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Abstract

This paper presents a case study of applying a Bayesian approach to forecast demand and

subsequently determine the appropriate parameter S of an (S-1,S) inventory system for

controlling spare parts of electronic equipment. First, the problem and the current policy are

described. Then, the basic elements of the Bayesian approach are introduced and the

procedure for calculating the appropriate parameter S is illustrated. Finally, we present the

results of applying the Bayesian approach in an innovative way to determine the stock levels

of three types of circuit packs at several locations. According to the proposed method, a

lower base stock than the one currently used is sufficient to achieve the desired service level.
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INVENTORY CONTROL OF SPARE PARTS USING A BAYESIAN APPROACH:

A CASE STUDY

Introduction

Inventory control of spare parts plays an increasingly important role in modern

operations management. The trade-off is clear: on one hand a large amount of spare parts ties

up a large amount of capital, while on the other hand too little inventory may result in poor

customer service or extremely costly emergency actions. This paper studies a specific case,

where a company producing circuit packs as spare parts for telephone switching systems has

a policy of keeping its customers content by maintaining a sufficiently high service level.

The company, which for confidentiality purposes will be called by the fictitious name

"Katharo Technik", KT for brevity, designs, develops and manufactures communication

systems. One class of its products is circuit packs with specialised software downloaded in

them. These circuit packs are parts of electronic equipment, installed in telephone switching

systems at large communication firms. It is clear that continuous operation of these systems

is essential for KT customers. When such a system ceases to operate because of a failure in a

circuit pack, it has to be immediately restored by replacing the failed circuit pack with a

readily available spare part. Thus, the demand for spare parts originates by the random

failures of the installed circuit packs.

Since the availability of a suitable spare part at the moment it is required is crucial,

the customers buy a priori the spare parts they need and keep them in KT's warehouses. That

means all circuit packs in the warehouses are property of the customers. There is a central KT

warehouse and local warehouses in several locations, in close proximity to the main

customers.  Circuit packs are distinguished as service affecting and non-service affecting.

Failure of the former has serious consequences on the availability of a switch to the end user

and consequently these parts are stocked locally to reduce downtime. Non-service affecting

circuit packs are stocked centrally. When a failure of a circuit pack in a switch is observed, a

spare part is retrieved from a KT warehouse and serves as a replacement. The replacement is

performed by maintenance personnel. The entire procedure lasts four hours when the spare

part comes from central stock and only two hours if it comes from a local warehouse. The

defective circuit pack is transported to the KT repair centre. After repair, the circuit pack is

usually restored to as good as new condition and it is put back in the central or local
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warehouse. If it is beyond repair to a satisfactory condition, it is replaced in stock by a new

one.

KT comes in agreement with its customers on the service level it has to provide them

and then tries to determine the minimum stock level that satisfies the customer requirements

at each stocking location separately, taking into account the respective circuit packs in use.

KT sees the spare parts stock as an insurance against unexpected events. In this regard there

is uncertainty both with respect to the average failure rate and with respect to the usual

fluctuations given an average failure rate. KT's present method tackles both types of

uncertainty separately. The Bayesian method we propose tackles them in an integral way and

gives a better indication of which service level one may finally expect. Although the

Bayesian method is not new in inventory control (see e.g. Kaplan1 and Sherbrooke2), the

application is.

The next section describes current practice for stock level calculation at KT. The

challenge and motivation behind this case study was to improve the current method without

altering the type of the inventory control policy. The vehicle to this end is a more accurate

forecast of the demand for spare parts, based not only on using all available past information,

but also on being "sensitive" to the new data observed each time a failure occurs.  The

following section presents the main elements of a Bayesian approach, which is appealing

because of its updating capability. As the choice of initial prior distribution parameters is a

key but subjective element of the Bayesian approach, this section also contains a discussion

and sensitivity analysis on the values of these parameters. Thereafter we present the actual

application of a suitably adjusted variation of the Bayesian method to the inventory control of

specific circuit packs and compare the results with those under the current method of stock

level determination.

Current practice

KT has established that the (S-1, S) inventory control model shall be used for

managing the inventory of spare parts. Consequently, the specification of the inventory

control policy entails the calculation of the base stock level S that fulfils customer

requirements at each particular case. Currently, the calculation is based on the assumption

that the time to failure of a circuit pack follows an exponential distribution (a valid

assumption given the random nature of electronic equipment failures) with parameter ?,

which is constant but different from one type of circuit pack to another. Therefore, the
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number of failures (demand for spare parts) of a circuit pack type during the replenishment

order lead-time L follows a Poisson distribution with mean ?nL, where n is the number of

installed circuit packs of that type. The company calculates S for a given service level p

(probability that a demand for a spare part is immediately met from stock) by determining the

lowest value of S that satisfies the inequality
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where the left-hand side expresses the probability that the demand during the replenishment

lead-time will not exceed S-1, the available stock just after one part has been retrieved from

stock and a replenishment order has been issued.

The problem with the current method, as described above, is that it takes the

parameter ? as known and constant. This is not always justifiable.  Especially when the

company wants to introduce a new type of circuit pack to the market, it is obvious that it has

no real data over the failure rate.  There exists only an initial failure estimate, which is used

as the parameter ? and is here denoted ?0 (KT uses its own terms for the estimates of ?, which

are purposefully disguised). This estimate is obtained from a reliability prediction method

used during the design of the equipment, in this case the parts count method3, which counts

the number of parts in the equipment / module and adds their failure rates up according to

their number (assuming every part is in a reliability series configuration).

As soon as the company receives the first real data for an item, after a twelve-month

installation period, it proceeds with the computation of ?1, which is the observed real failure

rate of installed circuit packs, computed from

?1 = r/nt . (2)

r is the number of observed failures during the operational time t, which is usually equal to

one year (8760 hours).  ?1 is calculated separately for each location and the ?1/ ?0 ratio is used

as an indication of prediction error.  However, although ?1 changes with time as new data is

collected, it is not used directly as the Poisson parameter ? in (1), because of the fear that the

real failure rate may thus be underestimated. Instead, ?2 is eventually calculated as the upper

95% confidence limit of ?1, using the fact that the confidence limits on the mean of a Poisson

distribution are derived by means of the chi-square distribution4 with 2r+2 degrees of

freedom. The exact formula for calculating ?2 is
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Example

n = 4010 circuit packs of a certain type were installed at a particular location. After one year

of operation (t = 8760 hours) r = 171 failures had occurred. The replenishment lead-time was

L = 1428 hours and the target service level 95% (p = 0.95). It turns out that ?1 = 4.868⋅10-6

failures per hour and ?2 = 5.526⋅10-6 failures per hour. Using (1) with ?=?2, the minimum base

stock that is required is S = 42 spare parts, providing a service level of 95.5%.

General framework of the Bayesian approach

Although the current method is certainly reasonable, two important issues arise:

a) By assuming that the parameter ? is constant, the uncertainty that characterises the

average failure rate is not taken explicitly into account.

b) By using the upper 95% confidence limit of the observed failure rate as the estimate of ?,

it is possible that the method, in an effort to account for the fluctuation of the real failure

rate, may be unduly conservative and may thus result in higher stock than necessary.

These concerns may be addressed using a Bayesian approach for the estimation of the

demand for spare parts. Specifically, the uncertainty about ? may be treated by assigning to it

a prior probability distribution, to be updated as a posterior distribution on the basis of new

observations (failures). The appropriate and convenient distribution of ? is the conjugate prior

for the Poisson distribution, namely the Gamma distribution with parameters a, ß and density

function
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where a > 0,  ß > 0 and G(a) is the Gamma function.  The Gamma distribution has mean a/ß,

variance a/ß2 and it is very flexible, as it may have a shape that is either one-tailed (a ≤ 1) or

two-tailed (a > 1). It is well known5 that if r demands are observed in a time period of length

t, then the posterior density function of ? is G(?a',ß'), with a' = a + r and ß' = ß + t.  The

compound Gamma-Poisson probability function for the number of failures k (demand for

spare parts) during the replenishment lead-time L is
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For convenience and consistency with the measures used by the company, in our

application the failure rate, ?, is defined as failures occurred in 1000 installed circuit packs

per year. Then, the base stock that provides at least the required service level p, which will be

termed "critical stock level", is the lowest value of S that satisfies the inequality
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To apply the method, initial values of the unknown parameters a, ß of the prior

Gamma distribution have to be specified. This is a critical and subjective part of the Bayesian

approach, because two equations are needed to define a and ß and these equations can be

specified in several alternative ways. A typical approach is to estimate

a) the mean or mode of the distribution of ? (first equation) and

b) a percentile of the distribution of ? (second equation)

by some means, either expert elicitation or some formal, statistical method. For example, the

first equation may be obtained by setting the mean of the prior Gamma equal to the original

estimate of the failure rate

a/ß = ?0 , (7)

while the second equation may come from experts' experience, e.g., in 95% of the cases the

actual failure rate does not exceed the double of the originally estimated failure rate ?0:
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After the observation of r failures in t years, the updating of the parameters is done through

a' = a + r , (9)

ß' = ß + tn/1000 . (10)

Since ? is expressed per 1000 units per year, the interpretation of the updating relationships

after r failures in n installed circuit packs in t years is that equivalently r failures are observed

in 1000 circuit packs in tn/1000 years.

It is clear that different initial assumptions may be made and consequently

expressions different from (7) and (8) may result, leading in turn to different a, ß values. To

explore the effect of these assumptions we examine below, through an example, four

alternatives, which result from a combination of two decisions. The first concerns the choice



6

to set either the mean, a/ß, or the mode, (a-1)/ß, of the Gamma distribution equal to ?0.  The

dilemma is due to the usual difficulty to characterise the single-valued estimate of the failure

rate as an average or a most probable value. The second decision concerns the upper limit of

the integral in (8). In the case of KT's circuit packs, some of the company experts expressed

the opinion that it should be set equal to 1.5?0 rather than 2?0. To summarise, the four

alternatives use the following expressions for determining a, ß of the initial prior:

First alternative: a/ß = ?0 and 950
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Example

Let us reconsider the example of the previous section (n = 4010 installed circuit

packs, r = 171 failures in t = 1 year, L = 0.163 years, p = 0.95). The original estimate of the

failure rate was ?0 = 81.5 failures per 1000 units per year and the observed failure rate after

one year is  ?1 = 42.64 failures per 1000 units per year.

For each of the four alternative rules, Table 1 shows the resulting a, ß, the mean µL

and the standard deviation s L of the compound Gamma-Poisson distribution for the demand

(failures) during L, as well as the critical stock level S.  The system of the two equations for a

and ß was solved approximately with the requirement that a is always a positive integer, so

that the Gamma function is easily evaluated: G(a) = (a-1)!.   The values of µL and s L refer to

the number n = 4010 of installed units. It is clear from Table 1 that the choice of the mean or

the mode does not affect significantly the outcome, in contrast to the choice of the upper 95%

limit on ?. Responsible for the noticeably larger critical stock level with the first and third

rules is apparently the much larger variance of the demand during the replenishment lead-

time L.
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Table 1 about here

When the initial priors are updated using the data on failures after one year (r = 171),

the new parameters a', ß' are also shown in Table 1, together with the new µL', s L' and S'. It is

easily seen that almost independently of the rule used for determining the initial a, ß, the

updated critical stock level S' is more or less the same and much lower than S.  In other

words, the end result is not sensitive to the choice of the initial prior. This is a very

encouraging finding, because it suggests that the effect of the only arbitrary part of the

Bayesian approach is diminishing quickly. However, if the prior has a very small variance,

the posterior has a strong "memory", i.e., it is affected more by the prior. This would be the

case for a circuit pack that has been in operation for a relatively long time and the prior

would then be formed based on a large number of observed failures. Since that prior is no

more an initial prior but a comprehensive summary of available information, this type of

insensitivity in updating is definitely an additional appealing feature of the Bayesian

approach.

It is also worth noting that the minimum base stock that is required according to the

Bayesian method is S' = 39 (rules 1, 2, 3) or S' = 40 spare parts (rule 4), while the appropriate

critical stock level according to the current method is S' = 42. The explanation for the

difference between the two methods is that the demand forecasted using the Bayesian

approach is lower than the one forecasted by the current KT method.  Figure 1 shows the

Gamma-Poisson demand distributions as they come out by the four Bayesian alternatives

(which they almost coincide), along with the Poisson demand distribution as it comes out by

the company's current method.

Figure 1 about here

Application and results

The preceding section exhibited and explained the general framework of the Bayesian

approach, making frequent reference to a specific example. The exposition reveals some

problematic issues with respect to practical application of the method in the case under

consideration:

a) How accurate is the original estimate of the failure rate ?0?  Although the effect of the

initial prior is quickly diminishing, a largely inaccurate estimate ?0 may lead to extremely

erroneous decisions for new circuit packs, with no failure data available.
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b) How reliable are the subjective estimates of upper percentiles? The experts tend to

provide such estimates without indicating or being able to specify that they refer to the 90

or 95 or some other percentile.

To resolve these issues we proceeded by first considering a generalisation of the four

alternative rules examined in the previous section. Specifically, for a circuit type with initial

estimate of the failure rate ?0 (obtained by the parts count method described in Section 2), the

following system of equations is formulated:

a/ß = ? ?0 (11)
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where the values ?  and d are to be evaluated.  In order to specify these values for our case,

we made a comparison between the initial estimates of ?0 and the actually observed failure

rates ?1 for all circuit packs for which real failure data was available.  The idea is to obtain an

indication of how far λ0 may be from the actual failure rate λ1 and then use this spread to

estimate a general prior which is scaled to the value of λ0, using equation (11) and (12), over

all circuit packs and locations.  More specifically, ?  and d are first evaluated for all circuit

packs with a history.  Then, their averages are computed and finally these average values are

used in (11) and (12) to estimate a and ß for new circuit packs, in conjunction with the

estimates of their respective λ0.

The procedure for evaluating ?  and d is illustrated below for circuit pack A, which at

the end of 1997 had already been installed for four years (1994-1997) in 12 locations. Table 2

contains the failure data for that circuit pack at the 12 locations, including the data for 1998,

which was used later for updating a, ß.

Table 2 about here

 The observed failure rate ?1 and then the ratio ?1/?0 is computed for all 12 locations

and four years. The ?1/?0 ratios are given in Table 3. The ?1/?0 values of locations 8, 9 and 11,

where less than 100 units are installed, are considered unreliable and are therefore excluded

from the calculations that follow. (It is seen from Table 3 that some of these values at

locations 8 and 11, where only 32 and 24 units are installed, are equal to zero, therefore

misleading). We now assume that all remaining 9⋅4 = 36 ?1/?0 ratios are independent

observations of the natural spread of the actual failure rate around the predicted failure rate,

caused by differences in location, product and use aspects. The average of those ratios is 0.5
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and ?  is set equal to this value. It is clear from (11) that this procedure amounts to set the

mean a/ß of the Gamma prior equal to the average observed failure rate ?1.

Table 3 about here

 Since 95% of 36 (total number of usable ?1/?0 ratios) is 34.2, the value ?1/?0 under

which 95% of the observations lie is the 34th (or third largest) ?1/?0 ratio. In this case, this

value is 0.7 (after excluding the two largest values, namely 0.83 and 0.74) and consequently d

= 0.7.  Using of ?  = 0.5 and d = 0.7 in (11) and (12) yields a = 25.5 and ß = 0.61. Then, the

critical stock levels S for circuit packs A in 1998 result from (6) with the appropriate n and L

= 0.163 years at each location. The leftmost columns of Table 4 contain the critical S in 1998

and the resulting service levels p at the 12 locations.

Table 4 about here

The above procedure is repeated for all circuit packs with a failure history. The

average value of ?  is 0.42 (meaning that ?0 is generally a rather pessimistic estimate of the

real failure rate, possibly because of the conservatism of the series configuration assumption

in estimating ?0) and the average value of d is 1.46.  For new circuit packs with no available

observations, these averages are used as approximate values of ?  and d in (11) and (12)

respectively to obtain the parameters a, ß of the initial prior distribution.

This method to determine the prior seems to be new; at least we have not seen similar

applications of Bayesian techniques to forecast demand and determine the appropriate

parameters of inventory systems like the one under consideration.

After obtaining new data (r failures in 1998), the parameters a, ß are updated

according to (9) and (10). At location 1, for example, a' = a + r = 25.5 + 95 = 120.5 and ß' =

ß + tn/1000 = 0.61 + 1871/1000 = 2.48. Table 4 shows the resulting critical S in 1999 and

corresponding service levels p at the 12 locations.  The table also includes the same

information for 1998 and 1999 using the company's current method of computing the critical

stock levels. For 1998, the initial estimate ?0 was used as the failure rate, whereas for 1999,

the current method was applied with ?2 computed from (3), taking into account the r observed

failures in 1998. It is obvious that the number of spare parts that should be kept in inventory

to provide the required customer service is significantly lower under the proposed method.

The comparison in Table 4 is somewhat uneven, because in contrast to the proposed

method the current KT method used less data, namely, it did not take advantage of the failure

data of years 1994-1997.  A more meaningful comparison, where both methods use the same

data, is conducted by means of Table 5, which shows the critical stock levels to achieve at

least a 95% service level for selected circuit packs (including type A), differing in the
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initially estimated ?0, at various locations. The table shows the installed circuit packs at the

locations, n, the observed failures r(T) in a certain year T and the critical stock levels ST and

ST+1 by the current and the proposed method for years T and T+1 respectively. The procedure

of computing ST, ST+1 under the current method is identical to the procedure used for

constructing Table 4. However, the calculation of ST for year T under the proposed Bayesian

method is done as for the case of new circuit packs (without using any failure information

other than ?0), i.e., it is based on computing a and ß from (11) and (12) with ?  = 0.42 and d =

1.46. Then, ST+1 is computed by updating a, ß, using r(T).

Table 5 about here

The general conclusion from Table 5 is that the proposed method recommends

significantly lower stock levels of spare parts for the installed circuit packs.  The reduction in

total stock for all three circuit pack types is 11.4% for year T (initial estimates and

computations without any failure observations) and 13.5% for year T+1 (after accumulation

and consideration of real failure data). For year T the reduction is certainly expected because

the current method uses ?0 as the failure rate, while the proposed method uses 0.42?0 as the

average failure rate. For year T+1, the stock reduction may again be attributed partly to the

different initial estimates of the failure rate, but it is even higher than in year T, thus proving

that the estimate ?2 is rather conservative.  Comparing the stock reduction for different types

of circuit packs, one observes that for type A, which has the highest initial estimate of the

failure rate (?0 = 81.5 failures per 1000 units per year), the reduction is 8.9% (T) to 10.9%

(T+1); for type B with ?0 = 68.3 and low usage (n), the reduction is 19% (T) to 20% (T+1)

and for type C with ?0 = 6.1 and high usage the stock reduction is 12.7% (T) to 14.1% (T+1).

Thus, no systematic relationship between either ?0 or n and stock reduction is identified.

A final comment concerns the calculation of stock of type A at year T, under the

proposed Bayesian approach. When the critical stock levels at the 12 locations were

computed for year 1998 (T) taking into account the available data from 1994 to 1997, the

resulting total stock (Table 4) was only 224 spare parts. When these stock levels were

computed ignoring the previous failure data, the total stock (Table 5) was much higher,

namely 326 spare parts. However, in both cases the total stock for the following year (using

of course the same observations from year T) is exactly the same, 204 units. The difference at

year T is explained by the much larger d in the second case (1.46 as opposed to 0.7 in the first

case) despite the smaller ?  (0.42 in the second case compared to ?  = 0.5 in the first case).

The lack of difference at year T+1 confirms the robustness of the Bayesian method to the

parameters of the initial prior Gamma distribution of ?.
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Conclusion

In this paper we presented a case study of applying a Bayesian approach to

forecasting the demand for spare parts of electronic equipment, with the objective of more

accurate determination of stock levels required to provide a negotiated service level to the

users of the equipment. The proposed method is not much more complicated than the one

currently in use by the company manufacturing and providing the spare parts. Using the same

form of inventory control policy, i.e., the (S-1,S) system, the Bayesian method results in

lower total stock for the same level of service.

The method presented in this paper works under the assumption that the failure data

originate from a stationary process (apart from the number of units installed in the field, for

which an easy correction can be made). One should always verify this assumption. In one

case we had data indicating a tenfold lower failure rate than the prior. In the Bayesian

updating the posterior got a mean in between the mean of the prior and the average of the

data and the variance of the posterior was lower than that of the prior, because of the

additivity in the updating formulas (9) and (10). This result, however, was surprising and

counterintuitive (as we expected the variance to increase), yet a consequence of the

stationarity assumption. Later on, the data appeared to contain errors and the correct data was

in line with the prior. A similar issue is a possible ageing of the units. If that occurs one

might regard old data as less important than new data and do not add the number of

observations, but consider weighting the old values with a forgetting factor.

The proposed method has been received very well by the company. As we also

advised them to use a METRIC like method for their multi-echelon inventory system, the

implementation of the Bayesian method was delayed to a later stage.

Acknowledgement

The research presented in this paper has been supported by grants from the European Union

in the Erasmus and TMR programs (project Reverse Logistics ERB 4061 PL 97-5650). The

authors would like to thank T. van der Ploeg from KT for his support during the study.



12

References

1. Kaplan, A.J. Bayesian approach to inventory control of new parts, IIE Transactions 20,

151-156, 1988.

2. Sherbrooke, C.G. Optimal inventory modelling of systems, John Wiley and Sons, New

York 1992.

3. MIL-HDBK-217F, Military Handbook, Reliability prediction of electronic equipment,

Department of Defense, Washington DC, 20301.

4. Kapur, K.C. and Lamberson, L.R. Reliability Engineering Design, John Wiley and Sons,

New York 1977.

5. Carlin, B.P. and Louis, T.A. Bayes and Empirical Bayes Methods for Data Analysis,

Chapman and Hall, London 1996.



13

Table 1: Sensitivity analysis on the choice of initial prior distribution for the failure rate

Rule a ß µL s L S a' ß' µL' s L' S'

1

2

4

13

0.049

0.159

53.2

53.2

27.6

16.5

106

84

175

184

4.059

4.169

28.2

28.8

5.7

5.8

39

39

3 7 0.074 62.1 24.8 108 178 4.084 28.5 5.8 39

4 18 0.209 56.4 15.3 84 189 4.219 29.3 5.8 40
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Table 2: Observed failures of circuit pack A and installed basis at the 12 locations

Location 1994 1995 1996 1997 1998 Units (n)

1 70 100 92 106 95 1871

2 146 176 180 161 188 4008

3 55 65 53 61 55 1071

4 106 21 132 171 112 3784

5 15 23 13 23 16 1016

6 29 48 64 88 41 1616

7 51 37 28 36 43 752

8 0 0 1 1 0 32

9 2 3 6 5 1 64

10 163 202 143 177 140 3792

11 0 0 2 0 0 24

12 74 78 101 79 90 1840

Table 3: Values of ?1/ ?0 ratios for circuit pack A at the 12 locations

Location 1994 1995 1996 1997 1998

1 0.46 0.66 0.60 0.70 0.62

2 0.45 0.54 0.55 0.49 0.58
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3 0.63 0.74 0.61 0.70 0.63

4 0.34 0.07 0.43 0.55 0.36

5 0.18 0.28 0.16 0.28 0.19

6 0.22 0.36 0.49 0.67 0.31

7 0.83 0.60 0.46 0.59 0.70

8 0.00 0.00 0.38 0.38 0.00

9 0.38 0.58 1.15 0.96 0.19

10 0.53 0.65 0.46 0.57 0.45

11 0.00 0.00 1.02 0.00 0.00

12 0.49 0.52 0.67 0.53 0.60

Table 4: Critical stock and service level for circuit pack A under the proposed and current

method

Proposed method Current method

1998 1999 1998 1999

Location S p (%) S p (%) S p (%) S p (%)

1 21 95.0 23 96.3 34 95.3 26 94.6

2 41 95.0 41 95.4 66 95.0 45 95.0

3 14 96.7 15 96.9 22 96.7 18 96.2

4 39 95.0 28 95.3 63 95.4 30 95.5

5 13 95.8 9 96.4 21 96.5 8 95.1
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6 19 95.9 14 96.1 30 95.3 15 96.8

7 10 95.0 12 97.0 16 95.2 15 95.7

8 2 97.9 2 98.1 3 99.1 3 99.1

9 3 98.9 3 99.1 4 98.9 4 98.9

10 39 95.0 33 95.7 63 95.3 36 95.9

11 2 98.8 2 98.8 2 95.9 3 99.6

12 21 95.6 22 96.0 34 96.1 26 96.6

Total 224 96.2 204 96.8 358 96.2 229 96.6
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Table 5: Critical stock levels for circuit pack types A (?0 = 81.5), B (?0 = 68.3), C (?0 = 6.1) under the proposed and current method

Circuit pack type A Circuit pack type B Circuit pack type C

Proposed Current Proposed Current Proposed Current

Loc. n r (T) ST ST+1 ST ST+1 n r (T) ST ST+1 ST ST+1 n r (T) ST ST+1 ST ST+1

1 1871 95 31 24 34 26 184 3 5 4 6 6 3584 15 6 6 8 8

2 4008 188 62 42 66 45 825 22 13 9 15 10 1920 0 4 3 5 5

3 1071 55 19 15 22 18 6 0 1 1 2 1 5887 30 9 10 11 12

4 3784 112 59 27 63 30 779 25 12 9 15 11 7678 19 11 8 13 9

5 1016 16 18 7 21 8 - - - - - - 20992 186 26 40 30 45

6 1616 41 27 13 30 15 81 1 3 3 4 5 13695 42 18 13 21 15

7 752 43 14 13 16 15 464 28 8 9 10 12 31037 206 37 44 41 49

8 32 0 2 2 3 3 4 0 1 1 1 1 289 0 2 2 2 2

9 64 1 3 3 4 4 4 0 1 1 1 1 3218 3 6 4 7 7

10 3792 140 59 33 63 36 738 29 12 10 14 12 30134 55 36 16 40 18

11 24 0 2 2 2 3 - - - - - - 1024 1 3 3 4 4

12 1840 90 30 23 34 26 453 25 8 9 11 11 29210 114 35 27 39 31

Total 19870 787 326 204 358 229 3538 133 64 56 79 70 148668 677 193 176 221 205


