased confidence interval is called conservative; if this coverage is smaller than

the confidence level, the unbiased confidence interval is called anti-conservative. Being

conservative is considered less harmful than being anti-conservative.

Statistical testing theory yields an alternative way to interpret coverage curves. Note

that for every confidence interval for ϕ, there exists a related statistical test of the

null hypothesis H0 : ϕ = ϕ0; this test does not reject the null hypothesis if the

hypothetical value ϕ0 lies inside the confidence interval, and rejects the null hypothesis if

the hypothetical value ϕ0 is outside the confidence interval. Now, if the true value of ϕ

differs from the hypothetical value ϕ0, then the coverage of the hypothetical value ϕ0 is

equal to the probability of a type II error of the related statistical test of H0 : ϕ = ϕ0.

Thus, by subtracting the coverage curve from 1, we in fact obtain the power curve of the

related test. In fact, the description of the ideal shape of the coverage curve given above

is a direct translation of generally accepted rules involving the ideal shape of the power

curve.

Evaluating the coverage not only under the null hypothesis, but also under the

alternative hypothesis provides a much more comprehensive view of the behavior of the

various confidence intervals.

As it is not possible to include all generated figures, we have only included the most

striking ones. All relevant figures are available upon request.

The simulated coverage curves depend on the sample size n, the true value of the

maximal reliability ϕ, the number of items k and on the quantities μ1 and μ2. It turns

out that μ2 has little effect, and implies that the intervals do not vary too much. As μ1

is determined by ϕ, only n, ϕ and k are of interest. Their effects are as follows.

• The sample size n has a positive effect on the performance of all confidence intervals.

That is, the coverage curve approaches the ideal shape for large n.
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Figure 3.3: Coverage curves of stable interval (solid line), unstable interval (dashed line),
Yuan-Bentler interval (dotted line) and Raykov-Penev interval (dotted-dashed line) for ϕ =
0.60, 0.75, 0.90, 0.95, k = 8 and n = 100.
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• The true value of the maximal reliability ϕ has a positive effect on the coverage of

all confidence intervals, see Figure 3.3. When the true value of ϕ approaches 1, the

coverage of the true value increases.

• The number of items k has a positive effect on the performance of all confidence

intervals. That is, the coverage curve approaches the ideal shape for large k.

The simulated coverage curves yield the following general findings with respect to the

differences in performance between the four confidence intervals.
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• There is little difference between the Yuan-Bentler and the Raykov-Penev interval.

Both intervals show a positive bias, and thus overestimate the true maximal relia-

bility. This bias is more marked when the true value of the maximal reliability ϕ is

low.

• The new interval 1 shows a negative bias, and thus underestimates the true maximal

reliability. This bias is more marked when the true value of ϕ approaches 1. The

negative bias turns into a positive bias when the true value of ϕ is becomes lower.

However, the coverage of the true value of ϕ is still larger than the confidence level.

• The stable interval shows some positive bias for low values of the true value of ϕ, but

this bias is less than the bias of the other intervals. Except for extreme conditions

(that is, a combination of a small sample size n, a small number of items k and a

low true value of the maximal reliability ϕ), the stable interval performs well, and

has a coverage for the true value ϕ which is approximately equal to the confidence

level.

Finally, we remark that we could not have detected the positive bias of the Yuan-

Bentler and the Raykov-Penev without the construction of coverage curves, that is, eval-

uating the coverage under the null hypothesis as well as under the alternative hypothesis.

We highly recommend the use of coverage curves in other studies on confidence intervals

as it has shown to be more informative.

3.5 Conclusion

We discussed the issue of estimating the maximal reliability in the congeneric model.

We motivated that existing confidence intervals for maximal reliability as derived in

Yuan and Bentler (2002) and Raykov and Penev (2006) are possibly anti-conservative

as they are derived by using ϕ̂ as pivotal quantity, which does not have a stable variance.

Our simulations show that anti-conservatism of these intervals indeed occurs. Anti-

conservative confidence intervals have an attained coverage less than the required coverage

and hence may falsely give the impression that ϕ is estimated with sufficient accuracy.

Therefore, we advocate the use of a variance stabilizing transformation technique in

constructing confidence intervals for ϕ.

We have derived two new confidence intervals for maximal reliability and compared

the performance of these intervals with intervals proposed in Yuan and Bentler (2002)

and Raykov and Penev (2006). To compare these intervals, we have introduced coverage
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curves. That is, we have not only considered the coverage of the true maximal reliability,

but the coverage of hypothetical values which differ from the true maximal reliability as

well. We would highly recommend the use of coverage curves analysis to compare those

intervals as it has shown to be more informative.

It turns out that the Yuan-Bentler and the Raykov-Penev intervals are closely related

to each other. In fact, the Yuan-Bentler interval is always contained in the Raykov-Penev

interval. The similarity in behavior of the two intervals is in contrast with the remarks in

Raykov and Penev (2006) with regard to the Yuan-Bentler interval. According to Raykov

and Penev (2006) it is “(a) rather laborious and tedious in routine behavioral research in

need of interval estimation of maximal reliability, (b) involves taking by the researcher of

multiple partial derivatives of this reliability coefficient with respect to model parameters,

(c) has the inconvenient property that the number of these derivatives increases with

increasing length k of the initial composite of interest (as could be repeatedly the case

when one is involved in scale development and revision), and (d) can be viewed as based

on a first-order approximation of maximal reliability as a function of model parameters.”

By taking the computations in Yuan and Bentler (2002) one step further, one can simply

eliminate the problem of taking multiple partial derivatives. Moreover, it seems that the

additional complexity of the alternative interval proposed in Raykov and Penev (2006)

does not pay off, as a clear advantage of using this interval over the Yuan-Bentler is

lacking. Both intervals overestimate the true maximal reliability, which is more marked

for low values of the true maximal reliability. This might be due to a ceiling effect that

cuts down the positive biases of these two intervals when the true value of ϕ is high.

We have also examined the performance of the two new intervals proposed in this

article. The new interval 1, which is also unstable, underestimates the true value of the

maximal reliability considerable when the true value of ϕ approaches 1 and overestimates

when the true value of ϕ becomes lower. The coverage for the true value of ϕ of this

interval is larger than the confidence level.

Except for a combination of a small sample size, a small number of items and a low

true value of the maximal reliability, the stable interval performs well, and has a coverage

for the true value of ϕ which is approximately equal to the confidence level. This shows

the advantage of the use of a stabilization technique in constructing confidence intervals.

Observe that the congeneric model is in fact a factor analysis model with a single

factor. This raises the issue whether variance stabilization transformation technique is of

use in more complicated models as well, for example multiple factor analysis models. The
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obtained results give us insight in how we could apply variance stabilization to improve

confidence intervals for the maximal reliability in these models in further research.
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3.A Proofs

Proof of (3.7). The congeneric model implies that the population covariance matrix of

Y1, . . . , Yk is given by

λλ� + Ψ,

where λ is the k-dimensional vector with elements λ1, . . . , λk, and Ψ the diagonal matrix

with diagonal elements ψ1, . . . , ψk.

Let θ denote the 2k-dimensional parameter vector (ψ1, . . . , ψk, λ1, . . . , λk)
�, and let θ̂

denote the maximum likelihood estimator of θ. It follows from the theory of covariance

structures (see Browne, 1984; Kano et al., 1990) that

√
n
(
θ̂ − θ
)
→d N2k (0,Ω) , (3.16)

with

Ω =

(
Ωψψ Ωψλ

Ωλψ Ωλλ

)
,

where

Ωψλ = Ωλψ
� = −1

ζ
ΩψψΥ

(
I − λλ�Ψ−1

1 + ζ

){
Ψ − 1

2

1 − ζ

ζ
λλ�
}
,

Ωλλ =
1 + ζ

ζ

{
Ψ − 1

2

1 − ζ

ζ
λλ�
}

+
1

ζ2

{
Ψ − 1

2

1 − ζ

ζ
λλ�
}(

I − Ψλλ�

1 + ζ

)
ΥΩψψ

× Υ

(
I − λλ�Ψ−1

1 + ζ

){
Ψ − 1

2

1 − ζ

ζ
λλ�
}
,

and

Ωψψ = 2Ψ
(
D + vv�

)−1
Ψ,

with

D =

(
I − 2

ΨΥΨΥΨ

1 + ζ

)
, v =

ΨΥλ

1 + ζ
, (3.17)

where Υ is the k×k-dimensional diagonal matrix with υii = λi/ψ
2
i as ith diagonal element.

The Sherman-Morrison-Woodbury formula (see Hager, 1989) yields

(
D + vv�

)−1
= D−1 − (1 + v�D−1v

)−1
D−1vv�D−1.
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It follows that

v�D−1v =
1

ζ

k∑
j=1

{
λ2

j/ψj

}2
ζ − 2λ2

j/ψj

= Q. (3.18)

Now, note that we may view ζ as a function h of ψ1, . . . , ψk, λ1, . . . , λk. Define the vector

ḣ as (ḣ�ψ , ḣ
�
λ )
�
, where

ḣψ =

⎛
⎜⎜⎜⎜⎝

∂h
∂ψ1

∂h
∂ψ2

...
∂h
∂ψk

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

−λ2
1/ψ

2
1

−λ2
2/ψ

2
2

...

−λ2
k/ψ

2
k

⎞
⎟⎟⎟⎟⎠ = −Υλ,

ḣλ =

⎛
⎜⎜⎜⎜⎝

2λ1/ψ1

2λ2/ψ2

...

2λk/ψk

⎞
⎟⎟⎟⎟⎠ = 2Ψ−1λ.

The delta method yields √
n
(
ζ̂ − ζ
)
→d N

(
0, ḣ�Ωḣ

)
, (3.19)

with

ḣ�Ωḣ = (1 + ζ)2

{
2 + 2

v�D−1v

1 + v�D−1v

}
, (3.20)

where D and v are defined in (3.17). The combination of (3.18), (3.19) and (3.20) yields

(3.7). �

Proof of (3.12). We have that the values λ2
1/ψ1, . . . , λ

2
k/ψk are drawn independently

from the distribution of the non-negative random variable E−1, which has finite variance.

Hence, the limits

m1 = lim
k→∞

1

k

k∑
j=1

λ2
j

ψj

, (3.21)

m2 = lim
k→∞

1

k

k∑
j=1

{
λ2

j/ψj − 1

k

k∑
j=1

λ2
j

ψj

}2

(3.22)

exist, and are finite. Moreover, one may show

lim
k→∞

max
i=1,...,k

λ2
i /ψi∑k

j=1 1/ψj

= 0. (3.23)
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Condition (3.23) implies that

lim
k→∞

v�D−1v = lim
k→∞

1

k

(
1
1
k
ζ

)2
1

k

k∑
j=1

{
λ2

j/ψj

}2
,

and thus it follows by (3.21) and (3.22) that

lim
k→∞

v�D−1v =

{
lim
k→∞

1

k

}{
lim

k→∞

(
1
1
k
ζ

)2
}{

lim
k→∞

1

k

k∑
j=1

{
λ2

j/ψj

}2}
= 0.

This concludes the proof of (3.12). �
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Chapter 4

Preliminary Analysis of Preference

Rankings when there are Too Many

Alternatives∗

Abstract
We derive the score test for Best-Worst ranking data when there are too many alter-

natives. Moreover, we introduce a multiple comparison procedure to examine differences
across alternatives when the null hypothesis is rejected. This methodology has not yet been
applied in a marketing context. We show that the same results can also be obtained by a
nonparametric approach, which in addition enhances interpretation. Moreover, we show
that our proposed nonparametric test and the score test are equivalent, which implies that
the far more simpler nonparametric approach is as good as the likelihood approach, as
the score test has optimality characteristics. We extend the nonparametric approach to
general ranking schemes, which can be easily done in contrast to the likelihood approach.
In a preliminary analysis of preference rankings when there are too many alternatives, the
proposed methodology reduces the amount of alternatives in an easy and understandable way,
such that irrelevant alternatives can be removed from further analysis.

4.1 Introduction and motivation

Stated preferences are respondents’ expressed preferences in hypothetical situations. The

main argument against stated preference data is what respondents say they will do may

be different from what they actually do. However, discrepancies between stated and

actual behavior are prone to occur in a hypothetical situation which differs from a real

choice context: such discrepancies may depend on the clarity of the questionnaire and

∗This chapter is partly based on Lam et al. (2010a).
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the setting of the experiment. Ben-Akiva et al. (1992) mentions several advantages of

stated preference data over revealed preference data: choice sets can be prespecified,

ranges of attributes can be extended, multicollinearity among attributes can be avoided,

attributes that are not easily quantified, such as safety, reliability, and availability, can be

incorporated. Moreover, in Louviere et al. (2000), a number of reasons is given why we

should be interested in stated preferences. In practice, managers often need to estimate

market response to new product with new attributes or features. Revealed preference

data are generally limited to helping us understand preferences within existing markets,

whereas stated preference data provide insights into future markets and are more useful

for forecasting changes in behavior. Such applications have no revealed preference data

on which they can rely and one has little alternative than to use stated preference data.

Inferences about and predictions of real market behavior based on stated preferences are

indistinguishable from revealed preferences.

Stated consumer preferences can be measured by rankings of alternatives. Metric

measurements such as rating and matching may be less reliable due to respondents’ limited

ability to accurately report degrees of preferences (Ben-Akiva et al., 1992). Rankings are

easy to collect and they are easy to interpret.

However, task difficulty increases substantially with the number of alternatives to be

ranked. It has been widely recognized that individuals face difficulties, or even become

dissatisfied, when having to compare too many choice options. Iyengar and Lepper

(2000) in their famous experiment showed that too much choice can be demotivating

for consumers. In a marketing context, Boatwright and Nunes (2001) demonstrated

that a reduction of the assortment is in fact felt as beneficial to consumers, a finding

which has been supported by Chernev (2003) and Gourville and Soman (2005), among

others. In another context, DeShazo and Fermo (2002) showed that consumers experience

task complexity when choice options are plenty, see also Sandor and Franses (2009). In

sum, consumers may find it difficult to rank preferences across too large an amount of

alternatives.

The problem of task complexity can be alleviated by asking respondents to evaluate all

alternatives but only to give preference rankings for a subset of the alternatives. Moreover,

in Louviere et al. (2000), one does not need complete rankings to obtain extra preference

information.

One partial ranking that is gaining in popularity is Best-Worst ranking, developed

by Louviere and Woodworth (1991a) as a multiple choice extension of Thurstone (1927)

method of paired comparisons. Best-Worst ranking assumes that respondents evaluate
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all possible pairs of alternatives within a displayed (sub)set and choose that pair of

alternatives that reflects maximum difference in preference or importance on an underlying

latent dimension.

Best-Worst ranking is a special case of what we call a ranking scheme. Ranked

preference data allows considerably more information to be gathered from a given sur-

vey observation than is gathered from simply the most and least preferred alternatives

(Hausman & Ruud, 1987). In this paper we present the analysis of more extensive partial

ranking schemes. As individuals are well able to discriminate among alternatives in the

extremes, we could efficiently obtain more preference information by extending the rank

data of these extreme alternatives rather than limited to the best and worst alternatives.

That is what we call a partial ranking scheme: a predefined data generating process where

we ask respondents to indicate and rank their most preferred alternatives and their least

preferred alternatives. The method can easily extended by asking respondents to rank a

subset of the alternatives in the middle part of their preferences. However, various studies

observed that inconsistency occurs in the middle ranks (e.g. Ben-Akiva et al., 1992).

We propose an appropriate test statistic to test the observed preference rankings. That

is, we want to test the null hypothesis

H0: There are no differences across the alternatives. Each arrangement of the

C ranks is equally likely,

against the alternative hypothesis

Ha: At least one alternative tends to yield a higher ranking than at least one

other alternative.

If there is statistical evidence of such a difference, the question is of course which

alternatives it concerns. To this end, we will present a multiple comparison procedure to

reach conclusions about differences between all pairs of alternatives. To our knowledge

this is new in the field of marketing.

The advantage of multiple comparisons is that it helps a marketer to decide which

alternatives to include in subsequent more detailed study. A marketer can analyze a large

amount of alternatives in a preliminary analysis and alternatives which are not relevant

can now be removed before further analysis is done.

The outline of our paper is as follows. In Section 4.2 and Section 4.3 we outline

the statistical methodology from two different statistical paradigms: likelihood and

nonparametric theory. In Section 4.4 we illustrate the equivalence of both methodologies.

In Section 4.5 we outline the nonparametric theory in a general context and illustrate its
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relevance and ease of use in Section 4.6. Section 4.7 concludes with a few avenues for

further research.

4.2 Likelihood approach to Best-Worst ranking

Suppose each of n respondents is asked to indicate the most as well as the least preferred

alternatives out of C alternatives. Assume that the probability that a random respondent

simultaneously selects alternative s as the most preferred, and alternative t as the least

preferred is

pst =
exp{δst}∑

s′
∑

t′ �=s′ exp{δs′t′} ,

where δst = μs − μt and μc is the average preference for alternative c, see also Finn and

Louviere (1992). Set μC = 0 to avoid identification issues, and note that pst is now a

function of the remaining parameters μ1, μ2, . . . , μC−1. We obtain

∂ ln pst

∂μc

=
{
1{s=c} − pc·

}− {1{t=c} − p·c
}
,

where 1{·} denotes an indicator function that is 1 if the argument is true and 0 otherwise,

and where pc· denotes
∑

t′ �=c pct′ and p·c denotes
∑

s′ �=c ps′c.

Let ost denote the number of respondents indicating alternative s as the most preferred,

and alternative t as the least preferred. Then, the log-likelihood is given by

lnL (μ1, μ2, . . . , μC−1) =
∑
st∈K

ost ln pst. (4.1)

We obtain

∂

∂μc

lnL (μ1, μ2, . . . , μC−1) =
∑
st∈K

ost
∂ ln pst

∂μc

= {oc· − npc·} − {o·c − np·c} , (4.2)

where oc· denotes
∑

t′ �=c oct′ and o·c denotes
∑

s′ �=c os′c. Further, we obtain

∂2

∂μc∂μc′
lnL (μ1, μ2, . . . , μC−1) =

∂

∂μc′
{oc· − npc·} − {o·c − np·c}

= −n{(pc· + p·c) 1{c=c′} − (pcc′ + pc′c) 1{c�=c′} − (pc· − p·c) (pc′· − p·c′)
}
.

(4.3)



4.2 Likelihood approach to Best-Worst ranking 55

4.2.1 Overall test

To test the null hypothesis of no differences across the alternatives, we compute the score

test, see Rao (1948). The score test is also known as the Lagrange Multiplier test, see

Aitchison and Silvey (1958) and Buse (1982). Under the usual regularity conditions,

the score test is asymptotically optimal, see Lindsey (1996, p. 300). The score test is

commonly used as a specification test. Here we shall use it to test the specification of a

model under which each arrangement of the ranks is equally likely.

Let U denote the score vector, that is the (C − 1)-dimensional vector with elements

(4.2). The score test is defined as

LM = UT
0 J−1

0 U0, (4.4)

where U0 and J0 are respectively the score vector and the information matrix evaluated

under H0. Under H0 (4.4) has approximately a chi-square distribution with C−1 degrees

of freedom.

Under H0 we have

pc· = p·c =
1

C
, pcc′ = pc′c =

1

C(C − 1)
,

and hence the cth element of U0 is given by

u0,c = oc· − o·c.

Moreover, one may show that

J0 =
2n

C − 1

(
diag (ι) − 1

C
ιιT
)
, (4.5)

where diag(ι) denotes a diagonal matrix with elements one on the diagonal and ι is a

(C − 1)-dimensional vector of ones.

According to the Sherman-Morrison-Woodbury formula, see Hager (1989), we may

write

J−1
0 =

C − 1

2n

(
diag (ι) + ιιT

)
,

and hence we may rewrite (4.4) as

LM =
C − 1

2n

C∑
c=1

(oc· − o·c)
2 . (4.6)
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That is, the score test in this case is proportional to the sum of squared differences between

the number of times an alternative is chosen as most preferred minus the number of times

it is chosen as least preferred over all C alternatives.

4.2.2 Multiple comparisons

When the null hypothesis is rejected, there is sufficient evidence to conclude that there

exist differences across the alternatives. However, we do not know which alternatives

differ, so we present a multiple comparison procedure to examine all C(C− 1)/2 pairwise

comparisons.

The multiple comparison procedure could be interpreted as a hypothesis test for

each pairwise comparison, that rejects the subhypothesis H0,cc′ of no difference between

alternative c and alternative c′ if and only if

|u0,c − u0,c′| ≥ rα
C,n, (4.7)

where the critical constant rα
C,n is chosen to make the type I error rate equal to α. That

is, rα
C,n is the largest constant such that

PH0

(
maxu0,c − minu0,c′ ≥ rα

C,n

) ≤ α.

This implies that when H0 is true all C(C − 1)/2 inequalities in (4.7) fail to exceed the

critical constant rα
C,n with probability α. Hence, multiple comparisons are only of interest

if the global null hypothesis H0 is rejected. When the global null hypothesis H0 is not

rejected, it is generally agreed that all hypotheses implied by that hypothesis must also

be considered as not rejected.

Define u0,C = oC·−o·C , it follows from (4.5) that the covariance matrix of u0,c−u0,c′ is

the same as the covariance matrix of Zc −Zc′ , where Z1, . . . , Zk are independent random

variables with zero means and variances 2n/(C − 1). Hence, the asymptotic distribution

of
maxc,c′ |u0,c − u0,c′|√

2n/ (C − 1)

coincides with the distribution of the range of C independent standard normal random

variables. When n is large, the critical constant rα
C,n can be approximated by

rα
C,n ≈ qα

C

√
2n

C − 1
, (4.8)
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where qα
C is the upper α percentile point of the range of C independent standard normal

random variables. The percentile points qα
C can be found in Harter (1960).

Multiple comparisons plot

To visualize the multiple comparisons (4.7), we construct an interval Qc for each alterna-

tive c centered at u0,c with length rα
C,n and endpoints

u0,c ±
rα
C,n

2
. (4.9)

The intervals Q1, . . . , QC are simultaneously displayed in a plot. When intervals Qc and

Qc′ do not overlap, the distance between u0,c and u0,c′ exceeds rα
C,n and hence (4.7) should

be rejected, yielding the conclusion that there is a significant difference between alternative

c and alternative c′.

Homogeneous subsets

Based on the multiple comparisons we can identify subsets of alternatives by cluster

analysis. The corresponding distance matrix summarizes the hypothesis tests (4.7) by

zero’s (non rejection) and ones (rejection). It is well known that such a distance matrix of

zero’s and ones could lead to multiple solutions in complete linkage clustering. Therefore,

when alternatives c and c′ are not significantly different, we multiply |u0,c − u0,c′| by ε and

add this in the distance matrix. As adding |u0,c − u0,c′| ε may not disguise the multiple

comparisons results, ε should be chosen small enough like 0.001.

4.3 Nonparametric approach to Best-Worst ranking

The same results can be obtained by a nonparametric approach, which utilizes the

Best-Worst ranking directly, and connects to the well-known Friedman statistic. The

nonparametric approach also allows us to further improve the interpretation of the

multiple comparisons plot as the average rank is easier to understand than the score.

For each of n respondent, assign rank value 1 to the most preferred alternative s

and rank value C to the least preferred alternative t. Denote the observed rankings of

respondent i for alternative c by xic. Note that for each respondent we have three groups

of equal observations. Under H0 all rank permutations within each group are equally

likely.
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Table 4.1: Computation of weighted and adjusted ranks for a hypothetical Best-Worst dataset
for one respondent.

Alternative xic R (xi1, . . . , xiC) r̄ic aic

A - 2 2 3 3 4 4 18/6=3 0
B - 3 4 2 4 2 3 18/6=3 0
C 1 1 1 1 1 1 1 6/6=1 -2
D 5 5 5 5 5 5 5 30/6=5 2
E - 4 3 4 2 3 2 18/6=3 0

Let R (xi1, . . . , xiC) be the set of all possible rankings consistent with xi1, . . . , xiC given

the observed rankings for respondent i. The weighted rank r̄ic assigned to xic is defined

as the average of all possible ranks within the set R (xi1, . . . , xiC).

In Table 4.1 we illustrate the computation of r̄ic. This respondent indicates alternative

C as most preferred and alternative D as least preferred from a set of C = 5 alternatives.

The set of all possible rankings R (xi1, . . . , xiC) is listed in the third column. The weighted

rank r̄ic for alternative c is the average of all its possible ranks and is listed in the fourth

column.

4.3.1 Overall test

The test statistic for H0 is based on sums of adjusted ranks. The adjusted rank aic is

obtained by subtracting the expected rank (C + 1)/2 under H0 from the weighted rank

r̄ic. In our example, the expected rank under H0 is 3 and the adjusted ranks aic are listed

in the last column of Table 4.1. The adjusted ranks can be summarized in a vector a+, by

summing all adjusted ranks for each alternative over the n respondents, that is, element c

of vector a+ is given by a+c =
∑

i aic. As a+c equals the number of times that alternative

c is chosen as most preferred minus the number of times that it is chosen as least preferred

multiplied by − (C − 1) /2, it follows that

a+c = −
(
C − 1

2

)
u0,c. (4.10)

The random vectors (ai1, . . . , aiC) are independent under H0 and the covariance matrix

V+ of the vector a+ is thus equal to the sum of the individual covariance matrices Vi. The
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covariance matrix Vi is defined in Wittkowski (1988) as

Vi = A2
0

(
diag (ι) − ιιT

C

)
, (4.11)

where ι is a C-dimensional vector of ones, diag (ι) denotes a diagonal matrix with

elements one on the diagonal and A2
0 denotes the individual variance under H0. In Best-

Worst ranking we have A2
0 = (C − 1) /2 and it follows that the individual covariance

matrix (4.11) is given by the diagonal elements (C−1)2/2C and the off-diagonal elements

(1 − C)/2C. Note that Vi depends only on C and as a consequence, Vi is the same for

each respondent. Hence, (4.11) implies V+ = nVi.

The test statistic is now computed along standard lines as

W = a′+ (V+)− a+, (4.12)

where (V+)− denotes a generalized inverse of V+, that is, any matrix which satisfies

V+ (V+)− V+ = V+. Under H0 and for large n, W has approximately a chi-square

distribution with C − 1 degrees of freedom. As already suggested by (4.10), test (4.12)

and the score test (4.6) are equivalent.

4.3.2 Multiple comparisons

As in the likelihood approach, we present a multiple comparison procedure to examine

which alternatives differ in preference rankings when H0 is rejected.

To enhance interpretability we will use the average weighted ranks r̄c =
∑

i r̄ic/n,

rather than the average adjusted ranks āc =
∑

i aic/n. Note that

r̄c = āc +
C + 1

2
,

and thus |āc − āc′| = |r̄c − r̄c′|. The subhypothesis H0,cc′ of no difference between

alternative c and alternative c′ is given by

|r̄c − r̄c′| ≥ rα
C,n, (4.13)

where the critical constant rα
C,n is defined as before.

Under H0, one may show that the covariance matrix of āc − āc′ coincides with the

covariance matrix of the differences Zc − Zc′ where Zc, Zc′ are independent random

variables with mean zero and variance (C − 1) /2n. Hence, when n is large, rα
C,n can



60 Chapter 4

be approximated by

rα
C,n ≈ qα

C

√
C − 1

2n
, (4.14)

where qα
C is defined as before. The intervals Q1, . . . , QC are thus given by endpoints

r̄c ±
rα
C,n

2
, (4.15)

for alternative c.

Note that the critical value (4.14) is proportional to (4.8) and consequently, (4.13)

must yield the same (non-)rejections as in (4.7). As the cluster analysis is based on the

results of the multiple comparisons, it should also yield the same homogeneous subsets of

alternatives. The weighted rank lends out to a better interpretation than the score, for

example, we may interpret results of the cluster analysis as subsets of alternatives with

the same within-cluster rank.

Moreover, remark that we have assigned rank value 1 to the most preferred alternative,

whereas in the likelihood approach, the most preferred alternative has the highest score.

Hence, the intervals should be at the mirror positions of the ones obtained in the likelihood

approach.

4.4 Illustration Best-Worst ranking

To illustrate and compare the two different approaches, we analyze a Best-Worst data set

concerning winter sports holiday packages obtained from n = 169 respondents.

4.4.1 Data

Before performing the BW ranking task, we introduce the respondents to the following

hypothetical situation.

Suppose you have won an voucher worth EUR 750,- which you can spend on

a winter sports holiday. This winter sports holiday must take place between

1 December 2008 and 31 March 2009. Assume that you are able to plan two

week holidays during this period. This holds also for your travel companions.

You may decide when and where to go. Please note that the voucher is strictly

personal and can only be used for your part of the holiday and accommodation

costs. If the total costs are less then EUR 750,- will be given the remainder as

a voucher for a winter sports holiday next year.
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Table 4.2: List of C = 8 winter sports holiday destinations.

Destination a+c r̄c

1. Valmorel (France) 87.5 5.018
2. Val Thorens (France) -283.5 2.822
3. Mayrhofen (Austria) 31.5 4.686
4. Gerlos (Austria) -49.0 4.210
5. Kirchberg (Austria) 45.5 4.769
6. Livigno (Italy) 196.0 5.660
7. Alpe d’Huez (France) -24.5 4.355
8. Pas de la Casa (Andorra) -3.5 4.479

These details are provided to standardize the decision situation across all respondents,

see Rewtrakunphaiboon and Oppewal (2008), and controls for budget, holiday period and

the right to take decisions by the respondent. Rebates were available to discourage the

respondent to choose the most expensive holiday package to use the entire voucher at once.

Respondents are then presented a list of eight winter sports holiday packages to spend

their voucher. Each package description contains information about the period of holiday,

price, general information about the destination, information about accommodation and

the prices of ski and snowboard lessons and material rent. Respondents indicate the

best package option and worst package option from this list. The winter sports holiday

destinations are listed in Table 4.2.

4.4.2 Likelihood approach

Our null hypothesis of no differences across the winter sports holidays is clearly rejected

as the score test (4.6) takes the value 224.041 with corresponding p-value is 0. As H0

is rejected, the question remains which winter sports holidays differ. For α = 0.05 and

C = 8, we obtain qα,C = 4.286 and rα,C,n can approximated by (4.8) and takes the value

29.783.

We summarize the multiple comparisons (4.7) in a plot, which simultaneously dis-

played the intervals (4.9). We observe in Figure 4.1 that the most preferred winter sports

holiday is Val Thorens in France as it has the highest score, i.e. Val Thorens in France

has been observed most often as most preferred winter sports holiday after subtracted the

times that it was observed as least preferred.

Next, we perform a complete linkage clustering (see e.g. Lattin, Carroll, & Green,

2003) based on the multiple comparisons as described. The corresponding dendrogram is
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Figure 4.1: Rank plot with α = 0.05 of C = 8 winter sports holiday packages.
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displayed in Figure 4.2. The cluster analysis suggests four main clusters. The first cluster

contains the most preferred holiday: Val Thorens in France. A second cluster contains

the least preferred holiday: Livigno in Italy. A third cluster contains the holidays: Gerlos

(Austria), Alpe d’Huez (France) and Pas de la Case (Andorra). The last cluster contains

the holidays: Valmorel (France), Mayrhofen (Austria) and Kirchberg (Austria).

4.4.3 Nonparametric approach

Note that for each respondent we obtain three groups of equal observations. Remark

that all rank permutations within each group are equally likely under H0 and hence,

the weighted ranks are r̄ic = 1 for the most preferred holiday, r̄ic = 8 for the least

preferred holiday and r̄ic = 4.5 else. Adjusted ranks are obtained by subtracting the

expected rank 4.5 from the weighted ranks. Furthermore, A2
0 = 3.5 and Vi is given by

3.0625 on the diagonal and −0.4375 on the off-diagonal elements. The sum adjusted
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Figure 4.2: Dendrogram from cluster analysis based on multiple comparisons of C = 8 winter
sports holiday packages.
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ranks over all respondents for each destination is given in the second column of Table 4.2.

The conditional covariance matrix V+ is obtained by summing all individual covariance

matrices Vi.

The test statistic (4.12) takes the value W = 224.041 with corresponding p-value is 0

and thus we reject H0. Remark that this value is exactly the same as in the likelihood

approach.

The critical constant rα
C,n in our multiple comparison procedure can be approximated

by (4.14) and rα
C,n = 0.617. The average weighted ranks r̄c are given in the last column

of Table 4.2. Figure 4.3 visualizes the hypothesis tests (4.13). Remark that this plot

is similar to the plot obtained by the likelihood approach. The intervals (4.15) are on

the opposite of the intervals (4.9). Moreover, note that the scale in this plot is better

interpretable as it is just the average weighted rank r̄c.
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Figure 4.3: Rank plot with α = 0.05 of C = 8 winter sports holiday packages.
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Remark that (4.13) and (4.7) are equivalent tests and thus yield the same multiple

comparisons results. Hence, we obtain the same homogeneous subsets in the corresponding

cluster analysis.

4.5 Nonparametric approach to other ranking schemes

In contrast to the likelihood approach, the nonparametric approach is easily extended to

other ranking schemes, which we will discuss in this section.

Suppose there are C alternatives, with c = 1, . . . , C, and that there are n respondents,

with i = 1, . . . , n, who are asked to indicate their preferences according to some predefined

partial ranking scheme. In such a partial ranking scheme respondents indicate their most

preferred S alternatives and their least preferred T alternatives. Examples of a partial

preference ranking scheme are:
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• Ask respondents to indicate the most preferred alternative and the least preferred

alternative, and assign rank value 1 and rank value C respectively. This scheme

yields data corresponding to Best-Worst ranking experiments, which we have dis-

cussed before.

• Ask respondents to indicate a subset of S most preferred alternatives and rank this

subset, where rank value 1 is assigned to the most preferred alternative. Note that

each respondent select S most preferred alternatives, but each respondent can have

a different subset of S alternatives.

Typically, a predefined partial ranking scheme differs from a full ranking scheme in

the sense that it generates structured groups of equal observations. Note that all rank

permutations within each group are equally likely under H0.

Denote the observed rankings of respondent i for alternative c by xic. LetR (xi1, . . . , xiC)

be the set of all possible rankings consistent with xi1, . . . , xiC given the observed rankings

for respondent i. The weighted rank r̄ii assigned to xii is defined as the average of all

possible ranks within the set R (xi1, . . . , xiC).

4.5.1 Overall test

In general, the individual variance A2
0 is given by

A2
0 =

C(C + 1)

12
×
(

1 −
∑G

g=1

(
W 3

g −Wg

)
C3 − C

)
, (4.16)

where Wg is the number of equal observations in group g. Remark that each respondent

has to assign ranks according to a predefined ranking scheme and hence (4.16) is the

same for all respondents. Consequently, (4.11) implies that the diagonal elements of V+

are given by nA2
0(C − 1)/C and the off-diagonal elements by −nA2

0/C.

The test statistic is given as in (4.12).

4.5.2 Multiple comparisons

To determine the critical value rα
C,n, one may show that the covariance matrix of āc − āc

coincides with the covariance matrix of the differences Zc − Zc′ where Zc, Zc′ are inde-

pendent random variables with mean zero and variance A2
0/n. Hence, the asymptotic

distribution of
maxc,c′ |āc − āc′|√

A2
0/n
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coincides with the distribution of the range of C independent standard normal random

variables. When n is large, rα
C,n can be approximated by

rα
C,n ≈ qα

C

√
A2

0

n
, (4.17)

where qα
C is the upper α percentile point of the range of C independent standard normal

random variables.

The multiple comparisons tests are as defined in (4.13) and the intervals Q1, . . . , QC

are given by the endpoints (4.15).

4.6 Illustration

In this section we illustrate our statistical methodology to analyze preference rankings

where individuals are asked to rank a subset of alternatives according to some predefined

partial ranking scheme.

4.6.1 Top ranked alternatives

Ranked preference data from individuals allows considerably more information to be

gathered from a given survey observation than is gathered from simply the most and

least preferred alternatives (Hausman & Ruud, 1987). The possibility exists that an

individual will pay more attention to his/her top choice or top few choices rather than

carefully ranking all alternatives. Hausman and Ruud (1987) results indicate that the

top ranked alternatives are done more carefully than the lower ranked choices. Thus,

respondents may pay less attention to ranking inferior alternatives (see also Ben-Akiva et

al., 1992).

Hence, suppose there are C alternatives, with c = 1, . . . , C, and that there are n

respondents, with i = 1, . . . , n, who are asked to indicate and rank their top S alternatives,

where the most preferred alternative is assigned rank value 1. Note that each respondent

select S alternatives, but each respondent can have a different subset of S alternatives.

In this ranking scheme, the individual variance (4.16) under H0 is given by

A2
0 =

C(C + 1)

12

(
1 − C − S − 1

C − 1

C − S

C

C − S + 1

C + 1

)
.
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Table 4.3: List of C = 10 blockbuster movies in Dutch cinema theatres in 2007, ranked in the
first column according to the total size of audience.

Name movie a+c r̄c

1. Pirates of the Caribbean: At World’s End -79.5 4.645
2. Harry Potter and the order of the Phoenix 1.0 5.511
3. Alles is Liefde 40.5 5.936
4. Shrek the Third -6.0 5.435
5. Mr. Bean’s Holiday 150.0 7.113
6. Ratatouille 1.5 5.516
7. Ocean’s Thirteen -66.5 4.785
8. Spider-Man 3 76.5 6.323
9. Transformers 5.5 5.559
10. The Bourne Ultimatum -123.0 4.177

4.6.2 Data

We illustrate our proposed methodology with data of n = 93 individuals who are asked

to evaluate a list of C = 10 blockbuster movies in Dutch cinema theatres in 2007. The

movies are listed in Table 4.3.

Respondents are asked to indicate and rank their top S = 4 movies and the weighted

rank r̄ic for movies outside this subset is 7.5. Adjusted ranks aic are obtained by

subtracting the expected rank 5.5, from the weighted ranks. The individual variance

A2
0 = 65/9 and the individual covariance matrix Vi is given by 65/10 on the diagonal and

−65/90 on the off-diagonal elements. The sum of adjusted ranks over all respondents for

each movie is given in the second column of Table 4.3. The conditional covariance matrix

V+ is obtained by summing all individual covariance matrices Vi.

4.6.3 Results

Our null hypothesis of no differences between the movies is clearly rejected as the test

statistic (4.12) takes the value W = 83.276 with corresponding p-value is 0.

As H0 is rejected, we apply hypothesis tests (4.13) for each pairwise comparison.

For α = 0.05 and C = 10, we obtain qα
C = 4.474. The critical constant rα

C,n can be

approximated by (4.14) and rα
C,n = 1.247. The average weighted ranks r̄c are given in

the last column of Table 4.3. The multiple comparisons are summarized in Figure 4.4.

We observe in Figure 4.4 that the most favorite movie is ”The Bourne Ultimatum”. The

movies ”Pirates of the Caribbean: At World’s End” and ”Ocean’s Thirteen”, have overlap
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Figure 4.4: Rank plot with α = 0.05 of C = 10 blockbuster movies in Dutch cinema theatres in
2007.
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with the interval of the movie ”The Bourne Ultimatum” and hence are not significantly

ranked lower.

In Figure 4.5 we observe that the cluster analysis suggests three main clusters. Cluster

1 contains the most favorite movies: ”The Bourne Ultimatum”, ”Pirates of the Caribbean:

At World’s End” and ”Ocean’s Thirteen”. Cluster 2 contains the least favorite movie (5):

”Mr. Bean’s Holiday” and the last cluster contains all other movies. In sum, there seems

to be just three clusters of movies with the same within-cluster rank.

4.7 Conclusion

We have derived the score test for Best-Worst ranking data. The score test has optimality

characteristics and is commonly used as a specification test. Here, we have used it to test

the specification of a model in which each arrangement of the ranks is equally likely.
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Figure 4.5: Dendrogram from cluster analysis based on multiple comparisons of C = 10
blockbuster movies in Dutch cinema theatres in 2007.
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Moreover, we introduced a multiple comparison procedure to examine differences across

alternatives when the null hypothesis is rejected. To the best of our knowledge, this

methodology has not yet been applied in a marketing context.

We have shown that the same results can also be obtained by a nonparametric

approach, which enabled us to enhance interpretation of the results. Moreover, we showed

that our proposed nonparametric test and the score test are equivalent, which implies

that the far more simpler nonparametric approach is as good as the likelihood approach.

In addition, the nonparametric approach also allows for a better interpretation of the

multiple comparisons results, as (the average) ranks are easier to understand than the

scores.

An advantage of the nonparametric approach over the likelihood approach is that the

nonparametric approach can be easily extended to general ranking schemes. This allows
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us to efficiently gather more preference information than gathered from the most and least

preferred alternatives.

Remark that our proposed methodology should be considered in the context of a

preliminary analysis of preference rankings when there are too many alternatives. As our

purpose is to give directions for further analysis, we do not focus on estimating parameters.

The null hypothesis just serves as a starting point from where the model is improved.

Consider the situation where a marketer has such a large amount of alternatives that it

is hard to decide beforehand which alternatives are of interest to include in the experiment.

One may suggest to apply a partial profile design to overcome this. However, it is well

known in practice that with such a design respondents are inconsistent, in the sense that

their ranking fails to meet the transitivity criterium.

A preliminary analysis with our methodology, reduces the amount of alternatives in

an easy and understandable way, such that irrelevant alternatives can be removed from

further analysis.

Another practical application is, for example, in conjoint analysis, where the number

of alternatives grows exponentially as the number of attributes increases. Thus, when

there are many attributes to deal with, the technique can be used to exclude irrelevant

attributes.



Chapter 5

Ranking Models in Conjoint Analysis

Abstract
In this paper we consider the estimation of probabilistic ranking models in the context

of conjoint experiments. By using approximate rather than exact ranking probabilities,
we avoid the computation of high-dimensional integrals. We extend the approximation
technique proposed by Henery (1981) in the context of the Thurstone-Mosteller-Daniels
model to any Thurstone order statistics model and show that our approach allows for a
unified approach. Moreover, our approach also allows for the analysis of partial rankings,
which are an essential part of practical conjoint analysis in collecting data efficiently as a
means of relieving the respondents’ task burden. We apply our approach to the reanalysis of
the career preference data set described in Maydeu-Olivares and Böckenholt (2005) and to
a holiday preferences data set.

5.1 Introduction

Ranking stimuli is a simple means of measuring preferences. Metric measurements such as

rating and matching may be less reliable due to respondents’ limited ability to accurately

report degrees of preferences, see P. E. Green and Srinivasan (1978); Ben-Akiva et al.

(1992). Two complementary approaches to modeling preferences among multi-attribute

stimuli can be distinguished: conjoint measurement and conjoint analysis. Conjoint

measurement, see Luce and Tukey (1964); Krantz and Tversky (1971); Barron (1977),

investigates whether there are interval scales for each of the attributes which can be

combined according to some prespecified functional form and which are consistent with

the preferences. Conjoint analysis, see Kruskal (1965); Johnson (1974); P. E. Green and

Srinivasan (1978), aims at estimating interval scales assuming that a specific functional

form applies.
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Although conjoint analysis originated more than forty years ago, it continues to attract

active interest as a research field, see P. E. Green, Krieger, and Wind (2001); Bradlow

(2005). According to Hauser and Rao (2004), full-profile analysis remains the most

common form of conjoint analysis and has the advantage that the respondent evaluates

each profile holistically and in the context of all attributes. Its weakness is that the

respondent’s burden grows dramatically with the number of stimuli that must be ranked

or rated.

In full-profile conjoint experiments, each respondent evaluates and ranks a set/subset

of stimuli, where each stimulus is defined as a specific combination of attributes levels. As

the number of possible rankings is finite, the rankings have a discrete distribution. In prin-

ciple, standard methods for analyzing discrete data apply here, see Marden (1995, p. 140).

Unfortunately, probability models for rankings become rather complex, as the computa-

tion of each ranking probability usually requires high-dimensional integration when the

number of stimuli becomes large. Earlier approaches for analyzing conjoint experiments

thus avoid the use of probability models for rankings by resorting to multi-dimensional

scaling techniques to derive respondent preferences (for details, see P. E. Green and Rao

(1971)). Recently, there is however a renewed interest in the modeling and estimation

of ranking models, see Maydeu-Olivares (1999); Maydeu-Olivares and Böckenholt (2005);

Böckenholt (2006); Maydeu-Olivares and Hernández (2007).

In this paper we consider the estimation of probabilistic ranking models in the context

of full-profile conjoint experiments. We reduce the complexity of probabilistic ranking

models considerably by using approximate rather than exact ranking probabilities. In the

literature an abundance of ranking models is available, but we concentrate on Thurstone

order statistics models, to be introduced in the next section. In Henery (1981), a

simpler model approximated the Thurstone-Mosteller-Daniels model. We show that any

Thurstone order statistics model may be approximated by such a “Henery model”. This

allows for a unified approach.

Moreover, our approach also allows for the analysis of partial rankings. Methods

which result in partial rankings are essential in practical conjoint analysis to collect data

efficiently to relieve respondents’ task burden. A specific partial ranking method gaining

in popularity is Best-Worst ranking, see Louviere and Woodworth (1991b); Finn and

Louviere (1992). In this specific case, respondents are instructed to select only the best

and the worst stimulus. Detailed discussions of the Best-Worst ranking method are found

in Marley and Louviere (2005); Chrzan and Golovashkina (2006); Flynn, Louviere, Peters,

and Coast (2007). Partial ranking methods may also be dictated by the experimental
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design of the conjoint study. For example, each respondent may be asked to rank only a

strict subset of all stimuli used in the study.

The structure of our paper is as follows. First, we discuss ranking models and the

approximation of ranking probabilities. Then, we adapt general ranking models to con-

joint experiments by introducing a linear model which allows for modeling the dependence

of the rankings on the stimulus characteristics. Next, we illustrate our methodology on

the career preference data set described in Maydeu-Olivares and Böckenholt (2005) and

compare our results to those obtained in that paper. Further, we analyze a holiday

preferences data set, which provides a realistic multi-attribute example and demonstrates

the use of partial rankings. Finally, we conclude with suggestions for further research.

Most technical issues are relegated to the appendix.

5.2 Methods

5.2.1 Ranking probabilities

In this section, we consider a single respondent who lists all stimuli, 1, 2, . . . , C, in

order of preference, with the most preferred stimulus listed first. For each stimulus c

in {1, 2, . . . , C}, we define the rank π(c) of c as the position of c within this ordering. For

example, π(3) = 7 indicates that stimulus 3 is listed in the 7th place in order of preference.

We shall refer to π =
(
π(1), π(2), . . . , π(C)

)
as a full ranking.

Observe that in a full ranking for each rank r there exists exactly one stimulus c such

that π(c) = r. We shall denote this stimulus by π−1
(r) . For example, π−1

(7) = 3 denotes that

stimulus 3 is listed in 7th place in order of preference. Remark that we now may express

the ordering as π−1 =
(
π−1

(1), π
−1
(2), . . . , π

−1
(C)

)
.

We assume that the probability pπ of actually obtaining π as a full ranking depends

on a C-dimensional linear predictor vector η = (η1, η2, . . . , ηC)�, that is,

pπ = p (π | η) . (5.1)

A so-called ranking model specifies the exact nature of the dependence of pπ on η.

A common issue in the analysis of rankings is the handling of ties. A tie means that the

same rank is assigned to multiple stimuli because the respondent is enable to differentiate

between two or more stimuli. Ties may also occur due to requirements imposed by the

research design. It has been widely recognized that respondents may find it difficult to

compare too many choice options. This can be solved by asking respondents to rank only
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a subset of stimuli. For instance, in Best-Worst ranking, a respondent is instructed to

select only the best and the worst stimulus. By definition, all the other stimuli are then

tied.

Another common issue in the analysis of rankings is the handling of missing values.

A missing value means that no rank was assigned to a stimulus and may occur due to

requirements imposed by the research design. For example, to alleviate respondents task

complexity, respondents could be shown only a subset of all stimuli. Missing values differ

from ties in that a missing value could have been assigned any rank r in {1, 2, . . . , C}.
A ranking containing ties or missing values in fact corresponds to a partial ordering

of the stimuli rather than to a full ordering. Hence, we shall refer to such a ranking as a

partial ranking. Observe that for each partial ranking � there exists a set S
 of all full

rankings which do not contradict the partial ordering implied by �. Thus, we may assign

the probability

p
 = p (� | η) =
∑

π∈S�

p (π | η) (5.2)

to the partial ranking �.

5.2.2 Random utility models

There is a bewildering number of ranking probability models. For complete overviews,

see Critchlow et al. (1991, Section 3) and Marden (1995, Chapter 5). In this subsection,

we focus on random utility models, see Thurstone (1927); Luce and Suppes (1965);

Böckenholt (2006). Random utility models assume that the rank of stimulus c among

the stimuli 1, 2 . . . , C is in fact equal to the rank of a random variable Yc among the

random variables Y1, Y2, . . . , YC . Here, Y1, Y2, . . . , YC are random variables having some

joint continuous distribution. It follows that

pπ = P (Yc1 < Yc2 < . . . < YcC
) (5.3)

for an ordering π−1 = (c1, c2, . . . , cC). Observe that

pπ =

∫ ∞
−∞

∫ ∞
yc1

∫ ∞
yc2

· · ·
∫ ∞

ycC−1

f (yc1 , yc2 , . . . , ycC
) dycC

· · · dyc2dyc1 , (5.4)

where f (yc1 , yc2 , . . . , ycC
) denotes the joint density of Yc1 , Yc2 , . . . , YcC

.

An obvious choice of f (yc1 , yc2 , . . . , ycC
) is the multivariate normal density, see Thur-

stone (1927, p. 285). In addition, we may assume that the corresponding covariance
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matrix obeys some structure, see Thurstone (1927, p. 286). In particular, Maydeu-Olivares

(1999); Maydeu-Olivares and Böckenholt (2005); Böckenholt (2006) connect to the theory

of covariance structures proposed in Browne (1982). Note that the multivariate normal

density only allows linear dependence. For other forms of dependence, see Joe (1997).

Thurstone order statistics models, see Critchlow et al. (1991, p. 298), are the most

popular random utility models in practice. These models assume that Y1, Y2, . . . , YC

are independent random variables with distributions from the same family with density

g(Y, η). Under this assumption, Yc1 , Yc2 , . . . , YcC
have joint density

f (yc1 , yc2 , . . . , ycC
) = g (yc1 ; ηc1) g (yc2 ; ηc2) · · · g (ycC

; ηcC
) , (5.5)

where the parameters ηc1 , . . . , ηcC
are allowed to vary. The independence assumption is

reasonable when ηc1 , . . . , ηcC
depend on the attributes of the stimuli under consideration,

and these attributes are able to fully “explain” the dependence between ηc1 , . . . , ηcC
.

Combining (5.4) and (5.5) yields

pπ =

∫ ∞
−∞

∫ ∞
yc1

· · ·
∫ ∞

ycC−1

g (yc1 ; ηc1) g (yc2 ; ηc2) · · · g (ycC
; ηcC

) dycC
· · · dyc2dyc1 . (5.6)

Thurstone order statistics models are sometimes called independent random utility mod-

els, see Luce and Suppes (1965) and Yellott (1977, p. 142).

Thurstone models, see Critchlow et al. (1991, p. 299), are special cases of Thurstone

order statistics models and assume that η is a location parameter, that is, g(Y, η) takes the

form g(Y − η). Special Thurstone models are obtained by making further distributional

assumptions.

• The Thurstone-Mosteller-Daniels model, see Critchlow et al. (1991, p. 295), as-

sumes that g is a standard normal density. An alternative name for this model is

Thurstone’s Case V model, see Yellott (1977, p. 111). However, the alternative

name ignores the fact that “Thurstone’s original method considers only paired

comparisons of the stimuli, but Daniels (1950) extends the method to experiments

where the data are full orderings of the C stimuli”, see Critchlow et al. (1991, p. 298).

• The Luce model, see Critchlow et al. (1991, p. 300), assumes that g is a Gumbel

density. The Luce model is sometimes called Plackett’s (1975) first order model.



76 Chapter 5

5.2.3 Approximate probabilities

The multiple integral on the right-hand side of (5.4) is usually evaluated by means of

numerical integration. Unfortunately, this approach is not feasible when the number of

stimuli becomes large.

Working in the Thurstone-Mosteller-Daniels model, the probability pπ is approximated

in Henery (1981) by means of a first order Taylor expansion around η1 = η2 = . . . = ηC =

η0, where η0 can take any value. Below, we extend Henery’s approach to any model in

which Y1, Y2, . . . , YC have joint density of the form (5.5).

Introduce

φ0(y) =
∂ ln g(y; η)

∂η

∣∣∣∣
η=η0

=
1

g(y; η0)

∂g(y; η)

∂η

∣∣∣∣
η=η0

. (5.7)

We shall refer to φ0(y) as the score function. The score function is well-known in

mathematical statistics, especially in likelihood theory and the theory of rank tests. In

particular, our definition (5.7) corresponds with Hájek and Šidák (1967, Equation I.2.4.4).

An important property of the score function is that it transforms the random variable Y

into a random variable φ0 (Y ) with expected value

Eφ0 (Y ) =

∫
∂g(y; η)

∂η

∣∣∣∣
η=η0

dy = 0. (5.8)

Here E denotes the expectation in the general model, that is, without any restrictions on

η1, η2, . . . , ηC .

Denote the expected score of the rth order statistic Yr:C by

qr:C = E0φ0 (Yr:C) , (5.9)

where E0 denotes the expectation under the condition that η1 = η2 = . . . = ηC = η0.

When this condition holds, we show in the Appendix that a first order Taylor expansion

in (η0, η0, · · · , η0) yields

pπ ≈ p∗ + p∗
C∑

r=1

qr:C (ηcr − η0) = p∗

(
1 +

C∑
r=1

qr:Cηcr

)
(5.10)

for π = (c1, c2, . . . , cC). Here,

p∗ =
1

C!
. (5.11)
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denotes the average full ranking probability (there are C! possible full rankings). Note

that pπ = p∗ if η1, η2, . . . , ηC are all equal, irrespective of their common value η0.

For a given full ranking π, let qπ denote the C-dimensional vector containing the πth
(c)

expected score qπ(c):C as cth element. For example, for π(3) = 7, the 3th element of vector

qπ is the 7th expected score q7:C . As qπ is central in deriving an approximation to the

probability pπ, we shall refer to qπ as the expected score vector belonging to π. We may

now write (5.10) as

pπ ≈ p∗
(
1 + q�π η

)
. (5.12)

The right hand side of (5.12) is not necessarily positive and hence does not necessarily

define a valid probability model. However, when all ηc’s are sufficiently close to each

other, a first order Taylor expansion of the exponential function yields that exp
{
q�π η
}

may be approximated by 1 + q�π η. It follows that

pπ ≈ exp
{
q�π η
}

∑
π′ exp
{
q�π′η
} . (5.13)

The probabilities on the right hand side of (5.13) are all positive and add up to one, and

thus define a probability model with respect to the rankings.

Above we have shown that expected scores allow the approximation of any Thurstone

model. For example, one may show that in the Thurstone-Mosteller-Daniels model qr:C

coincides with a normal score, that is,

qr:C = EYr:C , (5.14)

where Yr:C denotes the rth order statistic corresponding to the random sample Y1, Y2, . . . , YC

drawn from a standard normal distribution. In Harter (1961) all normal scores for C = 400

are given.

Another Thurstone model is the Luce model, also known as Plackett’s first order

model, and one may show that in this model

qr:C = 1 + �(r) − �(C + 1), (5.15)

where � is the digamma function, see Abramowitz and Stegun (1964, Section 6.3). Refer

to the Appendix for a proof of (5.15).
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5.2.4 Incorporating attribute values

In the previous subsections, we have seen how a ranking model translates the predictor

vector η into a probability distribution on rankings. We now focus on the question how

the attributes of the stimuli influence η. Assume that the stimuli are adequately described

by means of M attributes. Each attribute takes a limited number of values, which we

call levels. Each stimulus may be viewed as a specific combination of the levels of the

attributes. Let xcm denote the value that attribute m takes for stimulus c.

In order to be able to perform a statistical analysis of conjoint experimental data,

we have to specify the construction of the predictor vectors. We assume that η =

(η1, η2, . . . , ηC)� is given by

ηc = β1xc1 + β2xc2 + . . .+ βMxcM =
M∑

m=1

βmxcm, (5.16)

where β1, β2, . . . , βM are unknown coefficients. We may write η = Xβ, where β is the

M dimensional coefficient vector (β1, β2, . . . , βM)� and X is the C × M matrix which

contains the value xcm in its (c,m) location. We shall refer to X as the plan matrix of

the conjoint experiment.

We may rewrite (5.13) as

pπ ≈ exp
{
q�π Xβ

}
∑

π′ exp
{
q�π′Xβ

} . (5.17)

Observe that q�π X is in fact a weighted average of the columns of the plan matrix, where

the weights are completely determined by the preferences in π. Combining (5.2) and

(5.17) now yields

p
 ≈
∑

π∈S�
exp
{
q�π Xβ

}
∑

π′ exp
{
q�π′Xβ

} . (5.18)

Note that (5.17) is actually a special case of (5.18). Although in the next section we shall

focus on partial rankings, full rankings are of course implicitly covered.

5.2.5 Approximate log-likelihood

In principle, the maximum likelihood estimator β̂ of the parameter vector β = (β1, β2, . . . , βM)�

may be obtained via maximization of the log-likelihood in the Thurstone model. As

mentioned earlier, computing pπi
requires the numerical evaluation of the C-dimensional

integral (5.4) and hence, is not feasible when the number of stimuli becomes large.
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Fortunately, we may approximate pπi
by (5.18) and thus we may estimate β by

maximizing the corresponding approximate log-likelihood

lnL (β) =
n∑

i=1

ln

⎛
⎝ ∑

π∈S�i

exp
{
q�π Xβ

}⎞⎠− n ln

(∑
π′

exp
{
q�π′Xβ

})
, (5.19)

where the rankings �1, �2, . . . , �n are independently obtained from n different respon-

dents. Note that the standard likelihood theory applies as we have shown that (5.18) is

a probability model itself.

In particular, in case of full rankings we have that the log-likelihood (5.19) simplifies

to

lnL (β) =

n∑
i=1

(
q�πi

Xβ
)− n ln

(∑
π′

exp
{
q�π′Xβ

})
. (5.20)

Standard iterative methods for finding an estimator β̂ maximizing the log-likelihood

(5.19) require the first order derivatives of (5.19) with respect to β and possibly the second

order derivatives as well. The computation of these are given in the Appendix.

5.3 Results

In this section, we apply our technique to two data sets. First, we analyze the career

preference data set described in Maydeu-Olivares and Böckenholt (2005) and compare

our estimates to the estimates obtained under the Thurstone-Mosteller-Daniels model in

that paper. Next, we analyze a holiday preferences data set, which provides a realistic

multi-attribute example.

We should first make a general remark. The smaller its rank, the more preferred is

a stimulus. Hence, when interpreting the estimation results, we should always take into

account that our preference measure is inversely related to preference. Hence, a positive

coefficient indicates that higher levels lead to a higher, i.e. worse, ranking. Consequently,

a negative coefficient indicates that higher levels lead to a lower, i.e. more preferred,

ranking. The strength of preference is reflected in the absolute value of the coefficient.

In addition, a positive coefficient value does not necessarily mean that the respective

attribute is rejected, but that it is less preferable than the reference level.
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Table 5.1: Plan matrix X for career area preferences.

Academic Clinical Educational
Academic 1 0 0

Clinical 0 1 0
Educational 0 0 1

Industrial 0 0 0

5.3.1 Career area preferences

In Maydeu-Olivares and Böckenholt (2005) career preferences among undergraduate psy-

chology students from a Spanish university were investigated. A sample of 57 psychology

students were asked to rank their preferences for four broad psychology career areas, these

are Academic, Clinical, Educational and Industrial.

The plan matrix X contains the dummy variables for the levels Academic, Clinical and

Educational of the attribute and is given in Table 5.1. Note that the plan matrix lacks

a column containing only 1’s, indicating that the intercept has been omitted from the

model. This was enforced by (5.25), which shows that removing the intercept from the

model does not change the approximate ranking probabilities, and hence that including

the intercept brings an unwanted indeterminacy to the model. When using the plan

matrix in Table 5.1, we should interpret each of the coefficients for the levels Academic,

Clinical and Educational relative to the reference level Industrial.

In Table 5.2 the estimated coefficients are reported. Our estimates differ slightly from

Maydeu-Olivares and Böckenholt (2005), but the conclusions are the same. Remark that

the estimated coefficients are inversely related to preference. The estimated coefficient

for Clinical differs significantly from zero and is negative, which means that the clinical

career area is more preferred than the industrial career area. As the estimated coefficient

for Educational does not significantly differ from zero, we do not have sufficient statistical

evidence to conclude that the educational career area is more preferred than the industrial

career area. The academic career area is least preferred, as this coefficient differs

significantly from zero and is positive.

In the remainder of this subsection, we use the career data to shed further light on

some aspects of the proposed technique. We start by considering the first student in

the data set, who orders the career areas as follows: Clinical, Industrial, Educational,

Academic. The corresponding ranking π1 is 4132. Rearranging the normal scores (which

are -1.0294, -0.2970, 0.2970 and 1.0294 for sample size 4) according to the preferences of
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Table 5.2: Estimated coefficients for career area preferences.

Career Area Coefficient S.E. p-value
Academic 1.110 0.276 0.000

Clinical -1.106 0.269 0.000
Educational -0.336 0.243 0.166

student 1 yields

qπ1 =

⎛
⎜⎜⎜⎜⎝

q4

q1

q3

q2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

1.0294

−1.0294

−0.2970

0.2970

⎞
⎟⎟⎟⎟⎠ ,

and hence

q�π1
X

Academic 1.0294

Clinical -1.0294

Educational -0.2970

Table 5.3 lists the frequency among the 57 psychology students, the estimated probabil-

ity according to the Thurstone-Mosteller-Daniels model (using the estimated parameters

in Maydeu-Olivares and Böckenholt (2005)), and the estimated probability according to

the proposed technique for each possible full ranking of the career areas. At first sight,

the estimated probabilities seem close to each other, which is confirmed by the PP-plot

in Figure 5.1. This suggests that the approximation (5.13) works well in practice.

However, not all estimated probabilities in Table 5.3 are in agreement with the data.

In particular, the probability of ranking 4213 is seriously overestimated. According to the

Thurstone-Mosteller-Daniels model, the probability of 4213 is over 11 percent, whereas

the empirical probability 1/57 of 4213 is below 2 percent. The PP-plot in Figure 5.2

gives a full display of the discrepancies between estimated Thurstone-Mosteller-Daniels

probabilities and empirical probabilities. The estimated probabilities are relatively large

for small small empirical probabilities and relatively small for large empirical probabilities.

This suggests that some other Thurstone order statistics model may be more appropriate.
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Table 5.3: Counts and estimated probabilities for career area preferences. MB: probabilities
estimated according to the Thurstone-Mosteller-Daniels model; LKF: probabilities estimated
according to the proposed technique.

Ordering Ranking Count MB LKF
ACEI 1234 0 0.0077 0.0073
ACIE 1243 1 0.0061 0.0057
AECI 1324 1 0.0054 0.0046
AEIC 1423 0 0.0028 0.0020
AICE 1342 0 0.0038 0.0029
AIEC 1432 0 0.0025 0.0017
CAEI 2134 0 0.0342 0.0369
CAIE 2143 1 0.0278 0.0288
CEAI 3124 6 0.0843 0.0870
CEIA 4123 12 0.2059 0.1962
CIAE 3142 3 0.0535 0.0557
CIEA 4132 11 0.1625 0.1607
EACI 2314 0 0.0123 0.0133
EAIC 2413 1 0.0067 0.0059
ECAI 3214 6 0.0445 0.0495
ECIA 4213 1 0.1130 0.1117
EIAC 3412 1 0.0114 0.0114
EICA 4312 4 0.0558 0.0579
IACE 2341 0 0.0069 0.0066
IAEC 2431 0 0.0046 0.0038
ICAE 3241 1 0.0224 0.0248
ICEA 4231 6 0.0713 0.0715
IEAC 3421 1 0.0090 0.0089
IECA 4321 1 0.0449 0.0452

5.3.2 Winter sports holiday preferences

Typically, conjoint analysis involve more than one attribute. Therefore, we have collected

data concerning winter sports holidays, where each winter sports holiday is described by

the multiple attributes; that is, country, period of holiday, duration of holiday and size of

the ski area. As each attribute can take a limited number of values, each holiday may be

viewed as a specific combination of levels of the attributes. Each of n = 169 respondents

is asked to indicate the most preferred alternative and the least preferred alternative,

yielding Best-Worst ranking data.

As before, we omit the intercept to avoid indeterminacy and use dummy variables to

obtain the plan matrix X. To show that our approach indeed allows for a unified approach,



5.3 Results 83

Figure 5.1: Estimated probability according to the proposed technique versus estimated
probability according to the Thurstone-Mosteller-Daniels model.
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we will present result for (our approximate versions of) the Thurstone-Mosteller-Daniels

model as well as the Luce model.

Results Thurstone-Mosteller-Daniels model

Table 5.4 shows the estimated coefficients. The estimated coefficients for Austria and Italy

differ significantly from zero and are positive, and thus France is preferred over Austria

and Italy as winter sports holiday location. The estimated coefficient for Andorra is not

significant, hence there is insufficient statistical evidence to conclude that there exists

a difference in preference between Andorra and France. The estimated coefficient for
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Figure 5.2: Estimated probability according to the proposed technique versus empirical
probability.
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February is not significant, thus there is insufficient statistical evidence to conclude that

the holiday period matters. The estimated coefficient for “ten-days” differs significantly

from zero and is positive, and thus eight-days holidays are preferred over ten-days holidays.

The estimated coefficients for “average” and “large” (as the size of the ski area) differ

significantly from zero and are negative, and thus average and large ski areas are preferred

over small ski areas. Moreover, the results suggest large ski areas are preferred over average

ski areas, yielding the general conclusion that the larger the size, the more preferred is

the ski area.
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Table 5.4: Estimated coefficients in the Thurstone-Mosteller-Daniels model. Reference levels
are marked by an asterisk.

Attribute Level Coefficient S.E. p-value
Country Austria 1.619 0.188 0.000

Italy 0.918 0.239 0.000
Andorra 0.047 0.237 0.843
France∗ 0 - -

Period February -0.087 0.171 0.611
January∗ 0 - -

Duration ten-days 0.573 0.175 0.001
eight-days∗ 0 - -

Ski Area average -0.660 0.172 0.000
large -1.941 0.258 0.000

small∗ 0 - -

Table 5.5: Testing the effects of attributes in the Thurstone-Mosteller-Daniels model by means
of likelihood ratio tests.

Attribute Chi-square df p-value
Country 114.259 3 0.000
Period 0.258 1 0.611

Duration 11.083 1 0.001
Ski Area 65.402 2 0.000

Alternatively, we can examine the effect of each attribute by means of likelihood ratio

tests. The results are given in Table 5.5. One can observe in this table that the attribute

Period has no significant effect on the preference of the respondents and may be omitted

from the model. On the other hand, the attributes Country, Duration, and Ski Area do

have a significant effect on preference and should remain in the model.

Results Luce model

The Thurstone-Mosteller- Daniels model puts the same emphasis on the lower ranks as

on the higher ranks. In the Luce model more emphasis is put on the lower ranks, that is,

on higher preferences. This is visualized in Figure 5.3 by plotting the expected scores for

both models. One can observe the symmetry around zero for expected scores belonging to
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Figure 5.3: Expected score of rth order statistic drawn from a sample of size 8. The open dots
are Thurstone-Mosteller-Daniels scores (5.14) and the solid dots are Luce scores (5.15).
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the Thurstone-Mosteller-Daniels model. In contrast, expected scores for highly preferred

stimuli receive more emphasis in the Luce model.

Table 5.6 shows the estimated coefficients in the Luce model. The estimates are only

slightly different from those in Table 5.4 and the conclusions remain the same. The effect

of each attribute are reported in Table 5.7. Again, we arrive at the same conclusion. The

attribute Period may be omitted from the model, but the other attributes should remain

in the model.
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Table 5.6: Estimated coefficients in the Luce model. Reference levels are marked by an asterisk.

Attribute Level Coefficient S.E. p-value
Country Austria 1.403 0.188 0.000

Italy 0.767 0.330 0.020
Andorra -0.152 0.269 0.571
France∗ 0 - -

Period February -0.181 0.219 0.408
January∗ 0 - -

Duration ten-days 0.646 0.199 0.001
eight-days∗ 0 - -

Ski Area average -0.855 0.228 0.000
large -1.871 0.311 0.000

small∗ 0 - -

Table 5.7: Testing the effects of attributes in the Luce model by means of likelihood ratio tests.

Attribute Chi-square df p-value
Country 104.645 3 0.000
Period 0.691 1 0.708

Duration 11.885 1 0.003
Ski Area 45.003 2 0.000

5.4 Discussion

Preferences may be measured in a simple way by means of rankings. It has been

well known that task difficulty increases substantially with the number of stimuli to be

ranked. Partial rankings reduce task complexity for respondents. Efficient partial ranking

methods, such as Best-Worst ranking, have become popular in practical conjoint analysis.

This requires new methods to analyze these partial rankings data. The technique proposed

in this paper is not limited to Best-Worst ranking data, as it is in fact able to handle any

partial ranking data.

In the context of conjoint experiments, we have shown in this paper how any Thurstone

order statistics model could be approximated by extending the technique proposed by

Henery (1981) for the Thurstone-Mosteller-Daniels model. Computing approximate rather

than exact ranking probabilities leads to a considerable reduction in complexity. A further

advantage is that the approximate ranking models allow a unified approach with respect

to estimation and testing.
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In future research, the approximate ranking model will be further developed. The

current model does not take respondents’ heterogeneity into account, which makes it less

suitable for marketing applications. Using finite mixture models is a popular approach of

accommodating respondents’ heterogeneity. A finite mixture version of the model could

be instrumental in identifying “market segments”, that is, groups of respondents who

appreciate the attributes in a homogeneous way.

Moreover, there are limits to the flexibility of the current model, as it assumes that

the expected scores are fully specified. We may go beyond these limits by introducing un-

known additional parameters which influence the shape of the density g. As a consequence,

the expected scores will depend on the unknown shape parameters as well and therefore

the estimation procedure described in this paper will no longer suffice. The extended

model would allow tests with respect to the shape of the density g, and hence it may be

used to answer fundamental questions such as “do the random utilities Yc1 , Yc2 , . . . , YcC

follow a normal distribution, as is assumed in the Thurstone-Mosteller-Daniels model?”

or “do the random utilities Yc1 , Yc2 , . . . , YcC
follow a Gumbel distribution, as is assumed

in the Luce model?”. The answers to these questions may provide further insight in the

way respondents build preferences.
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5.A Derivation of the approximate probability (5.10)

Define

φ(y; η) =
∂ ln g(y; η)

∂η
=

1

g(y; η)

∂g(y; η)

∂η
, (5.21)

and remark that
∂g(y; η)

∂η
= φ(y; η)g(y; η).

Let g0(y) and φ0(y) denote g(y; η0) and φ(y; η0), respectively. Recall that φ0(y) is

introduced in (5.7) as the score function.

As

∂pπ

∂ηcr

=

∫ ∞
−∞

∫ ∞
yc1

· · ·
∫ ∞

ycC−1

g (yc1 ; ηc1) g (yc2 ; ηc2)

· · · g (ycr−1 ; ηcr−1

) ∂g(ycr ; ηcr)

∂ηcr

g
(
ycr+1 ; ηcr+1

)
· · · g (ycC

; ηcC
) dycC

· · · dyc2dyc1

=

∫ ∞
−∞

∫ ∞
yc1

· · ·
∫ ∞

ycC−1

g (yc1 ; ηc1) g (yc2 ; ηc2)

· · · g (ycr−1 ; ηcr−1

)
φ (ycr ; ηcr) g (ycr ; ηcr) g

(
ycr+1 ; ηcr+1

)
· · · g (ycC

; ηcC
) dycC

· · · dyc2dyc1 , (5.22)

we obtain

∂pπ

∂ηcr

∣∣∣∣
η1=η2=...=ηC=η0

=

∫ ∞
−∞

∫ ∞
y1:C

· · ·
∫ ∞

yC−1:C

φ0 (yr:C)

g0 (y1:C) g0 (y2:C) · · · g0 (yC:C) dyC:C · · · dy2:Cdy1:C . (5.23)

Let Y1:C < Y2:C < · · · < YC:C be the order statistics of a random sample of size C from a

density g0. Recall that the joint density of Y1:C , Y2:C , · · · , YC:C equals

C!g0 (y1:C) g0 (y2:C) · · · g0 (yC:C)

for y1:C < y2:C < · · · < yC:C . It follows that

∂pπ

∂ηcr

∣∣∣∣
η1=η2=...=ηC=η0

=
qr:C
C!

= p∗qr:C , with qr:C = Eφ0 (Yr:C) , (5.24)
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and p∗ given by (5.11). Since
∑C

r=1 φ0 (Yr:C) coincides with
∑C

r=1 φ0 (Yr), (5.8) implies

C∑
r=1

qr:C =
C∑

r=1

Eφ0 (Yr:C) = E
C∑

r=1

φ0 (Yr:C) = E
C∑

r=1

φ0 (Yr) =
C∑

r=1

Eφ0 (Yr) = 0. (5.25)

When all ηc’s are close to η0, a first order Taylor expansion in (η0, η0, · · · , η0) yields

pπ ≈ p∗ + p∗
C∑

r=1

qr:C (ηcr − η0) = p∗

(
1 +

C∑
r=1

qr:Cηcr

)
(5.26)

for π = (c1, c2, . . . , cC). The equality follows from (5.25).
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5.B Derivation of the first and second order deriva-

tives of (5.19)

Standard iterative methods for finding an estimator β̂ maximizing the log-likelihood (5.19)

require the first order derivatives of (5.19) with respect to β and possibly the second

order derivatives as well. Write p
 as
∑

π∈S�
sπ/
∑

π′ sπ′ with sπ = exp
{
q�π Xβ

}
. As

(∂/∂β)sπ = sπX
�qπ, it follows that

∂p


∂β
=

∂

∂β

∑
π∈S�

sπ∑
π′ sπ′

=

∑
π∈S�

sπX
�qπ∑

π′ sπ′
−
∑

π∈S�
sπ∑

π′ sπ′
·
∑

π sπX
�qπ∑

π′ sπ′

= X�
(∑

π∈S�

pπqπ − p


∑
π′
pπ′qπ′

)
, (5.27)

and in particular,

∂pπ

∂β
= X�pπ

(
qπ −
∑
π′
pπ′qπ′

)
. (5.28)

For any set S of rankings, (5.28) yields

∂

∂β

∑
π∈S pπq

�
π∑

π∈S pπ

=

∑
π∈S

∂pπ

∂β
q�π∑

π∈S pπ

−
∑

π∈S
∂pπ

∂β∑
π∈S pπ

·
∑

π∈S pπq
�
π∑

π∈S pπ

=

∑
π∈S X�pπ (qπ −∑π′ pπ′qπ′)q�π∑

π∈S pπ

−
∑

π∈S X�pπ (qπ −∑π′ pπ′qπ′)∑
π∈S pπ

·
∑

π∈S pπq
�
π∑

π∈S pπ

= X�
(∑

π∈S pπqπq
�
π∑

π∈S pπ

−
∑

π∈S pπqπ∑
π∈S pπ

·
∑

π∈S pπq
�
π∑

π∈S pπ

)
, (5.29)

and in particular,

∂

∂β

∑
π

pπq
�
π = X�

{∑
π

pπqπq
�
π −
(∑

π

pπqπ

)(∑
π

pπq
�
π

)}
, (5.30)
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It now follows from (5.27) that

∂ lnL (β)

∂β
=

n∑
i=1

∂

∂β
ln p
i

=
n∑

i=1

∂
∂β
p
i

p
i

=
n∑

i=1

X�
(∑

π∈S�i
pπqπ∑

π∈S�i
pπ

−
∑

π

pπqπ

)

= X�
(

n∑
i=1

∑
π∈S�i

pπqπ∑
π∈S�i

pπ

− n
∑

π

pπqπ

)
. (5.31)

Similarly, it follows from (5.29) and (5.30) that

∂2 lnL (β)

∂β2 =
∂

∂β

(
n∑

i=1

∑
π∈S�i

pπq
�
π∑

π∈S�i
pπ

− n
∑

π

pπq
�
π

)
X

=

(
n∑

i=1

∂

∂β

∑
π∈S�i

pπq
�
π∑

π∈S�i
pπ

− n
∂

∂β

∑
π

pπq
�
π

)
X

= X�
(

n∑
i=1

{∑
π∈S�i

pπqπq
�
π∑

π∈S�i
pπ

−
∑

π∈S�i
pπqπ∑

π∈S�i
pπ

·
∑

π∈S�i
pπq

�
π∑

π∈S�i
pπ

}

−n
{∑

π

pπqπq
�
π −
(∑

π

pπqπ

)(∑
π

pπq
�
π

)})
X. (5.32)

In particular, in case of full rankings we have that the log-likelihood (5.19) simplifies

to (5.20). Consequently, (5.31) becomes

∂ lnL (β)

∂β
= X�

(
n∑

i=1

q�πi
− n
∑

π

pπq
�
π

)
,

and (5.32) becomes

∂2 lnL (β)

∂β2 = X�
(
−n
{∑

π

pπqπq
�
π −
(∑

π

pπqπ

)(∑
π

pπq
�
π

)})
X.
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5.C Derivation of the Luce expected score (5.15)

The Luce model is the Thurstone model obtained by setting g(y, η) equal to

exp (−(y − η)) exp (− exp (−(y − η))) , −∞ < y <∞, (5.33)

the Gumbel density with location η and scale 1. The score function φ0(y), see (5.7),

becomes

1 − exp (−(y)) .

One may show that the quantile functionG−1(u) (that is, the inverse of the cumulative dis-

tribution function exp (− exp (−(y − η)))) belonging to (5.33) is given by η− ln (− ln(u))

for 0 < u < 1. As the rth order statistic Yr:C has the same probability distribution (and

thus the same expectation) as G−1 (Ur:C), where Ur:C is the rth order statistic from a

random sample drawn from the uniform distribution on the unit interval (0, 1). Since the

density of Ur:C is
C!

(r − 1)!(C − r)!
ur−1 (1 − u)C−r , 0 < u < 1,

and

φ0

(
G−1(u)

)
= 1 + lnu, 0 < u < 1,

it follows that the expected score qr:C , see (5.9), may be expressed as

∫ 1

0

(1 + lnu) · C!

(r − 1)!(C − r)!
ur−1 (1 − u)C−r du

= 1 +

∫ 1

0

(lnu) · C!

(r − 1)!(C − r)!
ur−1

C−r∑
i=0

(C − r)!

i!(C − r − i)!
(−u)idu

= 1 + �(r) − �(C + 1),

where the first identity follows from the fact that densities integrate to 1 over their support

and the second identity may be verified with standard symbolic algebra computer software.





Chapter 6

Finite Mixture Ranking Models

Abstract
We present a finite mixture ranking model for analyzing full and partial ranking data in

the presence of respondent heterogeneity. Such data typically appear in marketing and other
social sciences. We illustrate our methodology with two real data sets. The first considers
banking preferences in small and medium enterprises and the second focuses on the valuation
of health states.

6.1 Introduction

In marketing it is generally assumed that consumers are heterogeneous in their choice

and preference behavior. To adequately model this heterogeneity, finite mixture models

have become popular, see for example Dillon and Kumar (1994); DeSarbo et al. (1996)

and Wedel and Kamakura (2000). There is a large variety of situations for which finite

mixture models have been developed. In this paper, we assume that observations are

drawn from a population consisting of several homogeneous subpopulations. However, it

is usually not known to which subpopulation a particular observation belongs. This is

called Type 1 sampling in Redner and Walker (1984) and is perhaps the most natural

situation where the finite mixture model is of interest. Alternatively, we may represent

Type 1 sampling using a discrete latent variable. Each level of this discrete latent variable

then corresponds to a subpopulation, and vice versa. In Type 1 sampling, the data are

not available for each segment distribution separately, but only for the overall mixture

distribution. The interest is usually in estimating the parameters of a finite mixture model

which are the mixing proportions and the parameters of the segment distributions. Here,

mixing proportions refer to the unknown relative frequencies of the subpopulations and

segment distributions refer to the distributions within a subpopulation. For a review of
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finite mixture models, see for example Everitt and Hand (1981); Titterington, Smith, and

Makov (1985); Lindsay (1993) and McLachlan and Peel (2000).

Rankings are widely used to express preferences of respondents for different attributes

within some choice set. In marketing for example, Best-Worst ranking in conjoint

analysis developed by Louviere and Woodworth (1991a) and Finn and Louviere (1992), is

gaining in popularity (see for example Chrzan and Golovashkina (2006) for an empirical

application).

Probability models for rankings are not easy to analyze, as the computation of each

ranking probability usually requires high-dimensional integration when the number of

attributes is large. Therefore, for a long time, the use of probability models for rankings

has been avoided in the statistical analysis of conjoint experiments.

Recently there is a renewed interest in the modeling and estimation of ranking

models, see Marley and Louviere (2005); Maydeu-Olivares and Böckenholt (2005) and

Böckenholt (2006). In Lam, Koning, and Franses (2010b) the complexity of probabilistic

ranking models is considerably reduced by using approximate rather than exact ranking

probabilities. Moreover, their approach also allows for the analysis of partial rankings,

which are an essential part of practical conjoint analysis in collecting data efficiently as

a means of relieving the respondents’ task burden. For example in Best-Worst ranking,

respondents are instructed to select only the best and the worst choice set. Partial rankings

may also be dictated by the experimental design of the conjoint study (see for example

Vermeulen, Goos, & Vandebroek, 2010).

In this paper we increase the usefulness of ranking models in conjoint experiments

by incorporating respondents’ heterogeneity via Type 1 sampling. We will assume that

a heterogeneous population of respondents may be partitioned into a small number

of “unobserved” homogeneous subpopulations. Within each subpopulation, a common

ranking model holds while the ranking model parameters are allowed to vary across the

subpopulations.

There are at least two advantages of our approach. First, our statistical models allow

for the efficient use of rankings/partial rankings to collect preference data. Second, as

they incorporate respondent heterogeneity, our models are able to find segments in a

heterogeneous context, and hence facilitate the development of better targeted marketing

strategies.

The structure of the paper is as follows. In Section 6.2 we discuss finite mixture

ranking models and how to model the dependence of rankings on stimulus characteristics.

Moreover, we explain how we can take respondents’ heterogeneity into account in these
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models. In Section 6.3 we illustrate our methodology with real data sets. One data set

considers banking preferences in small and medium size enterprises and the second focuses

on the valuation of health conditions. Finally, in Section 6.4 we conclude with suggestions

for further research. Most technical issues are relegated to the Appendix A.

6.2 Mixture ranking models

In this section we will explicitly specify the mixture ranking model and implement the EM

algorithm. We start with a brief summary of approximate ranking models as described

in Lam et al. (2010b).

6.2.1 Approximate ranking models

We consider a conjoint experiment where each respondent lists all alternative choices,

1, 2, . . . , C, in order of preference, with the most preferred choice listed first. For each

alternative c in {1, 2, . . . , C}, we define the rank π(c) of c as the position of c within this

ordering. For example, π(3) = 7 indicates that choice alternative 3 is listed in the 7th

place in order of preference. We shall refer to π =
(
π(1), π(2), . . . , π(C)

)
as a full ranking.

A ranking, which contains ties or missing values should be considered as a partial ordering

of the choices rather than a full ordering, and we shall refer to it as a partial ranking and

denote it as �.

We assume that for each respondent the probability of actually obtaining π as a

full ranking depends on a C-dimensional linear predictor vector η = (η1, η2, . . . , ηC)�.

A ranking model specifies the exact nature of the dependence. We have to specify the

construction of the predictor vectors. Assume that the choices are adequately described by

means of M attributes. Each choice alternative may be viewed as a specific combination

of attribute levels. Let xcm denote the value that attribute m takes for alternative c. We

assume that η = (η1, η2, . . . , ηC)� is given by

ηc = β1xc1 + β2xc2 + . . .+ βMxcM =
M∑

m=1

βmxcm, (6.1)

where β1, β2, . . . , βM are unknown coefficients. We may write η = Xβ, where β is the

M dimensional coefficient vector (β1, β2, . . . , βM)� and X is the C × M matrix which

contains the value xcm in its (c,m) location. X is usually referred to as the plan matrix

of the conjoint experiment.
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In Lam et al. (2010b) it is shown that the probability of actually obtaining the full

ranking π may be approximated by

f (π | η) ≈ exp
{
q�(π)Xβ

}∑
π′ exp {q�(π′)Xβ} , (6.2)

where q(π) is the expected score vector corresponding to the full ranking π. This C-

dimensional vector contains the πth
(c) expected score as cth element and is central in deriving

an approximation to the probability (6.2). The probabilities on the right hand side of

(6.2) are all positive and add up to one, and thus define a probability model with respect

to the rankings. Observe that for each partial ranking � there exists a set S
 of all full

rankings which do not contradict the partial ordering implied by �. Thus, we may assign

the probability

f (� | η) =
∑

π∈S�

f (π | η) ≈
∑

π∈S�
exp
{
q�(π)Xβ

}
∑

π′ exp {q�(π′)Xβ} (6.3)

to the partial ranking �.

6.2.2 Mixture models

Recall from the Introduction that we may represent Type I sampling using a latent discrete

variable. Denote this variable by Z and assume its levels are 1, . . . , J with corresponding

probabilities α1, . . . , αJ . The distribution of Z is called the mixing distribution and the

probabilities α1, . . . , αJ are called mixture proportions. The conditional distribution of the

rankings depends on a parameter vector, which in turn depends on the level taken by Z.

Denote the value of the parameter vector corresponding to level j by βj for j = 1, . . . , J .

Although we cannot observe the discrete latent variable directly, we are able to estimate

the mixing proportions α1, . . . , αJ as they occur as parameters in the distribution of the

observed data.

We shall assume, conditional on the level of the discrete latent variable, that the

distribution of the rankings belongs to a parametric family of distributions, described by

a common density as in (6.3).

If we assume that the respondents are heterogeneous in their preference behavior, the

specific density function underlying the observed preference rankings of individuals in each

segment is given by the approximate ranking model (6.3). It follows that the distribution
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of the observed ranking/partial ranking is described by the density

f(�; θ) =
J∑

j=1

αjfj(�; βj) =
J∑

j=1

∑
π∈S�

αj exp
{
q�j (π)Xβj

}
∑

π′ exp
{
q�j (π′)Xβj

} . (6.4)

where θ denotes the unknown parameter vector (α1, . . . , αJ ,β
T
1 , . . . ,β

T
J )
�
.

6.2.3 EM algorithm

To estimate θ, we shall make use of maximum likelihood via the EM algorithm, see

Dempster, Laird, and Rubin (1977); Redner and Walker (1984). Each iteration of the EM

algorithm consists of two steps. In the (hth) E-step, the function Q
(
θ′; θh
)

is calculated

by taking the expectation of the complete log-likelihood given the current estimate of θ

and is defined here as

Q
(
θ′; θh
)

=
n∑

i=1

J∑
j=1

ln (αj) p(j;�i; θ
h)

+
n∑

i=1

J∑
j=1

ln
(
f(�i,βj)

)
p(j;�i; θ

h), (6.5)

where

p(j;�i,θ
h) =

αh
j fj(�i; β

h
j )

f(�i; θ
h)

=
αh

j

∑
π∈S�i

fj(π; βh
j )∑J

t=1 α
h
t ft(�i; β

h
t )

=

=

∑
π∈S�i

αh
j exp
{
q�j (π)Xβh

j

}
∑

π′ exp
{
q�j (π′)Xβh

j

}
/

J∑
t=1

∑
π∈S�i

αh
t exp
{
q�t (π)Xβh

t

}
∑

π′ exp
{
q�t (π′)Xβh

t

} .

(6.6)

denotes the posterior probability that respondent i with observed preference ranking �i

belongs to segment j. These posterior probabilities are used to classify the individuals into

segments and are very important in the estimation of the parameters for each segment.

When more information is available from each respondent i, the segment-level estimates

will be more accurate.

In the M-step, Q
(
θ′; θh
)

is maximized. The estimates of αh+1
j and βh+1

j are based

on the posterior probabilities obtained in the E-step. If we assume that the parameters

α1 . . . , αJ and β1, . . . ,βJ are unrelated, then the two terms on the right hand side of
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(6.5) may be maximized separately. The contribution of individual i to the likelihood is

weighted by the posterior probabilities p(j;�i,θ
h).

The estimation of the mixing proportions has a unique solution and can be computed

as

αh+1
j =

n∑
i=1

p(j;�i,θ
h)/n. (6.7)

Thus, the estimates of the prior probabilities are simply the averages of the posterior

probabilities in each segment.

If β1, ...,βJ are mutually independent parameters, then the maximization problem of

the segment parameters separates further into J segment problems, each of which involves

only one of the parameters βj

βh+1
j ∈ arg max

βj

n∑
i=1

ln
(
f(�i,βj)

)
p(j;�i; θ

h), (6.8)

for j = 1, ..., J . Note that both the segment problems and the maximization problem

for the proportions alone have the nice property that they can be regarded as weighted

maximum likelihood estimation problems involving sums of logarithms weighted by these

posterior probabilities. Hence, the estimates of the segment parameters βh+1
j are obtained

by maximizing

n∑
i=1

⎛
⎝ln
∑

π∈S�i

exp
{
q�j (π)Xβj

}− ln
∑
π′

exp
{
q�j (π′)Xβj

}⎞⎠ p(j;�i,θ
h). (6.9)

Note that p(j;�i,θ
h) depends on h and not on h+1. The computation of the first and

second order derivatives are given in Appendix 6.A. These derivatives are instrumental

in finding the parameter estimates and their standard deviations.

6.2.4 Determining the number of segments

The actual number of segments is usually unknown and must be inferred from the data.

Determining the number of segments is an important but yet not completely resolved

problem. In this paper we choose the approach involving the minimization of model

selection criteria to “estimate” the number of segments. Model selection criteria attempt

to balance the fit of a model (as indicated by ln L̂ = lnL
(
θ̂
)
) and the complexity of the

model (as indicated by the number k of “free” parameters). The primary example is the

Akaike information criterion AIC = −2 ln L̂+ 2k, see Akaike (1973).
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AIC is known to favor models with too many parameters. The use of the Bayesian

information criterion BIC = −2 ln L̂ + k lnn, see Schwarz (1978), and the consistent

Akaike information criterion CAIC = −2 ln L̂ + k (1 + log n), see Bozdogan (1987), is

advocated among practitioners; for instance, see DeSarbo, Wang, and Blanchard (2010).

Both BIC and CAIC impose an additional sample size penalty on the likelihood, and are

more conservative than the AIC statistic in that they tend to favor more parsimonious

models (that is, models with fewer segments).

Other procedures and criteria for the selection of the number of segments and model

selection heuristics also exist, see for eaxmple Wedel and Kamakura (2000) and Susko

(2003).

6.3 Illustrations

In this section we demonstrate how respondents’ heterogeneity can be modeled by our

finite mixture ranking model. We will apply our proposed procedure to two data sets.

The first illustration is a very elementary conjoint experiment and helps the reader to

understand the ranking model and shows the effectiveness of partial rankings. The second

illustration is a real conjoint experiment as stimuli are described by combinations of

attribute levels.

6.3.1 Banking preference data

In this data set, banking preferences of SMEs (small and medium size enterprizes) in the

Netherlands are collected. Respondents are the individuals responsible for daily banking

issues in their company. Respondents are asked to indicate their preference for each of

the banks in a list of eight banks. The obtained rankings are not limited to full rankings,

that is, ties are allowed. A total of 616 respondents has participated in the survey.

The most preferred bank is assigned rank 1. Consequently, the smaller its rank, the

more preferred is a bank, and the preference measure is inversely related to preference.

Hence, when interpreting the estimation results, a positive coefficient indicates that higher

levels lead to a higher ranking, that is lower preference. A negative coefficient indicates

that higher levels lead to a lower ranking, that is, more preference. The strength of

preference is reflected in the absolute value of the coefficient.

We have estimated mixture ranking models with different numbers of segments. The

fit and the values of the various information criteria are reported in Table 6.1. We select

the model with two segments, as suggested by both BIC and CAIC. In Table 6.2 the
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Table 6.1: Model selection criteria for different numbers of segments. Boldface is the most
preferred model.

Segments log-likelihood df AIC BIC CAIC
1 4793.610 6 4805.610 4832.149 4838.149
2 4360.574 13 4386.574 4444.076 4457.076
3 4318.450 20 4358.450 4446.915 4466.915
4 4322.342 27 4376.342 4495.770 4522.770
5 4281.725 34 4349.725 4500.115 4534.115
6 4250.734 41 4332.734 4514.088 4555.088

Table 6.2: Parameter estimates of the two segments model.

Segment 1 S.E. p-value Segment 2 S.E. p-value
probability 0.690 0.035 0.000 0.310 0.033 0.000

Bank
ASN 4.820 0.444 0.000 -0.198 0.168 0.239
Fortis 1.921 0.187 0.000 0.610 0.188 0.001
ING -0.339 0.127 0.008 -0.350 0.167 0.036

Rabobank -0.926 0.130 0.000 -0.488 0.167 0.003
SNS 1.711 0.177 0.000 0.401 0.178 0.024

Triodos 5.731 0.526 0.000 -0.496 0.180 0.006

estimated coefficients are reported. We have set ABN AMRO bank as the reference

level. A positive coefficient value does not necessarily mean that the respective bank

is rejected, but that it is less preferable than the reference bank ABN AMRO bank.

The segment probability for the first segment is about seventy percent. Note that the

segment probabilities estimates are both significant. Moreover, all parameter estimates

differ significantly from the reference bank. In this first segment the banks Rabobank and

ING are more preferred than the others. Furthermore, we see that the banks ASN and

Triodos are clearly less preferred.

In the second segment, we can again conclude that Rabobank and ING are the most

preferred banks. However, note that in this segment the only other two banks which have

also negative coefficients are ASN and Triodos bank (though the coefficient estimate for

ASN is not significant). Hence, in this segment we conclude the opposite, namely that

idealistic banks are more preferred than regular banks.
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Table 6.3: Multiple comparison test shows that there is no difference between ING, Rabobank
and ABN-Amro over the two segments.

Bank Estimate S.E. p-value
ASN -5.019 0.440 0.000
Fortis -1.311 0.288 0.000
ING -0.011 0.221 1.000

Rabobank 0.438 0.223 0.228
SNS -1.311 0.271 0.000

Triodos -6.227 0.475 0.000

Now that we have revealed two different segments, it is interesting to examine whether

the coefficients (i.e. preference behavior) differs across the segments. The Chi-square test

statistic yields the value 204.199 (df= 6 and p-value zero) and thus attribute Bank is

clearly significant. Multiple comparisons (see Table 6.3) shows that this is indeed caused

by the banks ASN, Triodos, SNS and Fortis with respect to ABN AMRO bank. That is,

there is no difference between ING, Rabobank and ABN AMRO over the two components,

at least according to the CFOs of 616 SMEs.

6.3.2 Health conditions data

For many subjective health conditions, Thurstone scaling and its derivatives may be

an attractive methodology to arrive at quantitative measures to do statistical testing

to be used in for example health research, economic evaluations, and disease modeling

studies. The data used here originate from Krabbe (2008) and are from a Dutch

EuroQol-5D (EQ-5D) valuation study conducted during the summer of 2003. The EQ-

5D classification describes health status according to five attributes: mobility, self-care,

usual activities, pain/discomfort, and anxiety/depression. Each attribute has 3 levels i.e.,

1-“no problems”, 2-“some problems”, 3-“severe problems”. Health condition descriptions

are constructed by taking 1 level for each attribute (for example, 11111 represents the

best health condition). In our analysis, we selected the eleven most “informative” health

conditions. The respondents ranked the health conditions from best to worst where they

were free to place multiple health conditions in the same position (that is, we allow for

ties).

Again, we vary the number of segments. The fit and the values of the corresponding

information criteria are reported in Table 6.4. As suggested by both BIC and CAIC, we

select the model with two segments. In Table 6.5 the estimated coefficients are reported
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Table 6.4: Model selection criteria for different numbers of components. Boldface is the most
preferred model.

Segments log-likelihood df AIC BIC CAIC
1 5005.305 10 5025.305 5058.871 5068.871
2 4931.273 21 4973.273 5043.761 5064.761

Table 6.5: Parameter estimates of the two components model.

Segment 1 S.E. p-value Segment 2 S.E. p-value
probability 0.672 0.045 0.000 0.328 0.019 0.000

Health condition
2-mobility -0.041 0.217 0.852 -0.006 0.866 0.994
3-mobility 2.735 0.215 0.000 9.863 0.077 0.000
2-selfcare 0.976 0.225 0.000 0.636 0.833 0.445
3-selfcare 1.896 0.221 0.000 3.331 0.860 0.000

2-activities -0.817 0.256 0.001 -1.399 0.931 0.133
3-activities -0.244 0.307 0.426 -0.524 1.287 0.684

2-pain 0.556 0.157 0.000 1.865 0.602 0.002
3-pain 1.432 0.209 0.000 2.262 0.687 0.001

2-anxiety 1.226 0.209 0.000 2.764 0.757 0.000
3-anxiety 1.016 0.149 0.000 5.406 0.697 0.000

with regard to the reference level, which we have set at the first level (“no problems”)

for each attribute. The mixing proportions are respectively 67.2% and 32.8% for the two

segments. The first notable finding is that the sign for the estimated coefficients is the

same for both segments. This means that the respondents in the distinct segments do not

differ in their valuation of the attributes of the health conditions. However, the second

finding is that the estimated coefficients in the second segment are larger in the second

segment or that the coefficient is not significant. Note that the strength of preference is

reflected in the absolute value of the coefficient. Hence, there is a stronger discomfort for

each attribute in the second segment. Note especially the insignificance of the second level

of the attributes mobility and self-care in this segment. We can conclude that respondents

in the two subpopulations do not differ in their valuation of health condition attributes

but they do differ in the significance of the level of these attributes.

Once we have distinguished two segments, we again examine whether the attributes

differ across the segments. The results of the Chi-square tests and corresponding multiple
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Table 6.6: Test on the homogeneity of the attributes. The Chi-square tests show that only the
attributes mobility and anxiety have a significant heterogeneous effect. That is, the effects differ
across the segments.

Attribute Chi-square df p-value
mobility 1091.285 2 0.000
selfcare 6.160 2 0.046
activity 1.139 2 0.566

pain 4.507 2 0.105
anxiety 207.124 2 0.000

Table 6.7: Multiple comparison to test the heterogeneity effect of the attribute mobility.

Attribute Estimate S.E. p-value
mobility2 -0.035 0.961 0.999
mobility3 -7.128 0.235 0.000

comparisons tests are reported in Table 6.6 to Table 6.9. Attribute mobility is clearly

significant over the segments. In particular, the coefficients for the level “severe problems”

of this attribute differs significantly across the segments (see Table 6.7). Attribute self-

care is slightly significant, however the multiple comparisons show that the coefficients do

not differ significantly across the segments. As the Chi-square test statistic for attributes

activities and pain is not significant, there is no sufficient evidence that respondents are

heterogenous in their appreciation of these attributes. The next question that follows

on this finding is whether the attributes activities and pain have effect. The Chi-square

tests show significance for both attributes. In particular the coefficient for the first level

of attribute activity in the first segment is significant (2-activities=-0.817, s.e.=0.256,

p-value=0.004). In addition, all coefficients for the attribute pain are significant, see

Table 6.9. Finally, the Chi-square test shows that attribute anxiety is clearly significant

and multiple comparisons show that both level coefficients differ significantly across the

segments (see Table 6.8).

From the above findings, we may conclude that, although the respondents in the

distinct segments do not differ in their valuation of the attributes of the health conditions,

there is a stronger discomfort in the second segment which is caused by the attributes

mobility and anxiety.
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Table 6.8: Multiple comparison to test the heterogeneity effect of the attribute anxiety.

Attribute Estimate S.E. p-value
anxiety2 -1.539 0.817 0.089
anxiety3 -4.390 0.727 0.000

Table 6.9: Multiple comparison to test the heterogeneity effect of the attribute pain.

Attribute Estimate S.E. p-value
pain21 0.556 0.157 0.000
pain31 1.432 0.209 0.000
pain22 1.865 0.602 0.000
pain32 2.262 0.687 0.000

6.4 Conclusion

Conjoint analysis continues to attract active interest as a research field. Recent devel-

opments have reduced complexity when analyzing rank data in conjoint experiments.

Rankings are an easy and efficient way to collect preference information. In particular,

partial rankings are essential in practical conjoint analysis to collect data efficiently to

relieve respondents’ task burden. Moreover, one does not need complete rankings to

obtain extra preference information.

Respondents may be heterogeneous and therefore we proposed a finite mixture ranking

probability model which takes respondents’ heterogeneity into account when modeling

preferences.

We demonstrated our methodology with two empirical data sets and we have shown

that our model is able to successfully discover distinct segments. Hence, partial rankings

yield sufficient preference information to take respondents’ heterogeneity into account.

Given that a partial ranking task amounts to a smaller burden for respondents than a

complete ranking task, this certainly will help marketers to identify and target consumers

by understanding their preference behavior, and, implement a more efficient and optimal

marketing strategy.

Possible topics for further research are the optimal design of the plan matrix to reduce

the variance of the estimated parameters, and to increase the flexibility of the current

model by introducing additional parameters which influence the shape of the density to

provide further insight in the way respondents build preferences.
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6.A Derivation of the first and second order deriva-

tives of (6.9)

Note that p(j;�i,θ
h) depends on h and not on h + 1. Hence, the first order derivative
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and the second order derivative with respect to βj yields
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see also Lam et al. (2010b).

In case of full rankings, the first order derivative with respect to βj simplifies to
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Chapter 7

Summary and Discussion

In this chapter, we first give a summary of the main findings in the individual chapters

followed by a discussion of the limitations and some recommendations for further research.

7.1 Summary of main findings

In Chapter 2 and Chapter 3 we derived new confidence intervals for maximal reliability

measures. Simulation experiments showed that existing confidence intervals for maximal

reliability can be anti-conservative. Anti-conservative confidence intervals have an at-

tained coverage less than the required coverage and hence may falsely give the impression

that maximal reliability is estimated with sufficient accuracy. We proposed to apply

a variance stabilizing transformation technique when constructing confidence intervals.

We introduced coverage curve analysis as a new methodology to compare confidence

intervals, which has shown to be more informative. That is, we have not only considered

the coverage of the true maximal reliability, but also the coverage of hypothetical values

which differ from the true maximal reliability. Our new derived stable confidence interval

performs well, and has a coverage for the true value which is approximately equal to the

confidence level. We stress the use of confidence intervals accompanying single measures

that summarize the parameters to assess the adequacy of the measure. The results may

help to improve questionnaires by yielding more precise measurements.

In part two of this thesis we focused on the analysis of rankings data. As respondents

face less difficulties when completing a partial ranking, they may be more motivated to

complete the task and as such the quality of the obtained data may improve. In Chapter 4,

we derived a nonparametric approach to analyze partial rankings. Moreover, we showed

that our proposed nonparametric test and the score test are equivalent, which implies
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that the far more simpler nonparametric approach is as good as the likelihood approach.

In addition, the nonparametric approach also allows for a better interpretation of the

multiple comparisons results.

In Chapter 5 we demonstrated how partial rankings data can be used in conjoint

analysis. More specifically, we estimated probabilistic ranking models in the context of

conjoint experiments. We showed that general ranking models can be applied to conjoint

experiments by introducing a linear model which allows for modeling the dependence

of the rankings on the stimulus characteristics. This method allows for a more efficient

way to collect data to reduce respondents’ task complexity which is essential in practical

conjoint analysis to improve data quality.

As in marketing it is generally assumed that individuals are heterogeneous in their

choice and preference behavior, we presented in Chapter 6 a finite mixture variant of the

ranking model in Chapter 5 to adequately model this heterogeneity. We showed that our

model is able to extract sufficient preference information from partial rankings data to

take into account respondents’ heterogeneity. This certainly will help marketers to identify

and target consumers by understanding their preference behavior, and, implement a more

optimal marketing strategy in an efficient way.

7.2 Limitations and further research

Below we will discuss some limitations and issues that may be improved in further

research.

Variance stabilization transformation technique is a well-established tool. For a

statistic which variance depending on the unknown parameters, the variance of the

transformed statistic does not depend on the unknown parameters if a variance stabi-

lization transformation exists. Although the pivotal quantity presented in Chapter 2 and

Chapter 3 is asymptotically stable when the number of items tends to infinity, the variance

still depends on the unknown parameter. For most psychological measurements, where

only a few or best items are available or used, this assumption is hard to meet. When

it is not a real variance stabilization transformation, the empirical results obtained may

depend on the specific conditions chosen. For example, when the items are parallel, the

transformed statistic is close to having a constant variance. Actually, when measurements

are parallel, there does exist a variance stabilization transformation and also an exact

confidence interval using the F-distribution (see Koning & Franses, 2003). We do not
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expect an exact variance stabilization transformation to exist when items are not parallel

or the data are not normally distributed.

In the second part of the thesis, we focused on Thurstone order statistics models, which

were introduced in Chapter 5. Thurstone order statistics models are specializations of ran-

dom utility models, which assume that the random utilities Y1, Y2, . . . , YC are independent

variables. Some interesting random utilities models do not make this assumption, and

unfortunately fall outside our framework but may be incorporated in future research.

For instance, one may assume that the random utilities follow a multivariate normal

distribution with a covariance matrix which is not diagonal. Indeed, this multivariate

normal model is already present in Case I and Case II in Thurstone (1927). One may

consider general dependence by allowing any covariance matrix, or one may restrict the

dependence by assuming that the covariance matrix should exhibit a certain structure.

That is, the distribution of the random utilities Y1, Y2, . . . , YC should obey a covariance

structure model, see Browne (1982). In Maydeu-Olivares and Böckenholt (2005), the

distribution of the random utilities Y1, Y2, . . . , YC is given by a factor analysis model.

Factor analysis models are special covariance structure models. The multivariate normal

distribution is quite restrictive with respect to dependence, as only linear dependence is

allowed. In McFadden (1977, 1978), see also McFadden (2001, p. 358), a class of random

utility models is proposed in which the marginal distributions of the random utilities are

Gumbel distributions, and which are able to induce the well-known nested multinomial

logit choice model. The nested multinomial logit choice model is often used to avoid the

restrictive independence of irrelevant alternatives assumption (IIA) which is part of the

standard multinomial logit choice model. As the standard logit choice model derives from

a Thurstone order statistics model with independent Gumbel random utilities, it follows

that allowing dependence may be quite useful.

We also note that almost all current choice models and limited dependent variable

models (including structural equation models) assume that error variances are constant,

although a few allow for non-constant error variances for alternatives, as in the heteroge-

neous error multinomial logit models. More generally, however, there can be a distribution

of error variances across the sample, and failure to capture this distribution can lead to

seriously biased and incorrect models. This limitation should be a subject for future

research.

Considerably more information is obtained in conjoint choice experiments by collecting

partial rankings rather than single best choices, or best and worst choices. Future research

interest lies in the design of the conjoint experiment to select the profiles to be included in
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the experiment. To create optimal designs for these experiments is a difficult task as the

total number of profiles depends on the number of attributes and levels and this increases

exponentially. Vermeulen et al. (2010) showed how the optimal experimental design theory

can be used to set up experiments for best-worst choices, and they compared the resulting

designs with various alternatives from the literature in terms of the optimality criterion

and prediction accuracy. In the context of partial rankings, the question is then raised

how much additional information can be obtained in a conjoint choice experiment from

an additional choice in each choice set.

During this thesis we encountered some numerical issues. The computation time

increases exponentially with the number of stimuli in the conjoint experiments as we need

to compute the sum over all possible rankings of these stimuli. Although we believe that

in the near future this is not a limitation anymore as computers becoming faster, for

now it does limit the possible number of stimuli that can be included in the conjoint

experiment. In this thesis we have computed all sums over each individual. However, one

can consider to jointly compute these sums at the same time. A possible solution would

be to perform parallel computations, in particular a cloud computing environment may

assist to overcome computation time limits.

Another issue is whether the optimization procedures we have applied in our estimation

methods, especially in the EM algorithm, are the most suitable methods. It is well-

known that the convergence of the EM algorithm might be slow in some cases. In

addition, the maximization in the M-step might be misleading as it is not guaranteed

that it will converge to a global maximum. However, as the EM algorithm is widely used,

improvements on this technique may also be incorporated when modeling rankings data.
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(Summary in Dutch)

Inleiding en motivatie

Vragenlijsten zijn een belangrijke manier om informatie te verzamelen over een populatie

voor zowel kwalitatief als kwantitatief onderzoek. De meerwaarde van een goede vragen-

lijst alsmede de kwaliteit van de verkregen data kan niet genoeg benadrukt worden. Dit

proefschrift bespreekt bepaalde aspecten van de statistische analyse van data verkregen

aan de hand van vragenlijsten.

De kwaliteit van de data hangt af van de nauwkeurigheid van de metingen. Een

vragenlijst bestaat uit meerdere items, waarbij groepen van items onafhankelijk hetzelfde

onderliggende concept kunnen meten. Het concept zelf kan echter niet direct gemeten

worden. Een concept zou bijvoorbeeld klanttevredenheid kunnen zijn en de vragenlijst

bevat dan meerdere stellingen die elk onafhankelijk (een aspect van) de klanttevredenheid

meten. De uitkomst van de vragenlijst, in het jargon “test score”, wordt als benadering

gehanteerd voor de “echte” meetwaarde van het concept, met als het gevolg dat we de

test score kunnen zie als de optelsom van een “echte” score en een willekeurige meetfout

(Lord & Novick, 1968). In het voorbeeld hierboven wordt de uitkomst van de vragenlijst

gezien als een optelsom van de “echte” klanttevredenheid plus een meetfout. De mate

van consistentie tussen de gemeten test score en de echte score is een indicator van de

betrouwbaarheid van de vragenlijst. Echter, de echte score is niet observeerbaar en dus is

het niet mogelijk om de betrouwbaarheid van een vragenlijst direct te schatten. Aan de

hand van de afzonderlijke item scores is het echter wel mogelijk om de betrouwbaarheid

indirect te evalueren.

De meest gebruikte maatstaaf om de betrouwbaarheid van een vragenlijst uit te

drukken is Cronbach’s coefficiënt alpha (Cronbach, 1951). In specifieke gevallen is

coefficiënt alpha gelijk aan de betrouwbaarheid, maar feitelijk is het een ondergrens van
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de betrouwbaarheid (zie Novick & Lewis, 1967) en kan deze gemaximaliseerd worden, (zie

bijvoorbeeld Li et al., 1996). Coefficiënt alpha is een ongewogen som van de individuele

item scores en door een gewogen som te gebruiken, kan de betrouwbaarheidscoefficiënt

verbeterd worden (zie bijvoorbeeld Knott & Bartholomew, 1993; Li, 1997; Yuan & Bentler,

2002; Raykov & Penev, 2006). De optimaal gewogen test score wordt de maximale

betrouwbaarheid van de test genoemd (Lindsey, 1996).

Essentieel is de evaluatie van de betrouwbaarheidscoefficiënt, oftewel, welke waarden

zijn hoog en welke zijn laag. De evaluatie van een verkregen alpha is veelal gebaseerd

op de aanbevelingen van Nunnally (Nunnally & Bernstein, 1994) met betrekking tot

de minimaal accepteerbare betrouwbaarheid. In veel marketing onderzoeken, worden

vuistregels gebruikt als “hoger dan 0.8” is goed. Deze methodiek is uiteraard verre van

zorgvuldig. We kunnen immers geen uitspraken doen over de nauwkeurigheid van de

meting en over de significante verschillen tussen betrouwbaarheidscoefficiënten onderling.

Cortina (1993) wijst op het ontbreken van een metriek om de nauwkeurigheid van de

toetsingsgrootheid te beoordelen. Het berekenen van betrouwbaarheidsintervallen voor

de toetsingsgrootheid verhelpt dit probleem. De extra informatie in het interval maakt

een meer kritische evaluatie van de toetsingsgrootheid mogelijk. We benadrukken dus het

belang van betrouwbaarheidsintervallen voor statistische grootheden die de parameters

van het model samenvatten.

Het eerste deel van dit proefschrift richt zich op de betrouwbaarheid van vragenlijsten.

We bespreken de maximale betrouwbaarheidscoefficiënt in verschillende modellen en we

construeren bijbehorende betrouwbaarheidsintervallen, zodat de nauwkeurigheid van de

grootheid getoetst kan worden. De bevindingen kunnen leiden tot een betere opzet van

vragenlijsten en deze leiden weer tot nauwkeurigere uitkomsten van vragenlijsten.

In het tweede gedeelte van dit proefschrift ontwikkelen we methoden om statistische

analyses uit te voeren op data gebaseerd op rankings (rangordes). Rankings worden vaak

gebruikt in de marketing om bijvoorbeeld producten, merken, en services te evalueren.

Andere voorbeelden zijn rankings van wetenschappelijke tijdschriften, universiteiten en

onderzoeksscholen. Rankings zijn makkelijk te begrijpen en eenvoudig te verzamelen.

Bovendien zijn rankings meer betrouwbaar dan metrische metingen, omdat respondenten

vaak niet in staat zijn om de mate van voorkeur nauwkeurig uit te drukken die deze

metingen vereisen (Ben-Akiva et al., 1992). Respondenten zijn goed in staat om alternatief

A boven alternatief B te prefereren, maar zij zijn zelden in staat om uit te drukken hoeveel

precies zij A prefereren boven B. Echter, de taak om alternatieven te rangschikken naar

voorkeur wordt al snel ingewikkeld naarmate het aantal alternatieven toeneemt. Het is
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welbekend dat respondenten het moeilijk vinden, of zelfs teleurgesteld worden, indien zij

te veel keuzemogelijkheden moeten vergelijken. Iyengar en Lepper (2000) laten zien dat

te veel keuzes demotiverend kunnen zijn voor consumenten. Boatwright en Nunes (2001)

demonstreren dat een reductie van het assortiment juist als prettig wordt ervaren door

consumenten, een bevinding die wordt onderschreven door onder andere Chernev (2003)

en Gourville en Soman (2005). DeShazo en Fermo (2002) laten zien dat consumenten taak

complexiteit ervaren als keuzemogelijkheden in overvloed zijn, zie ook Sandor en Franses

(2009). Kortom, consumenten vinden het moeilijk om voorkeuren te rangschikken als het

aantal alternatieven groot is. Het probleem van taak-complexiteit kan verlicht worden

door respondenten te vragen om slechts een deelverzameling van alle alternatieven te

rangschikken naar voorkeur. We zullen deze rangschikking een partiële ranking noemen.

Partiële rankings zijn essentieel in praktische conjunct analyse. Conjunct meten

is gebaseerd op de veronderstelling dat consumenten een product zien als een bundel

van productkenmerken die ook wel attributen worden genoemd. Productkenmerken

zijn bijvoorbeeld merk en prijs. Aan respondenten worden omschrijvingen van een

bepaald product voorgelegd. Deze omschrijvingen worden profielen genoemd en bevatten

informatie met betrekking tot de productkenmerken. De niveaus van de attributen

worden systematisch gevarieerd, zodat de profielen verschillende varianten van het product

representeren. Aan de respondent wordt vervolgens gevraagd om alle profielen naar

voorkeur te rangschikken. Profielen bestaan vaak uit veel attributen. Dit leidt al snel

tot een groot aantal mogelijke profielen. Het rangschikken van te veel profielen is, zoals

eerder genoemd, een complexe taak. Door het gebruik van partiële rankings in de conjunct

analyse, wordt de data efficiënter verzameld en de inspanning van de respondent verlicht.

Bovendien geven volledige rankings niet per se extra informatie over preferenties, zie

Louviere et al. (2000). Stel dat aan een consument gevraagd is om verschillende producten

te vergelijken en het product met het hoogste nut is het meest gewaardeerd. Aan elk

attribuut wordt nut toegekend en elk attribuut levert afzonderlijk een bijdrage aan het

totale nut van het product. Hieruit kan worden afgeleid hoe verschillende attributen

tegen elkaar worden afgewogen en hoe belangrijk deze attributen zijn. Nut is echter

latent in de zin dat de consument niet in staat is om deze getalsmatig uit te drukken,

maar desalniettemin kan het zijn/haar gedrag bëınvloeden.

Er zijn minstens twee voordelen van onze benadering om partiële rankings te anal-

yseren. Ten eerste, onze statistische modellen maken het mogelijk om op een efficiënte

manier preferentie data te verzamelen door het gebruik van partiële rankings. Partiële

rankings kunnen ook opgelegd zijn door het experimentele ontwerp van de conjunct studie.
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Ten tweede, wordt een partiële ranking als minder belastend ervaren door respondenten

en zullen zij meer gemotiveerd zijn, waardoor de kwaliteit van de verkregen data beter

is. Dit helpt marketeers om consumenten te identificeren door het begrijpen van hun

preferentie gedrag, en een efficiëntere en optimale marketing strategie te implementeren.

Samenvatting

In hoofdstuk 2 en hoofdstuk 3, bespreken we de maximale betrouwbaarheidscoefficiënt

in respectievelijk het tau-equivalente model en het congenerieke model, en we leiden de

bijbehorende asymptotische verdeling af om inzicht te krijgen in de verbetering van de

betrouwbaarheidsintervallen. De motivatie voor deze modellen is het blootleggen van de

structuur van de onderliggende covariantie matrix van de items. Hiermee overbruggen

we het gat tussen enerzijds het erg restrictieve parallelle model en anderzijds het extreem

tolerante model, zonder enige veronderstellingen voor de variantie structuur. Het negeren

van de structuur in de covariantie matrix leidt tot de verwaarlozing van waardevolle

informatie. Zonder enige veronderstellingen kan er niets gezegd worden over de “true

score” variantie en “error” variantie van de items, omdat deze parameters niet geschat

worden. Deze unieke varianties voor elke item component zijn echter bijzonder interessant

om meetschalen te verbeteren en bevatten waardevolle informatie. Men moet immers

altijd een model prefereren dat de meeste informatie verschaft.

Aan de hand van simulatie experimenten tonen we aan dat bestaande betrouw-

baarheidsintervallen voor de maximale betrouwbaarheidscoefficiënt anti-conservatief zijn

en dus ten onrechte de indruk wekken dat met voldoende nauwkeurigheid geschat is. We

vergelijken onze nieuwe betrouwbaardheidsintervallen met bestaande intervallen aan de

hand van “coverage curve” analyse. Hieruit blijkt dat variantie stabilisatie technieken

ervoor zorgen dat betrouwbaarheidsintervallen minder gevoelig zijn voor Type II fouten.

Deze intervallen hebben een coverage voor de “echte” waarde die bij benadering gelijk

is aan het betrouwbaardheidsniveau. We raden het gebruik van variantie stabilisatie

technieken dan ook aan bij meer gecompliceerde modellen om betrouwbaarheidsintervallen

te verbeteren. Hoofdstuk 2 is gebaseerd op Lam et al. (2009).

In het tweede gedeelte van dit proefschrift bespreken we de analyse van rankings en in

het bijzonder van partiële rankings. In hoofdstuk 4, presenteren we een methodiek om te

toetsen of de verkregen rankings significant verschillen van een willekeurige rangschikking.

We introduceren meervoudige vergelijking procedures om verder te toesten welke rankings

dan significant van elkaar verschillen. We presenteren een niet-parametrische benadering
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voor het analyseren van partiële rankings. Bovendien laten we zien dat onze niet-

parametrische test en de score test equivalent zijn. Dit impliceert dat de veel simpelere

niet-parametrische benadering even goed is als de “likelihood” benadering. Een bijkomend

voordeel van de niet-parametrische benadering is dat de resultaten van een meervoudige

vergelijking beter interpreteerbaar zijn. De methodiek vermindert de hoeveelheid aan

keuzes in een verkennende analyse op een makkelijke en begrijpbare manier, zodat

irrelevante alternatieven verwijderd kunnen worden uit verdere analyses. Dit hoofdstuk

is gedeeltelijk gebaseerd op Lam et al. (2010a).

In hoofdstuk 5 presenteren we een rankingsmodel in de context van conjunct analyse.

Aangezien er slechts een eindig aantal mogelijke rangschikkingen zijn, hebben de rankings

een discrete verdeling. In principe kunnen standaard methoden voor het analyseren van

discrete data hier toegepast worden, zie Marden (1995, p. 140). Echter, kansmodellen voor

rankings worden al snel complex naarmate het aantal te vergelijken objecten groter wordt.

In de literatuur is er een overvloed aan rankingsmodellen beschikbaar, zie Critchlow et al.

(1991, Section 3) en ook Marden (1995, Chapter 5), maar we concentreren ons op Thur-

stone “order statistics” modellen. We laten zien dat elk Thurstone order statistics model

benaderd kan worden door een simpeler model en dit maakt een algemene benadering

mogelijk. We analyseren partiële rankings in de context van conjunct experimenten door

een lineair model te introduceren waarin de rankings afhankelijk zijn van de attributen.

In hoofdstuk 6 presenteren we een “finite mixture” model voor het modelleren van

heterogeniteit. In marketing en andere sociale wetenschappen wordt in het algemeen

aangenomen dat individuen heterogeen zijn in hun keuzes en voorkeuren. Om dit te

modelleren worden heterogene responsparameters toegestaan. In de context van conjunct

analyse, kunnen consumenten bijvoorbeeld verschillen in prijsgevoeligheid en dus kunnen

zij anders reageren op prijsveranderingen. De waarde van de responsparameter voor het

attribuut prijs zal dan variëren tussen consumenten. Het model dat we presenteren is in

staat om voldoende informatie met betrekking tot preferenties te verkrijgen uit partiële

rankings om deze heterogeniteit nauwkeurig te modelleren.

Conclusies en discussie

Hieronder beschrijven we de voornaamste conclusies, aandachtspunten en suggesties voor

vervolgonderzoek.

De variantie van een toetsingsgrootheid hangt na een variantie stabilisatie transfor-

matie niet meer af van de onbekende parameters. Hoewel de spilgrootheid gepresenteerd
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in hoofdstuk 2 en hoofdstuk 3 asymptotisch stabiel is als het aantal items naar oneindig

gaat, hangt de variantie nog steeds af van de onbekende parameters. Voor de meeste

psychologische metingen, waar slechts een paar of slechts de beste items beschikbaar

zijn of gebruikt worden, gaat deze veronderstelling niet op. Als het geen echte variantie

stabilisatie transformatie is, hangen de verkregen empirische resultaten af van de specifieke

condities. Als de items bijvoorbeeld parallel zijn, heeft de getransformeerde grootheid is

de variantie vrijwel constant. Om precies te zijn, als metingen parallel zijn, bestaan

er reeds variantie stabilisatie transformaties en ook een exact betrouwbaarheidsinterval

gebaseerd op de F-verdeling (zie Koning & Franses, 2003). We verwachten niet dat er een

exacte variantie stabilisatie transformatie bestaat indien items niet parallel zijn of als de

data niet normaal verdeeld zijn.

In hoofdstuk 5 hebben we Thurstone order statistics modellen gëıntroduceerd. Thur-

stone order statistics modellen zijn verfijningen van random utility modellen. Deze

modellen veronderstellen dat de random utilities Y1, Y2, . . . , YC onafhankelijke variabelen

zijn. Bepaalde “random utilities” modellen maken deze veronderstelling niet, maar vallen

helaas buiten het kader van dit proefschrift. Het is zeker interessant om dit op te nemen

in vervolgonderzoek. Veronderstel bijvoorbeeld dat de random utilities een multivariate

normale verdeling volgen met een covariantie matrix die niet diagonaal is. Inderdaad,

dit multivariate normale model dient zich reeds aan in Case I en Case II in Thurstone

(1927). Door het toestaan van iedere covariantie matrix wordt algemene afhankelijkheid

verondersteld en door de veronderstelling dat de covariantie matrix een zekere structuur

moet vertonen wordt de afhankelijkheid beperkt. Met andere woorden, de verdeling van

de random utilities Y1, Y2, . . . , YC zijn onderworpen aan een covariantie structuur model,

zie Browne (1982). In Maydeu-Olivares en Böckenholt (2005), is de verdeling van de

random utilities Y1, Y2, . . . , YC gegeven door een factor analyse model. Factor analyse

modellen zijn speciale covariantie structuur modellen. De multivariate normale verdeling

is nogal restrictief wat betreft afhankelijkheid, aangezien slechts lineaire afhankelijkheid

is toegestaan. In McFadden (1977, 1978), zie ook McFadden (2001, p. 358), wordt een

klasse van random utility modellen gepresenteerd waarin de marginale verdelingen van

de random utilities Gumbel verdelingen zijn. Het welbekende geneste multinomiale logit

model is hiervan afgeleid en wordt vaak gebruikt om de restrictieve veronderstelling van

onafhankelijkheid van irrelevant alternatieven (IIA) te vermijden, die wel geldt in het

standaard multinomiale logit model. Het standaard logit model is afgeleid van een

Thurstone order statistics model met onafhankelijke Gumbel random utilities en het

toestaan van afhankelijkheid kan dus wellicht interessant zijn.
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We merken ook op dat bijna alle huidige keuze modellen en modellen waar de afhanke-

lijke variabele gelimiteerd is (inclusief structurele vergelijkingen modellen) veronderstellen

dat de error varianties constant zijn, hoewel enkele modellen niet-constante error varianties

voor de alternatieven toestaan, zoals in de multinomiale logit modellen met heterogene

error. Echter, in het algemeen kunnen de error varianties in de steekproef een verdeling

aannemen, en het niet meenemen van deze verdeling kan leiden tot incorrecte modellen.

Dit onderwerp dient meegenomen te worden in vervolgonderzoek.

Door het gebruik van partiële rankings in conjunct experimenten kan aanzienlijk meer

informatie verkregen worden dan door enkel de beste keuze, of de beste en slechtste keuzes,

te vragen aan respondenten. Om de profielen dusdanig te selecteren in een conjunct

experiment opdat informatie op een efficiënte manier verkregen wordt, is vervolgonderzoek

naar de opzet van het experiment nuttig. Een optimale opzet creëren is een lastige

opdracht aangezien het totaal aantal profielen afhangt van het aantal attributen en

niveaus, en dit exponentieel toeneemt. Vermeulen et al. (2010) vergelijken opzetten van

conjunct experimenten waar respondenten hun beste en slechtste keuzes aangeven met

alternatieven uit de literatuur in termen van optimaliteitscriterium en voorspelkracht.

In de context van partiële rankings is het interessant om te onderzoeken hoeveel extra

informatie verkregen kan worden in een conjunct keuze experiment uit een extra keuze in

elke keuzeset.

Tot slot noemen we enkele numerieke kwesties waarmee wij geconfronteerd werden.

De rekentijd neemt exponentieel toe met het aantal te vergelijken objecten in de conjunct

experiment, omdat de som over alle mogelijke rangschikkingen van de objecten berekend

moet worden. Het aantal objecten dat meegenomen kan worden in de conjunct analyse

is voor nu beperkt, maar we verwachten dat in de nabije toekomst dit geen wezenlijke

beperking meer zal zijn omdat de rekensnelheid van computers alsmaar toeneemt. De

huidige rekentijd kan verkort worden door berekeningen parallel uit te voeren, en in het

bijzonder kan een “cloud computing environment” hierbij helpen.

Het is bekend dat de convergentie van het EM algoritme traag kan zijn. Bovendien

kan de maximalisatie in de M-stap misleidend zijn, want er is geen garantie dat het zal

convergeren naar een globaal maximum. Het is de bespreking waard of de optimalisatie

procedures, die wij hebben toegepast in onze schattingsmethoden, in het bijzonder in het

EM algoritme, de meest geschikte methoden zijn. Echter, gezien het gebruik van EM

algoritme populair is, zullen verbeteringen van deze techniek wellicht ook meegenomen

worden tijdens het modelleren van rankings data.
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l)RELIABILITY AND RANKINGS

Questionnaires are an important way to gather information about large populations
for both qualitative and quantitative research. Hence, the value of a good questionnaire
design and the quality of questionnaire data cannot be emphasized enough. This thesis
discusses some aspects of the statistical analysis of measurement data obtained via
questionnaires.

In the first part of this thesis we focus on maximizing scale reliability. We derive the
asymptotic distribution of maximal reliability measures to construct confidence intervals in
order to assess the adequacy of the measure. We stress the use of confidence intervals
accompanying single measures that summarize the parameters to assess the adequacy of
the measure. The results can lead to better designs of questionnaires, which in turn lead to
more precise survey outcomes.

The second part of this thesis proposes methodologies to perform statistical analysis of
stated consumer preferences measured as rankings data, especially in the context of
conjoint measurements. Our statistical models allow for the efficient use of partial
rankings to collect preference data. As a partial rankings task amount to a smaller burden
for respondents than a complete ranking task, they may be more motivated to complete
the task and as such the quality of the obtained data may improve. Moreover, we show
that our model is able to extract sufficient preference information from partial rankings
data to take into account respondents' heterogeneity in their choice and preference
behavior, which is generally assumed in marketing. This certainly will help marketers to
identify and target consumers by understanding their preference behavior, and to
implement a more efficient and optimal marketing strategy.
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