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Abstract

In this paper the e�ect of the break quantity rule on the inventory costs in a 1{warehouse,

N{retailers distribution system is analyzed. The break quantity rule is to deliver large

orders from the warehouse, and small orders from the nearest retailer, where a so{called

break quantity determines whether an order is small or large. Under the assumptions that

the stock at the warehouse can only be used to satisfy large orders, and that demand dur-

ing the leadtimes is normally distributed, an expression for the inventory costs is derived.

The objective of this paper is to provide insight into the e�ect of the break quantity rule

on the inventory holding costs, and therefore we present extensive computational results,

showing that in many cases the rule leads to a signi�cant cost reduction.

Keywords: Break quantity rule, Inventory, Multi{echelon distribution systems.

1 Introduction

In most 1{warehouse, N{retailers distribution systems, it is assumed that all customer de-

mand takes place at the retailers (e.g. Axs�ater [2, 3], Eppen and Schrage [6], Jackson [11],

J�onsson and Silver [12], Federgruen and Zipkin [8, 9]). Hence, the warehouse is only used

either to exploit quantity discounts available as a result of combining orders from several

retailers, or for risk{pooling purposes. Warehouses can be used to pool risk in at least two

di�erent ways (Schwarz [17]). First, they can pool risk over the outside{supplier lead time,

thereby reducing the variance of the retailers net inventory process. This type of risk{pooling,

which is called the joint ordering e�ect by Eppen and Schrage [6], does not require the ware-

house to hold inventory. Secondly, warehouses can pool risk by actually holding inventory
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and using it to rebalance retailer inventories which have become unbalanced because of very

high or very low demands at one or more retailers. Eppen and Schrage [6] call this the depot

e�ect. Imbalance of stocklevels at the retailers causes a major (mathematical) problem, as

�rst observed by Clark and Scarf [4]. Therefore, in most of the literature a so{called balance

assumption or allocation assumption (Eppen and Schrage [6]) is made, which rules out the

possibility that the stocklevels at the retailers will be unbalanced. Langenho� and Zijm [14]

showed that in a pure distribution system, where holding costs are equal for all echelons, it

is, under the balance assumption, optimal not to keep stock at the warehouse.

Imbalance of stocklevels is mainly caused by highly variable demand at the retailers. There-

fore, it seems interesting to �nd ways to reduce this variability in order to decrease the

probability of unbalanced stocklevels and thus increasing the service performance. In recent

papers by Nass, Dekker and Van Sonderen{Huisman [15], Dekker et al. [5] and De Kok [13]

the use of the break quantity rule in multi{echelon distribution systems was analyzed. This

tactical rule is to deliver large orders from the warehouse, and small orders from the retailer,

where a so{called break quantity determines whether an order is small or large. A motivation

for handling large orders di�erently is because in many cases customers ordering large batches

do not have an immediate need for delivery, or their order sizes are larger than necessary due

to quantity discounts. Observe that when the break quantity rule is applied, the warehouse

is also used to deliver orders directly to customers. Although from a practical point of view

this situation is an improvement over the previous one, from a mathematical point of view

it causes more problems. However, since Dekker et al. [5] showed that using the break quan-

tity rule will reduce the variability of demand at the retailers, the probability of imbalance

will also decrease, and by the above observations it seems reasonable to make the following

assumption:

The stock at the warehouse can only be used to satisfy large orders.

Hence, upon arrival of an order from the outside supplier, part of the order will be held at

the warehouse in order to satisfy large orders, and the remaining part will be allocated to the

retailers. The stock at the retailers can only be replenished when the next order from the

outside supplier arrives at the warehouse. Under the above assumption, the 1{warehouse, N{

retailers distribution system with the break quantity rule can be modeled as a 1{warehouse,

(N + 1){retailers distribution system, where retailers 1; : : : ; N are the original retailers and

retailer 0 denotes the warehouse, which satis�es demand from customers with large orders.

Dekker et al. [5] showed that applying the break quantity rule leads to a reduction in the

average costs. However, their expression for the average costs did not include the inventory

costs at the warehouse, which will surely be inuenced by the break quantity rule. Although

the retailer inventory costs certainly decrease, it is di�cult to say whether the warehouse

inventory costs will increase or decrease. Since the demand at each retailer is separated into
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small and large demand, and the variability of small demand is less than the normal variability,

it is easy to see that the variability of large demand exceeds the normal variability. However,

since all large demand of N retailers is centralized, the total variability will decrease. The

net e�ect is therefore di�cult to predict. In this paper an expression for the total inventory

costs, including the warehouse costs, is derived, under the assumption that the leadtime

demand is (approximately) normally distributed. This result, presented in the next section,

extends the analysis of Dekker et al. [5]. We do not aim at optimizing the break quantities,

because delivering large orders directly from the warehouse also has a signi�cant impact on

the transportation costs. On the one hand, direct deliveries are always shorter and therefore

they reduce the transportation costs. On the other hand, the average shipment size decreases,

which leads to an increase of the costs. Moreover, the warehouse can combine the delivery

of several large orders, in which case vehicle routing aspects also inuence the distribution

costs. The net cost e�ect thus depends, among others, on the locations of the warehouse,

retailers and the customers, the transport tari�s, and the order sizes, and is in general too

complex to analyze. Another motivation for not optimizing the break quantities, is because

the delivery leadtime of large orders is a�ected, and thus marketing aspects should also be

taken into account. Therefore, the objective of this paper is to provide insight into the e�ect

of the break quantity rule on the inventory holding costs. In Section 3 the performance of

the rule is tested for a wide range of parameter values. In Section 4 the main conclusions are

reported.

2 Inventory costs

Consider a 1{warehouse, N{retailer distribution system, where inventory is reviewed period-

ically. At every review, retailer j (j = 1; : : : ; N) places an order at the warehouse to raise the

inventory position to the retailer's order{up{to{level, and the warehouse places an order at

the outside supplier, with a size equal to the sum of all the retailer orders. Observe that the

ordersize of the warehouse is always equal to the system demand in the previous period. If

the warehouse placed a replenishment order in period t, this order will arrive in period t+L.

At this moment, the products are allocated among the retailers, such that the probability of

a stockout at retailer j (j = 1; : : : ; N) at the end of period t+L+ `

j

is equal for all retailers,

where `

j

denotes the warehouse{retailer j leadtime. We assume that this so{called equal

fractile position does not imply a negative allocation to one or more retailers, i.e. we adopt

the balance assumption. The sequence of events in any period is: review, order, arrival of a

replenishment order, demand occurs.

Demand that cannot be satis�ed from stock on hand will be backlogged. At each review a

holding cost h is charged for every unit of stock on hand, and for every unit backlogged a
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penalty cost p is charged. Since all stockpoints place a replenishment order at every review,

and all demand is backlogged, the ordering costs do not inuence the optimal policy, and

therefore they will not be considered.

Customers at retailer j (j = 1; : : : ; N) arrive according to a Poisson process with arrival

rate �

j

, and the sizes of the consecutive orders are i.i.d. with distribution function F

j

. We

consider this demand process because it enables us to distinguish between customers with

small and with large orders. If the break quantity rule is applied, with a break quantity

vector q := fq

1

; : : : ; q

N

g, then all orders at retailer j with a size exceeding the retailer j

break quantity q

j

will be delivered from the warehouse. As mentioned in the introduction, we

assume that all stock at the warehouse is dedicated for large demand. Hence, it is possible to

model this situation as a 1{warehouse, (N + 1){retailers distribution system, where retailer

0 denotes the warehouse. Clearly, the warehouse{retailer 0 leadtime `

0

equals zero.

If a customer arrives at retailer j with an order of size Y

j

, then the ordersize with respect to

this retailer equals Y

j

1

fY

j

�q

j

g

, while for retailer 0 it equals Y

j

1

fY

j

>q

j

g

, with 1

X

the indicator

function of the event X . By this observation, we obtain that the mean and variance of the

demand at retailer j (j = 1; : : : ; N) are given by

�

j
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j

E[Y

j

1

fY

j

�q

j

g

] (1)

�

2

j
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j

1

fY
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g

] (2)

and at retailer 0 by

�

0

=

N

X

j=1

�

j

E[Y

j

1

fY

j

>q

j

g

] (3)

�
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�
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1
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] (4)

Since the leadtime demand is a compound Poisson sum of i.i.d. random variables, we may

apply the central limit theorem [10], and approximate the distribution of leadtime demand

by the normal distribution. Hence, we can follow the approach of Eppen and Schrage [6] to

obtain the following result, which is proved in Appendix 1.

Theorem 2.1 If the system demand during L periods, and the retailer j (j = 0; : : : ; N)

demand during `

j

+ 1 periods are normally distributed, then the minimum average costs, as a

function of the break quantity vector q, are given by

C(q) = h

N

X

j=1

`

j

�

j

E[Y

j
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j
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j

g
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with c

1

:= (p + h)'(k), k = �

�1

(

p

p+h

) with '(�) and �(�) the pdf and cdf of the standard

normal distribution.

The �rst term of C(q) denotes the pipeline holding costs for all stock in transit between the

warehouse and the retailers. If the break quantity rule is applied, part of the inventory is

held back at the warehouse, and thus these costs decrease. The second term denotes the costs

of holding inventory at the retailers and the warehouse. One can see that it is di�cult to

predict whether or not these costs will decrease if the break quantity rule is applied with an

arbitrary q. Therefore, in the next section we perform many numerical tests to analyze the

reduction in average costs for di�erent parameter combinations.

To conclude this section, we discuss the situation where all retailers are identical. In this case

we can omit the subscript j. From Theorem 2.1 the next result follows directly.

Corollary 2.1 If the system demand during L periods, the demand at retailer j (j = 1; : : : ; N)

during ` + 1 periods, and the one{period demand at retailer 0 are normally distributed, and

all retailers are identical, then the minimum average costs, as a function of the break quantity

q are given by

C(q) = hN`�E[Y 1

fY�qg

]

+ c

1

�

�
q

N�E[Y

2

1

fY >qg

] +N

q

�(`+ 1)E[Y

2

1

fY�qg

]

�

2

+ LN�E[Y

2

]

�

1=2

3 Computational results

In this section we analyze the e�ect of the break quantity rule on the inventory costs, for a wide

range of parameter values. However, we limit ourselves to the cases where respectively 90%,

95% and 99% of the customers are satis�ed by the retailers. The reason for this is twofold.

First, due to �xed overhead costs at the retailers and for competitive reasons (e.g. fast de-

liveries) it is desirable that a large percentage of customers is served through the retailers.

Secondly, in case of small break quantities the transportation costs are very likely to increase

considerably, due to a signi�cant reduction in the average shipment size. In this section we

only analyze the identical retailer case. In order to obtain that a fraction � of customers is sat-

is�ed by the retailers, we determine the break quantity by q = inffy > 0 : F (y) � �g. More-

over, it is assumed that the ordersizes are Gamma distributed. The motivation for this choice

lies in the fact that this distribution only allows positive order sizes, it is easy to �t around the

�rst two moments, and it allows for an easy calculation of E[Y 1

fY�qg

] and E[Y

2

1

fY�qg

]. To

calculate the Gamma distribution function, an approximation by Abramowitz and Stegun [1]

was used. For � = 0:90, � = 0:95 and � = 0:99, we analyzed the cost reduction obtained

by applying the break quantity rule, for 5184 parameter combinations. In Table 1 the tested

values of the parameters are presented.
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parameter symbol values tested

unit holding cost h 1

unit penalty cost p 5; 10; 15

`external' leadtime L 1; 5; 10

`internal' leadtime ` 1; 3; 5

arrival rate � 5; 10; 20

mean order size E[Y ] 5; 10; 15; 20

squared coe�cient of variation c

2

Y

:= VAR[Y ]=(E[Y ])

2

0:5; 1; 1:5; 2

number of retailers N 1; 5; 10; 15

Table 1: Tested values of parameters

In Table 2 the minimum, average and maximum cost reduction are presented for all three

values of �. The cost reduction was calculated as 100�

C(1)�C(q)

C(1)

, where C(1) equals the

inventory costs when the break quantity rule is not applied. In the last row the percentage

of cases where the break quantity rule was cost e�ective is reported. In Figure 1 the relative

frequencies of all cost reductions are presented for all values of �. For all 5184 cases, the

cost reductions were rounded to the nearest integer. For each value the relative frequency is

plotted, and a line is drawn trough all the obtained points. From this �gure one may conclude

that overall the break quantity performs well. Note that the peaks in the �gure are caused

by the fact that we used discrete values for the parameters.

� = 0:90 � = 0:95 � = 0:99

minimum cost reduction -12.45 -13.44 -13.98

average cost reduction 19.53 10.84 1.10

maximum cost reduction 41.93 27.12 8.23

percentage of positive cost reductions 92.44 86.50 56.02

Table 2: Relative cost reductions obtained by the break quantity rule

On average, the break quantity rule leads to a reduction in the inventory holding costs.

However, in some cases the rule leads to an increase in the expected costs, in particular when

the break quantity is large (i.e. when � = 0:99 the expected costs increase in 44% of the

cases).

After analyzing the results we observed that the values of N , c

2

Y

and ` had the largest impact

on the performance of the break quantity rule. We now discuss each of them in detail. The

minimum cost reductions were in all cases obtained when the number of retailers was equal
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Figure 1: Relative frequencies (rel.fq.) of cost reductions

to one. To analyze the e�ect of the number of retailers, we considered the performance of

the break quantity rule for N = 1 and N = 15 separately. From Table 3 and Figure 2 one

observes that the number of retailers is very important for the results.

N = 1 � = 0:90 � = 0:95 � = 0:99

minimum cost reduction -12.15 -13.44 -13.98

average cost reduction 5.87 0.67 -3.76

maximum cost reduction 27.82 15.40 1.68

percentage of positive cost reductions 69.75 48.77 1.23

N = 15 � = 0:90 � = 0:95 � = 0:99

minimum cost reduction 11.27 5.49 -0.21

average cost reduction 27.41 16.75 4.02

maximum cost reduction 41.93 27.12 8.23

percentage of positive cost reductions 100 100 91.67

Table 3: Relative cost reduction for N = 1 and N = 15

For N = 15 and � = 0:90 or � = 0:95 the break quantity rule leads to a cost reduction in all

cases ! For � = 0:99 and N = 15 the worst case leads to an increase in costs of 0:21%. On

the other hand, for N = 1 and � = 0:99, the rule leads to an increase in inventory costs in

almost 99% of the tested cases. Note from Table 2 and Table 3 that for all values of � the

maximum cost reduction was obtained for N = 15. Hence, we conclude that delivering large
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Figure 2: Relative frequencies of cost reductions for N = 1 and N = 15 (� = 0:95)

orders from the warehouse is most advantageous in distribution systems with many retailers.

Since the main advantage of the break quantity rule is the reduction of the demand variability

at the retailers, we next analyze the inuence of the squared coe�cient of variation of the

order sizes (c

2

Y

) on the performance of the rule. In Table 4 and Figure 3 results are presented

for c

2

Y

= 0:5 and c

2

Y

= 2:0.

c

2

Y

= 0:5 � = 0:90 � = 0:95 � = 0:99

minimum cost reduction -12.15 -13.44 -10.85

average cost reduction 12.10 5.63 -0.36

maximum cost reduction 22.81 13.10 3.07

percentage of positive cost reductions 90.12 79.32 35.19

c

2

Y

= 2:0 � = 0:90 � = 0:95 � = 0:99

minimum cost reduction -5.37 -11.01 -13.98

average cost reduction 25.83 15.46 2.55

maximum cost reduction 41.93 27.12 8.23

percentage of positive cost reductions 94.14 90.74 67.54

Table 4: Relative cost reduction for c

2

Y

= 0:5 and c

2

Y

= 2:0

As expected, when demand is highly variable the rule performs better. Note that for � = 0:90

the percentage of cases where the break quantity rule leads to a cost reduction does not di�er

much for c

2

Y

= 0:5 or c

2

Y

= 2:0. However, the di�erence in magnitude of the cost reduction
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Figure 3: Relative frequencies of cost reductions for c

2

Y

= 0:5 and c

2

Y

= 2:0 (� = 0:95)

is very large. Observe from Table 2 and Table 4 that the maximum cost reductions were all

obtained for c

2

Y

= 2:0.

In Section 2 it was mentioned that using break quantities leads to a reduction in the pipeline

inventory costs. Since these costs are linearly dependent on the warehouse{retailer leadtime

`, it is obvious that this leadtime will have a signi�cant impact on the results. In the �nal

table and �gure the cost reductions are presented for ` = 1 and ` = 5.

` = 1 � = 0:90 � = 0:95 � = 0:99

minimum cost reduction -12.15 -13.44 -13.98

average cost reduction 13.21 6.22 -1.14

maximum cost reduction 35.45 22.12 5.25

percentage of positive cost reductions 78.70 72.92 31.71

` = 5 � = 0:90 � = 0:95 � = 0:99

minimum cost reduction 2.92 -1.41 -4.80

average cost reduction 24.48 14.46 2.87

maximum cost reduction 41.93 27.12 8.23

percentage of positive cost reductions 100 97.92 72.45

Table 5: Relative cost reduction for ` = 1 and ` = 5

For large values of `, the break quantity rule leads in almost all cases to a reduction in the

inventory holding costs. Again, the maximum and minimum cost reduction were obtained
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Figure 4: Relative frequencies of cost reductions for ` = 1 and ` = 5 (� = 0:95)

for ` = 5 and ` = 1, respectively. Also, for ` = 5 and � = 0:90 the costs decreased in all

situations.

4 Conclusions

In most 1{warehouse, N{retailers distribution systems, it is assumed that all customer de-

mand is satis�ed by the retailers. However, it was shown by Dekker et al. [5] that delivering

large orders from the warehouse can lead to a considerable reduction in the retailer's inven-

tory costs. We used a break quantity to distinguish between small orders and large orders.

In this paper the results of Dekker et al. [5] were extended by also including the inventory

costs at the warehouse. Using the normal approximation of the leadtime demand, we derived

an expression for the average inventory costs, as a function of the break quantities.

For the identical retailer case we investigated the performance of the so{called break quantity

rule for a wide range of parameter combinations. It followed that the relative cost reduction

was highly inuenced by the number of retailers, the warehouse{retailer leadtime, and the

variability of the order sizes. For all three parameters it holds that: the larger, the better. If

the number of retailers is very small, say 1 or 2, then with a high probability the rule leads

to an increase in the total costs. However, for a moderate and large number of retailers, the

costs decreased in almost all cases. The demand variability seemed to have a large impact

on the size of the cost reduction, rather than on the fact whether or not the break quantity

rule is cost e�ective. Finally, the warehouse{retailer leadtime determines to a large extent

the pipeline holding costs, and therefore a�ects the performance of the rule. It was observed

that for relatively large `internal' leadtimes, the costs decreased in almost all cases.
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Appendix 1: Proof of Theorem 2.1

De�ne V as the system demand during the �rst L periods, and W

j

as the demand at retailer

j during l

j

+ 1 periods (j = 0; : : : ; N)

One can verify that

�

v

:= E[V ] = L

N

X

i=0

�

i

; �

2

v

:= V ar[V ] = L

N

X

i=0

�

2

i

�

w;j

:= E[W

j

] = (`

j

+ 1)�

j

; �

2

w;j

:= V ar[W

j

] = (`

j

+ 1)�

2

j

; j = 0; : : : ; N

Suppose that at the beginning of period 0 the warehouse places an order at an outside supplier

to raise the system inventory position to the level y. Then at the beginning of period L the

system stock is equal to y � V . Now the stock is allocated among the retailers such that the

probability of a stockout at retailer j at the end of period L+ `

j

is equal for all retailers. Let

x

j

be the stock allocated to retailer j. Then the inventory at retailer j at the end of period

L + `

j

equals x

j

� W

j

. By the balance assumption and the assumption that the leadtime

demand is normally distributed, it follows that there exists some � > 0 such that

x

j

= �

w;j

+ ��

w;j

(5)

for all j. Using the relation

P

i

x

i

= y � V , one can easily determine �. Substituting � in (5)

it follows that

x

j

= �

w;j

+

y � V �

P

i

�

w;i

P

i

�

w;i

�

w;j

At the end of period L+ `

j

the stock level S

j

at retailer j will be

S

j

= �

w;j

+

y � V �

P

i

�

w;i

P

i

�

w;i

�

w;j

�W

j

= s

j

� �

j

where

s

j

:= �

w;j

+

y �

P

i

�

w;i

P

i

�

w;i

�

w;j
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and

�

j

:=W

j

+

�

w;j

P

i

�

w;i

V

Since V and W

j

are normally distributed, it follows that �

j

is also normally distributed, with

mean ��

j

and variance ��

2

j

given by

��

j

= �

w;j

+

�

w;j

P

i

�

w;i

�

v

��

2

j

= �

2

w;j

+

�

2

w;j

(

P

i

�

w;i

)

2

�

2

v

(6)

The expected one{period holding and penalty costs at retailer j are determined by

Z

s

j

0

h(s

j

� x)dG(x) +

Z

1

s

j

p(x� s

j

)dG(x)

with G(�) the distribution function of �

j

. By standard newsboy arguments (e.g. Porteus [16])

it follows that the optimal value of s

j

is equal to

s

�

j

= ��

j

+ �

�1

(

p

p+ h

)��

j

with �(�) the standard normal distribution. Let k := �

�1

(

p

p+h

). Solving

s

�

j

= �

w;j

+

y

�

�

P

i

�

w;i

P

i

�

w;i

�

w;j

for the optimal system order{up{to{level y

�

yields

y

�

= �

v

+

X

i

�

w;i

+ k

2

4

 

X

i

�

w;i

!

2

+ �

2

v

3

5

1=2

Observe that y

�

is independent of j, and thus it is optimal for all retailers.

Using straightforward calculations one can show (e.g. Eppen [7], Eppen and Schrage [6],

Porteus [16]) that the expected costs per period C

j

for retailer j (j = 0; : : : ; N) are given by

C

j

= h`

j

�

j

+ h(s

�

j

� ��

j

) + (h+ p)��

j

R

 

s

�

j

� ��

j

��

j

!

= h`

j

�

j

+ (hk + (p+ h)R(k))��

j

(7)

where R(z) :=

R

1

z

(x� z)d�(x) denotes the right{hand unit normal linear{loss integral.

The expected total one{period system costs are given by

C :=

X

i

C

i

= h

X

i

`

i

�

i

+ c

1

X

i

��

i

(8)

with

c

1

:= hk + (p+ h)R(k) = (p+ h)'(k)
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It follows by (6) that

X

i

��

i

=

X

i

v

u

u

t

�

2

w;i

+

�

2

w;i

(

P

i

�

w;i

)

2

�

2

v

=

X

i

v

u

u

t

�

2

w;i

(

P

i

�

w;i

)

2

+ �

2

w;i

�

2

v

(

P

i

�

w;i

)

2

=

s

(

X

i

�

w;i

)

2

+ �

2

v

=

s

(

X

i

q

(`

i

+ 1)�

i

)

2

+ L

X

i

�

2

i

After substituting this expression into (8), together with (1), (2), (3) and (4), the desired

result follows.


