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Summary. This paper deals with a finite-state, finite- 
action discrete-time Markov decision model. A linear 
programming procedure is developed for the computa- 
tion of optimal policies over the entire range of the 
discount factor. Furthermore, a procedure is presented 
for the computation of a Blackwell optimal policy. 

Zusammenfassung. Diese Arbeit befal~t sich mit diskre- 
ten Markoffschen Entscheidungsmodellen mit endlichen 
Zustands- und Aktionsr~iumen. Ein lineares Programm 
wird entwickelt for die Berechnung yon optimalen Poli- 
tiken tiber den ganzen Bereich des Diskontierungsfaktors. 
Anschliet~end wird ein Verfahren angegeben for die Be- 
stimmung einer Blackwell-optimalen Politik. 

1. Introduction 

At discrete time points t = 1, 2 . . . .  a system is observed 
by a decision maker in one of the states of a finite state- 
space E = {1, 2 . . . . .  N}. If, at time point t, the system is 
observed in state i, the decision maker controls the sys- 
tem by choosing an action from a finite action setA(i), 
which is independent of t. If the decision maker chooses 
action a in state i, then the following happens indepen- 
dently of the history of the process: 

(i) a reward ria is earned immediately, 
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(ii) the state of the system at the next time point is state 
] with transition probability Piai(Piai >~ O, j EE  and E/ 
Pia/= 1). 

A decision rule n t at time t is a function which as- 
signs to each action the probability of taking that action 
at time t; in general, it can depend on all realized states 
up to and including time t and on all realized actions up 
to time t. A policy R is a sequence of decision rules: 
R = (Tr I , 7r 2 . . . . .  n t, ...). A policy is said to be determin- 
istic and stationary if all decision rules are identical and 
nonrandomized. Hence, a deterministic and stationary 
policy is completely described by a mapping f:  E ~ U t 
A(i) such that f(i) EA(i)  for every lEE .  Such a policy 
is properly denoted by ~ f , . . . ) ,  however we will also 
write f for such a policy. 

Let {Xt, t = 1, 2 . . . .  } and (Yt, t = 1, 2 . . . .  ) be the 
sequences of random variables, denoting the observed 
states and chosen actions respectively. PR(Xt=], 
Yt = alXl =/) denotes the probability that at time t the 
observed state is state j and the chosen action is action 
aEA(]), on condition that the state at time t = 1 is state i 
and that policy R is used. Given discount factor ~ E[0, 1), 
initial state i and policy R, the total expected discounted 
reward is denoted by v~(R), i.e. 

o o  

v (R) =  t-i  R(Xt =/, r =alXl =i)r/a. 
t=I  

(1.1/ 

Let ~ = supR v~(R ), i E E. v a is called the value vector. 
A policy R* is called u-optimal ifvT(R*) = v~ for every 
i EE;  R* is called Blackwell optimal if for some ct o E 
[0, 1), ~ (R* )  = ~ for every i E E  and every a E [ao, 1). 

We shall use linear programming and derive a simplex 
procedure in which the elements are not from the usual 
Archimedean ordered field of the real numbers, but 
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from the non-Archimedean ordered field of the rational 
functions. The opportunity of using the simplex method 
for linear programs in non-Archimedean ordered fields 
is first observed by Charnes and Cooper [2], p. 756. 
Jeroslow [12] described how this concept can be used to 
obtain the solution of linear programs in which all coef- 
ficients are rational functions of a single parameter. In 
the next section, we give a description of the field F(IR) 
of the rational functions with real coefficients. Sub- 
sequently, we discuss the computation of optimal policies 
over the entire range of the discount factor. In Sect. 4, 
the computation of a Blackwell optimal policy is in- 
vestigated. 

2. The Field F(R) of Rational Functions with 
Real Coefficients 

Let IR be the ordered field of the real numbers with the 
usual ordering denoted by >. By P(~)  we denote the 
set of all polynomials with real coefficients, i.e. the set 
of elements 

p(x) = ao + a lx  + ... + anx n, 

where ai EIR, 1 <<.i<~n, nElN.  
(2.1) 

and Po and Pl are the identities with respect to the 
operations addition and multiplication, respectively. A 
complete ordering in F(R)  is obtained by 

P--t>Po if and only i f d  (p)d(q) > 0. (2.3) 
q 

If p'-t>po the rational function p- is called positive. 
q q 

p_ p 
t>~Po means that either p t=Po or a t > Po .  The fact q - s  

that the above described F(~.) is a non-Archimedean 
ordered field can be verified quite straightforwardly 
(cf. Van der Waerden [17], pp. 209-210). The con- 
tinuity of polynomials implies that the rational function 
p_ 

[ \ 

is positive if and only if ptx) > q q(x) 0 for all x sufficiently 

near 0. Hence, we obtain the following result. 

I.emma 2.1. The rational function p- is positive i f  and 
q 

p(x) 
only i f  there exists an xo > 0 such that q ~  > 0 for 

everyx ~ (0,Xo]. 

By Po and Pl we denote the polynomial po(x) = 0 and 
pl (x )  = 1 respectively. The dominating coefficient of a 
polynomial p given by (2.1) is the coefficient a k, where 
k is the smallest integer with a k 4= O. The dominating 
coefficient of p is denoted b y d  (p). The field F(IR) of 
rational functions with real coefficients consists of the 
elements 

p(x) 

q(x) ' 
where p andq are fromP(IR), andq ~Po.  (2.2) 

The polynomial p is identified with the rational function 
__.  _ r [ 
P two rational functions p and - are identified de- 

Pl q s 
P 

r ) i f  p(x)s(x) q(x)r(x) for every x E IR. noted by q t = _ .  = 

The operations + and �9 in F(P,) are the natural addition 
and multiplication, i.e. 

3. Computation of Optimal Policies Over the 
Entire Range of Discount Factors 

In this paragraph we discuss how, by linear programm- 
ing, the optimal policies over the entire range of the 
discount factors can be computed. To this end, we first 
review some results from discounted dynamic programm- 
ing (Sect. 3.1) and introduce the simplex format for the 
computations in the non-Archimedean ordered field 
F(~() (Sect. 3.2). The execution of the simplex meth- 
od in F(~() requires a procedure which computes zeroes 
of polynomials; this is dealt with in Sect. 3.3. Then, in 
Sect. 3.4, we describe the simplex procedure for the 
computation of optimal policies over the regions of the 
discount factors. This procedure is illustrated by Howard's 
taxicab problem (Howard [10], p. 44) in Sect. 3.5. 
Smallwood [15] also proposed a procedure to compute 
the optimum policy regions. In Sect. 3.6 we compare 
our procedure with his approach. 

p(x) + r(x) p(x)s(x) + r(x)q(x) 

q(x) s(x) q(x)s(x) ' 3.1. Review o f  Discounted Dynamic Programming 

p(x) r(x) p(x)r(x) 

q(x) s(x) l=q(x)s(x) 

Consider the Markov decision problem described in the 
introduction. For a deterministic and stationary policy 
f, r(f) denotes the N-vector with i-th component rif(i ), 
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and P(f) is the N x N matrix with (i, D-th element 
P/f(0/" The following results are well known (e.g. 
Derman [3 ]). 

Theorem 3.1.1. (0 For a deterministic and stationary 
policy f, the total expected discounted rewards are given 
by the unique solution o f  the linear system 

xi=ri( f )+aEiPtiOOxi ,  iEE.  (3.1.1) 

(ii) The value vector v a is the unique solution o f  the 
optimality equations 

Therefore, in the ordered field F(F,,), we have 

(1 +p)" V~ t/>(1 +p)ria + •piaiVf, 

a EA(i), i EE. 
(3.1.6) 

In general v~ is not an element of F(I~), but there are 
elements of F(IR) coinciding piecewise with v~. In 
(3.1.6) the components v~, i EE, have to be considered 
as the elements of F(R)  coinciding with v~, iEE ,  on 
the interval [as, as+x = 1). 

An N-vector w(p) with components in F(IR) is called 
superharmonic if 

xi = max (ria+a~ipiajXi), iEE.  (3.1.2) 
aE.4 (O 

( iii) l f  x satisfies the system of  inequalities 

xi>lria +a~qPiajxi, a E A ( i ) , i E E ,  (3.1.3) 

then xi >>- v~ for every i E E. 

(iv) For every a E [0, 1) there exists a deterministic and 
stationary a-optimal policy f~. 

(v ) There exists a deterministic and stationary Blackwell 
optimal policy f . .  

The discount factor a is interchangeable with the interest 
rate p. The relation between a and p is given by a(1 + p) 
=1. Hence a t l  corresponds to p $ 0  andaJ ,  0 cor- 
responds to p t oo. We shall write va(f) or vP(f) depend- 
ing on whether the total rewards are considered as a 
function of a or ofp  respectively. 

Equation (3.1.1) is equivalent to 

~j [(1 +p)6ij-Pij( f)]x j =(1 +p)r/(f), i E E ,  (3.1.4) 

(1 + ,o)" wi(p ) t~>(1 + p)ria + %PiaiWi(p), 

a EA(i), i EE. 
(3.1.7) 

The concept of superharmonicity is useful to derive 
linear programs for stochastic dynamic programming 
problems (cf. Hordijk [6], Kallenberg [13], Hordijk and 
Kallenberg [8], [9]). 

Lemma 3.1.2. l f  w(p ) is superharmonic, then 
wi(p) t>~ v~ for every i EE. 

Proof. Since wLo) is superharmonic and as there are only 
a finite number of states and actions, there exists a 
P x > 0 such that 

(1 + p)wi(p) >i (1 + o)ria + ZqptajWl(p), 

a E A(i), i E E, p E (0, p I ]. 

Hence, for every 19 E(0, pl], w(p) satisfies Eq. (3.1.5) 
which is equivalent to Eq. (3.1.3). Therefore, by Theorem 
3.1.1(iii), 

where 8ij is Kronecker's delta. 
Solving (3.1.4) by Cramer's rule shows that for every 

i EE, v~(f) is an element of F(IR), say p/q, where the 
degree of the polynomials p and q are N at the most. 

It is well known, see e.g. BlackweU [ 1 ] and Smallwood 
[15], that the interval [0, 1) of the discount factor can 
be broken down into a finite number of intervals, say 
[0 = 0tO, a l ) ,  [a 1, a2),  . . . ,  [as, as+ 1 = 1), in such a way 
that there exist deterministic and stationary policies ~, 
0 ~< i ~< s, where j] is a-optimal for all a E [at, ai+l). The 
number s varies with the data of the problem. Hence, on 
any interval the components of the value vector v p are 
elements of F(IR). 

Furthermore, Eq. (3.1.2) implies that v p satisfies 

(1 +p)v/) >/(1 + P)ria + ~-qPiaiV~, 

a E A ( i ) , i E E ,  p >O. 
(3.1.5) 

wi(p)>~vi ~ f o revery iEEandpE(O,  pl], i.e. 

wi(p) t > v~ for every i EE. [] 

3. 2. The Simplex Format 

Lemma 3.1.2 implies that the value-vector v p of the 
interval (0, p,] can be found as the optimal solution to 
the following linear program in F(R): 

min {~,j wj(p)l Z/[(1 + p)6ii -Piai] " wj(p) 

t~ > (1 + p)ria, a EA(i), i EE}. 
(3.2.1) 

Consider also the following linear program in F(~) ,  
which is called the dualprogram of (3.2.1): 
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Zi ~a [(1 + p)6ij -Piai] "Xia(P) t=Pl ,] EE;  l 
Xia(P ) t~>p0, a EA(i), i EE.  ]" (3.2.2) 

Remark. For a fixed real value of p the linear programs 
(3.2.1) and (3.2.2) are precisely the linear programs 
introduced by d'Epenoux [4] to compute a p-optimal 
policy. It is well known that there is a one-to-one cor- 
respondence between the extreme points of (3.2.2) and 
the set of deterministic and stationary policies (e.g. 
Derman [3]). Furthermore, for each deterministic and 
stationary policy f the corresponding point satisfies 
xif(O(P) > 0 for all p > 0. 

In the sequel we will, as is also the case in the simplex 
method, rewrite the equalities 

~i ~Ea [(1 + P)Sii-Piaj] 'xia(P) = 1, ]EE ,  

such that at any iteration there is precisely one positive 
x(#) component in each state. The only difference with 
the normal simplex method for a fixed value of p is that 
instead of real numbers, the elements are rational func- 
tions. In order to understand the following paragraphs 
the reader should be familiar with linear programming 
concepts as "basic solution", "complementary slackness", 
"condensed simplex tableau" and "reduced costs". 
These concepts can be found in the standard textbooks 
on linear programming. 

As in the simplex method, for any interation, the set 
of constraints is written in a special way: 

xB = B - I e - B - 1 N X N ,  (3.2.3) 

where e is the vector with all the components equal to 
Pl ,  xB and x N are the basic and nonbasic variables, B is 
the basic matrix and N consists of the remaining columns. 
We shall solve program (3.2.2) in such a way that the 
optimality of some basic solution, or equivalently some 
deterministic and stationary policy, is shown on a certain 
interval for the value of p. This is possible, because for 
every fixed p in that interval the corresponding simplex 
tableau is an optimal one (cf. D'Epenoux [4]). At any 
iteration of the simplex method there is a feasible solu- 
tion x(p) of (3.2.2) and a trial solution w(p) of (3.2.1), 
called the reduced cost vector, such that the comple- 
mentary slackness conditions hold, i.e. 

Xia(P)" (Y7 [(1 + p)6 O -Piaj]" w/ (p )  - (1 + p)ri a) = O, 

a EA(i),  i EE,  (3.2.4) 

for all p in the interval which is considered. Since any 
basic solution corresponds to a deterministic and station- 
ary policy, in each state i there is exactly one action, 
say action f(/), such that xif(o(P) > 0 for all p in the 
actual interval. Hence, by (3.2.4), 

~i [(1 + p)6q -Pij( f)]  " wi(P) = (1 + p)rt(f), i EE, 

for all actual p. From Theorem 3.1.1(i) it follows that 
w(p) = va(f) in the actual interval. 

The organization of the simplex format is based on 
the following lemma. 

Lemma 3.2.1. /) The elements o f  the simplex tableau 
can be written as rational functions with the same 
denominator, which is the product o f  the previous pivot 
elements. 

ii) The numerator and denominator o f  the rational func- 
tions are polynomials with degree N at the most, except 
for the reduced costs where the numerator can have 
degree N + 1. 

iii) For p sufficiently large, the optimal solution x(p) is 
given by the basic variables xif(O(P), where f(i)  is such 
thatrif(O = maxa~A(0 r/a, i @E. 

iv) The pivot operations in the simplex tableau are as 
follows (n(p) is the common denominator} 

a) The numerator o f  the pivot becomes the next com- 
mon denominator, and the last common denominator 
becomes the new numerator o f  the pivot. 

b) The numerators o f  the other elements in the pivot 
row are unchanged," the numerators o f  the other elements 
in the pivot column are multipled by -1 .  

c) For the other elements, say numerator p(p), we re- 
p(p ) q ~  ) - r(p )s(p ) 

place p(p) by , which is a polyno- 
n(p) 

mial, where q(p) is the numerator o f  the old pivot, r(p) 
is the numerator o f  the pivot row which is in the same 
column as p(p), and s(p) is the numerator in the pivot 
column which is the same row as p(p). 

Proof. i) Since the constraints of (3.2.2) are equalities, 
artificial variables zi(p), j EE, are introduced one for 
each constraint. Starting the simplex method, the first 
basic matrix B is the identity matrix I corresponding to 
the artificial variables. Hence, in the first simplex tableau 
the elements are polynomials (in fact linear functions) 
of O, i.e. rational functions with common denominator 1. 
It is well known from the theory of linear programming 
(e.g. Zoutendijk [18]) that the elements in the simplex 
tableau can be written with the determinant of the basis 
matrix, i.e. the product of all previous pivot elements, 
as common denominator. This result, with a similar 
proof, is also valid for linear programming in F(~,). 
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ii) Any basic matrix is of the form (1 + p ) I - P ( f ) ,  i.e. 
it has linear functions of p on the diagonal and constants 
on the off-diagonal. Hence, by Cramer's rule, the ele- 
ments of the inverse basis matrix are rational functions 
whose numerator is a polynomial of  degree N -  1 at the 
most and with a polynomial of degree N at the most as 
denominator. From Eq. (3.4.1) it follows that the ele- 
ments in the simplex tableau have a polynomial with 
degree N at the most as numerator. Since in the objec- 
tive function (see (3.2.2)) the variables are multiplied 
by a linear function, the reduced costs may have a 
numerator with degree N + 1 at the most. 

iii) Since p 1' oo corresponds to a $ 0, the rewards in the 
first period dominate the rewards earned later on. Hence, 
the given variables are optimal. 

/v) Consider the following elements of the simplex 
tableau: 

pivot row 
t(p) r~) 
n~) n~) 

s~) p~) 
n~) n~) 

pivot column 

This tableau is transformed by the usual rules into: 

n(p) 

t(p) 

s(p) 
t(p) 

r(p) 

t(p) 

p(p)" q(p) - r ( p ) "  s(p) 

n(p)" t(p) 

(3.2.5) 

t~o) 
Since the next common denominator is n(p)'n--~o~t= 

t(p) (see part (i) of  this I.emma) PC~ q(p) - r(p)" s(p) 
n~o) 

is a polynomial and (3.2.5) proves this part of the lem- 
ma. []  

Remark. Starting with the artificial variables z l, / c E as 
basic variables, we can compute the optimal simplex 
tableau for a = 0, or equivalently p = 0% by exchanging 
xlf(1) with z 1, ...,XNf(N) with z N, where f( i)  is such 
that maxaEA(i) ri a = rif( O, 1 < i  <.N. 

This tableau is optimal for p ~>Pt, where Pl is the 
smallest value such that the reduced costs are non- 

negative. To compute P l we have to compute the 
zeroes of some polynomials. This is the subject of the 
following section. 

3. 3 The Computation of  Optimal lntervals 

For any simplex tableau the interval [Po, Pl]  has to be 
determined so that for p E [/90, Pl ] the corresponding 
deterministic and stationary policy is a p-optimal one. 
Therefore, the reduced costs have to be nonnegative in 
this interval. 

Since for any interest rate p, every deterministic and 
stationary policy corresponds to a basic solution, the 
pivot elements are positive for every p. Consequently, 
the common denominators of the tableaux are also 
positive for every p. In addition, as the first feasible 
tableau is optimal for p sufficiently large, i.e. on the 
interval [Po, oo), we have tableaux for which the upper 
bound of the interval is known. Hence, for the poly- 
nomials corresponding to the numerators of the reduced 
costs the smallest Po has to be determined such that 
these polynomials are nonnegative on [Po, Pl ]- 

The computation of P0 can be carried out by means 
of a numerical method, e.g. the method based on Sturm's 
Theorem (see below). With this theorem, the number 
n(g, a, b) of real roots of a polynomial g in the interval 
[a, b] can be determined. 

Let gl ,  g2, -.., gK be the numerators of the reduced 
costs corresponding to the nonbasic variables Xia(P). 
Hence, K = Z i # A ( i ) - N .  The computation of Po can 
then be carried out by the following algorithm. 

StepO: Po : = 0 ; k : = 0 ; c h o o s e e > 0 .  

Step 1 : k := k + 1 ; if k > K, then stop. 

1 
Step2: If n(g k, p0, p l )~> l ,  then P2 :=~(Oo+Px), 

03 := Px and go to Step 3. Otherwise, go to Step 1. 

Step 3: If n(gg, p2,p3)  =0,  then P3 :=P2, P2 := 
1 
~(Po +P2) and go to Step 4. Otherwise, Po :=P2, 

1 
P2 := 5(P2 + P3) and go to Step 4. 

Step 4: If [P3-P2[ ~<e, then go to Step 1; otherwise, 
go to Step 3. 

The computation of n(g, a, b) is given by Sturm's 
Theorem (cf. Stoer and Bulirsch [16] p. 281 and Van der 
Waerden [ 17] p. 220). 
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Sturm's Theorem. Let g(1) be the derivative o f  g and let 
g(2),g(3) . . . . .  g(r) be determined by the Euclidean 
algorithm, i e. 

g = h lg (z) - g(2), where degree g(2) < degree gO) 
g(1) = h2g(2) _g(a), where degree g (3) < degree g (2) 1 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 
g(r-2) = hr_lg(r-x) _g(r), where degree g(r) < degree 

g(V- 1) 3 

g(r- 1) = hrg(r), and h i is a polynomial 
l <.i<.r. 

State i Action a Transition probabilities P/a/ Reward r/a 

j = l  1=2  j = 3  

1 1/2 1/4 114 8 
2 1/16 3/4 3/16 11/4 
1 112 0 112 16 
2 1/16 7/8 1/i6 15 
1 1/4 1/4 1/2 7 
2 118 314 118 4 

Let o(p ) be the variations in sign in the number sequence 
g(p), gO)(p) . . . . .  g(r)(p) in which all zeroes are omitted 
I ra  and b are any numbers (a < b) for which g(a)g(b) # 
O, then n(g, a, b) = a(a) - tr(b), where multiple roots are 
counted only once. 

For this example the objective function becomes: 

11 
(1 + p)" {8Xll(P ) + 7X12(P)  + 16x21(p) + 15x22(p) + 

+ 7Xa1(P ) + 4Xa2(P)} 

Hence, for any simplex tableau, the interval [Po, Pl]  
can be computed such that this simplex tableau is an 
optimal tableau for every p E [ p o , p l  ]. Furthermore, 
let Po be obtained by the polynomial corresponding to 
the nonbasic variable Xka k. Then Xka k, is the variable 
which becomes basic for the next tableau. This variable 
has to be exchanged with the basic variables Xka (this is 
a unique variable). 

3. 4. Description o f  the Algorithm 

By adding artificial variables z i (p ) , jEE ,  the linear 
system becomes 

~i ~a [(1 + P)~ i ] - -P ia j ]  " Xia(P) + z j (p)  = 1, / E E  

xi.(p)  > 0, a E A(i), i ~ E. 

Start with the simplex tableau in which zi(p ), / E E, 
are the basic variables. Then, for /= 1, 2 . . . .  , N  ex- 
change z.(p)! with x~a.(P),ly where ai. is such that r/a/= 
maxa~Aq) ria. The corresponding tableau is optimal 
for p sufficiently large. Next, by Sturm's Theorem, Po 
is determined in such a way that the present tableau is 
optimal for every p ~>Po- The computation of Po 
determines the next basic variables. Hence, the next 
simplex tableau can be formed, and Px := Po. Again by 
Sturm's Theorem, Po is determined so that the tableau 
is optimal for p E [Po, Pl] and so on. The procedure 
terminates when Po = 0. 

and the linear system is 

(1)  ( , , )  1 
~+p "x11~o)+ ~+p x~2~o)-~x21(p)- 

1 1 1 
-- g X 2 2 ( P  ) -- ~X31(P ) -- ~X32(P ) = 1, 

1 3 
-- ~ X l l ( P  ) -- ~X12(P ) -t- (1 + p) " x21~)  + 

( 1 )  1 3 
+ +p "x22(o)-~x31(p)-~x32~o) =1, 

1 3 1 1 
- ~ x n ( p )  - ~ x 1 2  ~o) - ~x2~ Co) - ~ x22 ~0) + 

+(~+ )'x31(0)+( 7 p ~+p)" xa2~o) = 1, 

X 11 (p), X12(P ), X21(P ), X22 (jg), X31(P), X32(P ) ~ 0. 

The corresponding first simplex tableau is: 

I X l l ( 0 )  

1 

I 
z2(o)  I - 

1 
z3(o)__ I - 

0 - 8 - 8 p  

Xl2(P) x21(P) x22(P) 

15 

3 
] 
16 

! 
p 

2 
I + p 

I 
2 

II II - -Z" - ~ - 16 - 16p 

x31(P) x32(0) 

I 1 I 

1 6  4 8 
I 1 3 

-g+ o-~ 4 

16 2 "  oJ g §  

- 1 5  - 1 5 0  - 7 - 7 p  - 4 - 4 

3.5. An Example 

Consider the following exanaple which is taken from 
Howard [10] p. 44. 

The common denominator is the top left-hand element 
in the tableau and the underlined element is the pivot 
element. Using the transformation described in Sect. 3.2 
the next tableau is obtained: 



A. Hordi jk  et al.: Sens i t iv i ty -Analys i s  in D i s c o u n t e d  Markovian  Decis ion  P rob lems  149 

I 
"~ + P Zl(P) Xl2(P) 

15 
lX~=(p) I 1 T~+ 0 

' 3 I - 9  I 
z 2 (0) ~" + 0 T 64 2 p 

3 I 9 I 
,z3 (P) ~ § 0 ~ 164 + ' i ~ 0  

8+ 80 8+8~ ? +  - ~  , _ ~ 2  

x21 (P) x22(P) 

I 

3 + 3  02 

3 I 
8 2 0 

- 12 - 28p - 16p 2 

I 
16 
3 5 p2 -~-+gp + 

3 

- 8 - 23p - 15p 2 

x3j (P) x32 (P) 

I 
- T  

3 1 
- ~ - T p  

3 p 2 ] 
i---~. + P+ 

II - 2 5  
- T 'To - 702 

I -3  
13 3.p 

-Ti -~ 
13 II + . ~  , p2 

- 3 - 7p - 4p 2 

After inserting x21(P) and x3~(P) into the basis, the first feasible tableau is reached: 

15 § 3 
T~)+  2P 2 P z I (p)  Xl2(P) z2(P) x22(P) z3(P) x32(P) 

;9 9 2 
X l I ( P ) : ~  + ~-P + P 

x2I (P )  i~. + 23"~P + P 2 

x31(0) ~-- + 49--p § p 2 

1207 669 
8 + -"ff"~ + 

'355 2 
4 ~ + 3103 

3 3 p2 ~ * ~ §  
3 I 

-iZ * Z-p 

211 +-~+ 

103 2 + 8p 3 

87 39 2 p3 ~j~o+ + T ~  
3 I 2 - ~.p- i-p 
3 I 2 

- ~ o  * -i- ~ 

63 ~ § .~o + p2 

187 3 21 4 
-iZ-p , -~o 

3 2 
§ p §  16 

3 I ~-+~, 

257 
+ --T~o + 

79 2 --~ + 16p 3 

21 7 2 
~ o  + -i- ~ 

9 ~ 2 p3 

297 645 2 
- T 4 - o  - ~ - - p  

71 3 4 
- T ~  0 § p 

~_ 3 2 §  + p 

69 20 I 

T , --a--~ § 
47 2 - -~  + 7p 3 

I 1 2 ~ + g p  
3 1 2 - ~-p - i-p 

41 . ~ 2  
- ~ §  + 2  

- ~-0 + 352 

37 3 + 304 

Using Sturm's Theorem and the algorithm of Sect. 3.3, 
it follows that this tableau is optimal for p E [6.18, oo). 
This interval for the interest rate corresponds to the 
interval [0, 0.14] for the discount factor a. 

For p < 6.18, x22 (P) becomes the next basic variable. 
After one transformation, in which x22(P) and x21(P) 
are exchanged, the optimal interval for the next tableau 
can be computed. It turns out that this simplex tableau 

is optimal for p E [0.91, 6.18], or equivalently a E [0.14, 
0.52]. Thereafter, the new basic variable becomesx32(p). 
The corresponding tableau is optimal for p E [0.27, 
0.91], i.e. aE[0.52,0.79].  Finally, the new basis 
variable becomes X 1 2 ( P  ) and the corresponding tableau 
(see below) is optimal for p E (0, 0.27], i.e. a E [0.79, 
1). Therefore, the policy f where f ( / )=2 ,  i E E ,  is 
Blackwell optimal. 

119 31 2 03 

Xl2(P) ~ + T.~ p19 + p2 

x.22(P ) ~ § "~53 § p2 

27 21 2 
x32(P) ~ + T-~o + p 

1191 6107 
32 § + 

5117 2 87 3 

zl (P) xl 1 (0) z2(p) 

I p2 - ~  + P + 

51 3 
~Z * TP 
9 

Tgg § 

-~27 + s3-~ § 

352 II 3 
- -~  , -rp 

33 3 2 p3 
~Z-p + To + 

17 I 2 

15 1 2 
-T~ -iV 
379 677 2 
T~o - 2--~ - 
75 3 21 4 
T ~  - - ~  

51 29 P 2 
64 + I'~ + 
9 I 
128 +I-~ 

397 2561 
32 § ~ + 
2727 2 
64 0 + I~P 3 

x21 (0) z3(0)  x32(0)  

7 7 2  
- ~ p - T ~ . o  

119 45 2 P 3 - - ~ +  + i--r 
63 7 2 

-Tra ~ -T~ 
1157 2 §  + 

463 3 4 
T27~ - o  

I I 
16 § 3 0 
51 3 

9 17 2 
i-,2-g + + 0 

~ 2 7  113 + --Z---V + 

635 2 
32 9 + 4P 3 

9 I 2 - 6.-~p - ~ ,p  

17 I 2 
5~-p + ~-p 
69 25 2 3 

12--'~ + + p 

827 787 2 
2--.~o + 
101 3 

- 3p 4 

3. 6. Comparison with Smallwood's Method 

With respect to the complexity of our approach, we 
make the following observations: 

A. In order to compute a new element in the simplex 
tableau we have to carry out the following operations 
(cf. Lemma 3.2.1(iv)c): 

i) Two multiplications of two polynomials of degree 
~q(N) : 0(N2). 

ii) One subtraction of two polynomials of degree 
~ ( N )  : O(N) .  

iii) One division of two polynomials of degree ~(N) : 
~7(N2). 

Hence, the computation of a new element is of order 
N 2 and the computation of a new column is (~(N3). 

N 
Let A = ~, #A(i), then the simplex tableau has A 

1=I 

columns. Therefore, the computation of a new tableau 
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is dT(ANa). To compute the first feasible tableau (cor- 
responding to a = 0), N transformations have to take 
place, which means that this part of the procedure is 
~(AN4). 

B. For a given polynomial of degree dT(N), the analysis 
of Sturm's Theorem is of  orderN 2 (2 log [(p a - Po)/e]), 
where P0, Pl and e are described in Sect. 3.3, namely: 

i) The construction of gq) from g(J-O and g(j-2)is  
of order N(degree gtj-2) _ degree g(J-O. Hence the 
Euclidian algorithm is of order N 2 . 

ii) Using Homer's scheme (cf. Stoer and Bulirsch 
[16] p. 270) the computation of n(gtr P2, Pa) is of 
order N ~ . 

iii) Since bisection is used, after [21og(p I -po)/e] 
iterations the original interval [Po, PI] is reduced to 
an interval of length e at the most. 

As in the worst case for any simplex tableau, ~ (A )  
analyses of the above type will be necessary, the cor- 
responding computations are d7 (AN 2 [ 2 log (01 - Po)/e]). 
Let 15 be such that the first feasible tableau is optimal 
for t9/> t5, and let the problem be such that there are 
M optimal intervals. Then, in addition to the simplex 
transformations, ~(AMN2[21og~/e]) computations are 
required. Hence, the overall complexity of  the algorithm 
is ~(AN2{N 2 + M(210g 15/e +N))). 

Smallwood [15] described a method to find the 
optimal policies in a fLxed interval [a x, or2], where 
0 <~a 1 < a  2 < 1. Thus the difference between his method 
and ours is that we can determine a Blackwell optimal 
policy and he can not. With respect to the complexity 
of the calculations, Smailwood's method requires in 
any optimal interval: 

i) The computation of the coefficients of a character- 
istic polynomial of a N x N matrix: dT(N a) by Danilevs- 
ky's method. 

ii) The computation of some coefficients: d7 (Na). 

iii) For every policy which deviates from a fixed policy 
in only one action, some coefficients are calculated 
and an analysis by Sturm's Theorem is carried out: 
~ ( A ( N  2 +Na[21og l/e])). 

Let M be the number of optimal intervals, then the com- 
plexity of Smallwood's approach is ~ ( M N  2 (iV + A 2 
log l/e)). 

4. Computation of a Blackwell Optimal Policy 

The method described in the previous section terminates 
with a Blackwell optimal policy. However, if we are 

only interested in the computation of a Blackwell op- 
timal policy, we can skip the calculation of the intervals. 
The method based on linear programming can then be 
stated as follows: 

1. Start with any deterministic and stationary policy 
and compute the corresponding simplex tableau (this is 
similar to the setup of the first feasible tableau in 
Sect. 3). 

2. If every reduced cost is nonnegative with respect to 
the ordering in F(P0, - i.e. the dominating coefficient 
of the numerator of any reduced cost is nonnegative - ,  
then the corresponding policy is Blackwell optimal. 
Otherwise: go to Step 3. 

3. a) Take any column with a negative reduced cost as 
pivot column. 

b) Executive one pivot transformation. 

c) Go to Step 2. 

Remarks. i) In our method, a sequence of tableaus is 
produced. Since in any transformation, the value of the 
objective function strictly increases (there is no degene- 
ration), none of the bases can retum. Since there are a 
finite number of bases, the method is finite. Furthermore, 
the final tableau has the property of being optimal for 
p near enough to zero. Hence, the corresponding policy 
is Blackwell optimal. 

ii) As shown in Sect. 3.6 the number of elementary 
operations in one pivot step is ~(AN3). 

iii) In the final tableau, we can compute a Pl by Sturm's 
Theorem (as described in Sect. 3.3), such that the 
BlackweU optimal policy is p-optimal for every p E (0, 

px]. 
iv) Jeroslow [11] presented a policy improvement 
algorithm with computations in the field F ( ~ )  of the 
rational functions. Our approach is the linear programm- 
ing pendant; as is the case for discounted dynamic pro- 
gramming with a fixed discount factor, both approaches 
are equivalent. 

v) The first method of computing a Blackwell optimal 
policy is derived from Miller and Veinott [14]. They 
proposed (in the worst case) an N-step procedure. The 
number of operations in every step is dominated by the 
solution to a system of linear equations. In the k-th 
step the dimension of the system is @ (kN). Hence, the 
complexity of Miller and Veinott's method is gr (NT). 

vi) The main results of this paper are obtained in 1981 
and reported in [7]. Holzbaur has embroidered on our 
work. During the period 1981-1984 he has investigated 
decision problems over ordered fields. He has obtained 
optimality and sensitivity results for this general class 
of problems, reported in his interesting dissertation [6]. 
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vii) In Step 1 of the algorithm of Sect. 4 it would seem 

worthwhile to start with a p-optimal policy for some 

small value of p. 

viii) The size of the problems for which our approach 
is applicable in practice depends on the computer 
available. We expect that on a mainframe moderated 

sized problems can be solved. In order to get an impres- 
sion, consider Howard's automobile replacement problem 

([10] p. 90). The corresponding simplex tableau has 
40 rows, 800 variables and 32,000 elements and each 

element is a polynomial of degree 40. Although this 
problem can be handled presumably, it is preferable to 

use advanced techniques based on the structure of the 

problem. 

Acknowledgement. The authors would like to thank the referees 
for their helpful comments. 

References 

1. BlackweU D (1962) Discrete dynamic programming. Ann 
Math Statist 33:719-726 

2. Charnes A, Cooper WW (1961) Management models and 
industrial applications of linear programming, vols 1 and 2. 
John Wiley, New York 

3. Derman C (1970) Finite state Markovian decision proces- 
ses. Academic Press, New York 

4. D'Epenoux F (1960) Sur un probleme de production et de 
stockage dans l'al6atoire. Rev Fr Inform Rech Oper 14: 
3-16 (Engl transl Mang Sci 10:98-108) 

5. Holzbaur UD (1984) Entseheidungsmodelle tiber ange- 
ordneten K6rpern. PhD Thesis, Universit~it Ulm 

6. Hordijk A (1974) Dynamic programming and Markov 
potential theory. Math Centre Tract No 51 (Amsterdam) 

7. Hordijk A, Dekker R, Kallenberg LCM (1981) A simplex- 
like algorithm to compute a Blackwell optimal policy. 
Report No 81-37 of the Inst Appl Math Comp Sci (Uni- 
versity of Leiden) 

8. Hordijk A, Kallenberg LCM (1984) Constrained undis- 
counted stochastic dynamic programming. Math Oper Res 
9:276-289 

9. Hordijk A, KaUenberg LCM (1984) Transient policies in 
discrete dynamic programming: linear programming includ- 
ing suboptimality tests and additional constraints. Math 
Prog 30:46-70 

10. Howard R (1960) Dynamic programming and Markov 
processes. MIT Press, Cambridge, MA 

11. Jeroslow RG (1972) An algorithm for discrete dynamic 
programming with interest rates near zero. Manag Sci Res 
Report No 300. Carnegie-Mellon University, Pittsburgh 

12. Jeroslow RG (1973) Asymptotic linear programming. Oper 
Res 21:1128-1141 

13. Kallenberg LCM (1983) Linear programming and finite 
Markovian control problems. Math Centre Tract No 148 
(Amsterdam) 

14. Miller BL, Veinott AF (1969) Discrete dynamic programm- 
ing with a small interest rate. Ann Math Statist 40:366- 
370 

15. Smallwood RD (1966) Optimum policy regions for Markov 
processes with discounting. Oper Res 14:658-669 

16. Stoer J, Bulirsch R (1980) Introduction to numerical 
analysis. Springer, Berlin Heidelberg New York 

17. Waerden van der BL (1953) Modern algebra, vols 1 and 2. 
Frederick Ungar, New York 

18. Zoutendijk G (1976) Mathematical programming methods. 
North-Holland, Amsterdam 


