
A Dynamic Policy forGrouping Maintenance ActivitiesR.E. Wildeman R. DekkerEconometric InstituteA.C.J.M. SmitKoninklijke/Shell-Laboratorium, Amsterdam�AbstractA maintenance activity carried out on a technical system often involves a system-dependent set-upcost that is the same for all maintenance activities carried out on that system. Grouping activitiesthus saves costs since execution of a group of activities requires only one set-up. Many maintenancemodels consider the grouping of maintenance activities on a long-term basis with an in�nite horizon.This makes it very di�cult to incorporate short-term circumstances such as opportunities or a varyinguse of components because these are either not known beforehand or make the problem intractable.In this paper we propose a rolling-horizon approach that takes a long-term tentative plan as a basisfor a subsequent adaptation according to information that becomes available on the short term.This yields a dynamic grouping policy that assists the maintenance manager in his planning job. Wepresent a fast approach that allows interactive planning by showing how shifts from the tentativeplanning work out. We illustrate our approach with examples.Keywords: Maintenance, multi-component, planning, dynamic programming.1 IntroductionThe cost of maintaining a component of a technical system (such as a transportation 
eet, a machine,a road, or a building) often consists of a cost that depends on the component involved and of a �xedcost that only depends on the system. In that case, the system-dependent cost, the so-called set-upcost , is shared by all maintenance activities carried out simultaneously on the system. For example, theset-up cost can consist of the downtime cost due to production loss if the system cannot be used duringmaintenance, or of the preparation cost associated with erecting a sca�olding or opening a machine.Set-up costs can be saved when maintenance activities are executed simultaneously, since execution of agroup of maintenance activities requires only one set-up.Grouping of maintenance activities can be modelled on the long term (with in�nite-horizon models)and on the short term (with �nite-horizon models). An in�nite horizon is applied in practice as anapproximation of a long-term stable situation. This allows one to determine long-term maintenancefrequencies for groups of related activities.In practice however, planning horizons are usually �nite for a number of reasons: information is onlyavailable on the short term, a modi�cation of the system changes the problem completely, and someevents are unpredictable. However, as components mostly have a lifetime that is longer than the lengthof the horizon, a �nite horizon is in practice often applied in a rolling-horizon approach, where the (�rst)decisions in the �nite horizon are implemented and subsequently a new horizon starts, and so on.For a literature overview of the �eld of maintenance of multi-component systems, we refer to thereview article by Cho and Parlar [3]. By now there are several methods that can handle multiple compo-nents. However, most of them su�er from intractability when the number of components grows, unless�Current address: NAM B.V. Assen, the Netherlands 1
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2 Problem De�nition and Outline of Approach 2a special structure is assumed. For instance, the maintenance of a deteriorating system is frequentlydescribed using Markov decision theory (see, for example, Howard [11], who was the �rst to use such aproblem formulation). Since the state space in such problems grows exponentially with the number ofcomponents, the Markov decision modelling of multi-component systems is not tractable for more thanthree non-identical components (see, for example, B�ackert and Rippin [1]). For problems with manycomponents heuristic methods can be applied. For instance, Dekker and Roelvink [5] present a heuristicreplacement criterion in case always a �xed group of components is replaced. Van der Duyn Schouten andVanneste [13] study structured strategies, viz. (n;N)-strategies, but provide an algorithm for only twoidentical components. Also worth mentioning are Goyal and Kusy [10] and Goyal and Gunasekaran [9];they allow many components, but with a very speci�c deterioration structure only. All these approachesare for an in�nite horizon and they provide simple strategies that are di�cult to adapt to short-terminformation.Stinson and Khumawala [12] consider a �nite planning horizon and formulate their problem as amixed-integer nonlinear programming problem. However, such an approach does not give any structureresults and hence little insight. The optimal policy is often quite complex and time dependent. Moreover,it is usually not robust against changes in the horizon length. Another example of short-term planning canbe found in the model-based approach for road maintenance by Worm and Van Harten [17]. Roads canbe split up into lanes, and lanes into segments of a certain length. Doing the same action on adjacentlanes or segments yields set-up savings. The authors �rst apply an in�nite-horizon single-componentmodel to determine the best optimal action for each lane segment, and subsequently they apply a verysimple rule for the grouping of maintenance. For given actions in a certain year, the authors considerwhether it is pro�table to execute the same action on other lane segments.In this paper we present a general approach that can assist a maintenance manager in makinga short-term maintenance plan based on long-term maintenance strategies. To this end we apply adecomposition and we determine for each activity separately how much it costs to deviate from itstentatively planned maintenance time. Subsequently, we determine the best way of grouping the activitiesin a given planning horizon. We present an algorithm that leaves enough 
exibility to adapt the planaccording to requirements set by the maintenance manager. The need of such a short-term planningapproach appeared useful after the development of a decision-support system for maintenance at theShell research laboratory in Amsterdam.The application of decomposition and a subsequent dynamic grouping allows us to use several modelsfor the individual components, such as minimal repair and block replacement. Besides, our approachyields a dynamic policy that cannot only be applied on the short term but also on the long term. InDekker, Wildeman and Van Egmond [7] the approach of this paper is numerically validated and extendedto age-replacement policies for a discrete-time Markov decision chain, both for an in�nite and a �nitehorizon. The performance of the approach turned out to be very good: the deviation from the optimalcosts is less than one per cent provided that certain harmonisation e�ects are incorporated. This isan important result since -as we already stated- the current Markov decision models allow only fewcomponents. A great advantage of our approach is that many components can be handled.This paper is structured as follows. In the next section we give the problem formulation and we outlinea general �ve-phase approach to solve it. In Section 3 we deal with each of these �ve phases successivelyand throughout the paper we use the same example to illustrate each phase when it is discussed. Section 4brie
y discusses some advantages of our approach and in Section 5 we draw conclusions.2 Problem De�nition and Outline of ApproachConsider a multi-component system with n components i, i 2 f1; . . . ; ng. On each component i apreventive-maintenance activity i can be carried out. (We assume in this paper that there is onepreventive-maintenance activity for each component, but the modelling is easily extended to deal withmore activities per component.) Preventive-maintenance activity i has a component-dependent cost cpiand a system-dependent cost S. This system-dependent cost S is called the set-up cost and is thesame for all activities. When activity i is executed on its own cpi + S has to be paid, whereas for agroup G � f1; . . . ; ng of activities that are executed together the set-up cost has to be paid only once,



2 Problem De�nition and Outline of Approach 3that is, we then have to pay S +Pi2G cpi . This implies that combining m activities yields a cost re-duction of (m � 1)S compared to executing these m activities separately. A �xed set-up cost is not anuncommon assumption as it is due to, for example, crew travelling, sca�olding, shutdown, etc., which isassumed to be the same for all activities. Another practical motivation is that it is very hard to obtainmore speci�c data; no present-day management information system supports a data structure for eachpossible combination of activities. Van Dijkhuizen and Van Harten [14] present an approach in whichmultiple levels of set-up costs are considered. However, these authors consider an in�nite horizon andhence do not incorporate short-term circumstances.Components 1; . . . ; n are not used at a constant rate; on the short term the use of a componentcan vary because of, for example, a varying demand (in case of a production system). Furthermore, anopportunity may occur because of a shutdown of the system for whatever reason; in that case no set-upcost has to be paid for activities that are carried out at that time.Opportunities and a varying use of components are typical short-term circumstances that cannot beincorporated in long-term (in�nite-horizon) maintenance optimisation models. Short-term circumstancescan be incorporated in �nite-horizon models, but this has other disadvantages. Finite horizons are oftenmuch shorter than the lifetime of a component, which implies that we have to introduce a residual valuefor each component at the end of the horizon. This can cause very capricious �nite-horizon e�ects thatdepend on the length of the horizon and the de�nition of the residual values (see, for example, Dekker,Wildeman and Van Egmond [7]). In practice one would like to have a situation in which a small changein the horizon causes small changes in the generated solution.In this paper we present a �ve-phase rolling-horizon approach that has a more stable character becauseshort-term plans are made on the basis of a long-term tentative plan. The approach has many otheradvantages, some of which will be discussed in Section 4. Here we �rst give an outline of the approach.Phase 1: DecompositionFormulate an in�nite-horizon maintenance model for each activity separately and optimise this modelto obtain an optimal frequency with respect to the long-term average costs. Here we assume an averageuse of components and we neglect or approximate global interactions between components. The resultis an individual maintenance rule for each activity. Usually, this phase has to be done only once.Phase 2: Penalty FunctionsWe then derive a penalty function hi(�t) for each activity i, expressing the additional expected costs ofshifting the execution time of activity i �t time units from a tentatively planned time. This shift �tmay be positive and negative (forward and backward in time). The penalty functions are derived fromthe individual maintenance models in Phase 1 and usually this needs to be done only once.Phase 3: Tentative PlanningSuppose the system is considered at a certain time t. Based on the individual maintenance rules ofPhase 1, the current state of component i and short-term information, the time ti is determined at whichactivity i is carried out when it were on its own. Now take a �nite planning horizon and consider theactivities to be executed in this horizon. Here we choose the horizon [t;maxi ti] induced by the tentativeexecution times ti, i = 1; . . . ; n, but other choices are also possible. In this phase opportunities can beincorporated.Phase 4: Grouping Maintenance ActivitiesIn this phase it is allowed to shift the tentatively planned times within the planning horizon [t;maxi ti] tomake joint execution of activities possible. The optimal grouping structure of the n activities maximisesthe set-up cost reduction (because of joint maintenance) minus the costs of shifting from the tentativelyplanned times. The latter costs are expressed by the penalty functions derived in Phase 2. In Section 3.4we show that under general conditions an optimal grouping can be found in O(n2) time.



3 Rolling-Horizon Approach 4Phase 5: Rolling-Horizon StepHaving applied Phase 4 we have a grouping structure for the n activities in [t;maxi ti]. The maintenancemanager can change the planning in case he/she is not satis�ed with it and then go back to Phase 3;this can be done interactively and as often as desired. Finally, the maintenance manager can carry outone or more groups of activities according to the generated grouping structure and start with Phase 3when a planning for a new period is required.3 Rolling-Horizon ApproachIn this section we will discuss each phase of our rolling-horizon approach in detail and of each phasewe will give an example. We want to stress here that the examples are indeed only for illustrativereasons; they do not show all possible aspects and extensions of our approach. Some of these aspectsand extensions are discussed in Section 4, but showing all would go far beyond the scope of this paper.3.1 Phase 1: DecompositionFor each individual activity i we formulate an in�nite-horizon maintenance model in which we assumean average use of component i and in which we neglect or approximate global interactions betweencomponents.In this paper we consider the following kind of model. Activity i is a preventive replacement ofcomponent i and is executed each x time units at a cost of cpi + S. Let Mi(x) denote the expecteddeterioration costs for component i, i.e., the expected costs (because of repairs, or increasing energyuse) incurred in x time units since the latest execution of activity i. It is assumed that Mi(�) is strictlyconvex.Long-term optimisation of the interval between executions of activity i is easily achieved by applyingrenewal theory. We �nd that the long-term average costs �i(x) as a function of the interval length xequals (see, for example, Dekker [4])�i(x) = cpi + S +Mi(x)x :Let x�i denote the optimal interval length (if it exists) and ��i := �i(x�i ) the associated long-term averagecosts. Using �0i(x) = 0 , M 0i(x) � �i(x) = 0 and the fact that M 0i(�) is strictly increasing, it is notdi�cult to show that this x�i exists if, e.g., limx!1M 0i(x) = 1. Furthermore, x�i is then unique andthe following holds: M 0i(x) � ��i < 0 for x < x�i and M 0i(x)� ��i > 0 for x > x�i . Strategies like blockreplacement and the version of minimal repair that we use in this paper are captured by this typeof maintenance optimisation model (see Dekker [4] for a list of models that can be captured). Agereplacement is not included in this model, but can be incorporated approximately in an extension (seeDekker, Wildeman and Van Egmond [7]).In this model we neglect the economic dependence between components since in �i(�) the set-upcost S is attributed wholly to component i, assuming that activity i is always executed on its own.The modelling is easily extended to deal with harmonisation of frequencies, for example by applyinga correction factor (see Dekker, Wildeman and Van Egmond [7]). However, that does not change theconcept of decomposition and will thus not be considered here.ExampleWe consider n = 16 maintenance activities that are modelled according to a minimal-repair model withblock replacements. In this minimal-repair model, preventive replacements are carried out after �xedintervals, with failure repair occurring whenever necessary. A failure repair restores the componentinvolved into a state as good as before. No combination of repair and replacement is possible in thisvariant. Activity i, i = 1; . . . ; 16, is the preventive replacement of component i and costs cpi + S. Thefailure-repair cost of component i equals cri . Let ri(�) denote the rate of occurrence of failures, thencri R x0 ri(y)dy are the expected repair costs incurred in the interval [0; x] due to failures (see, for example,



3 Rolling-Horizon Approach 5Dekker [4]). For ri(�) we take a polynomial rate of occurrence of failures with scale parameter �i > 0 (indays), and shape parameter �i > 1 (this is a Weibull process):ri(x) = �i�i � x�i��i�1 : (1)For the scale parameter �i we took as time unit a day, since the aim is to plan the activities in absolutetime and not, for example, in machine running time. However, if running hours are considered, theparameter is easily converted to days through multiplication by a utilisation factor.The expression of ri(�) above yields the following expression for the expected deterioration costsMi(x)(in this case repair costs) for component i in [0; x]:Mi(x) = cri � x�i��i : (2)The optimal value x�i can be found by setting the derivative of �i(�) to zero. For a minimal-repairmodel we thus �nd the following analytical expression for x�i :x�i = �is (cpi + S)��iicri (�i � 1) :Since ��i = �i(x�i ) =M 0i(x�i ), we have for ��i :��i = (cpi + S)�ix�i (�i � 1) :In Table I we give the random data for the 16 maintenance activities that we use throughout thispaper. For the set-up cost S we take S = 15, which is 5% of the average individual preventive-maintenancecosts, i.e., S = 0:05(1=16)P16i=1(cpi + S). The values of x�i and ��i , obtained by substitution of the dataand S = 15 in the two equations above, are also given given in Table I.Table IExample data for 16 activities and the corresponding optimal values of ��i and x�ii 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16�i 159 159 190 285 108 285 49 97 84 149 190 117 205 281 281 285�i 1.70 1.70 2.00 2.00 1.70 2.00 1.25 1.75 1.50 1.50 2.00 1.70 1.75 1.75 1.75 2.00cpi 105 225 345 165 585 345 105 345 345 45 345 885 225 105 105 225cri 92 182 28 30 172 30 90 50 76 12 28 66 36 22 22 30��i 1.27 2.53 1.06 0.52 5.25 0.73 3.21 2.38 2.87 0.26 1.06 3.26 0.78 0.32 0.32 0.60x�i 229 231 681 698 278 987 187 353 376 692 681 671 714 873 873 8063.2 Phase 2: Penalty FunctionsThe individual maintenance rule of activity i according to Phase 1 provides a frequency at which activity iis executed. In Phase 3 a tentative planning is made based on this frequency and this tentative planningcan be changed to enable grouping of activities in Phase 4. To this end we need to calculate the costs ofshifting the execution time of an activity from its tentatively planned time. This will be done here.According to the maintenance rule chosen in Phase 1, activity i is executed each x�i time units. Letti be the tentatively planned execution time of activity i, found by adding x�i time units to the latestexecution date of the activity. We distinguish between two cases to determine the penalty costs hi(�t)for a shift �t from time ti (where �t may be positive or negative). In the �rst case, called Long-TermShift (LTS), the execution interval is changed once, from x�i to x�i +�t, while all future intervals remainx�i . This implies that all future execution times (after ti) are shifted by �t time units. In the latter case,called Short-Term Shift (STS), the execution interval is changed twice, �rst from x�i to x�i +�t, while



3 Rolling-Horizon Approach 6the following interval equals x�i ��t. This implies that all future execution times (after ti) remain thesame.In case of an LTS, the deterioration costs in the �rst interval (of length x�i + �t) are given byMi(x�i +�t), whereas otherwise Mi(x�i ) was paid. So the extra expected deterioration costs as a resultof a shift �t are given by Mi(x�i +�t)�Mi(x�i ). As all following intervals remain of length x�i , all futureexecutions times after ti are deferred by �t time units, which saves �t��i . Altogether, the penaltyfunction equalshi(�t) =Mi(x�i +�t)�Mi(x�i )��t��i ; �t > �x�i : (3)Notice that hi(�) is strictly convex (h00i (�) > 0 since Mi(�) is strictly convex) and hi(0) = 0. As M 0i(x) ���i < 0 for x < x�i and M 0i(x) � ��i > 0 for x > x�i , and h0i(�t) = M 0i(x�i + �t) � ��i , it follows thath0i(�t) < 0 for �t < 0 and h0i(�t) > 0 for �t > 0. Together with hi(0) = 0 this implies that hi(�) � 0.In case of an STS, the deterioration costs in the �rst two intervals (of length x�i +�t and x�i ��t,respectively) are given byMi(x�i +�t)+Mi(x�i ��t), whereas otherwise in each of the two �rst intervalsMi(x�i ) was paid. As all future execution times after ti remain unchanged, the penalty costs as a resultof a shift �t equal the extra expected deterioration costs, so thathi(�t) =Mi(x�i +�t) +Mi(x�i ��t)� 2Mi(x�i ); �x�i < �t < x�i : (4)Notice that this function is also strictly convex (h00i (�) > 0), that hi(0) = 0 and that hi(�) � 0. It evenholds that hi(�) is symmetric around zero.ExampleWhen we substitute (2) in (3) and (4), we obtain the following expressions for the penalty functions hi(�).For an LTS we have:hi(�t) = cri �x�i +�t�i ��i � cri �x�i�i ��i ��t��i ; �t > �x�i ; (5)and for an STS:hi(�t) = cri �x�i +�t�i ��i + cri �x�i ��t�i ��i � 2cri �x�i�i ��i ; �x�i < �t < x�i :As ri(�) is strictly increasing, Mi(�) is strictly convex. This implies that hi(�) is strictly convex as well,both for an LTS and an STS. In case of an STS, hi(�) is also symmetric around zero. In Figure 1 thepenalty function of activity 1 is given for an LTS.3.3 Phase 3: Tentative PlanningIn this phase a tentative planning for each activity i is made at a certain time t; opportunities areincorporated (if any) and based on the individual maintenance rules of Phase 1 we determine at whattime ti activity i should be carried out. Under average conditions, this is x�i time units after the latestexecution date of activity i. However, because of a varying use of component i this can be at anothertime, depending on the utilisation rate of component i since the latest execution of activity i.We now take a �nite planning horizon and we consider the activities that have to be executed inthis horizon. There are many possibilities to choose a planning horizon and the choice depends verymuch on the speci�c problem and the requirements of the maintenance manager. Here we choose thehorizon [t;maxi ti] induced by the tentative execution times ti, i = 1; . . . ; n, and we consider only the�rst occurrence of each activity. This implies that for each component there is exactly one plannedactivity. (Extending the model to deal with multiple occurrences of an activity in the planning horizonis obvious, but will not be done here.)



3 Rolling-Horizon Approach 7
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-200 -150 -100 -50 0 50 100 150 200Shift �t from t1Figure 1. The penalty function h1(�) of activity 1 according to an LTS (see equation (5)). Notice thath1(�) � 0, that h1(0) = 0 and that h1(�) is strictly convex.ExampleSuppose the system is considered at time (day) t = 0. Activity i is carried out each x�i days (see Table I).The time unit of these values x�i is a day, since the scale parameter �i is in days. As an example of how toincorporate certain short-term circumstances, we suppose here that the values of the scale parameter �iare based on an operating time of component i in running hours that are converted to days. Supposethe average utilisation factor is ai hours a day. In practice however, utilisation factors 
uctuate in time.We will show here how this can be incorporated in a short-term planning.Suppose that at day t = 0 the latest execution time of activity i is xi days ago and that during thatperiod component i has been used for ui hours a day. Consequently, at time t = 0 it is uixi runninghours since the latest execution of activity i, whereas activity i is normally carried out each aix�i runninghours. This implies that the new execution time of activity i is aix�i � uixi running hours from now.Assuming that in the coming period activity i will again be used ui hours a day (but this may also beanother value), we have the following expression for the tentative execution day ti of activity i:ti = 1ui faix�i � uixig = aiuix�i � xi:As an example, let the values of ai, ui and xi for the sixteen activities be as given in Table II. The valuesof ti are then easily calculated and are also tabulated in Table II (for completeness we repeat the valuesof x�i given in Table I). Notice that the components are indexed such that t1 � t2 � � � � � tn.Table IIValues of ai, ui, x�i , xi and tii 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16ai 20 18 12 12 14 8 22 10 12 8 7 7 9 11 11 13ui 13 12 15 12 7 8 19 13 11 11 16 9 6 11 12 12x�i 229 231 681 698 278 987 187 353 376 692 681 671 714 873 873 806xi 352 344 513 661 476 902 129 172 299 366 130 345 887 678 585 656ti 0 3 32 37 80 85 88 100 111 137 168 177 184 195 215 217We want to stress here again that this way of incorporating certain short-term circumstances is onlyto illustrate the possibilities of our approach, not the limitations. What we present here is a general



3 Rolling-Horizon Approach 8approach; we can apply many extensions or make alternative choices whenever a detail of our approachhas to be �lled in, but this will only blur the global picture. The details depend very much on the speci�cproblem and they do not change the concept of our approach.3.4 Phase 4: Grouping Maintenance ActivitiesWithout loss of generality assume that the n activities that are tentatively planned at execution times ti,i = 1; . . . ; n, in Phase 3 are indexed such that t1 � t2 � � � � � tn (notice that this order can be obtainedby application of standard sorting algorithms with a time complexity of O(n logn)). Consequently, theplanning horizon equals [t; tn].In this subsection we �rst give a mathematical formulation of the problem of grouping the n activitiesin the �nite planning horizon [t; tn]. Subsequently, we derive reduction theorems that make the problemmore tractable. Finally, based on these reduction theorems, we present an e�cient dynamic-programmingalgorithm to solve the problem in polynomial time.Mathematical Formulation of Grouping ProblemA group of activities is a subset of f1; . . . ; ng. A partition of f1; . . . ; ng is a collection of mutually exclusivegroups G1; . . . ; Gm, which cover all activities, i.e., Gj \Gk = ; 8 j 6= k, and G1 [ � � � [Gm = f1; . . . ; ng.A grouping structure is a partition of f1; . . . ; ng such that all activities within each group are jointlyexecuted at the same time.Given for each activity i is its penalty function hi(�t) expressing the additional expected costs ofshifting the execution time of activity i �t time units from its tentatively planned time ti. This shift �tmay be positive and negative (forward and backward in time). These penalty functions were derived inPhase 2. Here we assume the following with respect to the penalty functions hi(�):Assumption 1 hi(�) is strictly convex, i = 1; . . . ; n.Assumption 2 hi(�) � 0, i = 1; . . . ; n.Assumption 3 hi(0) = 0, i = 1; . . . ; n.Notice that the penalty functions derived in Phase 2 satisfy these assumptions. Assumption 1 is morerestrictive than necessary. In fact, in the sequel we only need to assume that every sum of penaltyfunctions has a unique minimum, and that this sum is decreasing left of its minimum and increasingright of it. However, for reasons of simplicity, we use Assumption 1.For any group G of activities, HG(t) :=Pi2G hi(t� ti) is the cumulative penalty function, expressingthe additional expected costs when executing group G at time t. The group G should be executed whenHG(�) is minimal, say at time t�G, which we call the optimal execution time of group G. Let H�G denotethe minimal value of HG(�), then H�G = HG(t�G).Each activity has the same set-up cost S, which implies that combining the execution of m activitiesyields a cost reduction of (m� 1)S. If for a group G the set-up cost reduction (jGj � 1)S is larger thanor equal to the minimal value H�G, G is called cost-e�ective. Equivalently, in this case we say that thesavings are greater than or equal to zero, where the savings are de�ned as (jGj � 1)S �H�G, the set-upcost reduction minus the sum of the penalty costs.An optimal grouping structure (partition) can be obtained by solving a set-partitioning problem (seealso Dekker, Smit and Losekoot [6]), where the objective is to maximise the total savings (that is, the sumof the savings of the groups in the grouping structure). However, set partitioning is NP-complete (seeGarey and Johnson [8]) and with n the number of activities, there are 2n � 1 possible groups (ignoringthe empty set). In some cases groups can be excluded beforehand, which decreases the size of the set-partitioning problem. This is possible by using the reduction theorems presented below. To this end weneed the following de�nition.De�ne intervals Ii; i = 1; . . . ; n, such that Ii = [ti +�t�i ; ti +�t+i ], with �t�i the smallest and �t+ithe largest solution of the equation hi(�t)�S = 0. The interval Ii clearly shows the maximum allowableshift (backward and forward) of the execution time of activity i, to form a group with one of the otheractivities such that the penalty costs of activity i do not exceed the reduction in set-up costs.



3 Rolling-Horizon Approach 9Problem ReductionWe will now present theorems that reduce the number of groups that have to be considered for identifyingan optimal grouping structure. The �rst two originate from Dekker, Smit and Losekoot [6]. The proofsof the other theorems are given in Appendix A.If for two activities i and j the intersection of the corresponding intervals is empty (i.e., Ii \ Ij = ;),then i and j cannot be combined cost-e�ectively, since the penalty costs are greater than the reductionin set-up costs. Therefore, the group fi; jg cannot be part of an optimal grouping structure. If for morethan two activities the corresponding intersection of intervals is empty, combining these activities can becost-e�ective but never optimal. This is stated in Theorem 1.Theorem 1 A group G can only be part of an optimal grouping structure if \i2GIi 6= ;. Furthermore,the optimal execution time t�G of G is in \i2GIi.We say that a group F contains a cluster G � F , if 8 i 2 F nG the following holds: i < minj2G j ori > maxj2G j. For instance, f3,5g and f3,5,7g are clusters in f1,3,5,7,8g, whereas f3,7g and f3,5,8g arenot.Theorem 2 A group F cannot be part of an optimal grouping structure if it contains a cluster G thatcan be split up more e�ectively into two clusters of activities.There is some redundancy between the results of Theorems 1 and 2. If \i2GIi = ; for a group G, thenit can be proved, analogously to Theorem 1, that G can be split up more e�ectively into two clusters ofactivities. According to Theorem 2 this implies that G cannot be part of an optimal grouping structure.A group excluded by Theorem 1 will thus also be excluded by Theorem 2. We will, however, still useTheorem 1, since it provides a better understanding of the problem and it will appear to be useful forthe properties de�ned below and for the dynamic-programming algorithm presented later.Dekker, Smit and Losekoot [6] present an algorithm that �rst eliminates groups that cannot be partof an optimal grouping structure according to Theorems 1 and 2, and that subsequently �nds the beststructure by applying set partitioning to the remaining groups. A great disadvantage of this methodis that its time complexity strongly depends on the data, since the number of groups excluded byTheorems 1 and 2 are dependent on the data. Theorems 1 and 2 might not eliminate any group at all,which implies that the number of groups left for the set-partitioning problem can be O(2n).In case the penalty functions are of a special form, however, the grouping problem has a very nicestructure. The total number of groups can be reduced to O(n2) if there is an optimal grouping structurein which every group has consecutive activities. A group G is said to contain consecutive activities ifG is a cluster in f1; . . . ; ng. This very important result will be established in Theorem 3, assuming oneof the following properties. (A similar consecutiveness result is obtained by Van Dijkhuizen and VanHarten [14], but for a di�erent problem and in an in�nite horizon.)Property 1 (Symmetry) All hi(�) are symmetric, i.e., hi(�t) = hi(��t), i = 1; . . . ; n, 8 �t > 0.Property 2 (Congruency) All hi(�) are congruent, i.e., �ihi(�) = h1(�), �i > 0, i = 2; . . . ; n.Property 3 (Dominance) For all i = 1; . . . ; n� 1 hi(�) dominates hi+1(�) right of ti+1, i.e., hi(ti+1�ti + �t) > hi+1(�t) for �t > 0, and for all i = 2; . . . ; n hi(�) dominates hi�1(�) left of ti�1, i.e.,hi(ti�1 � ti ��t) > hi�1(��t) for �t > 0.Notice that these properties need only be true for each penalty function hi(�) on its interval Ii. This isdue to the fact that each activity i must be executed within its corresponding interval Ii. Any group Gthat contains an activity i such that the optimal execution time t�G of G is not in Ii cannot be part ofan optimal grouping structure according to Theorem 1.Theorem 3 (Consecutive Activities) If Property 1, 2 or 3 holds there exists an optimal groupingstructure with consecutive activities.



3 Rolling-Horizon Approach 10In the proof of Theorem 3 (see Appendix A) it is shown that if one of the properties holds for twoactivities i and j it is optimal to execute these activities in the order of their tentatively planned executiontimes. This is independent of any activity other than i and j, so that the following corollary holds.Corollary 1 If Property 1, 2 or 3 holds for all activities in a subset A of f1; . . . ; ng, then it is optimalto execute the activities in A in consecutive order (that is, in the order as tentatively planned).This also implies that adding whatever activities to the problem does not change the order of executionof the activities in A.Due to Theorem 3, only groups with consecutive activities need to be considered. This implies thatthe maximum number of groups to be considered reduces from 2n � 1 to (1=2)n(n + 1), as there are1 group of n consecutive activities, 2 groups of n � 1 consecutive activities, . . . , and n groups of 1(consecutive) activity.It is still an open question whether there are more properties that guarantee the existence of anoptimal grouping structure with consecutive activities. In Appendix A it is shown that if none of theproperties holds, there may be a unique optimal grouping structure in which the activities are notconsecutive.The following theorem also provides a reduction of the number of groups to be considered; for thistheorem we implicitly assume that Property 1, 2 or 3 holds, so that Theorem 3 applies.Theorem 4 If in an optimal grouping structure of the �rst s activities activity s is executed in anothergroup than an activity p (1 � p < s), then for any r > s there is an optimal grouping structure of the�rst r activities in which activity s is also executed in another group than activity p.If we take s = p+ 1 in Theorem 4 we have the following corollary:Corollary 2 If in an optimal grouping structure of the �rst p+1 activities activity p+1 is executed onits own, then for any r > p + 1 there is an optimal grouping structure of the �rst r activities in whichp+1 is also executed separately from the activities 1; . . . ; p. Consequently, the groups found in an optimalgrouping structure of the �rst p activities are then also optimal in any optimal grouping structure of the�rst r activities.This implies that if it is optimal for the �rst p+1 activities to execute activity p+1 on its own, addingactivities i with ti � tp+1 does not in
uence the grouping of activities 1; . . . ; p. In that case the groupingstructure of activities 1; . . . ; p is optimal independently of the length of the time horizon, as long asno activity with tentative execution time smaller than tp+1 is added. This result is important since itimplies that we can decide that a certain solution is stable, so that �nite-horizon e�ects are eliminated.Such results cannot always be obtained for �nite-horizon models. In inventory theory, these stabilityresults are usually referred to as planning-horizon or turnpike theorems (see, for example, Wagner [15]).The next corollary is a more complicated application of Theorem 4 and provides another result withrespect to the stability of the grouping structure in the �nite planning horizon.Corollary 3 Suppose that for i = p � 1; . . . ; q � 1 group fl; . . . ; ig (l � p � 1 � q � 1) is part of anoptimal grouping structure GSi of the �rst i activities and group fp; . . . ; qg is part of an optimal groupingstructure GSq of the �rst q activities. For any r > q there is an optimal grouping structure GSr of the�rst r activities, in which the activities that are combined in GSp�1 are also combined in GSr.Notice that Corollary 3 immediately follows from Corollary 2 for the case p = q.Dynamic-Programming AlgorithmIf Property 1, 2 or 3 holds, there is by Theorem 3 an optimal grouping structure in which the activitiesin each group are consecutive. Every partitioning problem with an optimal solution that is consecutivecan be solved following a shortest-path approach (Chakravarty, Orlin and Rothblum [2]). This yields asolution in O(n2) time. However, in order to make use of Theorems 1, 2 and 4 as well, we shall presenta special algorithm that uses the principle of dynamic programming. This algorithm terminates after n



3 Rolling-Horizon Approach 11iterations, while in each iteration j a best group with last activity j is found. The array entry First [j]indicates the �rst activity of this best group. That is, if First [j] = i, then fi; . . . ; jg is the best groupfound in iteration j. The total savings of the corresponding optimal grouping structure is stored in thearray entry TotalSavings [j]. Thus we have the following approach.Initialisation: TotalSavings [0] := 0.Iteration 1: The best group with last activity 1 is f1g, with corresponding optimal grouping structuref1g. First [1] := 1. TotalSavings [1] := 0.FOR j := 2 TO n DO Iteration j: Consider the groups with last activity j in the following order:fjg, fj � 1; jg, . . . ; f1; . . . ; jg. Find the group for which the corresponding grouping structurecovering activities 1; . . . ; j has greatest savings. This is the group fi; . . . ; jg for which TotalSav-ings [i� 1] + savings of fi; . . . ; jg is maximal. First [j] := i. TotalSavings [j] := TotalSavings [i� 1]+ savings of fi; . . . ; jg.The best grouping structure can be found by backtracking. The corresponding total savings equalTotalSavings [n].In Appendix B it is shown how Theorems 1, 2 and 4 can be incorporated in this approach and wepresent the resulting dynamic-programming algorithm. This dynamic-programming algorithm has in theworst case a time complexity of O(n2), whereas in the best case an optimal grouping structure is foundin linear time.ExampleIn Table II we have the tentative execution times ti, i = 1; . . . ; 16, within the planning horizon [t; tn] =[0; 217]. To �nd the optimal grouping structure of the activities, we can apply the dynamic-programmingalgorithm. This is optimal when an optimal grouping structure with consecutive activities exists. Whenusing the minimal-repair model as described before, there are di�erent situations in which this is thecase.1. As hi(�) is symmetric around zero if we apply an STS, Property 1 holds if each penalty function isderived according to an STS.2. All �i are equal to 2. It is easily shown that if �i = 2, hi(�) is symmetric also when an LTS isapplied.3. All components are equal. In that case the penalty functions are equal and, a forteriori, congruent,which implies that Property 2 holds. It is easily shown that the same result is true when all cpi andall cri di�er a positive factor �i (i.e., �icri = cr1 and �icpi = cp1, �i > 0, i = 2; . . . ; n) and all otherparameters are equal.4. Property 3 holds. Here it is convenient to recall the de�nition of the intervals Ii in the beginningof this section: Ii = [ti +�t�i ; ti + �t+i ], with �t�i the smallest and �t+i the largest solution ofthe equation hi(�t) � S = 0. Due to Theorem 1, Property 3 needs only be true for each penaltyfunction hi(�) on its interval Ii. This implies that we can check for each hi(�) whether it intersectshi+1(�) on the interval [ti+1; ti +�t+i ], or hi�1(�) on the interval [ti +�t�i ; ti�1]. If this is not so,then Property 3 holds.If none of these situations occurs, there can still be a consecutive solution. In Appendix C it is shownwhich strategies can be followed to check the existence of a consecutive solution. When the existence ofa consecutive optimal solution cannot be proved, there are several other possibilities (see Appendix C),one of which is to apply the dynamic-programming algorithm as a heuristic. In Appendix C it is shownthat the optimal total savings are always less than twice as large as the total savings of the solutionfound with dynamic programming. This implies that application of the dynamic-programming algorithmyields a solution that in the worst case is almost twice as bad as the optimal total savings. However, toobtain such a worst case, we have to de�ne very pathetic penalty functions that are not likely to occur in



3 Rolling-Horizon Approach 12practice. Fortunately, the dynamic-programming algorithm can also be used to obtain an upper boundthat is mostly much better, using a technique described in Appendix C.We will illustrate here how dynamic programming can be used as a heuristic. To do so, we choosean example that is as general as possible, but such that none of the properties holds for all activities(otherwise the dynamic-programming algorithm is optimal). Consequently, we will not take the penaltyfunctions according to an STS, since these are symmetric so that Property 1 holds. Instead, we take foreach of the 16 activities tentatively planned in [0; 217] a penalty function according to an LTS (see (5)).In this case none of the properties holds for all activities. Application of the technique in Appendix Cto obtain an upper bound on the optimal total savings yields that the optimal total savings cannot belarger than 191.26.When we apply the dynamic-programming algorithm (as a heuristic) to the data of Table I, we �ndthat the total savings equal 191.24. Consequently, we can conclude that this solution -if not optimal- is atleast very good (the maximum deviation from the optimal value is 0.01 %). The dynamic-programmingalgorithm found for each iteration j a (best) group with last activity j, as given in Table III.The grouping structure given by the algorithm is found with backtracking. In the last iteration(iteration 16) group f10,11,12,13,14,15,16g is optimal. To cover the �rst 9 activities it is optimal initeration 9 to take group f5,6,7,8,9g. Finally, in iteration 4 group f1,2,3,4g is optimal. The correspondinggrouping structure is given in Table IV. The reduction in set-up costs is 13 � 15 = 195 (there areonly three groups, and consequently three set-ups), whereas the total penalty costs amount to 3.76.Consequently, the total savings are 191.24, which is about 4.03 % of the total individual preventivemaintenance costsP16i=1(cpi +S) = 4740. Applying Theorem 3 reduced the total number of groups from2n� 1 = 216� 1 = 65535 to (1=2)n(n+1) = (1=2)16(16+1) = 136. Through application of Theorems 1,2 and 4, 72 of these 136 groups needed to be investigated. Altogether it took 0.11 seconds of CPU timeon a 66 Mhz PC-AT to identify the grouping structure.Table IIIThe best group in each iterationIteration Best group Savings of Totalin this iteration this group savings1 f1g 0.00 0.002 f1,2g 14.99 14.993 f1,2,3g 29.37 29.374 f1,2,3,4g 44.03 44.035 f5g 0.00 44.036 f5,6g 14.99 59.027 f5,6,7g 29.89 73.928 f5,6,7,8g 44.26 88.299 f5,6,7,8,9g 58.22 102.2510 f5,6,7,8,9,10g 73.01 117.0411 f5,6,7,8,9,10,11g 83.53 127.5612 f10,11,12g 29.83 132.0813 f10,11,12,13g 44.79 147.0414 f10,11,12,13,14g 59.73 161.9815 f10,11,12,13,14,15g 74.52 176.7716 f10,11,12,13,14,15,16g 88.99 191.24Notice that in iteration 5 activity 5 is executed on its own. According to Corollary 2 this implies thatactivity 5 will never be executed with one of the activities 1; . . . ; 4. Consequently, the group f1,2,3,4g isoptimal in every grouping structure of the �rst r activities, r � 4.Notice also that for i = 9; 10; 11, group f5; 6; 7; 8; . . . ; ig is optimal in iteration i and, consequently,part of an optimal grouping structure of the �rst i activities, while in iteration 12 group f10,11,12g is



3 Rolling-Horizon Approach 13Table IVGrouping structure for the data in Table IGroup Savings Dayf1,2,3,4g 44.03 7.2f5,6,7,8,9g 58.22 89.6f10,11,12,13,14,15,16g 88.99 181.1Total savings 191.24optimal. An (imaginary) activity 17 cannot be combined with activity 9 or lower according to Theorem 4,thus it will be in group fi; . . . ; 17g, with 10 � i � 17. If i = 10 then group f5,6,7,8,9g is optimal (seeTable III), if i = 11 then f5,6,7,8,9,10g is optimal, and if i � 12 then f5,6,7,8,9,10,11g is optimal. Thisargument can be repeated for an activity 18 and so on. We thus applied Corollary 3, which impliesthat there for any r � 16 it is optimal to group the activities f1,2,3,4g (which we knew already fromCorollary 2) and to group the activities f5,6,7,8,9g (possibly with activity 10 and 11 if r > 16).3.5 Phase 5: Rolling-Horizon StepAfter application of Phase 4 we have a grouping structure for the n activities within the �nite planninghorizon [t; tn]. The maintenance manager can change the planning in case he/she is not satis�ed with itand then go back to Phase 3 or he/she can carry out one or more groups of activities according to thegenerated grouping structure and start with Phase 3 when a planning for a new period is required, forexample because new information (like an opportunity) becomes available.ExampleApplication of Phase 4 yields the grouping structure of the 16 activities within [0,217] as given in Table IV.Below we give examples of how an opportunity can be incorporated and how the maintenance managercan change the planning.Suppose that an opportunity occurs at t = 0, for instance as a result of a failure of the system. Thisimplies that the system is down and that other activities can be carried out at t = 0 without payingthe set-up cost S. This opportunity can be incorporated in our approach by de�ning an activity oppwith tentative execution time topp = 0, and with a penalty function hopp(�) that is in�nite for every shiftunequal to zero (hopp(�t) =1 for �t 6= 0) and with hopp(0) = 0. When we include this opportunity inour example, we obtain the same structure as in Table IV, except that activities 1,2,3,4 are now executedat time t = 0 instead of at time t = 7:2. This involves larger penalty costs (Hf1;2;3;4g(0) = 1:33 whereasHf1;2;3;4g(7:2) = 0:97), but we obtain extra savings of 15 cost units since now for group f1,2,3,4g noset-up cost has to be paid. Consequently, the savings of group f1,2,3,4g are now 4S � Hf1;2;3;4g(0) =60� 1:33 = 58:67 instead of 44.03.Incorporation of an opportunity can always be done like this; we only need to de�ne an appropriateactivity, in this case an activity that is �xed in time. In general, each activity that a maintenancemanager wants to �x in time can be represented by a penalty function that is in�nite for every shiftunequal to zero.Another possibility is to �x certain activities in a group; suppose for instance that the maintenancemanager wants to execute activities 8,9,10,11 together (possibly with other activities). In that casewe de�ne a new activity new with tentative execution time t�new = t�f8;9;10;11g, and with a penaltyfunction that equals the sum of the individual penalty functions minus the minimum value of the sum:hnew(�t) = Hf8;9;10;11g(t�f8;9;10;11g + �t) � H�f8;9;10;11g. This implies that hnew(�) � 0, hnew(0) = 0and that hnew(�) is strictly convex. Therefore, Assumptions 1, 2 and 3, are satis�ed so that we canapply our approach. When we do so we �nd that activity new is executed together with activities 5,6 and 7; the savings of the group f5,6,7,newg are 41.33. However, as activity new represents a groupof four activities, it yields savings itself: there is a set-up cost reduction of 3S. Since the penalty costs



4 Flexibility and Insight of the Approach 14of executing activities 8,9,10,11 together amount to H�f8;9;10;11g = 2:82, the savings of activity new are3S �H�f8;9;10;11g = 45� 2:82 = 42:18. When we add this to the savings of 41.33, we �nd that the actualsavings of group f5,6,7,newg=f5,6,7,8,9,10,11g are 41.33+42.18=83.51. The corresponding groupingstructure is given in Table V. Table VGrouping structure in case activities 8, 9, 10 and 11 must be executed togetherGroup Savings Dayf1,2,3,4g 44.03 7.2f5,6,7,8,9,10,11g 83.51 94.1f12,13,14,15,16g 88.99 186.2Total savings 186.92The total savings of this grouping structure are 186.92, which is slightly less than the (semi-) optimalvalue of 191.24 according to Table IV. The maintenance manager can now decide whether he/she indeedprefers this grouping structure with activities 8,9,10,11 executed together to the structure of Table IV.4 Flexibility and Insight of the ApproachThe approach presented in this paper has many advantages some of which will be discussed below.Our approach can be applied to many preventive-maintenance optimisation models. In fact, it canbe applied to all models described by Dekker [4] such as minimal repair, block replacement, inspectionand e�ciency models, but also to age-replacement kind of models (see Dekker, Wildeman and VanEgmond [7]). Not only preventive maintenance but also corrective maintenance can be incorporated [7].Yet our approach is not dependent on the underlying maintenance models. This is due to the factthat for an activity only a tentative execution time is needed and a penalty function that indicates howmuch we have to pay for deviating from this time. This implies that for di�erent activities we can chosedi�erent models; we can for instance combine activities modelled according to a minimal-repair modelwith activities modelled according to a block-replacement model. But it implies also that it is not evennecessary to have an underlying model; tentative execution times and penalty functions can as well beestimated or speci�ed directly (see, for example, Dekker, Smit and Losekoot [6]).A problem with most �nite-horizon models and, consequently, also with rolling-horizon approachesis that they require the de�nition of so-called residual values, which can be interpreted as the industrialvalue of the state of the system at the end of the horizon (compared to a brand-new system, for instance).The determination of residual values is rather arbitrary and depends on future strategies. The choice ofa de�nition of the residual values can have substantial e�ects on the solutions that are generated (see, forexample, Dekker, Wildeman and Van Egmond [7]). Our approach gets around the di�culty of de�ningresidual values; the penalty functions give indications of how short-term decisions in
uence future costs.The stability results that are derived in Section 3.4 are important as they show how the length ofthe planning horizon a�ects the generated planning. In practice it is favourable to chose a horizon suchthat a little change in this horizon hardly a�ects the planning, since it gives little insight and it wouldresults in little con�dence in the quality of the solution. Especially when a rolling horizon is applied it isoften desirable to know if groups will not change (much) when a new horizon is chosen for a subsequentplanning. By application of Theorem 4 and its corollaries we can often prove that groups will not changewith another horizon. Consider for instance the example in Section 3.4: after execution of group f1,2,3,4gat day t = 7:2 a new planning can be made without losing the optimality of this group.



5 Conclusions 155 ConclusionsIn this paper we presented a general rolling-horizon approach to group maintenance activities on a short-term basis. To this end a long-term tentative plan is made that is adapted to short-term information.This yields a dynamic grouping policy.The approach presented in this paper enables interactive planning. According to the decisions of themaintenance manager, the planning of Phase 4 for a certain period can be adapted. Each time this isdone, a dynamic-programming algorithm with a quadratic time complexity has to be applied. Therefore,the maintenance manager can easily and quickly see how decisions work out in the �nal maintenanceplan. The stability results with respect to the length of the planning horizon also help in obtaining moreinsight in this process.The 
exibility of our approach and the insight it provides are presumably more important in practicethan the `optimality' of the solution. The complexity of practical situations makes it often impossible to�nd real optimal solutions; models are simpli�cations of practical situations and optimality is hard toachieve. Even if it is possible to �nd the `optimal' solution, the resulting decision rules are often hard toimplement and lack any structure.AcknowledgementThe authors would like to thank S.W. Hadley and K.N. Srikanth of the Koninklijke/Shell-Laboratorium,Amsterdam for their useful comments.A Reduction TheoremsFor the theorems in this appendix we use Assumptions 1, 2 and 3 (see Section 3.4).The following lemma is a trivial property of strictly-convex functions that will implicitly be used inthe sequel.Lemma 1 If f(�) and g(�) are strictly-convex functions with minima t�f and t�g, where t�f < t�g, thenf(�) + g(�) is strictly convex and for its minimum we have t�f < t�f+g < t�g.Recall for the following theorems the three properties presented in Section 3.4.Theorem 3 (Consecutive Activities) If Property 1, 2 or 3 holds there exists an optimal groupingstructure with consecutive activities.proof: Let F and G be two groups of activities. Consider two activities i and j, with i 2 G and j 2 Fand i < j. Remark that i < j implies that ti � tj . Let t�F , t�G be the optimal execution times of thegroups F and G, respectively, and suppose that activity i and j are not executed in consecutive order,i.e., t�F < t�G.We will prove that when ti < tj , each grouping structure that contains F and G cannot be optimal.For ti = tj there sometimes can be an optimal grouping structure that contains F and G, but in thatcase there exists a grouping structure that is at least as good in which activity i is executed at t�F oractivity j at t�G or both. Altogether this implies that there is always an optimal grouping structure inwhich each pair of activities is executed in consecutive order, which completes the proof.Since it will be more convenient in this proof to think in terms of costs than in terms of savings,we take as objective the minimisation of the total costs instead of the maximisation of the total savings(the costs of a group are the penalty costs minus the reduction in set-up costs). We distinguish betweenthree cases: t�G � tj , ti � t�F and t�F < ti � tj < t�G.t�G � tj . Then we have t�F < t�G � tj , and thus, using Assumptions 1, 2 and 3, it is cheaper to executeactivity j at t�G than at t�F . This impliesH�F � (jF j � 1)S +H�G � (jGj � 1)S == Xl2F hl(t�F � tl) +Xl2G hl(t�G � tl)� (jF j � 1 + jGj � 1)S



A Reduction Theorems 16> Xl2Fnfjg hl(t�F � tl) + Xl2G[fjg hl(t�G � tl)� (jF j � 2 + jGj)S� H�Fnfjg � (jF j � 2)S +H�G[fjg � jGjS:(Note that F n fjg cannot be empty, and consequently that jF j � 2 � 0, since otherwise F = fjg so thatt�F = tj , which is in contradiction with t�F < t�G � tj .) Hence the groups F n fjg and G [ fjg are betterthan F and G. Consequently, F and G cannot be part of an optimal grouping structure.ti � t�F . Then we have ti � t�F < t�G, and thus, using Assumptions 1, 2 and 3, it is cheaper to executeactivity i at t�F than at t�G, and we can prove analogously that the groups F and G cannot be part of anoptimal grouping structure, since the groups F [ fig and G n fig are better. (Note that G n fig cannotbe empty, since otherwise G = fig so that ti = t�G, which is in contradiction with ti � t�F < t�G.)t�F < ti � tj < t�G. Suppose that it is not cheaper to execute activity i at t�F instead of at t�G or toexecute activity j at t�G instead of at t�F (otherwise, F or G or both are not optimal as shown above).This implies thathi(t�G � ti) � hi(t�F � ti) and (6)hj(t�F � tj) � hj(t�G � tj): (7)We now distinguish between Properties 1, 2 and 3 (in all cases Assumptions 1, 2 and 3 are used implicitly).1. Property 1 (Symmetry).Equation (6) and the fact that hi(�) and hj(�) are symmetric imply that t�G � ti � ti � t�F andconsequently t�G � tj � t�G � ti � ti � t�F � tj � t�F . This implies that hj(t�G � tj) � hj(t�F � tj).2. Property 2 (Congruency).Suppose �hi(�) = hj(�); for some � > 0. Equation (6) implies that hi(t�G � tj) � hi(t�G � ti) �hi(t�F � ti) � hi(t�F � tj), and consequently hj(t�G� tj) = �hi(t�G� tj) � �hi(t�F � tj) = hj(t�F � tj).3. Property 3 (Dominance).Equation (6) and the fact that hi(�) dominates hj(�) right of tj and hj(�) dominates hi(�) left of tiimply that hj(t�G � tj) < hi(t�G � ti) � hi(t�F � ti) < hj(t�F � tj).If ti < tj then we have strict inequalities in case of Properties 1 and 2 (we already have a strict inequalityin case of Property 3). This implies that if equation (6) holds, equation (7) cannot be true if ti < tj .Analogously, if equation (7) holds, then equation (6) cannot be true (if ti < tj). Consequently, if ti < tj ,both equations cannot be true at the same time. Hence, in that case it is more e�ective to executeactivity i at time t�F or activity j at time t�G or both, which implies that F and G cannot be part of anoptimal grouping structure. (Note that F n fjg and G n fig cannot be empty since t�F < ti < tj < t�G.) Ifti = tj then we still have a strict inequality in case of Property 3, so that the same holds in that case. ForProperties 1 and 2 it holds that strict inequality in one of the equations implies a contradiction with theother. So either one of the equations is an inequality, or both are equalities. In the �rst case it is moree�ective to execute one of the activities at the execution time of the group of the other. In the lattercase one activity (or both) can be executed at the time of the other without increasing the costs. Thisimplies that we can always �nd a grouping structure that is at least as good and in which the activities iand j are executed in consecutive order. 2In the following example it is shown that if none of the properties holds, there may be a uniqueoptimal grouping structure in which the activities are not consecutive. Suppose that four activities aretentatively planned at execution times t1; t2; t3 and t4. Suppose further that the penalty functionsof the activities are as drawn in Figure 2 (with asymptotes of h1(�) in 0 and in (t1 + t2)=2, of h2(�) in(t1+ t2)=2, of h3(�) in (t3+ t4)=2, and of h4(�) in (t3+ t4)=2 and in T ). Notice that none of the propertiesholds for all activities.Table VI shows the possible grouping structures in which only consecutive activities appear, and thecorresponding savings (where h2(t�2;3 � t2) = h3(t�2;3 � t3) = �). The grouping structure f1g,f2,3g,f4gwith savings S�2� is the best structure with consecutive activities. However, group f1,3g has an optimalexecution time just right of t1 with penalty costs S=M and group f2,4g has an optimal execution timejust left of t4 with the same penalty costs (i.e., S=M). Thus the grouping structure f1,3g,f2,4g yields



A Reduction Theorems 17

0 T�
S=M

t1 t2 t�2;3 t3 t4Figure 2. Penalty functions without Property 1, 2 or 3.savings S � S=M + S � S=M = 2S � 2S=M , which is better than S � 2� if M is su�ciently large. It iseasily veri�ed that the grouping structure f1,3g,f2,4g is optimal and unique. Consequently, the optimalgrouping structure does not consist of groups with consecutive activities.Table VIGrouping Structures with Consecutive ActivitiesStructure Savings Structure Savingsf1g,f2g,f3g,f4g 0 f1g,f2g,f3,4g �1f1,2g,f3g,f4g �1 f1,2,3g,f4g �1f1,2g,f3,4g �1 f1g,f2,3,4g �1f1g,f2,3g,f4g S � 2� f1,2,3,4g �1Notice that in the example the quotient of the optimal total savings and the total savings of the bestconsecutive solution equals (2S � 2S=M)=(S � 2�). This quotient can be arbitrarily close to the value2 by making M su�ciently large and � su�ciently small. In Appendix C we show that this is a worstcase; the optimal total savings are always less than twice as much as the total savings of the optimalconsecutive solution.We will now prove Theorem 4.Theorem 4 If in an optimal grouping structure of the �rst s activities activity s is executed in anothergroup than an activity p (1 � p < s), then for any r > s there is an optimal grouping structure of the�rst r activities in which activity s is also executed in another group than activity p.proof: In the following, GSi always denotes an optimal grouping structure of the �rst i activities (i.e.,activities 1; . . . ; i).Consider an optimal grouping structure GSs of the �rst s activities in which activity s is executedseparately from activity p. Accordingly, in GSs there exists an activity p0 � p such that activity p0 + 1is executed in a group fp0 + 1; . . . ; qg with p0 +1 � q � s. This implies that the grouping structure GSqde�ned by GSq := GSp0 [fp0 + 1; . . . ; qg (i.e., an optimal grouping structure GSp0 of the �rst p0 activitiesextended with the group fp0 + 1; . . . ; qg) is an optimal grouping structure of the �rst q activities. Wewill prove that for any r > q there is an optimal grouping structure GSr of the �rst r activities in whichactivity p0 is executed separately from activity r. Then this holds a forteriori for p and any r > s.As in the proof of Theorem 3 we take as objective the minimisation of the total costs instead of themaximisation of the total savings. Let the total costs of an optimal grouping structure of the �rst i



B Dynamic-Programming Algorithm 18activities be denoted by C(GSi). Take r > q and let GS0r be an optimal grouping structure of the �rstr activities. If in this GS0r activity r is executed separately from activity p0, then we take GSr = GS0rand we are ready. If in GS0r activity r is not executed separately from activity p0, then GS0r contains agroup fl; . . . ; rg with l � p0. We shall show that the grouping structure GSr with group fp0 + 1; . . . ; rginstead of fl; . . . ; rg is at least as good as GS0r. We distinguish between the case that t�p0+1;...;q � t�l;...;rand t�p0+1;...;q > t�l;...;r.Suppose �rst that t�p0+1;...;q � t�l;...;r. For the costs C(GS0r) of GS0r we haveC(GS0r) = C(GSl�1) +H�l;...;r � (r � l)S= C(GSl�1) +Hl;...;r(t�l;...;r)� (r � l)S= C(GSl�1) +Hl;...;p0(t�l;...;r) +Hp0+1;...;r(t�l;...;r)� (r � l)S:Assumptions 1, 2 and 3 in combination with the fact that t�l;...;p0 � t�p0+1;...;q � t�l;...;r yieldHl;...;p0(t�l;...;r) � Hl;...;p0(t�p0+1;...;q):Using this and adding 0 = Hp0+1;...;q(t�p0+1;...;q)�Hp0+1;...;q(t�p0+1;...;q) we haveC(GS0s) � C(GSl�1) +Hl;...;p0(t�p0+1;...;q) +Hp0+1;...;q(t�p0+1;...;q)�Hp0+1;...;q(t�p0+1;...;q) +Hp0+1;...;r(t�l;...;r)� (r � l)S= C(GSl�1) +Hl;...;q(t�p0+1;...;q)� (q � l)S�Hp0+1;...;q(t�p0+1;...;q) +Hp0+1;...;r(t�l;...;r)� (r � q)S:The costs C(GSl�1) + Hl;...;q(t�p0+1;...;q) � (q � l)S are the costs of a grouping structure of the �rst qactivities, which are of course greater than or equal to C(GSq). Since GSq contains group fp0 + 1; . . . ; qg,we have:C(GS0r) � C(GSp0 ) +Hp0+1;...;q(t�p0+1;...;q)� (q � p0 � 1)S�Hp0+1;...;q(t�p0+1;...;q) +Hp0+1;...;r(t�l;...;r)� (r � q)S� C(GSp0 ) +H�p0+1;...;r � (r � p0 � 1)S:Thus we have a grouping structure of the �rst r activities with costs less than or equal to C(GS0s) andwith group fp0 + 1; . . . ; rg instead of group fl; . . . ; rg; for GSs we take this grouping structure. SinceGS0r is optimal, GSs must also be optimal.If t�p0+1;...;q > t�l;...;r, then Hl;...;r(t�l;...;r) is not split up in Hl;...;p0(t�l;...;r) + Hp0+1;...;r(t�l;...;r) but inHl;...;q(t�l;...;r) +Hq+1;...;r(t�l;...;r). Further the proof is analogous. 2B Dynamic-Programming AlgorithmHere we show how Theorems 1, 2 and 4 can be incorporated in the approach of Section 3.4 and wepresent the resulting dynamic-programming algorithm.Although Theorem 1 is redundant when Theorem 2 is applied, it will be used because it takes lesstime (the intervals Ii can be stored, hence checking whether \l2GIl = ; is easier than calculating H�G).Besides, having the intersection \l2GIl facilitates the calculation of H�G.Let G = fi; . . . ; jg; i < j, be an arbitrary group with consecutive activities. If \l2GIl = ;, then Gand every other group that contains G cannot be optimal according to Theorem 1. We use a parameterLow, indicating the lowest indexed activity that can be in an optimal group together with activity j initeration j. If \l2GIl = ;, then Low is updated to i + 1, because in later iterations k > j no activitywith index smaller than i+ 1 can be in a group that is part of the optimal grouping structure.If G is not excluded by Theorem 1, then the savings of G, (j � i)S � H�G, and the correspondingoptimal execution time t�G are calculated. Subsequently, G is compared to the groups G1 = G n fig andG2 = G n fjg. If G has less savings than G1 or G2 then G can be split up more e�ectively into twoclusters of activities, viz. into fig and G1 or into G2 and fjg (remember that the savings of an activityexecuted on its own are zero). Then G and every group that contains G as a cluster cannot be part ofan optimal grouping structure according to Theorem 2. These are the groups fl; . . . ; kg, l � i and k � j.



C Optimality of Dynamic Programming 19In that case Low is updated to i + 1, since we do not need to consider groups with �rst activity lowerthan i+ 1 in later iterations. To avoid extra work while comparing G to G1 and G2, we use a variablewith the savings of G1 (the previous group considered) and, after checking G, update it with the savingsof G. For G2 we use an array with the savings of the groups considered in the previous iteration, andwe update the ith entry, after reading the savings of G2, with the savings of G.Suppose that G = fi; . . . ; jg is the best group in iteration j. This implies that G is part of an optimalgrouping structure of the �rst j activities. In any following iteration k > j there is by Theorem 4 a bestgroup containing activity k, which does not contain any of the activities 1; . . . ; i� 1. This implies thatthe variable Low can be updated to i.Altogether, we have the following algorithm (for the de�nitions of the arrays TotalSavings and Firstsee Section 3.4):Low := 1;TotalSavings [0] := 0;FOR j := 1 TO n DOi := j;First [j] := j;TotalSavings [j] := TotalSavings [j � 1];WHILE i � Low DOStep 1 Let C = fi; . . . ; jg.IF i = jTHEN the savings S(C) of C are zero; goto step 5;Step 2 IF \l2CIl = ;THEN Low := i + 1 (Theorem 1); goto step 5;Step 3 Calculate S(C) = the savings of C, and the correspondingoptimal execution time. Let C1 = C n fig, C2 = C n fjg,and S(C1) and S(C2) be the corresponding savings;IF S(C) < S(C1) OR S(C) < S(C2)THEN Low := i + 1 (Theorem 2); goto step 5;Step 4 IF S(C) + TotalSavings [i - 1] > TotalSavings [j]THEN First [j] := i;TotalSavings [j] := S(C) + TotalSavings [i - 1];Step 5 i := i - 1;END WHILELow := First [j] (Theorem 4).END FORIn the worst case, e.g., when ti = t0 + i� for all i, with � su�ciently small, Theorems 1, 2 and 4do not exclude any group at all, which implies that (1=2)n(n + 1) groups are considered. In the bestpossible case, e.g., when the distances between the tentative execution times are so large that combiningis never cost-e�ective, only the groups consisting of one and two activities are considered, of which thereare n + (n � 1) = 2n � 1. This implies that in the worst case the algorithm has a time complexity ofO(n2), whereas in the best case an optimal grouping structure is found in linear time.C Optimality of Dynamic ProgrammingIn the example of Section 3.4 a number of situations for the minimal-repair model is mentioned in whichthere exists an optimal grouping structure with consecutive activities. When such a structure exists, itcan be found with the dynamic-programming algorithm described before.If none of these situations occurs, there can still be a consecutive solution. Corollary 1 states thatactivities in a set A satisfying one of the Properties 1, 2 or 3 are always executed in consecutive order.This result can be used to check the existence of an optimal consecutive solution. We shall clarify thiswith an example. Suppose there are four activities 1,2,3,4. Activities 1 and 2 have symmetric penaltyfunctions and are therefore executed in consecutive order. The function h2(�) dominates h3(�) right of



C Optimality of Dynamic Programming 20t3 and h3(�) dominates h2(�) left of t2; therefore, activities 2 and 3 are executed in consecutive order.Activities 3 and 4 have congruent penalty functions and are therefore also executed in consecutive order.This implies that all activities are executed in consecutive order, so that a consecutive optimal solutionexists.When the existence of a consecutive optimal solution cannot be proved, then Corollary 1 can alsobe used in a branch and bound procedure in which enumeration (set partitioning) is applied on theremaining possibilities. Consider, for instance, the example of Figure 2 in Appendix A. The penaltyfunction of activity 1 dominates that of activities 2 (right of t2) and 4 (right of t4), so that activity 1is executed before activities 2 and 4. The penalty function of activity 4 dominates that of activities 1(left of t1) and 3 (left of t3), so that activity 4 is executed after activities 1 and 3. By this result manygrouping structures are eliminated. For the remaining possibilities enumeration can be applied. One canof course still use Theorems 1 and 2 while applying enumeration, to make further eliminations.Another possibility is to apply the dynamic-programming algorithm as a heuristic in case the existenceof an optimal consecutive solution cannot be proved. The dynamic-programming algorithm �nds agrouping structure that is optimal among the grouping structures with consecutive activities. As we sawin the example of Figure 2 in Appendix A, this is not necessarily an overall optimal grouping structurewhen none of the properties holds for all activities. We constructed an example in which the optimaltotal savings can be arbitrarily close to twice as much as the best grouping structure with consecutiveactivities. Below we show that this is the worst case. The optimal total savings are never twice or moreas much as the total savings of the best grouping structure with consecutive activities.To this end we need the following lemma. In this lemma we use the notion of intermediate activities.We say that an activity i is intermediate for a group G if i 2 [minj2G j;maxj2G j], but i 62 G. Forexample, for group f2,5,7,8,9,11g activities 3,4,6,10 are intermediate activities. If activity 3 is executedin group f1,3,4,6,10g then activities 2,5,7,8,9 are intermediate activities for this group. Lemma 2 statesthat in an optimal grouping structure each activity that is an intermediate activity for a certain group, isexecuted before the tentative execution time of the �rst activity in that group (that is, the activity in thegroup with the lowest index) or after the tentative execution time of the last activity in the group (theone with the highest index). For example, if group f2,5,7,8,9,11g is in an optimal grouping structure,then activity 3, which is an intermediate activity for this group, must be executed before t2 or after t11.Consequently, if activity 3 is in group f1,3,4,6,10g, then the optimal execution time t�f1;3;4;6;10g of thisgroup must be outside the interval [t2; t11].Lemma 2 In an optimal grouping structure it holds that each activity i that is an intermediate activityfor a group G must be executed in a group Fi with optimal execution time t�Fi 62 [minj2G tj ;maxj2G tj ].proof: Let activity i be an intermediate activity for group G: i 2 [minj2G j;maxj2G j], but i 62 G.Let min denote the activity in group G with the lowest index and max the activity with the highestindex and let tmin and tmax be the corresponding tentative execution times, then tmin = minj2G tj andtmax = maxj2G tj . Let activity i be in a group Fi with optimal execution time t�Fi . We will show that ift�Fi 2 [tmin; tmax] the group G cannot be optimal (notice that this also implies that the group Fi containsactivities other than activity i, since otherwise t�Fi = ti 2 [tmin; tmax]).Let t�G be the optimal execution time of group G, then t�G 6= t�Fi , since otherwise the group G [ Fiis a group with the same penalty costs and with an extra set-up cost reduction of S, so that the groupG [ Fi is better than G and Fi, which implies that G and Fi cannot be optimal. Consequently, ift�Fi 2 [tmin; tmax] we have that t�G 2 [tmin; t�Fi) or t�G 2 (t�Fi ; tmax] (notice that this also implies that tminis strictly smaller than tmax). Due to Assumptions 1, 2 and 3 it is in the �rst case cheaper to executeactivity max at time t�Fi instead of at t�G, and in the latter case it is cheaper to execute activity minat time t�Fi instead of at t�G. As in both cases the penalty costs are smaller and the total set-up costreduction does not change, we have that group G cannot be optimal. 2Let now TS�(P ) be the total savings of an optimal grouping structure of a problem P and let TSdp(P )be the total savings of the grouping structure found with the dynamic-programming algorithm. HenceTSdp(P ) are the total savings of a best grouping structure with consecutive activities. Using Lemma 2,we can now prove that TS�(P )=TSdp(P ) < 2.



C Optimality of Dynamic Programming 21Theorem 5 It holds that TS�(P )=TSdp(P ) < 2.proof: Take an arbitrary problem P with n activities and with penalty functions that satisfy Assump-tions 1, 2 and 3. Let GSn be an optimal grouping structure and let TS�(P ) be the correspondingoptimal total savings. Assume that in GSn not all activities are executed in consecutive order (otherwiseTS�(P ) = TSdp(P ) and hence TS�(P )=TSdp(P ) = 1 < 2, so that the proof immediately follows). Fromthis non-consecutive GSn we will construct a consecutive grouping structure GS0n such that the totalset-up cost reduction is not smaller than half the total set-up cost reduction of GSn and such that thetotal penalty costs of GS0n are smaller than those of GSn. This implies that GS0n has total savings thatare larger than TS�(P )=2. Since GS0n is a grouping structure with consecutive activities, its total savingsare of course smaller than or equal to TSdp(P ), so that TSdp(P ) is larger than TS�(P )=2 and the desiredresult follows.How do we construct such a GS0n from GSn? Consider in grouping structure GSn the group G1that contains activity 1. If there is no intermediate activity for group G1, then all activities in G1 areexecuted in consecutive order (group G1 may then consist of activity 1 only). In that case we de�neG01 = G1 for the grouping structure GS0n. If there is at least one activity that is an intermediate activityfor group G1, let then activity i be such an activity with the lowest index. Then we know that activities1; 2; . . . ; i� 1 are in group G1 and are executed in consecutive order, and we de�ne G01 = f1; 2; . . . ; i� 1gfor the grouping structure GS0n (it may be that i equals 2, so that G01 = f1g). Notice that this impliesthat G01 is the �rst consecutive subgroup in group G1.Let max be the activity in G1 with the highest index, then tmax = maxj2G1 tj . Furthermore, we havethat minj2G1 tj = t1. Application of Lemma 2 yields that all intermediate activities for group G1 areexecuted before t1 or after tmax. Execution before t1 can never be cost-e�ective when Assumptions 1,2 and 3 are satis�ed, so that all intermediate activities for group G1 are executed after tmax. Let nowactivity j be the �rst activity in group G1 with an index higher than i, then activities i; i+1; . . . ; j�1 areall intermediate activities for group G1 (this may concern activity i only if j = i+ 1), and are thereforeexecuted after tmax. Let now k be the index of the �rst activity after activity j that is intermediatefor group G1. This implies that activities j; j + 1; . . . ; k � 1 are in group G1 and are executed inconsecutive order (it may be that k = j + 1, so that it concerns activity j only). This implies thatthe group fj; j + 1; . . . ; k � 1g is a consecutive subgroup of G1 and that these activities can be groupedcost-e�ectively. Activities i; i+ 1; . . . ; j � 1 are intermediate activities for group G1 and, consequently,executed after tmax. Execution of these activities before tmax is always cheaper due to Assumptions 1,2 and 3, so that these activities can cost-e�ectively be grouped with activities j; j + 1; . . . ; k � 1. Nowwe de�ne a new group G0i for grouping structure GS0n: G0i = fi; i+ 1; . . . ; j � 1; j; j + 1; k � 1g. Noticethat group G0i, through the way it is constructed, contains at least two activities and that there are notmore than two activities only if j = i+ 1 and k = j + 1 (in that case G0i = fi; jg). Notice further thatfor each activity in this group its penalty costs are smaller than or equal to those in grouping structureGS0n, since the shifts for these activities in group GS0i are equal or smaller and Assumptions 1, 2 and 3are satis�ed.Subsequently, we start with a new group G0k as above, where activity k plays the role of activity i.We continue until all activities 1; 2; . . . ;max are covered.Then we go on with activitymax+1 that is not in group G1 but in a group Gmax+1. Activitymax+1plays the role of activity 1 above. Notice that by our construction all activities with index higher thanmax in GSn must be executed after tmax+1, so that the situation is indeed the same as with activity 1above. We continue this process until all n activities are covered.In the above construction, each group of the grouping structure GSn is split up in subgroups andintermediate activities are added. Let there be m groups in GSn, then the total set-up cost reduction ofGSn equals (n�m)S. Each time a group of GSn is split up, the �rst activity (equivalent with activity 1above) may be executed on its own in the new grouping structure GS0n, but each of the other activities ofthe group is executed with at least one other activity. Consequently, as there are m groups in GSn, theremay be m activities that are executed on their own in GS0n. However, the remaining n �m activitiesare in the worst case paired. Therefore, the total set-up cost reduction of GS0n is equal to (n�m)S=2 inthe worst case. Summarising, in the worst case the total set-up cost reduction of the grouping structureGS0n is half the total set-up cost reduction of the grouping structure GSn.
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