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Abstract 
 
The paper investigates the interdependence and conditional correlations between 

futures contracts and their underlying assets, both for stock and bond markets, and the 

impact of the interdependence and conditional correlations on VaR forecasts. The 

paper finds evidence of volatility spillovers from spot (futures) to futures (spot) 

markets, and time-varying conditional correlations between futures and their 

underlying assets. It also finds evidence that the DCC model of Engle (2002) provides 

slightly better VaR forecasts as compared with the CCC model of Bollerslev (1990) 

and the BEKK model of Engle and Kroner (1995). 

 
 
Keywords: Interdependence, dynamic conditional correlations, spot, futures, stocks, 
bonds, VaR. 
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1. Introduction 

 

The three standard motivations for trading futures contracts are speculation, hedging 

and arbitrage. A crucial measure in deciding whether to use futures to speculate or 

hedge is the covariance between futures contracts and their underlying assets. The 

covariance is determined by the variance of each market and the correlation between 

both markets. A key issue in modelling the variance is the nature of volatility 

spillovers, resulting from the comovement in financial volatilities across assets and 

markets. The nature of conditional correlations is useful in determining whether spot 

and futures returns are substitutes or complements, which can then be used to hedge 

against contingencies. Balasubramanyan (2004) shows that portfolios that consider 

time-varying correlations with volatility comovement and spillovers outperform the 

constant correlation model without comovement and spillovers.  

 

Considering the importance of interdependence and the correlation between futures 

contracts and their underlying assets, it is surprising that the literature on this topic is 

relatively thin. Most papers in the literature investigate stock, currency and 

commodity markets. This motivates the paper to investigate bond and stock futures 

and their underlying assets regarding interdependence and conditional correlations.  

 

Four government bond indices from Australia, Japan, New Zealand and USA, and 

seven stock indices from Australia, Indonesia, Japan, Malaysia, New Zealand, 

Singapore and USA, are investigated. Three multivariate GARCH models are 

estimated for 11 portfolios (4 bonds and 7 stocks), where each portfolio contains 

futures and their underlying assets. In order to accommodate the possible volatility 

spillovers and the time-varying conditional correlations, the BEKK model of Engle 

and Kroner (1995) and the DCC model of Engle (2002) are estimated. The CCC 

model of Bollerslev (1990) serves as a benchmark as it does not incorporate volatility 

spillovers or time-varying conditional correlations.  

 

Another important aspect in constructing a portfolio is measuring risk. Value-at-Risk 

(VaR) represents an extension of valuation methods for derivative instruments (see 

Jorion (2001)). The importance of the GARCH family models in modelling and 

forecasting VaR has been addressed in Angelidis et al. (2004). The advantage of using 
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multivariate GARCH  models, as compared with their univariate counterparts, to 

calculate VaR is that it does not need to re-estimate the models if the weight vector 

changes. They can also capture the possibility of volatility transmission and time-

varying correlations across assets in the portfolio. Varying correlations are important 

because markets become more closely related during periods of high volatility, 

namely when accurate VaR are most needed (see Longin and Solnik (1995)). The 

paper investigates whether such characteristics, namely volatility spillovers and time-

varying conditional correlations across assets, contribute to more accurate VaR 

forecasts for portfolios containing futures and their underlying assets.  

 

The remainder of the paper is organized as follows. Section 2 reviews the literature, 

Section 3 discusses the models to be estimated, Section 4 describes the data, Section  

5 discusses the estimation results, and Section 6 gives some concluding comments. 

 

 

2. Literature Review 

 

Spot, forward and futures prices of financial assets have been investigated over an 

extended period, ranging from the impact of the futures trading on the volatility of the 

underlying assets (Antoniou and Holmes (1995), Hung et al. (2003)), alternative 

pricing models (Sequeira et al. (1999), Zhong et al. (2004)), and the effectiveness of 

hedging spot markets using the corresponding futures markets (Baillie and Myers 

(1991), Lien et al. (2002)). 

 

Another important topic is the interdependence between futures contract and their 

underlying spot assets, which has been investigated using various GARCH models. 

Most papers in the literature investigate stock, currency and commodity markets. 

They have found evidence of volatility spillovers from futures to spot markets 

(Koutmos and Tucker (1996), Gannon and Choi (1998)), and from spot (futures) to 

futures (spot) (Gannon and Yeung (2004), Manera et al. (2006)). The results of the 

investigations on conditional correlations are inconclusive, namely constant (Koutmos 

and Tucker (1996)) and time-varying (Lien and Yang (2006), Manera et al. (2006)). 
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There are several issues in forecasting VaR regarding futures markets, such as the 

impact of hedging on VaR and the impact of futures trading on VaR. Harris and Shen 

(2006) investigate the impact of minimizing the variance of hedging on Conditional 

VaR and VaR. They find that, although minimum-variance hedging unambiguously 

reduces the standard deviation of portfolio returns, it can increase both left skewness 

and kurtosis. As a result, the effectiveness of hedging in terms of VaR and CVaR is 

uncertain.  

 

Illueca and Lafuente (2007) investigate the impact of futures trading on the 

underlying stock index in Spain. They find that the unexpected futures trading 

increases the Conditional VaR of spot returns. Lee and Locke (2006) investigate the 

speculative trader’s strategies. Using futures floor trader’s proprietary trading data, 

they find that floor trader VaR can be predicted somewhat, using simple market 

variables such as volume and volatility.  

 

The paper investigates the interdependence and correlation across futures and their 

underlying assets, using the BEKK model of Engle and Kroner (1995), the CCC 

model of Bollerslev (1990) and the DCC model of Engle (2002). Such an analysis 

does not seem to have been undertaken previously, especially in relation to VaR 

calculations. 

 

3. Methods 

 

VaR at level   for returns ty  is the corresponding empirical quantile at )1(  . As 

quantiles are direct functions of the variance in parametric models, GARCH models 

immediately translate into conditional VaR models. 

 

For the random variable ty , with the conditional variance following a univariate 

GARCH specification, 

 

 tttt FyEy   )( 1   (1) 

   ttt h   
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the VaR threshold for ty  can be calculated as: 

 

 tttt hzFyEVaR   )( 1 ,  (3) 

 

where z  is the critical value from the distribution of  t  to obtain the appropriate 

confidence level. Alternatively, th  can be replaced by estimates of various GARCH 

models to obtain an appropriate VaR.  

 

In order to investigate whether accommodating comovement among, and interactions 

across, assets in the conditional variance can improve the forecasts of VaR, three 

multivariate GARCH models will be estimated. The models are the BEKK model of 

Engle and Kroner (1995) and the DCC model of Engle (2002). The CCC model of 

Bollerslev (1990) is estimated for purposes of comparison.  

 

Two important issues in multivariate GARCH models are the curse of dimensionality 

and the parametric restrictions to ensure the positive definiteness of the estimated 

covariance matrix. The BEKK model of Engle and Kroner (1995) resolves the 

positive definiteness issue of the previous models, namely the VECH model of 

Bollerslev et al. (1988), even though it does not resolve the problem associated with 

the curse of dimensionality. However, it does not incorporate the volatility 

transmission across assets.  

 

The typical specification underlying the multivariate conditional mean and conditional 

variance in returns is given as: 

 

 tttt FyEy   )( 1  (4) 

   ttt D    (5) 
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where ,)',...,( 1 mttt yyy   )',...,( 1 mttt    is a sequence of identically and 

independently (i.i.d) random vectors, tF  is the past information available to time ,t  

),,...,( 2/12/1
1 mttt hhdiagD   m  is the number of returns, and nt ,...,1 . 

The conditional covariance of the BEKK model can be specified as: 

 

 ''' 1
'

11 BBQAAQQQ tttt      (6) 

 

where tQ  is the conditional covariance matrix. Q , A  and B  are NN   matrices, 

while Q  is upper triangular. 

Unlike multivariate GARCH models which focus on the dynamics of the conditional 

covariance matrix, models such as the CCC model of Bollerslev (1990) and the DCC 

model of Engle (2002) focus on the dynamics of the conditional variances and the 

conditional correlation matrix. The CCC model of Bollerslev (1990) assumes that the 

conditional variance for each return, mihit ,...,1,  , follows a univariate GARCH 

process, namely 

 

  
 

 
r

j

s

j
jtiijjtiijiit hh

1 1
,,  ,  (7) 

 

where ij  represents the ARCH effect, or the short-run persistence of shocks to return 

i , and ij  represents the GARCH effect, or the contribution of shocks to return i  to 

long-run persistence, namely 

 

 1
1 1

 
 

r

j

s

j
ijij  .  (8) 

 

The conditional correlation matrix of CCC is )()( '
1

'
ttttt EFE    , where 

 ij  for mji ,...,1,  . From (5), tttttt DD ''   , 2/1)( tt diagQD  , and 



 8

tttttt DDQFE  )( 1
'  where tQ  is the conditional covariance matrix.  The 

conditional correlation matrix is defined as 11  ttt DQD , and each conditional 

correlation coefficient is estimated from the standardized residual in (4) and (7). 

 

The DCC model is given by: 

 

  12
'

11121 )1(   tttt QZZ   (9) 

      2/12/1* )()(  tttt diagZZdiagZ ,  (10) 

 

where 1  and 2  are scalar parameters, and tZ  is the conditional correlation matrix 

after it is standardized by (10). For further details regarding multivariate GARCH 

models, see McAleer (2005). 

 

In order to evaluate VaR forecast accuracy, several back tests will be used, namely 

tests of unconditional coverage (UC), independence (IND), and conditional coverage 

(CC). The UC test was first proposed by Kupiec (1995). The test examines whether 

the failure rate of a model is statistically different from its expectation. Subsequently, 

Christoffersen (1998) derived likelihood ratio (LR) tests of UC, IND and CC.  

 

In the UC test, the probability of observing x  violations in a sample of size T , is 

given by: 

 

 xTxT
x ffCx  )1()()Pr(   (11) 

 

where f  is the desired proportion of observations. 
)!(!

!

xTx

T
C T

x 
  where ! denotes 

the factorial operator such that 





1

0

!
T

i

iTT . The null hypothesis is that the empirical 

failure rate, f̂ , is equal to the confidence level of the VaR,  . The LR statistic of UC 

is: 

 



 9

     

















10

10

ˆ)ˆ1(

)1(
log2

nn

nn

UC
ff

LR


,  (12) 

 

where Txf /ˆ  , 0n  is the number of failures and 1n  is the number of success. The 

statistic is distributed under the null hypothesis as 2  with 1 degree of freedom.  

 

A weakness of the UC test is that it tests only the equality between the VaR violations 

and the confidence level. However, simply testing for the correct unconditional 

coverage is insufficient when dynamics are present in the higher-order moments. 

Therefore it is also important that the VaR violations are not correlated over time. The 

LR statistic of Christoffersen (1998) for testing whether the series are independent is: 
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where ijn  is the number of observation with value i  followed by j . The statistic is 

distributed under the null hypothesis as 2  with 1 degree of freedom.  

 

The joint test of unconditional coverage and independence tests is the conditional 

coverage test, with the following LR statistic: 

 

 INDUCCC LRLRLR  .  (14) 

 

The statistic is distributed under the null hypothesis as 2  with 2 degrees of freedom.  

 

 

4. Data analysis 

 

The data used in the paper are the daily closing price index of bonds and their 

corresponding futures from Australia, Japan, New Zealand and USA; and of stocks 

and their corresponding futures from Australia, Indonesia, Japan, Malaysia, New 

Zealand, Singapore and USA. The data are obtained from the Bloomberg and 
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DataStream database services. The number of observations varies from one series to 

the other, in order to obtain the longest observation (see Table 1). Returns of market i  

at time t  are calculated as )/log(100 1,,,  tititi PPR , where tiP ,  and 1, tiP  are the 

closing prices of asset i  for days t  and 1t , respectively. All returns are found to be 

stationary, based on both ADF and Phillips-Perron (PP) tests (see Tables 2 and 3). 

 

In order to examine whether the conditional variances of the assets follow the ARCH 

process, the univariate AR(1)-GARCH(1,1) model of Bollserslev (1986) and AR(1)-

GJR(1,1) model of Glosten et al. (1993) are estimated. If the properties of the 

univariate models are satisfied, then it would be sensible to extend the models to their 

multivariate counterparts. 

 

5. Empirical Results  

 

The estimated parameters for the AR(1)-GARCH(1,1) and AR(1)-GJR(1,1) models 

are given in Tables 4 and 5, respectively.  The tables show that not all of the returns 

follow an AR(1) pattern. This can be interpreted as the behaviour of those returns is 

possibly also determined by other variables, such as spillovers from other markets. 

More importantly, those returns exhibit ARCH and/or GARCH effects. From Table 4, 

ARCH(1) terms are not significant only in Nzbondfut and Indstockfut, while 

GARCH(1) terms are significant in all returns. From Table 5, ARCH(1) is not 

significant for Nzbondspot, Nzbondfut, Ausstockspot, Indstockspot, Indstockfut, 

Nzstockspot, Nzstockfut and Usstockfut, but the corresponding GARCH(1) terms for 

these series are significant. Therefore, all series exhibit time-varying conditional 

volatilities, which can be successfully modelled using the GARCH(1,1) and GJR(1,1) 

models. Asymmetry is evident in more than 50% (13 of 22) series. 

 

In order to check the structural properties of the univariate models, the second 

moment conditions, which are independent of the mean equations, and the log-

moments, are evaluated for both AR(1)-GARCH(1,1) and AR(1)-GJR(1,1). Ling and 

McAleer (2003) showed that the QMLE for GARCH(r,s) is consistent if the second 

moment regularity condition is finite. Jeantheau (1988) showed that the log-moment 

regularity condition given by  
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 0))(log( 1
2

1   tE   (15) 

 

is sufficient for the QMLE to consistent for the GARCH(1,1) model.  

 

The second moment condition, namely 1
2 1

1
1  


 , is sufficient for consistency 

and asymptotic normality of the QMLE for GJR(1,1). Moreover, McAleer et al. 

(2007) established the log-moment regularity condition for the GJR(1,1) model, 

namely   

 

 0))))((log(( 1
2

11   ttIE , (16) 

 

and showed that it is sufficient for the consistency and asymptotic normality of the 

QMLE for GJR(1,1). Tables 4 and 5 also provide the moment conditions for both 

AR(1)-GARCH(1,1) and AR(1)-GJR(1,1) models, respectively, for all returns series. 

Tables 4 and 5 show that all second moment and log moment conditions are satisfied, 

except for the second moment condition for Japbondspot and Malstockspot, both for 

the GARCH and GJR models, and Malstockfut for the GARCH model, which exceed 

one. However, the log moment conditions for the series are satisfied. Such results 

suggest that the empirical estimates are statistically valid for these series, which 

means that the AR(1)-GARCH(1,1) and AR(1)-GJR(1,1) models provide accurate 

measures of the volatility in each of  the series. 

 

Tables 6 and 7 show the estimates of the BEKK model, assuming normal and t  

distributions, respectively. Table 6 shows that volatility spillovers exist from spot 

(futures) to futures (spot) returns, either in the short or long run, except in the 

portfolio of Nzstock, where spot and futures returns are independent. Table 7 shows 

volatility spillovers exist from spot (futures) to futures (spot) returns, either in the 

short or long run, in all portfolios. From Table 8, we can see that, using the normal 

distribution, the coefficients of the DCC model are all significant, with Nzbond and 

Malstock for the long run only. Using the t  distribution, all portfolios display time-
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varying conditional correlations. It can safely be concluded that all returns show 

dynamic correlations.  

 

This section also compares the forecasting performance of the various models 

described in the previous section. For purposes of the empirical analysis, it is assumed 

that the portfolio weights are equal and constant over time, but this assumption can be 

relaxed. The multivariate GARCH models described in Section 3 are used to estimate 

the conditional variances. All the conditional volatility models are estimated under the 

assumption of the normal and t  distributions.  

 

The estimated models are used to forecast 1-day ahead 99% VaR thresholds. Three 

are 11 portfolios to be considered, namely 4 bonds and 7 stocks. Each portfolio 

contains futures and the underlying asset. As the length of data varies from one series 

to another, the sample size used for estimation also varies from one portfolio to 

another. Combined with achieving convergence, especially for the BEKK model, this 

results in different periods of forecasting. However, each portfolio is estimated, using 

the three multivariate models, for the same data period, and therefore provides the 

same period for VaR forecasts. 

 

At the 95% confidence level, the critical value of chi-squared for LRUC and LRIND are 

3.84, while that of LRCC is 5.99. The results from the UC, IND and CC tests, assuming 

the normal distribution, are given in Table 9. The paper analyses the results of the CC 

test only, as it already considers the independence in the violation series. The CC test 

suggests that the DCC model fails in 3 cases, and provides better VaR forecasts than 

the CCC and BEKK models, which fail in 4 and 5 cases, respectively. As dynamic 

correlations are evident in all cases, it indicates that incorporating dynamic 

conditional correlations is important in forecasting VaR. However, the CCC model 

provides better VaR forecasts than the BEKK model, even though the BEKK model 

incorporates conditional correlations. As volatility spillovers are evident in almost all 

cases, this indicates that volatility spillovers do not contribute to improved VaR 

forecasts.  

 

The VaR forecasts calculated using a t  distribution in Table 10 show that, for the CC 

test, the BEKK, CCC and DCC models fail in 6, 7 and 5 cases, respectively. This 
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provides additional evidence to support the superiority of the DCC model in providing 

VaR forecasts.  

 

6. Concluding Remarks and Further Research 

 
The paper estimated two univariate GARCH models, namely the GARCH and GJR 

models, and found that futures of bond and stock showed conditional volatility 

patterns. It also estimated three multivariate GARCH models, namely the CCC, 

BEKK and DCC models, and found that volatility spillovers are evident from spot 

(futures) to futures (spot) returns. Evidence of time-varying conditional correlations 

was found in all series.   

 

Based on the backtest on VaR forecasts from the multivariate models, assuming both 

the normal and t  distributions, the DCC model performed the best. This might be due 

to the importance of incorporating time-varying conditional correlations and the 

simplicity of the model, as compared with the CCC model, which assumes constant 

conditional correlations, and with the BEKK model, which lacks parsimony. 

 

As more than 50% of the returns show asymmetric effects of negative and positive 

shocks on conditional variance, it might be useful to estimate multivariate GARCH 

models that incorporate such asymmetric effect to achieve improved VaR forecasts. In 

this group is the VARMA-AGARCH model of McAleer et al. (2009). It is also 

worthwhile checking the consistency of models incorporating time-varying 

conditional correlations in providing superior VaR forecasts by estimating alternative 

models, such as the Generalized Autoregressive Conditional Correlation (GARCC) 

model of McAleer et al. (2008). 

 

Future research might also consider the use of skewed t  distribution in calculating 

VaR forecasts as most asset returns exhibit fatter tails and volatility clustering (see 

Wu and Shieh (2007) and Bauwens and Laurent (2005), among others). 
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Table 1. Price Index of Bonds and Stocks 

 
Asset Index Data Range Observations 

Ausbond Australian Government Bond 18/8/1998-13/2/2008 2477 

Japbond Japanese Govt. Bond 10 Year series 27/5/1998-13/2/2008 2536 

Nzbond New Zealand Government Bond 2/9/2005-13/2/2008 639 

Usbond US Benchmark 10 Year 9/5/2003-13/2/2008 1244 

Ausstock S&P/ASX 200 3/5/2000-13/2/2008 2031 

Indstock LQ45 Stock Index 16/5/2005-13/2/2008 678 

Japstock Nikkei 225 2/1/1990-13/2/2008 4727 

Malstock KLCI stock Index 18/12/1995-13/2/2008 3173 

Nzstock NZX15 Gross Index 21/3/2005-13/2/2008 759 

Sgstock MSCI Sing Cash IX Index 8/9/1998-13/2/2008 2462 

Usstock S&P 500 Index 2/1/1990-13/2/2008 4727 
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Table 2. ADF Unit Root Test 

 

Series δ t-statistic 
Critical Value 

(1%) Probability 
Ausbondspot -1.092 -37.807 -3.962 0 
Ausbondfut 0.029 -37.444 -3.962 0 
Japbondspot -0.993 -35.774 -3.962 0 
Japbondfut -1.045 -36.848 -3.962 0 
Nzbondspot -0.959 -18.056 -3.973 0 
Nzbondfut -0.918 -17.321 -3.973 0 
Usbondspot -1.021 -31.470 -3.963 0 
Usbondfut -1.042 -31.671 -3.963 0 
Ausstockspot -1.075 -33.880 -3.963 0 
Ausstockfut -1.075 -33.759 -3.963 0 
Indstockspot -1.004 -19.094 -3.972 0 
Indstockfut -0.834 -17.157 -3.972 0 
Japstockspot -1.072 -51.619 -3.960 0 
Japstockfut -1.059 -50.563 -3.960 0 
Malstockspot -0.914 -37.216 -3.961 0 
Malstockfut -1.083 -40.978 -3.961 0 
Nzstockspot -0.891 -18.336 -3.970 0 
Nzstockfut -0.889 -18.767 -3.970 0 
Sgstockspot -0.989 -35.699 -3.962 0 
Sgstockfut -1.045 -36.365 -3.962 0 
Usstockspot -1.056 -37.715 -3.433 0 
Usstockfut -1.055 -37.833 -3.433 0 
 
Note: spot and fut refer to spot and futures assets, respectively. 
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Table 3. PP Unit Root Test 
 

Series   t -statistic 
Critical Value 

(1%) Probability 
Ausbondspot -1.034 -51.568 -3.962 0 
Ausbondfut -1.023 -51.041 -3.962 0 
Japbondspot -0.976 -49.134 -3.962 0 
Japbondfut -1.019 -51.313 -3.962 0 
Nzbondspot -0.900 -22.884 -3.440 0 
Nzbondfut -0.897 -22.793 -3.973 0 
Usbondspot -0.983 -42.442 -3.963 0 
Usbondfut -1.013 -43.719 -3.963 0 
Ausstockspot -1.024 -46.144 -3.963 0 
Ausstockfut -1.030 -46.536 -3.963 0 
Indstockspot -0.934 -24.253 -3.972 0 
Indstockfut -0.794 -21.066 -3.972 0 
Japstockspot -1.020 -70.166 -3.960 0 
Japstockfut -1.036 -71.277 -3.960 0 
Malstockspot -0.958 -53.963 -3.961 0 
Malstockfut -1.106 -62.810 -3.961 0 
Nzstockspot -0.888 -24.501 -3.970 0 
Nzstockfut -0.873 -24.900 -3.970 0 
Sgstockspot -0.944 -46.893 -3.962 0 
Sgstockfut -1.014 -50.299 -3.962 0 
Usstockspot -1.032 -53.455 -3.433 0 
Usstockfut -1.025 -53.103 -3.433 0 
 
Note: spot and fut refer to spot and futures assets, respectively. 
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Table 4: Univariate AR(1)-GARCH(1,1) and Moment Conditions for All Series 
 

Series Constant AR(1)       
Second 
Moment 

log 
Moment

Ausbondspot -0.011 0.003 0.000 0.013 0.985 0.998 -0.002 
 -6.022 0.165 -1.268 2.830 231.909   
Ausbondfut 0.000 -0.017 0.000 0.015 0.984 0.998 -0.002 
 -0.230 -0.880 1.235 3.601 211.513   
Japbondspot -0.003 0.052 0.000 0.093 0.919 1.011 -0.003 
 -8.502 2.196 -228.3 5.143 72.307   
Japbondfut 0.006 -0.032 0.001 0.076 0.915 0.991 -0.020 
 1.262 -1.358 1.798 3.507 38.003   
Nzbondspot -0.009 0.171 0.000 0.123 0.826 0.950 -0.075 
 -2.497 4.082 2.264 2.862 17.073   
Nzbondfut -0.002 0.106 0.000 0.031 0.955 0.987 -0.015 
 -0.917 2.911 0.895 1.402 27.261   
Usbondspot 0.000 0.012 0.001 0.036 0.958 0.994 -0.008 
 -0.040 0.530 2.046 5.041 123.003   
Usbondfut -0.001 -0.014 0.000 0.032 0.965 0.997 -0.005 
 -0.151 -0.614 1.661 5.577 158.966   
Ausstockspot 0.057 -0.026 0.011 0.093 0.891 0.984 -0.027 
 4.289 -1.057 2.975 4.351 44.762   
Ausstockfut 0.051 -0.052 0.017 0.081 0.895 0.977 -0.033 
 3.415 -2.151 3.162 4.055 42.286   
Indstockspot 0.208 0.122 0.273 0.239 0.648 0.887 -0.189 
 4.147 2.519 2.663 3.515 7.798   
Indstockfut 0.158 0.198 0.044 0.049 0.928 0.889 -0.132 
 2.647 4.721 1.129 1.564 18.848   
Japstockspot 0.018 -0.012 0.043 0.085 0.896 0.981 -0.029 
 1.065 -0.744 3.540 7.270 65.268   
Japstockfut 0.013 -0.033 0.040 0.076 0.907 0.983 -0.025 
 0.776 -2.160 3.422 7.634 72.638   
Malstockspot 0.045 0.154 0.008 0.102 0.900 1.002 -0.014 
 2.817 7.338 2.609 7.306 67.891   
Malstockfut 0.042 -0.005 0.013 0.093 0.906 1.000 -0.013 
 2.535 -0.234 2.997 6.428 65.876   
Nzstockspot 0.035 0.119 0.056 0.061 0.829 0.890 -0.121 
 1.236 3.068 1.739 2.479 10.615   
Nzstockfut 0.030 0.128 0.105 0.095 0.707 0.802 -0.235 
 1.038 3.485 2.008 2.440 5.721   
Sgstockspot 0.060 0.032 0.013 0.098 0.900 0.998 -0.013 
 2.991 1.403 2.836 6.241 63.205   
Sgstockfut 0.057 -0.018 0.018 0.098 0.899 0.997 -0.015 
 2.708 -0.819 2.828 6.433 63.131   
Usstockspot 0.037 -0.035 0.009 0.062 0.932 0.993 -0.012 
 2.243 -1.795 1.904 5.562 83.979   
Usstockfut 0.037 -0.018 0.011 0.066 0.926 0.992 -0.014 
 2.295 -0.929 1.842 5.864 86.630   
 
Note: spot and fut refer to spot and futures assets, respectively. The 2 entries for each 
parameter are the parameter estimate and Bollerslev and Wooldridge t  ratios. Entries in bold 
are significant at the 95% level. 
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Table 5: Univariate AR(1)-GJR(1,1) and Moment Conditions for All Series 
 

Series Constant AR(1)         
Second 
Moment 

log 
Moment

Ausbondspot -0.011 0.004 0.000 0.015 -0.005 0.986 0.998 -0.002 
 -5.879 0.182 -1.424 2.683 -0.868 234.117   
Ausbondfut 0.000 -0.017 0.000 0.018 -0.006 0.984 0.998 -0.002 
 -0.141 -0.874 1.165 3.081 -0.866 216.648   
Japbondspot -0.003 0.055 0.000 0.061 0.043 0.926 1.009 -0.003 
 -8.202 2.238 -212.2 2.293 1.067 81.070   
Japbondfut 0.004 -0.029 0.001 0.050 0.055 0.908 0.985 -0.026 
 0.914 -1.223 2.181 1.994 2.332 37.251   
Nzbondspot -0.009 0.172 0.000 0.119 0.015 0.823 0.950 -0.075 
 -2.575 4.101 2.227 1.782 0.210 15.945   
Nzbondfut -0.002 0.100 0.000 0.024 0.014 0.959 0.990 -0.012 
 -1.127 2.720 0.793 0.868 0.462 29.601   
Usbondspot 0.002 0.009 0.001 0.045 -0.019 0.959 0.995 -0.007 
 0.243 0.408 1.869 4.094 -1.306 123.136   
Usbondfut 0.000 -0.014 0.000 0.040 -0.012 0.964 0.998 -0.005 
 0.032 -0.644 1.549 3.361 -0.759 154.762   
Ausstockspot 0.030 -0.016 0.014 -0.016 0.157 0.911 0.973 -0.035 
 2.222 -0.647 4.509 -0.963 6.161 56.499   
Ausstockfut 0.024 -0.038 0.016 -0.023 0.139 0.928 0.974 -0.033 
 1.608 -1.512 4.153 -1.927 6.750 64.282   
Indstockspot 0.132 0.134 0.318 -0.005 0.376 0.669 0.853 -0.236 
 2.445 2.968 3.557 -0.148 3.055 8.545   
Indstockfut 0.124 0.207 0.182 -0.024 0.142 0.842 0.977 -0.029 
 2.033 4.988 0.951 -1.105 1.914 5.532   
Japstockspot -0.018 -0.005 0.041 0.022 0.113 0.903 0.982 -0.029 
 -1.081 -0.327 4.416 2.106 6.352 81.148   
Japstockfut -0.020 -0.028 0.040 0.017 0.105 0.912 0.982 -0.026 
 -1.148 -1.888 4.495 1.965 6.856 90.107   
Malstockspot 0.023 0.162 0.009 0.059 0.074 0.904 1.000 -0.015 
 1.441 7.937 2.654 4.250 2.977 70.731   
Malstockfut 0.020 -0.002 0.015 0.055 0.071 0.908 0.999 -0.014 
 1.213 -0.105 3.378 3.089 3.118 66.779   
Nzstockspot 0.020 0.103 0.043 -0.028 0.123 0.880 0.914 -0.097 
 0.728 2.742 2.540 -1.374 3.343 20.643   
Nzstockfut 0.015 0.129 0.032 -0.017 0.101 0.906 0.940 -0.068 
 0.515 3.657 2.196 -1.255 3.107 24.925   
Sgstockspot 0.042 0.033 0.014 0.067 0.058 0.901 0.997 -0.014 
 2.046 1.438 2.978 3.293 2.188 62.133   
Sgstockfut 0.041 -0.017 0.018 0.072 0.048 0.901 0.996 -0.015 
 1.935 -0.727 2.879 3.334 1.707 62.273   
Usstockspot 0.000 -0.023 0.010 -0.022 0.129 0.950 0.992 -0.013 
 -0.006 -1.201 3.176 -2.262 7.919 120.350   
Usstockfut 0.001 -0.005 0.011 -0.016 0.131 0.941 0.990 -0.015 
 0.038 -0.261 2.896 -1.433 7.428 110.709   
Note: spot and fut refer to spot and futures assets, respectively. The 2 entries for each 
parameter are the parameter estimate and Bollerslev and Wooldridge t  ratios. Entries in bold 
are significant at the 95% level. 
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Table 6. BEKK Normal Distribution Estimates 
 

Portfolio qss qfs qff ass asf afs aff bss bsf bfs bff 
Ausbond_s_f -0.002 0.001 0.000 0.194 0.003 -0.058 0.155 0.981 0.000 0.008 0.986 
 -0.465 0.547 0.022 5.040 0.447 -0.897 5.151 133.793 -0.127 0.723 217.649 
Japbond_s_f 0.007 0.037 0.020 0.349 -0.442 0.068 0.831 -0.960 -0.174 0.027 -0.767 
 2.128 1.799 3.453 6.609 -2.757 2.192 4.820 -70.298 -4.121 2.851 -15.785 
Nzbond_s_f 0.023 0.027 0.000 0.193 -0.034 -0.224 -0.159 1.158 0.312 -1.062 -0.796 
 3.174 6.183 0.008 2.920 -0.520 -1.015 -0.997 29.072 4.682 -3.488 -4.639 
Usbond_s_f 0.044 -0.043 -0.011 -0.074 -1.386 0.299 1.757 1.185 0.897 -0.248 -0.065 
 0.894 -0.841 -0.150 -0.169 -2.883 0.625 3.163 3.875 2.369 -0.697 -0.138 
Ausstock_s_f 0.052 0.295 0.000 0.222 0.474 -0.006 -0.091 0.737 0.594 0.225 0.323 
 0.731 4.183 -0.003 1.249 2.678 -0.043 -0.630 2.869 2.769 0.872 1.289 
Indstock_s_f 0.694 0.507 0.000 -0.092 0.364 -0.433 -0.518 0.881 0.268 -0.256 0.585 
 7.222 5.030 -0.002 -0.855 3.909 -3.383 -4.785 7.139 3.951 -2.111 8.212 
Japstock_s_f 0.244 0.195 0.000 0.137 -0.178 0.142 0.406 1.019 0.091 -0.075 0.876 
 8.107 7.830 0.008 2.458 -3.612 2.278 9.082 46.858 11.588 -3.057 82.291 
Malstock_s_f 0.103 0.067 0.052 0.413 0.440 -0.128 -0.244 -1.410 -2.364 0.462 1.435 
 2.604 4.232 2.697 7.209 7.437 -50.350 -60.680 -82.608 -237.7 6811.798 262.173 
Nzstock_s_f 0.630 0.629 0.064 -0.180 -2.302 0.427 2.529 -0.008 -0.005 -0.267 -0.272 
 20.621 23.277 2.513 -0.152 -1.156 0.370 1.333 -0.017 -0.012 -0.906 -0.909 
Sgstock_s_f 0.073 0.074 -0.012 0.210 0.382 0.038 -0.117 0.568 -0.477 -1.348 -0.550 
 1.817 1.597 -0.630 2.919 5.396 0.557 -1.250 120.942 -59.952 -95.826 -24.579 
Usstock_s_f 0.150 0.150 0.000 -0.141 -0.039 0.410 0.317 -0.919 0.077 -0.033 -1.027 
 10.200 9.672 0.003 -2.017 -0.479 5.245 3.297 -50.141 4.608 -1.524 -48.570 
 
Note: spot and fut refer to spot and futures assets, respectively. The 2 entries for each parameter are the parameter estimate and Bollerslev and 
Wooldridge t  ratios. Entries in bold are significant at the 95% level. 
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Table 7. BEKK t  Distribution Estimates 
 

 Portfolio qss qfs qff ass asf afs aff bss bsf bfs bff 
Ausbond_s_f -0.008 -0.001 -0.001 6.533 0.072 -0.251 6.120 0.984 0.001 -0.009 0.980 
  -0.251 -0.208 -0.361 25.275 0.316 -0.075 3.196 135.996 0.416 -0.420 177.739 
Japbond_s_f 0.037 0.000 0.062 5.461 1.472 -0.158 3.786 -0.935 0.013 -0.002 -0.953 
  4.319 0.019 5.104 89.149 31.067 -3.407 102.640 -115.566 4.148 -4.023 -121.233 
Nzbond_s_f 0.000 -0.005 -0.008 0.275 -0.006 -0.199 0.211 0.958 0.012 0.063 0.939 
  0.046 -0.838 -1.257 4.469 -0.132 -1.747 2.552 60.976 0.894 1.848 34.314 
Usbond_s_f 0.220 0.122 0.000 0.635 0.304 -0.292 -0.039 0.020 -0.485 1.029 1.501 
  12.401 11.354 0.016 30.121 30.441 -10.713 -3.096 10.030 -1505.264 518.719 1321.046 
Ausstock_s_f 0.096 0.130 0.005 -0.144 -0.264 -0.041 0.017 1.074 0.095 -1.698 -1.035 
  5.921 6.852 0.539 -7.885 -12.034 -1.250 0.497 557.712 61.666 -92.966 -115.745 
Indstock_s_f 0.225 0.222 -0.001 -0.266 0.000 0.079 -0.202 -0.138 0.812 1.132 0.143 
  2.165 2.809 -0.026 -3.362 -0.007 0.729 -2.857 -0.465 3.043 4.156 0.469 
Japstock_s_f 0.156 0.103 0.111 -0.226 0.206 0.002 -0.404 -0.921 -0.062 -0.051 -0.914 
  6.012 3.352 4.092 -3.228 2.777 0.026 -6.044 -30.916 -1.836 -1.759 -28.584 
Malstock_s_f 1.498 0.625 0.525 2.953 4.094 -0.117 -2.085 -1.410 -2.332 0.467 1.428 
  9.346 2.944 7.327 16.027 12.121 -1.444 -15.491 -65.904 -37.647 2008.662 118.235 
Nzstock_s_f 0.330 0.318 0.000 -1.456 -1.517 1.942 2.004 0.316 -0.315 0.647 1.281 
  25.496 24.354 -0.078 -3.009 -3.114 3.614 3.713 149.335 -205.894 210.805 216.426 
Sgstock_s_f 0.050 0.080 -0.003 0.124 0.313 0.055 -0.138 -1.415 -0.531 0.445 -0.513 
  3.665 8.260 -0.095 3.778 5.260 19.069 -4.692 -59.726 -20.404 18.957 -19.971 
Usstock_s_f 0.093 0.099 -0.032 -0.178 0.104 -0.008 -0.302 -0.956 -0.006 -0.025 -0.971 
  4.139 2.652 -2.094 -1.080 0.521 -0.051 -1.550 -16.480 -0.088 -0.423 -15.261 
 
Note: spot and fut refer to spot and futures assets, respectively. The 2 entries for each parameter are the parameter estimate and Bollerslev and 
Wooldridge t  ratios. Entries in bold are significant at the 95% level. 
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Table 8. DCC Estimates 
 

Normal distribution t disribution 

Portfolio θ1 θ2 θ1 θ2 
Ausbond_s_f 0.025 0.972 0.047 0.952 
 14.74 494.7 10.626 209.913 
Japbond_s_f 0.243 0.709 0.155 0.844 
 4.497 6.987 15.310 82.699 
Nzbond_s_f 0.018 0.962 0.032 0.958 
 1.33 37.049 2.372 60.885 
Ussbond_s_f 0.414 0.227 0.370 0.551 
 4.827 2.53 10.778 13.433 
Ausstock_s_f 0.029 0.923 0.016 0.968 
 3.334 31.191 2.430 59.832 
Indstock_s_f 0.063 0.932 0.053 0.947 
 6.897 125.932 561491 123514 
Japstock_s_f 0.054 0.937 0.059 0.935 
 20.41 265.3 11.744 163.034 
Malstock_s_f 0 0.198 0.032 0.953 
 0 100.446 4.579 82.304 
Nzstock_s_f 0.583 0.119 0.770 0.227 
 3.823 1.341 574.360 182.579 
Sgstock_s_f 0.071 0.884 0.045 0.927 
 11.008 72.127 2.069 20.355 
Usstock_s_f 0.017 0.982 0.020 0.977 
 10.41 566.3 5.604 234.068 

 
Note: spot and fut refer to spot and futures assets, respectively. The 2  
entries for each parameter are the parameter estimate and Bollerslev and  
Wooldridge t  ratios. Entries in bold are significant at the 95% level. 
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Table 9. Test of VaR Forecasts, Normal Distribution 

 

Portfolio Models 
Total 

Forecast

Number 
of 

Violations LRUC LRIND LRCC 
BEKK 477 11 6.00 0.47 6.48 
CCC 477 1 4.45 0.00 4.45 

Ausbond_s_f 
  
  DCC 477 1 4.45 0.00 4.45 

BEKK 500 10 3.91 0.37 4.28 
CCC 500 8 1.54 0.23 1.77 

Japbond_s_f 
  
  DCC 500 10 3.91 0.37 4.28 

BEKK 139 2 0.24 0.06 0.30 
CCC 139 2 0.24 0.06 0.30 

Nzbond_s_f 
  
  DCC 139 2 0.24 0.06 0.30 

BEKK 600 5 0.18 0.07 0.25 
CCC 600 4 0.76 0.04 0.80 

Usbond_s_f 
  
  DCC 600 3 1.86 0.02 1.88 

BEKK 500 17 17.90 5.88 23.78 
CCC 500 23 34.86 6.18 41.04 

Ausstock_s_f 
  
  DCC 500 23 34.86 6.18 41.04 

BEKK 177 5 3.98 5.74 9.73 
CCC 177 4 2.09 6.23 8.32 

Indstock_s_f 
  
  DCC 177 2 0.03 0.05 0.07 

BEKK 500 12 7.11 6.12 13.24 
CCC 500 13 8.97 0.69 9.67 

Japstock_s_f 
  
  DCC 500 13 8.97 0.69 9.67 

BEKK 673 15 7.61 12.28 19.89 
CCC 673 11 2.30 0.37 2.66 

Malstock_s_f 
  
  DCC 673 10 1.40 0.30 1.70 

BEKK 308 8 5.51 0.37 5.88 
CCC 308 7 3.70 0.28 3.98 

Nzstock_s_f 
  
  DCC 308 4 0.25 0.08 0.33 

BEKK 562 11 4.07 0.44 4.51 
CCC 562 14 8.92 6.15 15.07 

Sgstock_s_f 
  
  DCC 562 12 5.52 0.52 6.04 

BEKK 739 10 0.84 0.27 1.11 
CCC 739 13 3.51 0.47 3.97 

Usstock_s_f 
  
  DCC 739 13 3.51 0.47 3.97 

 
Note: spot and fut refer to spot and futures assets, respectively. Entries in bold are 
significant at the 95% level. 
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Table 10. Test of VaR Forecasts, t  Distribution 
 

Portfolio Models 
Total 

Forecast

Number 
of 

Violations LRUC LRIND LRCC 
BEKK 477 1 4.45 0.00 4.45 
CCC 477 1 4.45 0.00 4.45 

Ausbond_s_f 
  
  DCC 477 1 4.45 0.00 4.45 

BEKK 500 1 4.81 0.00 4.81 
CCC 500 1 4.81 0.00 4.81 

Japbond_s_f 
  
  DCC 500 1 4.81 0.00 4.81 

BEKK 139 0 2.79 0.00 2.79 
CCC 139 0 2.79 0.00 2.79 

Nzbond_s_f 
  
  DCC 139 0 2.79 0.00 2.79 

BEKK 600 1 6.46 0.00 6.46 
CCC 600 1 6.46 0.00 6.46 

Usbond_s_f 
  
  DCC 600 1 6.46 0.00 6.46 

BEKK 500 7 0.72 0.17 0.89 
CCC 500 10 3.91 6.33 10.25 

Ausstock_s_f 
  
  DCC 500 8 1.54 0.23 1.77 

BEKK 177 0 3.56 0.00 3.56 
CCC 177 0 3.56 0.00 3.56 

Indstock_s_f 
  
  DCC 177 1 0.40 0.01 0.41 

BEKK 500 0 10.05 0.00 10.05 
CCC 500 0 10.05 0.00 10.05 

Japstock_s_f 
  
  DCC 500 0 10.05 0.00 10.05 

BEKK 673 0 13.53 0.00 13.53 
CCC 673 0 13.53 0.00 13.53 

Malstock_s_f 
  
  DCC 673 0 13.53 0.00 13.53 

BEKK 308 1 13.38 0.00 13.38 
CCC 308 1 13.38 0.00 13.38 

Nzstock_s_f 
  
  DCC 308 1 13.38 0.00 13.38 

BEKK 562 3 32.88 0.00 32.88 
CCC 562 3 32.88 0.00 32.88 

Sgstock_s_f 
  
  DCC 562 2 25.68 0.00 25.68 

BEKK 739 1 8.84 0.00 8.84 
CCC 739 1 8.84 0.00 8.84 

Usstock_s_f 
  
  DCC 739 1 8.84 0.00 8.84 

 
Note: spot and fut refer to spot and futures assets, respectively. Entries in bold are 
significant at the 95% level. 
 


