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Abstract. This paper presents a Markov chain model for the estimation of

individual-level binary transitions from a time series of independent repeated

cross-sectional (RCS) samples. Although RCS samples lack direct information
on individual turnover, it is demonstrated here that it is possible with these

data to draw meaningful conclusions on individual state-to-state transitions.

We discuss estimation and inference using maximum likelihood, parametric
bootstrap and Markov chain Monte Carlo (MCMC) approaches. The model

is illustrated by an application to the rise in ownership of computers in Dutch
households since 1986, using a 13-wave annual panel data set. These data
encompass more information than we need to estimate the model. This addi-

tional information allows us to assess the validity of the parameter estimates.
Software implementing the model is available.

Paper prepared for the Ecological Inference Conference, Harvard University,

Cambridge, MA, June 17-18, 2002.

1. Introduction

It has sometimes been argued that King’s ecological inference model can be adapted
and fruitfully applied to independent repeated cross-sectional (RCS) samples (e.g.,
Penubarti and Schuessler 1998, King, Rosen and Tanner 1999). To date, however,
surprisingly little research has been devoted to the development of cross-level in-
ference models that draw panel conclusions from non-panel data.1 The objective of
this paper is to address this issue.
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2Econometric Institute, Erasmus University Rotterdam, The Netherlands

Authors’ note. The data for Socio-Economic Panel used in this paper were collected by
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the simulations and estimations reported here. It is programmed in Delphi but distributed as a
stand-alone program running under Windows. The program (including documentation) is free
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panel inference (EPI) method of Penubarti and Schuessler (1998) and the two-stage auxiliary
instrumental variables (2SAIV) approach of Franklin (1989).
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One reason for this is the lack of genuine panel data. Panel designs are, rightfully,
highly regarded for the opportunity they offer to measure transitions of state or
value from repeated observations on the same sample units. For many research
issues, however, adequate panel data are hard to collect or simply unavailable.
Another major reason is that panel data are potentially subject to non-sampling
biases. An important one is sample attrition that results from the progressive
loss of (often selective groups of) respondents willing to participate in the data
collection. While non-response is also a limitation for cross-sectional surveys, it is
a more serious problem for panel data because non-response often accumulates over
time. A related limitation is that it is often difficult to ensure that changes in the
target population are reflected in the panel. While panels are typically designed
to be representative of the population at the beginning of the study, the panel
ages over time and few panels are, in addition to providing longitudinal data, also
designed to premanently provide fully representative information of the population
by continuous renewal of the sample.

A large number of cross-sectional surveys conducted by public and private or-
ganizations are repeated at regular time intervals. These repeated cross-sectional
surveys do not suffer from panel mortality and reflect changes in the universe that
cannot be accounted for by a panel study. Estimating individual transitions from
such data has the connotation of performing an impossible task, of obtaining in-
formation from nowhere. Indeed, it is often argued that panel data are necessary
to study individual-level change (e.g., Kish 1987, p. 167). While individual change
is obviously only visible in panel data, this paper will show that this argument is
not correct and that data from successive, separately drawn samples can be used to
validly estimate transitions using a model that is no more magical than the use of
’plug-in’ estimates and bridging assumptions in other areas of statistical modelling.

The outline of the paper is as follows. Section 2 presents a Markov transition
model for repeated cross sections designed to deal specifically with binary responses.
This model has its origins in the work of Moffitt (1990 1993). We briefly review
its main features and discuss maximum likelihood (ML), parametric bootstrap and
Markov chain Monte Carlo (MCMC) approaches to estimation and inference. Sec-
tions 3 considers an application of the model to the rise in computer penetration
rates in Dutch households from 1986 to 1998, using annual panel data from the
Socio-Economic Panel (SEP) survey of statistics netherlands. We examine
the determinants of the transitions from ’have-not’ to ’have’ (and back again) using
well-known socio-economic and demographic covariates of the digital divide. Para-
metric bootstrap and Bayesian simulation are used to evaluate the accuracy and
the precision of the RCS Markov ML estimates and the results are also compared
with those of a first-order dynamic panel model. To mimic genuine RCS data, we
additionally analyze samples of independent observations randomly drawn from the
panel. The summary in Section 4 concludes the paper.

2. Estimating binary transitions from rcs data

2.1. Binary transition model. Obviously, the estimation of dynamic models
with repeated cross-sectional data is hampered by the lack of information about
lagged variables. Let yit denote the observed response for the binary random vari-
able y of unit i at time period t. The crucial characteristic of RCS data is that
yit is observed, but yit−1 is not. Consequently, no estimate of the serial covariance
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of successive yit necessary to estimate dynamic models is available in RCS data.
This does not imply that dynamic models cannot be estimated with repeated cross
sections. However, it does imply that estimation of the unobserved transitions is
possible only by putting certain constraints on the transitions for unit i and/or
time period t.

Consider a 2×2 transition table in which the internal cell values sum to unity
across rows. If we define pit = P (yit = 1), µit = P (yit = 1|yit−1 = 0), and
λit = P (yit = 0|yit−1 = 1), then we have the well-known accounting equation

(1) E(yit) = pit = µit(1− pit−1) + (1− λit)pit−1

This identity is the critical equation that needs to be solved in estimating dynamic
models with repeated cross sections, as it relates the marginal probabilities (pit and
pit−1) to the entry (µit) and exit (λit) transition probabilities.2 A more concise
form for the same equation is pit = µit + ηitpit−1, so that ηit = 1 − λit − µit. It
is also sometimes convenient to define κit = 1 − λit = P (yit = 1|yit−1 = 1). If we
recursively substitute in for pit in (1), and derive its reduced form in terms of past
µit and λit, then we get

(2) pit = µit +
t−1∑
τ=1

[
µiτ

t∏
s=τ+1

ηis

]
+ pi0

t∏
τ=1

ηit

This is the model equation that will be used in this paper. It is obviously not
uniquely solvable with RCS data without identifying constraints. Two types of re-
strictions may be used in this context. One is to impose some direct restraint on the
patterns of µit and λit. For example, the parameters in (2) are clearly identifiable
with RCS data if we assume that the transition probabilities are homogeneous with
respect to both units i and time periods t. With the assumption that µit = µ and
λit = λ, for all i and t, the long-run value of pit in (2) reduces to pit = µ/(µ + λ)
(see, e.g., Ross 1993, pp. 152-153). Another type of restriction may be imposed if
the cross-sectional data include covariates xit that are measurable in the past (by
’backcasting’), and if the current and lagged xit affect µit and λit. In that case,
the covariates xit,xit−1, . . . ,xi1 can be employed to obtain current and backward
predictions of the entry (µit, µit−1, . . . , µi1) and exit ( λit, λit−1, . . . , λi2) transition
probabilities, by specifying

(3) µit = F (xitβ) and λ it = 1− F (xitβ
∗)

where β and β∗ are two potentially different sets of parameters associated with two
potentially different sets of (time-invariant or time-varying) covariates xit, and F
is the - in this paper logistic - link function. Estimates of the model parameters
are obtained by substituting (3) into (2). The critical identifying restriction used
here is that the regression parameters are taken to be constant over time, but this

2The non-panel nature of cross-sectional data could be made explicit by indexing individual

units in cross-section t by i(t) and the marginal probabilities, for example, by pi(t)t. However, to

ease the notation we shall simply write i for i(t) and pit for pi(t)t, as the nature of the data is

obvious.
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assumption may easily be relaxed if we have a sufficient number of repeated cross
sections. We can model the parameters as a function of time using polynomials or
splines, for example, or we may use a semi-parametric approach that assumes the
parameters to be constant within but different across discrete time periods. Note
that the underlying Markov chain is not assumed to be homogeneous here, implying
that the entry and exit transition probabilities may vary across both units i and time
periods t. Also note that to obtain pit, we actually integrate (sum) over all possible
unobserved state-to-state transition paths for each individual unit i, starting at
t = 1 and ending at the cross-sectional observation period t. This implies that the
probabilities are estimated as a function of all the available cross-sectional samples,
rather than simply the observations from the current time period.

Other perhaps more implicit assumptions underlying the application of model
are that pi0 = 0, that all the covariates xit included in the model should have
known values in the past, and that the estimation of the entry and exit transitions
depend exclusively on variations in the covariates observed. With respect to the
first assumption, it should be noted that pi0 is not the first observed outcome (which
is pi1), but rather the value of the state prior to the start of the Markov chain. It is
generally difficult to incorporate the initial state into the model, since this requires
assess to the Markov process from the beginning for each individual unit i. We
therefore invoke the restriction that pi1 = 0, the consequence of which is that pi1 =
µi1. Because in many applications the latter assumption is untenable, we define a
separate logistic function for the cross section at t = 1, i.e., P (yi1 = 1) = F (xitδ).
The δ-parameters are estimated simultaneously with the entry and exit parameters
of interest at t = 2, . . . , T , and they are estimated as a function of all cross-sectional
data, rather than simply the observations at t = 1.

If some of the covariates are ’non-backcastable’ (i.e., their past history is un-
known), the model may be modified by estimating two different sets of parameters
for both µit and λit: one for the current transition probability estimates and a sep-
arate one for the preceding estimates. If we denote the time-dependent covariate
with unknown past history by vit and the associated parameter vector representing
the effect on µit by ζ, then we have logit(µit) = xitβ

∗∗+vitζ for cross section t, and
logit(µit) = xitβ for the cross sections 1, . . . , t− 1. This specification allows one to
express the current transition probability estimates as a logistic function of both
backcastable and non-backcastable variables. A similar model may be specified for
λit. It should be noted here that in our application below we assume that β∗∗ = β.

If the assumption that all relevant variables are included in the model is not
a realistic one, it may be useful to include an individual-specific random error
term εi in the linear predictor of the transition probabilities to account for omitted
variables, at least in so far as these variables are time-invariant for each individual.
In this logistic-normal mixture model we have logit(µit) = xitβ +γ0εi and logit(1−
λit) = xitβ

∗+γ1εi, where γ0 and γ1 are coefficients of the random variable εi having
zero mean and unit variance. To estimate the parameters, the marginal likelihood
of this model is integrated with respect to the distribution of εi using, for example,
the Gauss-Hermite quadrature approximation. As unobserved heterogeneity is not
examined in the empirical application below, we will not elaborate on this topic
here. Pelzer et al. (2002) provide further details.

Finally, equation (1) may be rearranged into µit = pit/(1 − pit−1) − pit−1/(1 −
pit−1)κit where κit = 1 − λit. This expression resembles the equation that King
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(1997) termed ’tomography line’. Since the estimated marginal probabilities pit and
pit−1 are guaranteed to lie in the (0,1) range, bounds are enforced on the maximum
likelihood estimators of µit and κit. These bounds are not informative as in the
’methods of bounds’ (Duncan and Davis 1953), however, but rather logical limits
implied by the model. The methods of bounds obtains ranges of feasible entries
that are consistent with the observed margins in the 2 by 2 table. Together the two
margins provide (at least some) information on the internal cells. In the analysis of
individual data from repeated cross sections, however, only one of the margins (yit)
is observed, and the other one (yit−1) is not. This implies that the repeated cross
sections cannot provide any deterministic, informative restrictions on the entries
(unless one aggregates the micro data into profiles defined by covariates, as in
Penubarti and Schuessler 1998). Consequently, the ecological inference problem in
RCS data is greater (in the sense of a larger number of unknowns) than in the
more common application where the margins are known. The approach proposed
here is to completely express the marginal probabilities pit in terms of µit and κit,
recursively, so that estimating the latter automatically renders the former.

2.2. Estimation and simulation.

2.2.1. Maximum likelihood estimation. The method of maximum likelihood may be
used to compute the estimates of the parameters in (3) - plugged into (2) - and
their variances. For a sample of n statistically independent observations - were each
observation is treated as a single draw from a Bernoulli distribution - with success
probability pit, model (2) has the log likelihood function

(4) LL =
T∑

t=1

nt∑
i=1

``it =
T∑

t=1

nt∑
i=1

[yit log(pit) + (1− yit) log(1− pit)].

were T is the number of cross sections and nt the number of units of the cross-
sectional sample at time period t. Maximization of this function has to be performed
iteratively and requires the derivatives of the log likelihood with respect to the
parameters, θ, say. If we suppress subscript i to ease notation, the first order
derivatives with respect to θ are

∂``t

∂θ
=

yt − pt

pt(1− pt)
· ∂pt

∂θ
,

were
∂pt

∂θ
=

∂µt

∂θ
+

∂pt−1

∂θ
ηt + pt−1

∂ηt

∂θ
.

If θ is used to estimate µt, then ∂µt/∂θ = xtµt(1 − µt) and ∂ηt/∂θ = −∂µt/∂θ.
If it is used for λt, then ∂µt/∂θ = 0 and ∂ηt/∂θ = xtλt(1 − λt). The values for
∂pt/∂θ can be obtained by recursive substitution, setting ∂p0/∂θ = p0 = 0, and
starting from ∂p1/∂θ = ∂µ1/∂θ = x1µ1(1− µ1). The second order derivatives are

∂2``t

∂θ∂θ′
= − (yt − pt)2

p2
t (1− pt)2

· ∂pt

∂θ
.
∂pt

∂θ′
+

yt − pt

pt(1− pt)
.

∂2pt

∂θ∂θ′
,
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were

∂2pt

∂θ∂θ′
=

∂2pt−1

∂θ∂θ′
.ηt +

∂pt−1

∂θ′
.
∂ηt

∂θ
+

∂2µt

∂θ∂θ′
.(1− pt−1)−

∂µt

∂θ′
.
∂pt−1

∂θ
.

If θ belongs to xt and θ′ to x∗t , then ∂2µt/∂θ∂θ′ = xtx∗t µt(1−µt)(1− 2µt). Again,
if we set ∂2p0/∂θ∂θ′ = ∂p0/∂θ = ∂p0/∂θ′ = p0 = 0, the values for ∂2pt/∂θ∂θ′ can
be obtained recursively, starting from ∂2p1/∂θ∂θ′ = ∂2µ1/∂θ∂θ′.

The parameter estimates may be obtained by Newton’s method, which uses the
Hessian matrix of the actual second derivatives. To speed up computation, we may
avoid calculating the exact Hessian by approximating it instead by the expected
second derivatives, and use Fisher’s method-of-scoring. This method is used here.
In addition to providing parameter estimates, the Fisher optimization algorithm
produces as a by-product an estimate of the asymptotic variance-covariance matrix
of the model parameters, given by the inverse of the estimated information matrix
evaluated at the converged values of the estimates. If the estimates are MLE, each
element of the inverse of the information matrix is a minimum variance bound for
the corresponding parameter and the positive square root of the diagonal elements
of this matrix (i.e., the standard errors of the estimated coefficients) may be used
for significance tests and to construct confidence intervals.

Finally, according to asymptotic theory, ML estimators become progressively
more unbiased, more normally distributed and achieve a minimum possible variance
more closely as the sample size increases. However, these asymptotic assumptions
may be violated by the nature of our relatively complex Markov chain model.
Moreover, the estimator in our model has essentially unknown properties for small
to moderate sample sizes and we cannot present any guidelines as to when a sample
is sufficiently large for the asymptotic properties to be closely approximated. It is
therefore important to investigate the behavior of the estimators of the parameters
in (2) by examining their finite-sampling distribution. The bootstrap and MCMC
simulations provide useful tools in this situation.

2.2.2. Parametric bootstrap simulation. Bootstrap uses Monte Carlo simulation to
empirically approximate the probability distribution of the parameter estimates and
other statistics rather than relying on assumptions about its shape that may only
be asymptotically correct.3 The technique used here is model-based parametric
bootstrap (Davison and Hinkley 1997). For the parametric bootstrap, re-samples
are taken from the original data via a fitted parametric model to create replicate
data sets, from which the variability of the quantities of interest can be assessed.
In the repeated simulations, it is assumed that both the form of the deterministic
component of the model and the nature of the stochastic component are known.
Bootstrap samples are generated using the same fixed covariates as in the original
sample and a set of predetermined values for the parameters, allowing only the
stochastic component to change randomly from sample to sample. By this means,
many bootstrap samples are generated, each of which provides a set of estimates
of the parameters that may then be examined for their bias, variance, and other

3The examination of the sampling distribution of the estimators will be restricted to studying
the marginal distribution of each parameter separately. Studying the multivariate behavior of the

estimators is a more complicated problem we shall not undertake here.
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distributional properties and used for bootstrap confidence intervals and hypothe-
sis testing. The parametric bootstrap re-sampling procedure is implemented here
according to the following algorithm.

(1) Estimate the unknown parameter, θ, according to model (2) using the orig-
inal sample, {xit, yit}, i = 1, . . . , nt, t = 1, . . . , T , with the estimate denoted
as θ̂, and obtain the fitted values p̂it of the probability that the binary
dependent variable yit = 1.

(2) For each xit in the original sample, {xit, yit}, generate a value of the boot-
strap dependent variable y∗it by random sampling from a Bernoulli distri-
bution with success probability given by p̂it.

(3) Use the bootstrap sample, {xit, y
∗
it}, to fit the parameter estimate θ∗.

(4) Repeat Steps 2 and 3 R times, yielding the bootstrap replications denoted
as θ̂∗1 , . . . , θ̂∗R. The empirical distribution of these replications is used to
approximate the finite sample distribution of θ̂.

In this study we look at the density of the values of θ̂∗ under re-sampling of the
fitted model to examine bias and variance and to see if it is multi-modal, skewed,
or otherwise differs from normality. To obtain an accurate empirical approxima-
tion, we use R = 5, 000 replications of the original data set. While the bootstrap
estimates of bias and variance under the fitted model are important in their own
right, parametric re-sampling may also be useful in testing problems when stan-
dard approximations do not apply or where the accuracy of the approximation is
suspect. The key to applying the bootstrap for hypothesis testing is to transform
the data so that the null hypothesis is true in the bootstrap population. That is,
we simulate data under the null hypothesis so that bootstrap re-sampling resembles
sampling from a population for which the null hypothesis holds (Hall and Wilson
1991). To be specific, the bootstrap hypothesis test compares the observed value
in the original sample to the R values θ̂∗1 , . . . , θ̂∗R, which are obtained from samples
independently generated under the null model that satisfies H0. The bootstrap P -
value may then be obtained by p∗(θ̂) = P (θ̂∗ ≥ θ̂|H0) = R−1

∑R
i=1 I(θ∗ ≥ θ̂), were

the indicator I(.) equals one if the inequality is satisfied and zero if not (Davison
and Hinkley 1997). We reject the null hypothesis if the selected significance level
exceeds p∗(θ̂).

2.2.3. Markov chain Monte Carlo simulation. Another powerful tool next to MLE
and parametric bootstrap is Bayesian simulation, which is easily implemented using
Markov chain Monte Carlo (MCMC) methods. Bayesian data analysis is not con-
cerned with finding the parameter values for which the likelihood reaches the global
maximum. It is primarily concerned with generating samples from the posterior
distribution of the parameters given the data and a prior density and this distri-
bution may be asymmetric and/or multi-modal. Other advantages of the Bayesian
approach include the possible incorporation of any available prior information and
the ability to make inferences on arbitrary functions of the parameters or predic-
tions concerning specific individual units in the sample. A popular method for
MCMC simulation is Metropolis sampling (Tanner 1996). The Metropolis sampler
obtains a chain of draws from the posterior multivariate distribution, π(θ|y), of the
parameter θ. In sampling from the unknown target distribution, the algorithm uses
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a known auxiliary density A – e.g., a (multivariate) uniform or normal distribution
- to select candidate parameters θc. The Metropolis algorithm proceeds as follows

(1) Choose a start value for the parameter (e.g., the MLE).
(2) Randomly draw parameter θc from A, were A is a symmetric proposal

distribution with mean equal to the previous draw, θ, and an arbitrary
variance.

(3) If π(θc|y) ≥ π(θ|y), add candidate θc to the chain of draws. If π(θc|y) <
π(θ|y), calculate the ratio r = π(θc|y)/π(θ|y) and add candidate θc with
probability r to the chain of draws.

(4) If candidate θc is not added to the accepted draws in Step 3, add θ so that
two successive elements of the chain have the same parameter value θ. Else,
proceed with the next step.

(5) Repeat Steps 2-4 K times, yielding a sample from the posterior distribution
of θ.

In the Markov chain sampling used here, we assumed a priori that we are ignorant
about the values of the parameters. That is, no value of the parameter is any more
probable than any other value (i.e., a vague prior belief). This implies that π(θ|y)
equals the likelihood of parameter θ. Once stationarity has been achieved, a value
from a chain of draws from the Metropolis algorithm is supposed to have the same
distribution as the target density. We run the Metropolis algorithm K = 100, 000
times, excluding an initial burn-in of 10, 000 samples, and subsequently obtained
the mean, standard deviation, and limits of the 95% credibility interval of θ.

3. Application

3.1. PC penetration in Dutch households. The major concern of this section is
how the RCS Markov model performs in practice. The empirical application is con-
cerned with modelling the rise in computer penetration rates in Dutch households
in the 1986-98 period using data from the Socio-Economic Panel (SEP) collected
by statistics netherlands. The reason for using this 13-wave annual household
panel study is that it offers the opportunity to check the estimation results against
the panel findings. However, it is important to note that in the RCS Markov anal-
ysis below the panel data are treated as if they were observations of a temporal
sequence of 13 independent cross-sectional samples. That is, no use is made of
information about lagged values of yit.

The binary dependent variable yit is defined to equal one if the household owns
a personal computer and zero if not. Table 1 reports the proportions of Dutch
households with a PC in the 1986-98 period along with the observed entry and
exit transition rates. As can be seen, there is a marked upward time trend in PC
ownership, from 12% in 1986 to 57% in 1998. While the entry rates, (ȳt|yt−1 = 0),
also show an increase over time, the exit rates, ((1 − ȳt)|yt−1 = 1), reveal erratic
change.

Table 1 goes here
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The most important structural determinants of the presence of a PC in homes - in
the Netherlands as elsewhere - include educational attainment, household income,
the size of the household, and age (see, e.g., OECD 2001). These variables are
included in the SEP household study, but they would generally also be available in
a repeated cross-sectional survey. The time-varying variable age of head of house-
hold (hereafter: age) is categorized into three different age categories (18-34, 35-54,
and 55+ years of age). The time-varying variable number of household members is
constructed from cross-sectional information about the number and the ages of the
children in the household and the presence of a spouse. It is assumed that a family
with children has two adults. The variable highest completed education of head
of household (hereafter: education) is taken to be fixed over time. Next to these
backcastable variables, the analysis also includes the temporary, nonbackcastable
covariate household income. The variable used here is the standardized (i.e., cor-
rected for size and type of household) disposable household income, categorized
into quintiles.

3.2. RCS Markov model.

3.2.1. Maximum likelihood. The first model fitted was a time-stationary Markov
chain with constant terms only. This model produces the parameters β(µt) =
−2.543 and β∗(λt) = −3.310 and a log-likelihood value of LL = −15895.214. These
estimates imply constant transition probabilities µ = .073 and λ = .035, hence
predicted rates that underestimate the observed sample frequencies reported in
Table 1. The model was subsequently modified to a non-stationary, heterogeneous
Markov model by adding the covariates reported above. In analyzing the data with
this model, it became apparent that the covariates have a substantial effect on the
transition from have-not to have, but that they contribute little to the explanation
of the reverse transition. We therefore decided to model the exit transitions using
a single constant term only. Further, it turned out that the inclusion of a linear
time trend in the prediction of obtaining a computer appreciably improves the fit.
We therefore included the variable time in the model. The results are reported in
the second column of Table 2.

Table 2 goes here

The top part of the table gives the estimated effects on the marginal probabilities
pi1. The table indicates that both education and the number of household members
positively affect the presence of a PC in homes. While there is no significant
difference in PC ownership between the 18-34 year age group and others aged
35-54, ownership is significantly more widespread among the younger age group
than among those aged 55 and over. The middle part of Table 2 presents the
effects on the transition from have-not to have with respect to PC ownership. The
results show that educational attainment of head of household, household size,
household income, and time have a positive effect on obtaining a computer. This
finding confirms the conclusion of cross-sectional studies that computer ownership
has spread most rapidly among the affluent, well educated families with children
(OECD 2001). The coefficients of the age terms again imply similar entry rates
among younger and middle age groups. The older age group has considerably lower
access rates. The parameter estimate of the constant term for λit is shown in
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the bottom part of the table. An intercept of -2.292 implies a time-constant exit
transition probability of λ = .092 (i.e., κ = .908), which perfectly matches the
observed mean frequency of .092.

3.2.2. Parametric bootstrap. As indicated, the benefit of parametric simulation is
that the bootstrap estimates give empirical evidence that likelihood theory can be
trusted, while providing alternative methods for calculating measures of uncertainty
if this theory is unreliable. To examine the sampling distribution of the parameter
estimates, we generated R = 5, 000 bootstrap samples according to the algorithm
given in Section 2.2.2. Table 2 provides for each parameter the mean and the sample
standard deviation of the bootstrap estimates. It is typical of likelihood methods
that the variability of likelihood quantities is underestimated. As the table shows,
however, the effect is small enough to be unimportant here. The bootstrap mean
values are close to the ML estimates and the sample standard deviations are similar
to the likelihood-based standard errors. The bootstrap estimates of bias and other
distributional properties are given in Table 3.

Table 3 goes here

The ML estimates of the model parameters appear to be only slightly biased, with
the largest absolute bias being .0086. When the estimated bias is expressed as a
percentage of the parameter estimate (not reported in Table 3), the largest differ-
ences between standard theory and the bootstrap results are found for the δ(pi1)
parameter of the age 35-54 dummy, for which the percentage bias is 1.85%. All
other parameters have percentage biases of less than 1%. The parameters also tend
to have a small bias compared to the magnitude of their standard deviation. A
frequently applied rule of thumb is that a good estimator should be biased by less
than 25% of its standard deviation (Efron and Tibshirani, 1993). As can be seen
in Table 3, the ratios of estimated bias to standard deviation are all less than .25.
Small values are also found for the root mean square error, which takes into ac-
count both standard deviation and bias. The bootstrap sample variance may be
compared to the estimated ML variance using a chi-square test to examine whether
the sample variance from the bootstrap is significantly larger than the variance from
ML (Ratkowsky 1983). For none of the parameters is the bootstrap variance signifi-
cantly in excess of the ML variance. The largest value was again found for the δ(pi1)
parameter of the age 35-54 dummy. The statistic χ2 = (N − 1)(σ̂2

bootstrap/σ̂2
ML) is

distributed as chi-square with 4,999 degrees of freedom (df), a transform of which
may be closely approximated by the standard normal distribution yielding, for this
dummy variable, z =

√
2χ2 −

√
2(df)− 1 = 1.857. Table 3 also reports skew-

ness, excess kurtosis and the Jarque-Bera (1980) statistic, that may be used to test
whether the estimators are normally distributed. The null hypothesis of normal-
ity is only rejected for the constant and the age 55+ parameter of δ(pi1), and for
the constant term parameter of β∗(λ). The distribution of the latter is somewhat
peaked and all three estimates have an extended tail to the left. The normal approx-
imation is least accurate for the β∗(λ) constant. However, even for this estimate
the deviation from normality is negligible. The same goes for the distribution of κ
[= 1/(1 + exp(β∗(λ)))], shown in the left panel of Figure 1.

Figure 1 goes here



ECOLOGICAL PANEL INFERENCE IN REPEATED CROSS SECTIONS 11

No obvious visual departure is apparent in the histogram of the κ estimates from
that expected for a normally distributed random variable.

3.2.3. Markov chain Monte Carlo. The Metropolis sampler posterior estimates for
each parameter are reported in Table 2. The findings are based on K = 100, 000
samples, excluding 10,000 samples for initial settling. Inspection of the posterior
means reveals that there are no gross discrepancies in magnitude compared to
the ML estimates. The MCMC standard deviations and the ML standard errors
are also similar to one another. The same goes for the .95 percentile intervals of
the parametric bootstrap estimates and the Bayesian credibility intervals. Thus
Bayesian and frequentist methods for obtaining estimates produce roughly similar
results.

In sum, according to both parametric bootstrap and MCMC simulations, the
maximum likelihood estimators in this application are almost unbiased, with a
variance close to the minimum variance bound, and a distribution close to that of
a normal distribution. This implies that the ML point estimates of the parameters
are accurate and that the inverse of the Fisher information matrix may be used as
a good estimate of the covariance matrix of the parameter estimates.

3.3. Dynamic panel model. It is compelling to compare the RCS Markov ML
estimates with the corresponding parameter estimates of a dynamic panel model
that allows for first-order dependence. Most directly related to the RCS Markov
model is a panel model that specifies a separate logistic regression for P (yit =
1|yit−1 = 0, 1), and includes yit−1 as an additional predictor. This model can
conveniently be written in a single equation as logitP (yit = 1| yit−1 = 0, 1) =
xitβ + yit−1xitα, where α = β∗ − β (see Amemiya 1985, Diggle, Liang and Zeger
1994, and Beck et al., 2001). The results of applying this logistic model to the
binary panel data are shown in the right most columns of Table 2. A comparison
of the RCS Markov and panel estimates indicates that most of the findings are
insensitive to choice of model. The point estimates of all parameters, except perhaps
the coefficients for age 35-54 and those for income, are rather similar and the
standard errors also correspond. This implies that inferences about the parameters
do not change considerably with the choice of model. Moreover, the two models
predict equivalent transition probabilities µit and λit for all individual cases (not
reported), and the accuracy of the two models as judged by a ROC curve analysis
is almost identical (curve not shown either).4 The RCS Markov model is only
clearly inferior to the panel model with respect to the likelihood. It should be
noted, however, that the two models differ in the computation of pit and thus
the likelihood. In binary panel data, the marginal probability pit is either µit or
(1 − λit), conditional on yit−1, and the likelihood contribution can be written as
`it = µ

yit(1−yit−1)
it (1 − λit)yityit−1(1 − µit)(1−yit)(1−yit−1)λ

(1−yit)yit−1
it . In the RCS

Markov model, however, the marginal probability pit is always a weighted sum of
two probabilities - µit and λit - weighted by pit, and the likelihood is given by
`it = [µit(1− pit−1) + (1− λit)pit−1]

yit [(1− µit)(1− pit−1) + λitpit−1]
1−yit . This

implies that even if panel and RCS data produce identical transition probabilities
µit and λit, the two likelihood functions may differ because of pit−1. The likelihood

4The area under the ROC curve for yt|yt−1 = 0 observations is .763 for the RCS Markov model

and .768 for the panel model.
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values are only identical if pit−1 is equal to yit−1; that is, if the lagged covariates
perfectly predict the previous response.

3.4. Samples of independent observations. As indicated, in the RCS Markov
model the panel data are treated as independent cross sections implying that there is
no information on the autocov (yit, yit−1) available in the data file used for analysis.
Nevertheless, the best way to make sure that the results are not artificial findings
is to analyse independent observations. To do so, we randomly draw (without
replacement) samples of 2,028 different households from the (2,028 x 13=) 26,364
panel observations, were each sample consists of 13 separate sets - one for each
time period - of 156 households. Hence each household is selected only once in the
’cross-sectional’ sample. The total number of possible ’cross-sectional’ samples in
the our application is approximately 102,242.5 We randomly draw 5,000 samples
and analyzed each data set separately using maximum likelihood estimation.

Table 4 goes here

Table 4 reports the average value of the parameters across the samples along with
the standard deviation divided by

√
13. A comparison of the Tables 2 and 4 suggests

that for almost all parameters the mean values are close to the MLE obtained for
the original full sample size. The only noticeable difference is in the constant term
parameter of β∗(λ). This mismatch can be explained by referring to the distribution
for κ, shown in the right panel of Figure 1. For several ’extreme’ small sized samples
the true maximum of the likelihood function is attained when κ is on the boundary
value of κ = 1. This implies that the true MLE of β∗(λ) is minus infinity and the
Fisher optimization algorithm thus fails to converge.

Since the re-sample size is much smaller than the original sample size, it is not
surprising that there is a large drop in efficiency relative to the estimates from the
original full sample. However, dividing the standard deviations by

√
26, 364/2, 208 =√

13 scales them back to the standard errors of the parameters in the original sam-
ple. As can be seen, the standard deviations in Table 4 agree well with the ML
standard errors reported in Table 2, the exception again being the constant param-
eter of β∗(λ).

3.5. Parametric bootstrap test. Under parametric bootstrap, hypothesis test-
ing is remarkably easy. We simply need to fit the hypothesized null model, generate
bootstrap replications under the assumptions of this model, and calculate the mea-
sure we wish to test, both for the real data and for the R sets of bootstrap data. If
the value from the real data is in the 5% of the most extreme values in the combined
set of R + 1 values, the hypothesis is rejected at the .05 level of significance. For
illustrative purposes, we selected a single sample from the ’cross sections’ of size
2,028, with ML estimates close to those reported in Table 2. The estimated value
for κ in this sample was .916. Now consider testing the hypothesis H0 : κ ≥ .999,
against the one-sided alternative H1 : κ < .999 (H0 : κ = 1 would be a theoretically
implausible hypothesis to test for all cases). In R = 4, 999 bootstrap re-samples
from H0, we found 51 values less then or equal to .916, so the p∗ value is 51/5,000
= .0102. This finding leads us to reject the null hypothesis for this single sample.

5The total number of different samples is obtained as
12∏

s=0

(2,028−s×156)!
156!(2,028−156−s×156)!

≈ 102,242.
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4. Summary

Repeated cross-sectional surveys have increasingly become an important data source
for research over the past decades. The accumulation of these surveys presents
researchers from various disciplines with a growing opportunity to analyze longi-
tudinal change. Dynamic models for the analysis of repeated cross-sectional data
are, however, relatively rare and one may even argue that there is an increasing lag
between the availability of surveys and models to analyze them.

The results presented here illustrate the usefulness of exploiting repeated cross-
sectional surveys to identify and to estimate entry and exit transition probabilities,
which are generally thought to be non-estimable from RCS data. The bootstrap
and MCMC findings for the PC ownership example suggest that the ecological
Markov model produces accurate estimates in large sample sizes. It also turns out
that, in our empirical application at least, the Markov chain model performs almost
as well as a first-order dynamic panel model. To rule out artificial results, samples
of independent observations from the panel data were also analyzed, with similar
results as for the full sample.

Topics not fully covered here are the distributional properties of the estimators in
different model specifications and the sensitivity of inference procedures to varying
sample sizes, so further Monte Carlo work on this panel ecological inference model
is needed. Also, in addition to parametric bootstrap, nonparametric re-sampling
could be used to examine the robustness of specification. Nonparametric simulation
requires generating artificial data without assuming that the original data have
some particular parametric distribution. Finally, although the impetus behind
developing the methodology presented here came from the intend to dynamically
model RCS data, it would be of interest to apply the model to panel data with
missing observations for yt−1. The Markov model could then be used, in conjunction
with a first-order panel model for observations with non-missing yt−1, to obtain
model-based imputations for the missing data.
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Figure legends

Figure 1: Histogram of ML estimates of κ for 5,000 bootstrap samples from
the original full data, normal curve superimposed (left panel), and for 5,000 ’cross-
sectional’ samples of 2,208 observations, one observation per household (right panel)
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Table 1. Proportions of PC ownership in Dutch households over
time, n of cases =2,208

year ȳt ȳt | yt−1 = 0 (1− ȳt) | yt−1 = 1

1986 .12
87 .15 .05 .10
88 .20 .08 .12
89 .24 .08 .13
90 .28 .08 .08
91 .31 .09 .09
92 .36 .11 .09
93 .38 .10 .13
94 .41 .10 .09
95 .44 .13 .11
96 .48 .13 .07
97 .51 .14 .09
98 .57 .19 .07
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Table 2. ML, parametric bootstrap and MCMC estimates of RCS
Markov model and ML estimates of first-order panel model, n of
obs = 26,364

RCS Markov Panel

MLa bootstrapb MCMCb MLa

δ(pt=1)
constant -3.713 (.202) -3.718 (.205) -3.754 (.232) -3.606 (.276)

[4.137 -3.318] [-4.225 -3.327]
education .382 (.054) .381 (.055) .393 (.056) .364 (.072)

[.271 .489] [.288 .504]
age 35-54 -.058 (.119) -.057 (.121) -.037 (.120) .092 (.170)

[-.294 .181] [-.284 .197]
age 55 and over -.852 (.162) -.859 (.165) -.842 (.178) -.782 (.252)

[-1.201 -.551] [-1.207 -.513]
no. of household .331 (.042) .332 ( .043) .327 (.038) .310 (.061)
members [.248 .417] [.249 .397]

β (µt=2,...,13)
constant -6.336 (.121) -6.344 (.124) -6.339 (.130) -5.116 (.138)

[-6.586 -6.110] [-6.605 -6.105]
education .368 (.023) .369 (.023) .365 (.026) .245 (.029)

[.323 .413] [.310 .414]
age 35-54 .137 (.049) .137 (.050) .129 (.049) -.098 (.067)

[.042 .238] [.037 .224]
age 55 and over -1.364 (.066) -1.365 (.065) -1.362 (.067) -1.270 (.142)

[-1.494 -1.240] [-1.499 -1.226]
no. of household .421 (.018) .422 (.018) .425 (.020) .375 (.089)
members [.387 .457] [.389 .470]
income .438 (.015) .438 (.015) .438 (.016) .230 (.022)

[.408 .468] [.403 .467]
time .218 (.009) .218 (.009) .219 (.010) .171 (.008)

[.201 .236] [.198 .240]

β∗(λt=2,...,13)
constant -2.292 (.132) -2.300 (.133) -2.307 (.198) -2.284 (.039)

[-2.576 -2.058] [-2.779 -1.938]

`` -12895.106 -7766.304

aStandard error in parenthesis.
bThe mean is reported as the point estimate, the standard deviation in parenthesis and the .95

percentile interval in brackets. The parametric bootstrap results are based on R=5,000

bootstrap samples from the original data and the MCMC findings on K=100,000 Metropolis

sampler posterior estimates.
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Table 3. Parametric bootstrap estimates, based on R=5,000 boot-
strap samples

bias x 102 bias/sd rmse skewness excess Jarque-
kurtosis Bera

δ(pt=1)
constant -.493 -.024 .205 -.098* .094 9.812*
education -.089 -.016 .055 -.008 .061 .796
age 35-54 .107 .009 .121 .032 -.026 1.008
age 55 and over -.729 -.044 .165 -.179* .104 28.954*
no. of household members .128 .030 .043 .028 -.078 1.985

β (µt=2,...,13)
constant -.862 -.070 .124 -.033 -.012 .931
education .066 .029 .023 -.050 -.037 2.405
age 35-54 .040 .008 .050 .070 -.067 5.225
age 55 and over -.059 -.009 .065 -.052 .000 2.285
no. of household members .084 .047 .018 .010 -.025 .224
income .065 .043 .015 -.032 .044 1.260
time .022 .025 .009 .008 -.104 2.338

β∗(λt=2,...,13)
constant -.789 -.059 .133 -.293* .296* 89.691*

Note. The bootstrap estimate of bias (= θ̄bootstrap − θML) is multiplied by 100, and

rmse =
√

sd2 + bias2. The standard errors of skewness and excess kurtosis are .035 and .069,

respectively. The Jarque-Bera (1980) test statistic for normality has an asymptotic χ2
2

distribution; the 5% critical value is 5.991.

*significant at the .05 level.
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Table 4. Mean and standard deviation (÷
√

13) of the RCS
Markov ML estimates for 5,000 samples of 2,208 observations, one
for each household

δ(pt=1) β (µt=2,...,13) β∗(λt=2,...,13)a

constant -3.845 (.199) -6.426 (.120) -2.389 (.260)
education .403 (.046) .366 (.027)
age 35-54 -.045 (.118) .147 (.045)
age 55 and over -.785 (.160) -1.423 (.063)
no. of household members .343 (.032) .431 (.018)
income .447 (.015)
time .223 (.010)

Note. Each sample is drawn without replacement and consists of 13 sets - one for each time

period - of size 156. The standard deviation, divided by
√

13, is reported in parenthesis.
aExcluding 440 samples with β∗(λt) ≤ −8 (i.e., κ > .9996).
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Figure 1 Histogram of ML estimates of !  for 5,000 bootstrap samples from the original full 

data, normal curve superimposed (left panel), and for 5,000 �cross-sectional� samples of 2,208 

observations, one observation per household (right panel) 


