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How large is average economic growth?

Evidence from a robust method
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Abstract

This paper puts forward a method to estimate average economic growth, and its associated con-

fidence bounds, which does not require a formal decision on potential unit root properties. The

method is based on the analysis of either difference-stationary or trend-stationary time series mod-

els, implementing the robust bootstrapping procedure advocated in Romano and Wolf (2001). Simu-

lation evidence indicates the practical relevance of the method. It is illustrated on quarterly post-war

US industrial production.
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1 Introduction

The question of the size of average economic growth seems like a rather trivial one to ask. Yet, time

series econometricians know that the answer is far from trivial. Indeed, the answer for the point estimate

of average growth hinges upon the time series model employed. Usually, one can choose between

a trend-stationary (TS) model and a difference-stationary (DS) model, and often the numerical value

of the average growth estimate differs across the two models. Additionally, the associated confidence

intervals also depend on the chosen model. Those of the TS model are usually rather narrow, while

those of the DS model are rather wide. However, the confidence bounds obtained from the TS model

tend to underestimate the true bounds in case the root of the autoregressive model gets close to unity.

As the estimate of average economic growth depends on the model, one may be inclined to make

a selection between the models first, and, based on the outcome, then to estimate growth. In this case

the selection typically depends on the outcome of a test for a unit root. Unfortunately, these tests have

notoriously low power, and hence it is quite likely one ends up with the DS model, while a TS model

∗Address for correspondence: Department of Quantitative Economics, Universiteit van Amsterdam, Roetersstraat 11, 1018

WB Amsterdam, The Netherlands; e-mail:peterb@fee.uva.nl . The computer programs used for all calculations in this

paper can be obtained from the corresponding author. This paper was prepared for the poster session of the EC-2 (2001)

conference in Louvain-la-Neuve.
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with a close-to-unity root would have been a better option. Furthermore, the pre-testing aspect of such a

procedure tends to complicate the distribution of estimators and associatedt-statistics. It seems therefore

relevant to try to answer the question in the title while using a method which does not depend (or, at

least, not much) on the chosen model. In this paper we put forward such a method.

The analysis is closely related to the work of Canjels and Watson (1997), who consider various

point estimators and confidence interval method for the trend slope in a model with a near-unit root.

The main difference with their analysis is that we avoid the use of asymptotic critical values, by using

the subsampling method recently put forward by Romano and Wolf (2001). Unlike more conventional

bootstrap procedures, this subsampling method is asymptotically valid in the presence of a near-unit

root, and therefore suitable to obtain robust estimates and confidence intervals for the average economic

growth, where the robustness is with respect to the deviation from the unit root.

The outline of this paper is as follows. In Section 2 we discuss the TS and DS models we consider

the two associated methods for point and interval estimation of the mean growth rate. We use quarterly

seasonally adjusted post World War II US total industrial production as the running example throughout

this paper. In Section 3 we provide the asymptotic distribution theory for our procedures, and analyse

its implications the empirical examples. In Section 4 we discuss a subsampling method for computing

confidence bounds, adapting the elegant approach put forward in Romano and Wolf (2001), together

with its application to the industrial production data. Section 5 reports on a simulation experiment

which is used to investigate how robust the subsampling method really is, and how reliable it is in

smaller samples. In the last section we explore some future research topics.

2 Representation and estimation

Consider a time seriesyt which can be described by a first order autoregressive model with trend, that

is,

∆yt = β + γ(yt−1 − α− β[t− 1]) + εt, t = 1, . . . , n, (1)

where∆ denotes the first-order differencing filter, and{εt} is ani.i.d. N(0, σ2) process. The starting

valuey0 is observed, and is consider fixed. The trend-reversion parameterγ may be zero, such thatyt

is a random walk with driftβ, or lie in the interval(−2, 0), such thatyt is a trend-stationary AR(1)

process with trend slopeβ. We opt for this representation as it ensures that the focal parameter isβ in

both cases; whenyt is the natural logarithm of an economic time seriesYt, thenβ represents the mean

growth rate ofYt. In practice the model will typically be extended to include lagged differences to avoid

serial correlation inεt. We focus here on the first-order autoregression for clarity, but the results to

follow can all be extended to higher-order autoregressions.

To emphasize the matter of concern in this paper, we consider the limiting distribution of the Max-

imum Likelihood Estimator (MLE) ofβ and their estimated standard errors in the two cases. For that

purpose, consider

∆yt = µ + τt + γyt−1 + εt, (2)
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whereµ = β(1 + γ)− γα andτ = −γβ, and hence

α =

{
[µ + τ(1 + 1/γ)]/γ, if − 2 < γ < 0,

not identified, if γ = 0,
(3)

β =

{
−τ/γ, if − 2 < γ < 0,

µ, if γ = 0.
(4)

The MLEs of (µ, τ , γ) are obtained by Ordinary Least Squares (OLS) in (2). Asγ̂ = 0 with

probability zero, the MLE ofβ is given byβ̂ = −τ̂ /γ̂, almost surely. We will refer to this as the TS

estimator, but we will evaluate its properties also for cases when the true DGP is in fact DS, or TS with

a near-unit root. The squared estimated standard error ofβ̂ (obtained from the delta method) is then

given by

ŝ2
β̂

=
1
γ̂2 (1, β̂)V̂ [θ̂]

(
1

β̂

)
, (5)

whereV̂ [θ̂] is the OLS estimated covariance matrix ofθ̂ = (τ̂ , γ̂)′. Denote

zt =

(
t− n−1

∑n
t=1 t

yt−1 − n−1
∑n

t=1 yt−1

)
, (6)

andθ = (τ , γ)′, such that̂θ − θ = (
∑n

t=1 ztz
′
t)
−1 ∑n

t=1 ztεt, andV̂ [θ̂] = σ̂2 (
∑n

t=1 ztz
′
t)
−1, with σ̂2

the OLS residual variance. We also consider an alternative estimate of the standard error ofβ̂, viz.

s̃2
β̂

=
1
γ̂2 (1, β)V̂ [θ̂]

(
1

β

)
, (7)

which uses the value ofβ under the null hypothesis; this may be used in at-statistic(β̂ − β)/s̃β̂, as

an alternative to(β̂ − β)/ŝβ̂. The standard error̃sβ̂ originates from the fact that the null hypothesis

H0 : β = β0 may be reformulated, for almost all parameter values (but excludingγ = 0), asH ′
0 :

γβ0 + τ = 0: the t-statistic(β̂ − β)/s̃β̂ can be shown to equal the ratio of(γ̂β + τ̂) and its OLS

standard error.

Note thatt-statistic based on̂sβ̂ can easily be inverted to obtain a confidence interval, using quantiles

of the null distribution of(β̂−β)/ŝβ̂. From the standard errors̃β̂, we may define a confidence interval as

the set ofβ’s which are not rejected, using the null distribution of(β̂−β)/s̃β̂; this requires a non-linear

search for the bounds of the confidence interval. Whenγ is close to0, may expect better finite-sample

size behaviour of̃sβ̂; see Boswijk (1993) for evidence on this in a cointegration context. On the other

hand, whenγ andτ are equal to zero,β is not identified from−τ/γ, which will often lead to unbounded

confidence intervals. This can be seen from the fact that

lim
β→∞

β̂ − β

s̃β̂

= − lim
β→−∞

β̂ − β

s̃β̂

=
γ̂

ŝγ̂
, (8)

where the right-hand side equals the Dickey-Fuller statistic. Therefore, when the Dickey-Fuller test

statistic is close to zero, we will not be able to reject any large positive and negative values ofβ, yielding
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an unbounded confidence interval based on(β̂−β)/s̃β̂. In such cases a confidence interval based onŝβ̂

might be preferable; although it might have a size distortion (leading to undercoverage of the interval),

at least it is informative about the possible values ofβ. Clearly if γ = 0 and this is known, inference

based on the DS model will be optimal, and any inference based on the TS model can be second-best at

most.

Before considering the asymptotic properties of the TS-based method, we briefly discuss the DS

analysis, obtained by imposingγ = 0. In that case the model (1) reduces to

∆yt = β + εt, t = 1, . . . , n, (9)

leading toβ̃ = n−1
∑n

t=1 ∆yt = n−1(yn − y0), and its OLS standard errorsβ̃ =
√

σ̃2/n, with

σ̃2 = (n − 1)−1
∑n

t=1(∆yt − β̃)2. This leads to at-statistic(β̃ − β)/sβ̃, which may be inverted to

obtain confidence bounds.

To illustrate the consequences for practical analysis of the above results, consider an application to

the quarterly observed post WW-II total industrial production index for the United States. The data have

been seasonally adjusted and cover the range1951.1 to 2000.4. All subsequent models include 5 lags

to whiten the errors, at least approximately. Suppose we are interested in the annual growth rate of this

industrial production series. When we consider the TS model for the natural logarithmic transformed

data, we obtain an estimate of this annual growth rate of3.109 with a standard error of0.256. Hence,

the conventional95% confidence interval would range from2.607 to 3.612. If we would adopt the DS

model, we imposeγ = 0 and we obtain an estimate of the annual growth rate of3.524 with associated

standard error0.610, implying a considerably wider95% confidence interval, ranging from2.328 to

4.720.

This illustration shows that we not only get substantially different estimates for the annual growth

rate (imagine generating 10 year ahead forecasts!) across the TS and DS model, but also that we get

rather different confidence bounds. In particular, note that the DS point estimate almost lies outside the

TS confidence interval. If we would want to formally choose between the two models, we can implement

the familiar augmented Dickey-Fuller test. The test statistic equals−2.224, and hence we cannot reject

γ = 0, and we would select the DS model and the corresponding point estimate and confidence interval

for the growth rate.

The problem with such a procedure, however, lies in the notoriously low power of unit root tests

against near-integrated alternatives. This means that in practice there is quite a substantial probability of

selecting the wrong model. An additional problem is that the distribution of the TS and DSt-statistics

may deviate substantially from the standard normal in near-integrated cases; in particular these distri-

butions tend to be sensitive to the deviation from the unit root. The next section makes this sensitivity

explicit by studying the behaviour of the TS and DS procedures under the unit root hypothesis, fixed

(trend-stationary) alternatives, as well as local alternatives. This analysis will demonstrate the lack of

robustness of standard asymptotic inference to small deviations from the chosen model. This will mo-

tivate the analysis in Section 4, where we robustify the procedures using the subsampling procedure of

Romano and Wolf (2001).
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3 Asymptotic theory

We first consider the behaviour of̂β and its estimated standard errors for a trend-stationary data-

generating process, in which case−2 < γ < 0.

Theorem 1 Letyt be generated by (1) with−2 < γ < 0. Then

n3/2(β̂ − β) d−→ N(0, 12σ2/γ2), (10)

n3s̃2
β̂

p−→ 12σ2

γ2
, (11)

n3ŝ2
β̂

p−→ 12σ2

γ2
. (12)

Therefore, thet-ratio of β̂ is asymptotically standard normal, using either one of the alternative standard

error estimates.

A proof is given in the Appendix. Theorem 1 replicates the well-known result that conventional

asymptotic inference applies in trend-stationary model.

Now we turn to the case where the process is near-integrated, i.e.,γn = c/n for fixed c, including

c = 0 (γ = 0). The results of Theorem 2 for̂β can be obtained, directly or indirectly, from Canjels and

Watson (1997; see also Phillips and Lee, 1996), but we provide a proof of these in the Appendix for

convenience. The result for the two standard errorsŝβ̂ ands̃β̂ is new (to our knowledge).

Theorem 2 Letyt be generated by (1) withγn =
c

n
, wherec ≤ 0 is a constant, and withy0 fixed. Then

n1/2(β̂ − β) d−→ −
σ

(∫ 1
0 G2

1

)−1 ∫ 1
0 G1dW

c +
(∫ 1

0 G2
2

)−1 ∫ 1
0 G2dW

= σξ, (13)

ns̃2
β̂

d−→
σ2

(∫ 1
0 G2

1

)−1

[
c +

(∫ 1
0 G2

2

)−1 ∫ 1
0 G2dW

]2 = σ2ζ, (14)

nŝ2
β̂

d−→ σ2ζ +
σ2

[
ξ2

(∫ 1
0 G2

2

)−1
− 2ξ

(∫ 1
0 (s− 1

2)(V − V̄ )
)(∫ 1

0 (s− 1
2)2

∫ 1
0 G2

2

)−1
]

[
c +

(∫ 1
0 G2

2

)−1 ∫ 1
0 G2dW

]2

= σ2η. (15)

HereW (s) is a standard Brownian motion process,V (s) =
∫ s
0 ec(s−u)dW (u) is an Ornstein Uhlenbeck

process, and

G1(s) = s−
∫ 1

0
sV ∗(s)ds

[∫ 1

0
V ∗(s)V ∗(s)′ds

]−1

V ∗(s), (16)

G2(s) = V (s)−
∫ 1

0
V (s)f(s)ds

[∫ 1

0
f(s)f(s)′ds

]−1

f(s), (17)

whereV ∗(s) = (1, V (s))′ andf(s) = (1, s)′; and X̄ =
∫ 1
0 X(s)ds for any processX.
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Theorem 2 implies that thet-statistic ofβ̂ has as its limiting null distribution eitherξ/
√

ζ (if s̃β̂ is

used) orξ/
√

η (if ŝβ̂ is used), both of which are characterized by a single nuisance parameterc. The

corresponding densities, for various values ofc, are depicted in Figures 1 and 2.
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Figure 1. Distribution of thet-statistic usinĝsβ̂.
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Figure 2. Distribution of thet-statistic using̃sβ̂.

We observe that the distributions of thet-statistics in Figure 1 can deviate very strongly from the

standard normal distribution, and that they are very sensitive to the deviationc from the unit root hypoth-
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esis. In the extreme case of a unit root, thet-statistic has a very high dispersion, and the5% (two-sided)

critical values are in the neighbourhood of±7.5 instead of the conventional±2. Whens̃β̂ is used, crit-

ical values are less dependent onc, and fluctuate from±3 (c = 0) to±2 (c = −∞). Note that in this

case the distribution of thet-statistic is bi-modal whenc = 0, a property inherited from the distribution

of the estimated trend coefficientτ̂ , see Dickey and Fuller (1981).

Note that Canjels and Watson (1997) also consider the case wherey0 is not fixed, but where the

process starts at zero at time−[κn], for some fixedκ > 0. This leads to an additional nuisance parameter

κ; the analysis in Theorem 2, and the inference procedures discussed below, could be extended to cover

this case as well.

Consider now the asymptotic behaviour of the estimatorβ̃ and standard errorsβ̃ based on the DS

model. The results below for̃β follow as a special case from the results in Canjels and Watson (1997).

Theorem 3 Let yt be generated by (1) with−2 < γ < 0, and withy0 ∼ N(α, σ2
y), whereσ2

y =

σ2/(1− [1 + γ]2). Then

n(β̃ − β) d−→ N(0, 2σ2
y), (18)

ns2
β̃

p−→ −2γσ2
y, (19)

so that thet-statistic satisfiesn1/2(β̃ − β)/sβ̃
d−→ N(0,−1/γ).

The fact that the OLSt-statistic converges to zero in this case is related to the MA unit root caused by

the DS model. It implies that we may expect serious overcoverage (too wide intervals) of the standard

asymptotic confidence interval̃β ± 1.96sβ̃. Note that the asymptotic variance of the normalizedt-

statistic increases asγ → 0; the final theorem investigates the behaviour of the estimator andt-statistic

for sequencesγ = c/n.

Theorem 4 Letyt be generated by (1) withγn =
c

n
, wherec ≤ 0 is a constant, and withy0 fixed. Then

n1/2(β̃ − β) d−→ σV (1) ∼ N
(
0, σ2 var[V (1)]

)
, (20)

ns2
β̃

p−→ σ2, (21)

whereV (s) is defined in Theorem 2, and

var[V (1)] =





1, if c = 0,

1− e2c

−2c
, if c < 0.

(22)

The theorem implies that thet-statistic has an asymptotic standard normal distribution only in case

of an exact unit root, i.e., whenc = 0. Sincevar[V (1)] < 1 for c < 0, it follows that we may

again expect standard asymptotic confidence intervalsβ̃ ± 1.96sβ̃ to be too wide and hence display

overcoverage whenc < 0.

To illustrate the consequences for practical analysis of the above results, consider again the US

industrial production index example. Based on the1951.1− 2000.4 sample (n = 200), the estimate of
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the trend reversion parameter equalsγ̂ = −0.033, which is not significantly different from0 according

to augmented Dickey Fuller statistic of−2.224, as mentioned in the previous section. The corresponding

estimate ofc is given byĉ = nγ̂ = −6.655; this is not a consistent estimator, in the sense that even

as n → ∞, the estimator̂c will vary randomly aroundc. The asymptotic power of Dickey-Fuller

tests is known to be very small (in particular when a trend is included) against local alternativesc in

the neighbourhood of−5, which implies that assuming and imposingc = 0 would be about equally

arbitrary as assuming that, e.g.,c = −5 (or c = −6.655).

These results, and in particular the lack of consistency ofĉ, imply that we cannot construct asymptot-

ically valid confidence interval based on Theorems 1–4 that are robust to variations in the truec, which

motivates the use of subsampling methods in the next section. The results for the TS estimator imply that

the TS confidence interval of3.109±1.96 ·0.256 is likely to be far too narrow. Assuming that the truec

equals0 would lead to an asymptotic confidence interval of about3.109± 7.5 · 0.256 = (1.189, 5.029),

instead of the(2.607, 3.612) interval corresponding toc = −∞; and if c = −5, the appropriate confi-

dence interval would become3.109± 4 · 0.256 = (2.085, 4.133). The confidence intervals based on the

TS model using̃sβ̂ will be unbounded forc = 0, −5 or−20; as discussed in the previous section, very

large positive or negative values ofβ will have at-statistic equal to±2.224 (the augmented Dickey-

Fuller statistic), which does not lie in the critical region obtained from the densities in Figure 2; hence

all these large absolute values ofβ lie in the confidence region.

Consider finally the implications of Theorems 3 and 4 for the DS confidence interval. Sinceγ is

evidently close to0, we concentrate on the local-to-unity asymptotics of Theorem 4. When the true

value of c equals0, then the3.524 ± 1.96 · 0.610 = (2.328, 4.720) interval obtained in the previ-

ous section is asymptotically valid. However, whenc = −5, which might be equally likely, then

the variance of thet-statistic equals(1 − e−10)/10 = 0.100, which means that a better estimate of

the true standard error of̃β would be0.610 · √0.100 = 0.193, leading to a confidence interval of

3.524 ± 1.96 · 0.193 = (3.146, 3.902) which is far more informative. In summary, we see that the

asymptotic results, in combination with the fact thatc cannot be estimated consistently, leads to a large

set of possible confidence intervals, which vary substantially in their width and their location.

4 Confidence intervals based on subsampling

In this section we give a brief discussion of the subsampling method proposed by Romano and Wolf

(2001), henceforth RW, applied to our research question. For details and proofs of various results, we

refer to the original paper of RW. The basic idea is as follows. Consider the TSt-statistic(β̂ − β)/ŝβ̂

(we will not consider̃sβ̂ in the remainder of this paper). The construction of a valid confidence interval

requires knowledge of the (asymptotic) distribution of thist-statistic, but this distribution depends onγ.

However, the distribution may be estimated by the empirical distribution function oft-statistics based

on subsamples of lengthb < n (the block size).

In general, let̂θb,n and σ̂b,n denote an estimator and a scaling factor based on thetth subsample

{yt, yt+1, . . . , yt+b−1}, and letθ̂n andσ̂n denote the corresponding statistics based on a full sample of
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sizen. Furthermore, letτn denote a normalizing sequence; such thatτn(θ̂n − θ)/σ̂n has a limiting

distribution for all DGPs under consideration; in practice,σ̂n/τn is an estimated standard error ofθ̂n.

The empirical distribution of{τ b(θ̂b,t − θ̂n)/σ̂b,t, t = 1, . . . , n − b + 1} may be used to estimate the

distribution ofτn(θ̂n − θ)/σ̂n. The results of RW imply that this estimator is in fact consistent under

the following conditions (in addition to some technical conditions discussed in RW):

• b →∞ asn →∞, butb/n → 0;

• an(θ̂n − θ) anddnσ̂n both have a limiting distribution, wherean anddn are sequences such

thatab/an → 0, andτ b/τn → 0, with τn = an/dn; the limiting distribution ofdnσ̂n may be

degenerate, and should have no mass at zero.

Applying the procedure in practice, one has to make a choice about the block sizeb. Choosing

b too small may lead to a bad approximation of the actual distribution, because of small sample-type

problems ofτ b(θ̂b,t − θ̂n)/σ̂b,t. On the other hand, choosingb too close ton will lead to very little

variation in{τ b(θ̂b,t − θ̂n)/σ̂b,t, t = 1, . . . , n − b + 1}, and therefore an underestimation of the true

dispersion of the distribution ofτn(θ̂n − β)/σ̂n. RW recommend to chooseb betweenbmin = rmin
√

n

and bmax = rmax
√

n, wherermin ∈ [0.5, 1] andrmax ∈ [2, 3]. The actual choice ofb is made by

minimizing the local variation of the interval endpoints as a function ofb. That is,b should be chosen

in a “stable region”. The local variation for a choice ofb is represented by the so-called volatility index,

which is the sum of the moving standard deviations, over{b − k, b − k + 1, . . . , b, . . . , b + k}, of the

upper and lower bounds of the confidence interval.

In the present model, Theorems 1 and 2 imply that the conditions of RW are satisfied byβ̂ = θ̂n

andŝβ̂ = σ̂n/τn, whereτn = n1/2, and(an, dn) = (n3/2, n) in case−2 < γ < 0, whereas(an, dn) =

(n1/2, 1) whenγ = 0 (note thatan anddn are allowed to vary with the nuisance parameterγ, butτn is

not). Hence asymptotically valid confidence intervals may be obtained by inverting thet-statistic using

quantiles from the empirical distribution of the subsamplet-statistics. RW distinguish between equal-

tailed and symmetric confidence intervals; the former is given by(β̂ − q0.975ŝβ̂, β̂ − q0.025ŝβ̂), whereas

the latter is given bŷβ± q∗0.95ŝβ̂, whereqα andq∗α are theαth quantiles of the subsampling distributions

of thet-statistic and its absolute value, respectively. Based on previous experience, RW recommend the

symmetric intervals.

It should be emphasized that the consistency result of the subsampling procedure is pointwise, for

fixedγ ∈ (−2, 0]. It cannot be generalized to uniform consistency, which is easily seen as follows. The

local-to-unity sequenceγn = c/n corresponds to a sequenceγ∗b = γnb
= c/nb = c∗b/b, wherenb is

the minimal sample size corresponding to a block sizeb; hence it is the “inverse” of the sequencebn

of block sizes. Now sincebn/n → 0 asn → ∞, it follows thatb/nb → 0 asb → ∞, which implies

thatc∗b = bc/nb → 0. Therefore, under the local-to-unity assumptionγn = c/n, the distribution of the

subsamplet-statistics will converge to the limiting distribution given in Theorem 2 withc = 0.

RW show that the subsampling procedure is also able to cope with some mild residual autocorrela-

tion caused by dynamic misspecification. One occasion where such a misspecification occurs is when
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the unit root is imposed, whereas in realityγ < 0; this implies that the disturbanceεt = ∆yt − β in

(9) follows an ARMA(1,1) process with an AR root of1 + γ, and an MA unit root. This might suggest

that the same subsampling procedure could also be applied to the estimatorβ̃ and its standard errorsβ̃.

However, the different convergence rate of thet-statistics in Theorem 3, caused by the MA unit root,

implies that the subsampling procedure will not be consistent in this case. To see this, takeτn as any

sequence, and definêσn = τnsβ̃, so thatτn(β̃−β)/σ̂n equals thet-statistic. The results of RW require

this t-statistic to have a (non-degenerate) limiting distribution for all parameter values, but Theorem 3

implies that whenγ < 0, thet-statistic converges to zero. To avoid this one could redefineσ̂n andτn,

but that would lead to divergence of thet-statistic underγ = 0. Essentially we find that the choice of

τn requires knowledge of the nuisance parameterγ, which demonstrates the lack of robustness of the

procedure. A possible solution is to replacesβ̃ by an estimate of the long-run variance of∆yt; we do

not consider this possibility explicitly in the present paper.

Note that the Theorem 4, in combination with the result indicated earlier thatγb = cb/b with

cb → 0, suggests that the subsampling procedure might work for local alternatives to the unit root:

the distribution of thet-statistic in Theorem 4 whenc approaches0 is the standard normal. Although

we do not provide a formal analysis of this, we consider this as a sufficient motivation to study the

effectiveness of the subsampling procedure applied to the DS model. Furthermore, we use this method

in what follows to see how severe the asymptotic problems really are in practice.

Application of the subsampling procedure to the US production growth data is considered in Figures

3 and 4, which depict the equal-tailed and symmetric confidence intervals as a function ofb ∈ [40, 100]

(recall thatn = 200), together with the associated volatility index (k = 3), for the TS and DS models.

Consider first the TS confidence intervals in Figure 3. Both the equal-tailed and the symmetric

intervals seem to be fairly stable over different values ofb, although the upper bound of the equal-tailed

interval seems to decline somewhat withb. Minimizing the volatility index leads to an equal tailed

95% confidence interval of(1.328, 3.998), and a symmetric interval of(1.343, 4.876). It is clear that

both intervals are substantially wider than the TS interval based on stationary asymptotics presented in

Section 2; the symmetric interval is in fact fairly close to the TS interval based onc = 0 derived in

Section 3.

In comparison with the TS intervals, the DS confidence intervals in Figure 4 display much more

variation with the block sizeb: the width of both the equal-tailed and the symmetric interval seems to

keep on decreasing asb increases, without clearly stabilizing at some level. This is to be expected when

the true trend-reversion parameterγ is less than zero: in that case the subsampling distribution of the

t-statistic converges to a point mass at zero asb increases, so a decreasing width of the subsampling

confidence interval is predicted by theory. The intervals corresponding to the minimal volatility index

are(2.843, 3.904) (equal-tailed) and(2.845, 4.204) (symmetric), but the figures indicate that this cor-

responds tob = 100, which indicated that this result might be very sensitive to our choice of the upper

bound for the block size,bmax = 100.

The symmetric interval is comparable to the DS intervals obtained in Section 3 based on local

asymptotics, withc somewhere between0 and−5. In any case the DS intervals are narrower than

10



their TS counterparts, and are in particular (supposedly) more informative about the lower bound for

the growth rate. In the next section we use a Monte Carlo experiment to investigate how reliable these

conclusions from the subsampling method are.
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Figure 3. Confidence bounds forβ in the trend-stationary model.
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Figure 4. Confidence bounds forβ in the difference-stationary model.
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5 Simulation evidence

In this section we conduct a small Monte Carlo experiment to investigate the finite sample performance

of the subsampling procedure applied to the mean growth rate in the TS and DS model. In the previous

section we have seen that the subsampling procedure cannot be expected to be asymptotically valid in

the DS model, when the unit root hypothesis is violated; hence we will also investigate how serious

these asymptotic problems are in practice.

As the data-generating process, we take the model (1) withα = β = 0, σ2 = 1, γn = c/n,

with n ∈ {50, 100, 200, 400} and c ∈ {0,−5,−10,−20}. Note that these parameter combinations

allow us, to some degree, to investigate the properties for fixed alternativesγ < 0, e.g. by comparing

(c, n) = (−5, 50), (−10, 100) and(−20, 200), which all correspond to the sameγ = −0.1 but different

sample sizes.

For each sample, we obtain the TS and DS estimates(β̂, ŝβ̂) and (β̃, sβ̃), and from those, four

different confidence intervals:

• the “asymptotic” confidence intervalŝβ ± 1.96ŝβ̂ andβ̃ ± 1.96sβ̃;

• the subsampling confidence interval withb = bmin = 0.75n1/2 (except forn = 50, where we

takeb = 10);

• the subsampling confidence interval withb = bmax = 3n1/2;

• the subsampling confidence interval with an optimalb ∈ [bmin, bmax], chosen to minimize the

volatility index (k = 2).

In the Tables below, we report the average (over1000 replication) coverage rate and width of the

various confidence intervals. The nominal coverage rate is95% in all cases, so a coverage rate substan-

tially less than0.95 corresponds to too large type I error probabilities. The average width, on the other

hand, indicates how informative the confidence intervals are, and hence is related to the power of the

procedures.

Table 1 reports the coverage rates of the various implementations of the confidence intervals. We

see that the asymptotic TS confidence interval always leads to an undercoverage (overrejection). The

subsampling procedure (with optimal block size) does provide a correction for the TS-based confidence

interval, but this correction is only fully effective whenc < 0. For the DS-based procedures, we note

that whenc < 0, we always obtain a coverage rate of 100 per cent, indicating confidence intervals that

are wider than necessary. Whenc = 0, the asymptotic DS confidence intervals are clearly valid, but

the subsampling procedure with optimal block size seems to lead to some undercoverage, even for large

sample sizes.

The average widths of the confidence intervals in Table 2 indicate that the TS confidence intervals

are only reasonably informative whenc < −5 (andn ≥ 100 whenc = −5). Whenc = 0, the fact that

β is not identified from the TS model leads to extremely large confidence intervals, despite the fact that

they still lead to an undercoverage as is clear from Table 1.

12



Table 1. Coverage rates (%) of TS and DS confidence intervals.

c n TS asy TS min TS max TS optDS asy DS min DS max DS opt

0 50 56 89 75 77 96 92 79 82

100 57 93 80 83 95 95 80 83

200 55 94 85 85 96 96 85 88

400 55 94 88 89 96 96 89 91

−5 50 74 97 88 88 100 100 99 100

100 75 99 90 92 100 100 99 100

200 74 100 95 96 100 100 100 100

400 75 100 97 97 100 100 100 100

−10 50 83 98 90 92 100 100 100 100

100 82 100 92 93 100 100 100 100

200 80 100 96 97 100 100 100 100

400 82 100 98 98 100 100 100 100

−20 50 90 99 92 93 100 100 100 100

100 89 100 93 94 100 100 100 100

200 87 100 97 97 100 100 100 100

400 88 100 98 99 100 100 100 100

Table 2. Average width of TS and DS confidence intervals.

c n TS asy TS min TS max TS optDS asy DS min DS max DS opt

0 50 1.688 99.68 119.93 104.31 0.554 0.578 0.370 0.415

100 0.704 17.27 18.66 18.93 0.393 0.424 0.267 0.302

200 0.273 1.593 2.309 1.857 0.278 0.303 0.213 0.233

400 0.411 4.905 12.91 7.596 0.196 0.211 0.166 0.175

−5 50 0.222 0.957 0.586 0.606 0.573 0.522 0.322 0.355

100 0.218 1.756 2.743 1.914 0.397 0.392 0.230 0.263

200 0.107 0.418 0.371 0.341 0.280 0.292 0.185 0.205

400 0.081 0.338 0.338 0.309 0.197 0.205 0.147 0.159

−10 50 0.143 0.479 0.268 0.283 0.589 0.453 0.276 0.300

100 0.099 0.341 0.207 0.222 0.405 0.364 0.192 0.223

200 0.066 0.240 0.170 0.171 0.282 0.276 0.157 0.178

400 0.048 0.181 0.144 0.142 0.198 0.197 0.126 0.141

−20 50 0.085 0.210 0.123 0.127 0.624 0.364 0.232 0.248

100 0.058 0.168 0.092 0.102 0.416 0.308 0.151 0.175

200 0.040 0.131 0.081 0.084 0.286 0.248 0.122 0.141

400 0.028 0.098 0.066 0.068 0.199 0.182 0.099 0.115
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The DS procedure seems to have much more stable confidence intervals, which do not vary much

with c, but clearly become narrower asn increases. Forc = −10 the DS and TS have a comparable

interval widths, and only whenc = −20 there is a clear superiority of the TS procedure.

In summary, this Monte Carlo experiment has shown that the subsampling procedure is only very

partly effective when applied to the TS model. For a proper coverage rate, the sample size should be

large enough andc should be less than zero, so that the desired robustness of the procedure is not fully

obtained. The DS-based subsampling procedure on the other hand, despite its theoretical problems

mentioned in the previous section, seems to perform much more stable. Although there is a consistent

overcoverage whenc < 0, the width of the confidence intervals is fairly stable across different values

of c, and the DS procedure is inferior to the TS procedure only for substantial deviations from the unit

root (c = −20).

6 Concluding remarks

In this paper we have addressed the problem of making inference on the mean growth rate of a time

series when the largest autoregressive root may be close to but is not necessarily equal to one. We have

seen that asymptotics only do not provide a solution to this problem, because the non-centrality param-

eterc, measuring the deviation from the unit root, cannot be estimated consistently. The subsampling

procedure of Romano and Wolf (2001) should provide a solution to this problem, at least asymptotically.

However, in a small Monte Carlo experiment it has appeared that this method is not fully effective in

the trend-stationary model when either the sample size or the deviation from the unit root is small. The

same procedure applied to the difference-stationary model seems to be more promising, although there

are some problems with its asymptotic validity as indicated in Section 4.

From these infer conclude that the subsampling procedure may be a promising way to deal with

the unknown deviation from the unit root, but that we should not limit ourselves to confidence intervals

based on either of the twot-statistics considered in this paper. One possible improvement would be

to use the DS estimator, but standardized by the square root of thelong-run varianceinstead of the

usual OLS standard error. Another option might be to use estimators that exploit assumptions about

the starting value of the process, and thus might effectively combine information from the DS and TS

estimator. We intend to study these extensions in future research.

Further extensions are possible in a multivariate context. In particular, related to Vogelsang and

Franses (2001), we may apply the present approach to the question whether, in a panel context, different

cross-sectional units (such as countries) have the same growth rate. One might expect by extending the

sample size in the cross-sectional direction, smaller time intervals are sufficient to obtain valid inference

using the subsampling procedure. These question will also addressed in future research.
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Appendix

Proof of Theorem 1.Define

Dn =

(
n−3/2 0

−βn−1/2 n−1/2

)
. (23)

Then

Dn

n∑

t=1

ztz
′
tD

′
n

p−→
(

1
12 0

0 σ2
y

)
, (24)

Dn

n∑

t=1

ztεt
d−→ N

((
0

0

)
, σ2

(
1
12 0

0 σ2
y

))
. (25)

whereσ2
y = V ar(yt − βt) = σ2/(1− [1 + γ]2). This implies that

D′−1
n (θ̂ − θ) =

(
n3/2 [(τ̂ − τ) + β(γ̂ − γ)]

n1/2(γ̂ − γ)

)
d−→ N

((
0

0

)
, σ2

(
12 0

0 σ−2
y

))
, (26)

and hence

n3/2(β̂ − β) = n3/2

(
− τ̂

γ̂
− β

)

= −1
γ̂

n3/2(τ̂ + βγ̂)

= −1
γ̂

n3/2 [(τ̂ − τ) + β(γ̂ − γ)]

d−→ N(0, 12σ2/γ2). (27)

Analogously, it can be shown that

n3ŝ2
β̂

=
σ̂2

γ̂2 n3/2(1, β̂)D′
n

[
Dn

n∑

t=1

ztz
′
tD

′
n

]−1

n3/2Dn

(
1

β̂

)

p−→ σ2

γ2
(1, 0)

[
1
12 0

0 σ2
y

]−1 (
1

0

)
=

12σ2

γ2
, (28)

where we have used thatn(β̂ − β)
p−→ 0. The proof of (12) is analogous. ¤

Proof of Theorem 2.The results use the following functional central limit theorems:

n−1/2

[sn]∑

t=1

εt
d−→ B(s) = σW (s), (29)

n−1/2(y[sn] − β[sn]) d−→ U(s) = σV (s) = σ

∫ s

0
e−c(s−u)dW (u), (30)

Note that whenc = 0 (the unit root case),U(s) = B(s), andV (s) = W (s). It is now useful to define

Dn =

(
n−3/2 0

−βn−1 n−1

)
. (31)
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We then obtain

Dn

n∑

t=1

ztz
′
tD

′
n

d−→
∫ 1

0

(
s− 1

2

U(s)− Ū

)(
s− 1

2

U(s)− Ū

)′

ds, (32)

Dn

n∑

t=1

ztεt
d−→

∫ 1

0

(
s− 1

2

U(s)− Ū

)
dB(s). (33)

This yields

D′−1
n (θ̂ − θ) =

(
n3/2 [(τ̂ − τ) + β(γ̂ − γ)]

n(γ̂ − γ)

)

=

(
− (nγ̂) n1/2(β̂ − β)

nγ̂ − c

)

d−→ σ

(∫ 1

0
FF (s)′ds

)−1 ∫ 1

0
F (s)dW (s)

=


 σ

(∫ 1
0 G1(s)2ds

)−1 ∫ 1
0 G1(s)dW (s)

(∫ 1
0 G2(s)2ds

)−1 ∫ 1
0 G2(s)dW (s)


 . (34)

whereF (s) = (s − 1
2 , U(s) − Ū)′. Note thatG2 is V corrected for a constant and trend, andG1 is a

trend corrected for a constant andV . Then

n1/2(β̂ − β) =
n3/2 [(τ̂ − τ) + β(γ̂ − γ)]

c + n(γ̂ − γ)
d−→ −

σ
(∫ 1

0 G2
1

)−1 ∫ 1
0 G1dW

c +
(∫ 1

0 G2
2

)−1 ∫ 1
0 G2dW

= σξ. (35)

Furthermore

ns̃2
β̂

=
σ̂2

(nγ̂)2
n3/2(1, β)D′

n

[
Dn

n∑

t=1

ztz
′
tD

′
n

]−1

n3/2Dn

(
1

β

)

d−→ σ2

[
c +

(∫ 1
0 G2

2

)−1 ∫ 1
0 G2dW

]2 (1, 0)
[∫ 1

0
FF ′

]−1
(

1

0

)
(36)

which leads to (14), using the partitioned inverse of
∫ 1
0 FF ′, which is

[∫ 1

0
FF ′

]−1

=




(∫ 1
0 G2

1

)−1
σ

∫ 1
0 (s− 1

2)(V − V̄ )
(
σ2

∫ 1
0 (s− 1

2)2
∫ 1
0 G2

1

)−1

∗
(
σ2

∫ 1
0 G2

1

)−1


 , (37)

where the “∗” entry follows from symmetry. Fornŝ2
β̂
, the result now follows from

n3/2Dn

(
1

β̂

)
d−→

(
1

σξ

)
. (38)

¤
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Proof of Theorem 3.Let ut = yt−α− βt = yt−E[yt], under the assumptions of the Theoremut

is a stationary AR(1) process with stationaryN(0, σ2
y) distribution. It is easily seen that

n(β̃ − β) = un − u0, (39)

which has aN(0, σ2
y − 2 cov(un, u0)) distribution, which converges toN(0, 2σ2

y) since the covariance

converges to zero. For̂sβ̃, we find

nŝ2
β̂

=
1

(n− 1)

n∑

t=1

(∆yt − β̃)2

=
1

(n− 1)

n∑

t=1

(∆ut)
2 − n

(n− 1)
(β̃ − β)2

p−→ var(∆ut) = −2γσ2
y. (40)

¤

Proof of Theorem 4. Define the processUn(s) = n−1/2u[sn] on D[0, 1]. Then (30) implies that

Un(·) d−→ U(·) = σV (·). Using (39), we have

n1/2(β̃ − β) = n−1/2un − n−1/2u0

= Un(1) + op(1)
d−→ σV (1). (41)

As V (1) = ec
∫ 1
0 e−cudW (u), it follows thatV (1) ∼ N(0, var[V (1)]), with var[V (1)] as specified in

the theorem. For the standard error we have, analogous to (40),

ns2
β̂

=
1
n

n∑

t=1

(∆ut)
2 + op(1)

=
1
n

n∑

t=1

ε2
t +

c2

n3

n∑

t=1

u2
t−1 +

2c

n2

n∑

t=1

εtut−1 + op(1)

p−→ σ2, (42)

where we have used∆ut = (c/n)ut−1 + εt. ¤
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