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Abstract 

We consider the problem of combining replacements of multiple components in an operational planning phase. 
Within an infinite or finite time horizon, decisions concerning replacement of components are made at discrete time 
epochs. The optimal solution of this problem is limited to only a small number of components. We present a 
heuristic rolling horizon approach that decomposes the problem; at each decision epoch an initial plan is made that 
addresses components separately, and subsequently a deviation from this plan is allowed to enable joint replace- 
ment. This approach provides insight into why certain actions are taken. The time needed to determine an action at 
a certain epoch is only quadratic in the number of components. After dealing with harmonisation and horizon 
effects, our approach yields average costs less than 1% above the minimum value. 

Keywords: Maintenance; Planning; Replacement; Markov decision programming; Dynamic programming 

I.  Introduct ion 

Maintenance activities often require the same 
preparatory work. Consequently, joint execution 
of such maintenance activities can save costs. For 
instance, if a maintenance job has to be carried 
out at an unmanned installation, simultaneous 
execution of maintenance activities can save travel 
costs; if maintenance implies shutdown of a pro- 
duction system, then down-time costs can be saved 
when carrying out maintenance activities at the 
same time. In this paper we investigate a multi- 
component replacement problem in an opera- 
tional planning phase. At discrete time epochs of 
an infinite or finite time horizon decisions 
whether or not to replace a component or a 
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group of components have to be made, so as to 
minimise the average or total costs (we do not 
consider discounted costs in this paper). 

For a recent literature overview of the field of 
maintenance of multi-component systems, we re- 
fer to the review article by Cho and Parlar [2]. 
Methods that are published so far for modelling 
maintenance of multi-component systems are not 
tractable for a large number of components, un- 
less a very special structure is assumed. 

The maintenance of a deteriorating system is 
frequently described using Markov decision the- 
ory (see, e.g., Howard [9], who was the first to use 
such a problem formulation). However, since the 
state space in such problems grows exponentially 
with the number of components, the Markov de- 
cision modelling of multi-component systems is 
not tractable (see, e.g., B~ickert and Rippin [1], 
and Haurie and L'Ecuyer [8]). This implies that 
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for many components heuristic methods have to 
be applied. For instance, Dekker and Roelvink 
[3] present a heuristic replacement criterion in 
case always a fixed group of components is re- 
placed. 

In the Markov decision modelling of multi- 
component  maintenance, often opportunistic 
control-limit strategies are used: mandatory ac- 
tions are induced by upper limits, which creates 
opportunities for other actions that are allowed if 
lower limits are reached. For example, an 
(n, N)-strategy for two identical components pre- 
scribes to replace a component when it has failed 
or when its age has reached the value N and, if 
one of the components is replaced, to replace the 
other when its age is greater than or equal to n 
( < N ) .  Van der Duyn Schouten and Vanneste 
[11] study (n, N)-strategies, but provide an algo- 
rithm for only two identical components. Wijn- 
malen and Hontelez [12] determine control-limit 
rules for a model with inspection and repair. 
These authors propose an iterative procedure 
based on decomposition and aggregation, but only 
few computational results are presented. A prob- 
lem with these strategies (and with Markov deci- 
sion models in general) is that it is mostly not 
known beforehand what actions are going to be 
taken. This planning aspect is important when, 
e.g., work preparation is necessary. Besides, 
strategies of this type do not yield much insight 
into the question why certain actions are com- 
bined: The only information they provide are the 
optimal control parameters and the average costs. 
Neither do they allow operational planning in 
which short-term information can be incorpo- 
rated. 

Wildeman, Dekker and Smit [14] propose a 
general approach for the combination of mainte- 
nance activities in an operational planning phase 
for block-replacement-like models. In this paper 
we extend this approach to Markov decision 
problems. To this end we decompose and plan 
the Markov decision chain that describes the 
evolution of the whole system. Planning is possi- 
ble by taking expectations and by assuming a 
most likely action at each decision epoch in the 
case of no premature failures. (Another possibil- 
ity, frequently used by engineers, is to use resid- 

ual lifetimes as states in the Markov chain. See, 
for instance, Worm and Van Harten [15].) De- 
composition is applied in the sense that at each 
decision epoch an initial plan is made that ad- 
dresses components separately. Subsequently, we 
adapt these plans to enable joint execution of 
maintenance, thus benefitting from savings in set- 
up work. These ideas are worked out in a roiling 
horizon approach. 

The advantage of our approach is that it pro- 
vides insight into the combination process, rather 
than only providing optimal control limits. Fur- 
thermore, it allows planning, and as joint replace- 
ments are decided on a short-term basis, opera- 
tional information such as one-off savings can 
also be taken into account. Another  important 
advantage is that the multi-component Markov 
decision model is decomposed into one-compo- 
nent models that can easily be solved. 

In our approach we use a combination tech- 
nique and a dynamic programming algorithm of 
Wildeman, Dekker and Smit [14]. The combina- 
tion technique originates from Dekker, Smit and 
Losekoot [4], however they formulate a set parti- 
tioning problem that may be far too large to 
solve. Furthermore,  both papers consider prob- 
lems of the block-replacement type in a continu- 
ous-time setting, and their actions are not being 
influenced by failures. We consider age-replace- 
ment strategies, in discrete time, where failure 
maintenance can be combined with preventive 
maintenance. Using the dynamic programming 
algorithm of Wildeman, Dekker and Smit [14] has 
the advantage that the computational effort of 
determining an action at a certain decision epoch 
is only quadratic in the number of components. 
Hence we can handle many components, that 
need not be identical. 

Our approach can also be applied to other 
maintenance systems (see Wildeman, Dekker and 
Smit [14]) and to other Markov decision models 
(e.g., inspection models). Furthermore,  the ap- 
proach can be applied in production control and 
inventory control areas (see Dekker and Wilde- 
man [5]), since the same problem structure ap- 
plies there. 

Wildeman, Dekker and Smit [14] present a 
general approach but do not study its perfor- 
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mance. In this paper  we compare  our approach 
with optimal strategies, that can only be deter- 
mined in specific cases with a small number  of 
components  ( <  4). We also compare  our ap- 
proach with (n, N)-strategies of  Van der Duyn 
Schouten and Vanneste  [11]. Numerical  experi- 
ments are carried out to see how our approach 
performs under  different circumstances; we ex- 
plain what negative effects play a role in the 
performance and how these effects can be dealt 
with. 

The structure of this paper  is as follows. Sec- 
tion 2 provides a mathematical  formulation of the 
problem. In Section 3 we present our heuristic 
roiling horizon approach.  Results of  a numerical 
investigation into the performance of this ap- 
proach are given in Section 4. In Section 5 we 
conclude with a short evaluation. 

2. Problem formulation 

Consider a system with n independently oper-  
ating components  1 . . . . .  n. Each component  is 
subject to stochastic failure, and has a known 
time-to-failure distribution. The system is consid- 
ered at discrete time epochs, which will be called 
d e c i s i o n  e p o c h s .  For ease of analysis it is assumed 
that these epochs are equidistant, but this is not 
essential. Consequently, one time unit corre- 
sponds to one p e r i o d  (the time between two 
epochs). 

I f  at a decision epoch component  i is still 
working, it can be replaced preventively against 
costs r i. If  component  i turns out to have failed 
during the last period, it is immediately replaced 
correctively against costs r i + bi, where b~ are 
breakdown costs. The time needed for replace- 
ment  is negligible. After  a component  is replaced, 
a new identical component  starts with age equal 
to zero. Preventive and corrective replacement  of 
different components  can be combined. We as- 
sume that r i includes set-up costs Ac that are the 
same for all components.  This implies that com- 
bining replacement  of m components  (being pre- 
ventive or corrective) yields a cost reduction of 
( m -  1)Ac. (This is not an uncommon assump- 
tion, as set-up costs are due to, e.g., crew travel- 

ling, scaffolding, shutdown, etc., which are as- 
sumed to be the same for all components.  An- 
other practical motivation is that it is very hard to 
obtain more specific data; no present-day man- 
agement  information system supports a data 
structure for each possible combination of com- 
ponents.) 

A component  is said to be found in state j at a 
decision epoch when it has not failed and its age 
equals j periods. Denote by q/ the probability 
that component  i fails during the next period, 
given that its age equals j at the beginning of this 
period, and define p / =  1 - q / .  The lifetime dis- 
tributions are supposed to have finite support, 
i.e., when component  i has reached its maximal 
lifelength m i ,  it certainly will fail during the next 
period. When component  i has failed we say that 
it is in state m i + 1. 

The system described above is considered for 
an infinite and a finite t ime horizon. For an 
infinite horizon the objective is the minimisation 
of the long-term average costs, for a finite hori- 
zon the minimisation of the total costs over the 
horizon. (If  costs are discounted, then the objec- 
tive could be the minimisation of the total dis- 
counted costs in both cases. However, we do not 
consider discounted costs in this paper.)  The sys- 
tem is modelled as a Markov decision process. A 
state in this process is determined by the combi- 
nation of the states of all components.  As each 
component  i has m i q- 1 possible states and there 
are n components,  the state space consists of 
I ~ i n l m i  + 1 states. Thus the dimension equals 
the number  of components.  

3. Rolling horizon approach 

In this section we give a heuristic rolling hori- 
zon approach to the problem of joint replacement  
of multiple components  of the system described 
in the previous section. Firstly, in Section 3.1, we 
give a motivation of the approach. In Section 3.2 
a general description is given. Subsequently, in 
Sections 3.3 and 3.4 we distinguish between an 
infinite and a finite time horizon. Finally, in 
Section 3.5 we discuss the heuristic elements of 
our approach. 
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3.1. Motivation 

guments from renewal 
(see, for instance, Van 
Vanneste [11]) that x f  
ment  of 

Since the state space of the Markov decision 
process defined in Section 2 grows exponentially 
with the number  of components,  the model can 
be solved to optimality for only a few compo- 
nents. To allow many components,  we apply in 
our approach a decomposition by considering 
components  separately. For each component  an 
individual control limit is defined. If xi* is the 
individual control limit of component  i, then this 
controMimit strategy prescribes to replace com- 
ponent  i when its age equals or exceeds xi*. A 
control-limit strategy follows from a one-compo- 
nent replacement  model with breakdown costs b~ 
and replacement  costs r~, for an infinite time 
horizon, thereby ignoring savings f rom joint exe- 
cution of maintenance.  By applying standard at- 

theory, it can be shown 
der Duyn Schouten and 
is the minimising argu- 

x-, i) r i + b  i 1 - -  I - I p  
1=0 

g , ( x )  :=  x , - 2  , ( 1 )  

1 +  2 l i p [  
j = 2 / _ 0  

where the empty sum equals zero and the empty 
product equals one. 

In a following phase, savings from joint execu- 
tion of maintenance are taken into account. These 
savings, initially ignored by considering compo- 
nents separately, can now be incorporated on an 
operat ional  planning basis. The question is how 
this can best be done. Consider, for instance, two 
components  1 and 2, with Xl* = x  2 = 7, and with 
ages 7 and 5, respectively. As the age of compo- 
nent 1 equals its control limit, replacement  is due 
today. Though replacement  of component  2 is not 
yet due, it can be cost-effective, viz. when the 
costs of advancement  (replacing it today at age 5 
instead of at its control limit) are less than the 
cost reduction obtained. The costs of advance- 
ment  can be expressed in the relative values of 
components  1 and 2. 

Corresponding with the control-limit strategy 
of component  i are the relative values v/. These 

values, commonly used in Markov decision the- 
ory, can be interpreted as the relative costs (rela- 
tive to the average c o s t s  gi* = gi(xi* ))  of compo- 
nent i being in state j rather  than in another  
state, and are generally given by the optimality 
equations 

v /=mina{c[(a)  + ~7~P/k(a)vi k} --gi* 
k 

(see, e.g. Tijms [10]). Here  a is the action taken, 
c[(a) are the costs of taking action a when com- 
ponent  i is in state j, and p/k(a) is the probabil- 
ity of transition of component  i from state j into 
state k when action a is chosen. It is not difficult 
to derive from the optimality equations the fol- 
lowing expression for the values v[ under the 
individual controMimit strategy of component  i: 

(p/, ' /+' + q/v m~+l 

v /= ] r i + v:', 

b i + r i + v~', 

- -  g i * ,  i = 0  . . . . .  xi* - 1, 

j = x i * , . . . , m i ,  

j = m ~ + l .  

( 2 )  

Now it is easy to calculate the costs of advanc- 
ing replacement  of component  2. Replacement  
today, at age 5 instead of at age 7, costs r 2 and 
brings component  2 into state zero, where the 
relative value v~ ~ is paid. As otherwise v2 s would 
be paid, the extra costs are r 2 + t'~ ) --  t; 5. Combin- 
ing replacement of components  1 and 2 yields a 
set-up cost reduction of Ac, so it is cost-effective 
to replace component  2 today if 

A c  > r 2 + v ° --  v 5. 

A question that arises next, is whether today is 
the best time to replace the combination of com- 
ponents 1 and 2. 

To answer this question, we first consider for 
each component  i an initially planned replace- 
ment  epoch t i. We take the most likely replace- 
ment  epoch of component  i, viz. the epoch at 
which it reaches its control limit if it will not fail 
before. A motivation for this choice is that when 
preventive replacement  is cost-effective, the 
probability of a failure of component  i being of 
age ~ xz* is small. (See, e.g., Geurts  [7]; when the 
costs of a preventive-replacement strategy are at 
most 80% of the costs a failure-based strategy, 
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then this probability is typically less than 30%). 
Another  motivation is that considering all possi- 
ble failures of n components leads to an expo- 
nential number of combinations, which is not 
tractable. Besides, there is no alternative when 
planning of replacement is required. Subse- 
quently, we define for component i a penalty 
function hi(-), which expresses the costs of shift- 
ing replacement of component i from the epoch 
t i. With these penalty functions it is easy to 
determine the best replacement time of a combi- 
nation. This is the time at which the sum of the 
penalty functions in the combination is minimal. 

As the combination of components 1 and 2 is 
not the only combination possible, a following 
question is whether other combinations are bet- 
ter, for instance the combination of components 
1, 2 and 3. To investigate this, we consider a 
finite planning horizon in which for each compo- 
nent its initially planned replacement epoch t i is 
considered. For this planning horizon a best com- 
bination structure, or grouping of components, is 
found. However, only a combination that is 
planned today is carried out. After that we start 
with a new planning horizon. 

Altogether, we propose a rolling horizon ap- 
proach that consists of five phases, which can be 
outlined as follows. 

Phase 1: Individual control limits. Determine 
for each component i an individual control limit 
xi*, which optimises the long-term average costs 
of the component.  

Phase 2: Penalty functions. Derive for each 
component i a penalty function hi(.),  expressing 
the costs of shifting replacement of component i 
from its due time generated by its control limit 
X i* . 

Phase 3: Individual planning. Determine at the 
current decision epoch for each component i its 
first most likely replacement epoch t i according 
to its control limit x~*. The replacement epochs 
yield a finite planning horizon. 

Phase 4: Joint replacement. Within this plan- 
ning horizon the replacements are (optimally) 
combined, based on the penalty functions derived 
in Phase 2. 

Phase 5: Rolling horizon step. Implement the 
combination that is planned at the current deci- 

sion epoch. At the following epoch a new state of 
the system is considered and the process is re- 
peated from Phase 3. This is done for each deci- 
sion epoch within the given infinite or finite time 
horizon. 

3.2. General description 

Below we specify the phases of our approach 
for the Markov decision replacement model. 

Phase 1: Individual control limits 
Individual control limits can be found with Eq. 

(1). Efficient numerical methods, such as bisec- 
tion, can be used to find the minimum. In our 
approach the control limits xi*, i = 1 . . . . . .  n, will 
also be used when the problem is considered in a 
finite horizon, however, in that case they are not 
optimal. 

Notice that the one-component control-limit 
strategy is a sort of discretised version of an 
age-replacement strategy. 

Phase 2: Penalty functions 
Let the replacement of component i be ini- 

tially and individually planned at decision epoch 
t i. As will be explained in more detail in Phase 3, 
this ti, is the first epoch at which component i 
has reached or exceeded its control limit xi*. The 
penalty function h/ ( ' )  of component i expresses 
the additional expected costs of shifting the re- 
placement of component i from this epoch t~, 
which also effects all future replacements. The 
shift may be positive or negative (forward or 
backward in time, respectively). 

In case at a decision epoch t component i 
turns out to have failed, it must be replaced 
immediately, i.e., no postponement is allowed. In 
that case the initially planned replacement epoch 
t i of component i equals the current decision 
epoch: t, = t, and a penalty function is defined 
that is infinite for each positive shift: 

hi(At ) = ~  for all A t > 0 .  

(Extending the model to allow a postponement of 
corrective replacement is obvious, but will not be 
done here.) 

If component i has not failed at its initially 
planned epoch t i, postponing replacement will 
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involve extra costs due to the probability that the 
component  fails after the initially planned epoch, 
and it saves costs due to the fact that all future 
replacements are in expectation postponed as well. 
A similar argument  holds for the case of a re- 
placement being advanced. Now there are savings 
due to a decreased probability of failure, whereas 
we have to pay for the fact that all future replace- 
ments are in expectation advanced as well. For 
At > 0, the value hi(At)  expresses the expected 
costs of postponing replacement  of component  i 
until epoch t i + At or until it fails, whichever 
happens first. For At < 0, the value hi(At)  ex- 
presses the expected costs of replacement  of 
component  i at epoch ti + At instead of at epoch 
t i or at failure, whichever would have happened 
first. (Notice that, in the terminology of Wilde- 
man, Dekker  and Smit [14], we apply a long-term 
shift here.) 

The penalty functions can be expressed in the 
relative values v/ under the individual control- 
limit strategy of component  i, see Eq. (2). Let a~ 
be the age of component  i at the initially planned 
replacement  epoch t i, in case it will not fail. 
Take, for instance, a i = 7  and At = 2 .  Conse- 
quently, the new replacement  epoch will be t~ + 2, 
if component  i will not fail before t i + 1. With 
probability p7 component  i will be operating at 
epoch t i + 1, with probability q7 it will not. In the 
first case it will be in state 8, which is valued as 
t.,~; in the latter it will be in state m i + 1, valued 
as v '' '+l. As this transition takes one period, gi ~ 
is saved in either case. In the first case (compo- 
nent i is operating at epoch t i + 1), component  i 
will be replaced at epoch t i + 2. With probability 
pTp~ this replacement  is preventive, which is val- 
ued as c 7 - g i * ;  with probability pTq~ it is correc- 

,mi+ 1 tive, which is valued as t i - g i * .  As otherwise 
state 7 is valued as v 7, we now have for hi(2): 

hi(2) :p7(t ' is  - v7 - gi* ) + q7( t'mi+' - vv - gi*) 

+ p7ip;( t" / -  t'~ - gi* ) 
+ p [ q ~ (  v m, + ~ - L , ~  - g~* ) .  

After substitution of the relative values (Eq. (2)) 
and after rewriting, we obtain the following ex- 
pression: 

hi(Z) = (q7bi - gi*) +p7(qS, b i -  gi* )" 

A general expression for hi (At )  reads as follows: 

a,+At- I  j - I  

E ( q / b i -  gi* ) 17 P[ 
j=a, I=a, 

h i (A t )  = if At>~0, 
a i 1 j 1 

E (gi* -- q /b i )  I - I  P[ 
j :a ,  + At l=a, + At 

if At -..< O, 

(3) 

with a/ the age of component  i at the initially 
planned replacement epoch t i, in case it will not 
fail. Here  the convention is used that the empty 
sum equals zero and the empty product equals 
one. Further it should be noted that At cannot 
be smaller than - a  i, since no replacement  of a 
component  can take place before it is operating, 
and that At cannot be larger than m i + 1 - a i ,  
since the maximal age is m i + 1. It is easily shown 
(see Dekker,  Wildeman and Van Egmond [6]) 
that if a i >~x 7 and the probabilities p /  are de- 
creasing in j, the following holds with respect to 
the penalty functions: hi( . )  is strictly increasing 
for At>..-0 and h i ( ' )  is strictly decreasing for 
At-<<0, hi(')>~O, and h i ( 0 ) = 0 .  In Phase 3 it 
follows from the definition of the individually 
planned replacement epoch t i, that a i ;>1 xi*. 

Phase 3: Individual planning 
Suppose the current decision epoch, at which 

an action has to be chosen, is epoch t. Denote by 
t i the individually planned replacement  time 
(epoch) of component  i. We take as individually 
planned time that epoch (>~ t) at which the com- 
ponent  reaches its control limit if it will not fail 
before. As replacements can be postponed, it 
may happen that the ages of some components  
have already exceeded their control limit at epoch 
t. In that case epoch t automatically becomes the 
new individual replacement  time of these compo- 
nents. The same holds for components  that turn 
out to have failed at decision epoch t. Summaris- 
ing, with age i the age of component  i at epoch t, 

t i = m a x { t ,  t +xi* - a g e i } .  
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t l  = t2 t3 t 4 

I , , ~ l I 
t = n o w  t + l  t + 2  t + 3  t + 4  t + 5  

age1 = rna + 1; x 7 = 4 

age: = 5; x~ = 4 ~ time 
age3 = 3; x~ = 5 
age4 = 3; x~ = 8 

Fig. 1. Example of initial planning. 

As a~ is defined in Phase 2 as the age of compo- 
nent i at t~ in case of no failure, we have that 
ag >~x~*. Only if ti = t and component  i has not 
failed, we have that a~ = age i. 

The individual times ti, i = 1 . . . .  , n ,  induce a 
finite planning [t, maxgt~]. See Fig. 1 for an exam- 
ple of the t~'s for four components.  Suppose that 
at t ime t the age age  i and the individual control 
limit xi* of component  i , i = 1 , 2 , 3 , 4 ,  are as 
given in Fig. 1. As component  1 has failed (age  1 

= m I + 1), it must be replaced immediately, i.e., 
at epoch t. Consequently, t I = t (indeed it holds 
that max{t, t + x  I - age  1} = max{t, t + 4 - m 1 - 
1} = t). The age of component  2 has exceeded its 
control limit, thus t 2 = t as well. Under  the as- 
sumption that component  3 does not fail prema-  
turely, it will reach its control limit at epoch 
t + 2, so that t 3 = t + 2. Similarly, t 4 = t + 5. The 
corresponding planning horizon equals [t, t4]. 

P h a s e  4: Jo in t  r e p l a c e m e n t  

Phase 3 provides a finite planning horizon 
[t, max,.t i] with an individual planning of the re- 
placement  of all n components,  based on the 
state of the system at the current decision epoch 
t. In this phase, this individual planning is consid- 
ered as an ini t ial  plan; the individually planned 
times can be shifted to enable joint replacement.  

In the system we are considering, replacement  
of component  i costs r i (plus b i if it is a correc- 
tive replacement).  In r i set-up costs Ac are in- 
cluded that are the same for all components,  
which implies that joint replacement  of m com- 
ponents  yields a cost reduction of (m - 1)Ac. For 
a combination C of components  an optimal re- 
placement  time t~ is found by minimising Y'.i ~ c 
h i ( t c - t i ) ,  the penalty costs of replacing the com- 

ponents in combination C at time t c .  Define the 
sav ings  of combination C as the reduction in 
set-up costs minus the penalty costs, that is, 

( I C I - 1 ) A c -  ~ h i ( t  ~ - t i ) .  
i ~C  

A combination is cos t -e f f ec t i ve  if its savings are 
larger than zero. 

Phase 4 now aims at determining an optimal 
c o m b i n a t i o n  s t ruc ture  of the replacement of the n 
c o m p o n e n t s  within the p lann ing  hor izon 
[t ,  max i t i ] .  A n  optimal combination structure 
maximises the total savings (the sum of the sav- 
ings of all combinations) in the planning horizon. 
This combination problem can be formulated as a 
set partitioning problem (see Dekker,  Smit and 
Losekoot [4]), which however can be NP-hard. 
This is due to the fact that in the worst case all 
possible combinations of n components,  of which 
there are 2" - 1, have to be investigated. Dekker,  
Smit and Losekoot [4] present two theorems that 
can eliminate combinations beforehand, however 
the effect of these theorems depends heavily on 
the data, and the remaining problem is often far 
too large to solve. Wildeman, Dekker  and Smit 
[14] show that under certain general conditions a 
dynamic programming formulation can be used 
that can be solved in ~ ( n  2) time. 

They show that if the penalty functions are, for 
instance, symmetric or congruent (i.e., o t i h i ( ' ) =  

hi( ' ) ,  for all i, a i > 0), then there exists an opti- 
mal combination structure in which the replace- 
ments are executed in consecu t i v e  order, that is, 
in the order as initially planned in Phase 3. This 
implies that in the worst case only ½n(n + 1) 
combinations have to be considered. An optimal 
combination structure can then be found with a 
dynamic programming algorithm. To apply this 
algorithm, the components  are renumbered such 
that t 1 <~ t 2 <~ . . .  <~ t n. (This can be done by 
standard sorting algorithms that have a time com- 
plexity of ~'(n log n).) The algorithm terminates 
after n iterations, while in each iteration j a best 
combination with last component  j is found. Let 
the array entry Firs t [ j ]  indicate the first compo- 
nent of this best combination, i.e., if Firs t [ j ]  = i, 



R. Dekker et al. / European Journal of Operational Research 91 (1996) 74-88 81 

then {i . . . . .  j} is the best combination found in 
iteration j. Let the total savings of the corre- 
sponding optimal combination structure be stored 
in the array entry TotalSavings[j]. Now the dy- 
namic programming algorithm can be outlined as 
follows. 

lnitialisation. 
TotalSavings[O] := 0. 

Iteration 1. The best combination with last com- 
ponent 1 is {1}, with corresponding optimal com- 
bination structure {1}. 

First[l] := 1. 
TotalSavings[1] .'= 0. 

Iteration j .  Consider the combinations with last 
component j in the following order: 

{j}, { j -  1, j} . . . . .  {1 . . . .  , j}. 
Find the combination for which the correspond- 
ing combination structure covering components 
1 . . . . .  j has largest savings. This is the combina- 
tion { i , . . . ,  j} for which T o t a l S a v i n g s [ i - 1 ] +  
savings o f { i , . . . ,  j} is maximal. Next, set 

First[j] := i. 
TotalSavings[ j ] := TotalSavings[ i - 1] 

+savings o f  {i . . . . .  j}. 

The best combination structure can be found by 
backtracking. The corresponding total savings 
equal TotalSavings[ n ]. 

It is easily shown (see Dekker, Wildeman and 
Van Egmond [6]) that for identical components 
the consecutiveness property holds. For non- 
identical components more specific information 
about the (deterioration process of the) compo- 
nents is necessary. When the general conditions 
are violated, the property of consecutiveness may 
not hold. In that case the dynamic programming 
formulation may not be optimal. However, the 
alternative is to use a set partitioning formulation 
that can only be heuristically solved for larger 
number of components. Different set partitioning 
heuristics can be applied in that case (see, e.g., 
Wildeman [13]), but it is also possible to use the 
dynamic programming algorithm as a heuristic. 
The advantage of this is not only its time com- 
plexity, but also its elegant structure and the fact 
that it can provide an upper bound of the total 

savings of an optimal combination structure (see 
Wildeman, Dekker and Smit [14]). We will use 
the dynamic programming formulation in our ap- 
proach, even if the consecutiveness property does 
not hold (but in that case as a heuristic). 

Phase 5: Rolling horizon step 
Having applied Phase 4, we now have a combi- 

nation structure for the n replacements within 
the planning horizon. However, only the combi- 
nation (action) planned at the current epoch t is 
carried out. Components replaced at epoch t will 
then start with age equal to zero, which may 
influence the individual planning at future epochs. 
The same holds for components that fail between 
epoch t and t + 1. Consequently, at epoch t + 1 a 
new state of the system is considered and the 
procedure is repeated, starting with Phase 3 (the 
results of Phases 1 and 2 remain valid). 

3.3. Infinite time horizon 

The computational effort of making a decision 
at each epoch is only quadratic in the number of 
components, due to the dynamic programming 
algorithm. Consequently, many components can 
be handled, which is not possible when calculat- 
ing an optimal strategy. 

For an optimal strategy the whole Markov 
chain has to be solved. As each component i has 
m i + 1 possible states and there are n compo- 
nents, the state space of the Markov chain con- 
sists of lqi~lmi + 1 states, which number grows 
exponentially in n. An optimal strategy for this 
Markov chain can be found with standard tech- 
niques such as successive overrelaxation and pol- 
icy improvement (see, e.g., Tijms [10]). However, 
because of the n-dimensional state space, this is 
limited to only a few (about five) components. 

For comparison of our approach with an opti- 
mal strategy, the average costs have to be calcu- 
lated. This is done by determining for each possi- 
ble state in the n-dimensional state space an 
action with our approach, and subsequently cal- 
culating the average costs corresponding with the 
resulting strategy with successive overrelaxation 
and policy improvement (see also Dekker, Wilde- 
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man and Van Egmond [6]). As in the case of 
calculating an optimal strategy, this is limited to 
only a small number  of components.  Problems 
too big to be solved optimally can be tackled with 
our approach,  however. In that case the average 
costs have to be determined by simulation. 

3.4. Finite time horizon 

Consider now a finite t ime horizon [0, T], in 
which at each decision epoch 0, 1 . . . . .  T -  1, an 
action has to be chosen. Epoch T is not a deci- 
sion epoch, nor the end of the system life; at this 
epoch a residual value for each component  of the 
system is incurred. For component  i being of age 
j we take as residual value v/, the relative value 
under  the one component  control-limit strategy 
of component  i for an infinite time horizon. This 
corresponds to the situation that after the finite 
time horizon a new (infinite) time horizon starts, 
in which the components  will be replaced sepa- 
rately. The relative value v/ can then be inter- 
preted as the extra costs of starting this new 
horizon with component  i being of age j instead 
of being new. 

The determination of residual values is rather  
arbitrary and depends upon future strategies. 
Choosing a certain structure can have substantial 
effects, as will be shown later. In the next section 
we show that the definition given above can yield 
strange horizon effects. We also show that these 
effects can be eliminated by taking other  residual 
values. 

When our approach is applied in [0, T], an 
action at an arbitrary epoch t ~  [0, T - 1] is spec- 
ified as follows. For each component  i an individ- 
ual replacement  t ime t i is determined,  based on 
the individual control-limit strategy for an infinite 
time horizon. These times induce a finite plan- 
ning horizon [t, t,], which must not exceed [0, T 
- 1]. To this end we define t i = T -  1 as soon as 
t i >~ T for component  i, by making the penalty 
function hi( ? ) infinite for values beyond the time 
horizon. Thus we have a finite planning horizon 
[t, min{t,,  T -  1}]. Further,  the approach is iden- 
tical as in the case of an infinite horizon: based 
on the penalty functions a combination structure 
is found. The combination to be executed at 

epoch t corresponds with the action to be taken 
at epoch t. 

3.5. What makes our approach heuristic? 

Our approach is based on a simple idea. If 
today a maintenance activity is due, is it cost-ef- 
fective to advance execution of other activities 
that are not yet due so as to have a combined 
execution today? This is the case if the costs of 
advancement  are less than the cost reduction 
obtained. A function expressing advancement  of 
a maintenance activity is often convex. This im- 
plies that it is perhaps more favourable to exe- 
cute the combination 'halfway' between the due 
dates, in which case the activity planned today 
has to be postponed. 

Our  approach is a sophisticated elaboration of 
this notion. The idea of advancement  and post- 
ponement  is expressed in the derivation of the 
penalty functions. An important  step is the deter- 
mination of future due dates. These are often 
known with certainty when applying block-re- 
placement  strategies. However, when applying 
age-replacement  strategies, as we do in this pa- 
per, future execution dates are not known. A first 
heuristic element of our approach is that most 
likely execution dates are taken. 

A following step is to determine a cost-effec- 
tive combination structure, rather  than only one 
cost-effective combination. To this end we take a 
finite planning horizon and find the best combi- 
nation structure for this planning horizon. A sec- 
ond heuristic element comes in when dynamic 
programming is applied when the consecutiveness 
property does not hold. 

Another  heuristic element of our approach lies 
in the fact that we firstly assume that shifting 
execution times (to enable joint execution) is done 
once only, and that the results are subsequently 
repeatedly applied on a rolling horizon basis. Our 
approach is optimal for activities, with known 
future execution times, that are always executed 
individually except for a finite horizon in which 
they may be combined only once. When applying 
the combination technique in a rolling horizon, 
we have to answer questions like what finite 
planning horizon to take and how to incorporate 
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harmonisation effects. Harmonisat ion effects are 
discussed in the next section. 

4. Computational experiments 

In this section we summarise the results of an 
investigation into the performance of our ap- 
proach presented in the previous section. We 
briefly explain what negative effects play a role 
and how these effects can be eliminated. Both an 
infinite and a finite time horizon are considered. 
A complete description of the numerical experi- 
ments is given by Dekker,  Wildeman and Van 
Egmond [6], in an extended report  version of this 
paper.  

Comparisons with optimal strategies are only 
made for a small number  of components  and 
states, since only then an optimal strategy can be 
calculated. Unless stated otherwise, we do not 
consider more than four components  or more 
than m~ = 14 states per component  (excluding the 
failed state m~ + 1). This makes the examples 
theoretical, since m i = 14 is usually a very short 
maximum lifetime expressed in years or months. 
However, this disadvantage originates from the 
problem rather than from our approach: an m i 
that is too large renders computation time of an 
optimal strategy unacceptable. 

4.1. Inf ini te  t ime horizon 

Apart  from comparing our approach with an 
optimal solution (Case 2 below), we first make a 
comparison with an (n, N)-strategy for two iden- 
tical components.  

Table 1 
The five lifetime distribution vectors Pi = p ( l )  . . . . .  p(5) 

ptl~= (0.80, 0.80, 0.75, 0.66, 0.55, 0.25, 0.15, 
0.10, 0.05, 0.01) ( m  i = 10) 

p~2~ = (0.96, 0.92, 0.87, 0.77, 0.60, 0.40, 0.31, 
0.15, 0.05, 0.05) ( m  i = 10) 

p~3~ = (0.90, 0.90, 0.88, 0.85, 0.65, 0.45, 0.25, 
0.12, 0.10, 0.10) ( m  i = 10) 

p~4~ = (0.81, 0.70, 0.65, 0.61, 0.58, 0.55, 0.53, 
0.51, 0.49, 0.48, 0.46, 0.45, 0.44, 0.43) ( m  i = 14) 

p~5) = (0.99, 0.97, 0.92, 0.84, 0.75, 0.66, 0.56, 
0.46, 0.37, 0.29, 0.22, 0.16, 0.11, 0.08) ( m  i = 14) 

Table 2 
Percentage increases of g~,,r~)~5) and grh over g* for the 
lifetime distribution vector p and the nine combinations of 
bi, r i and Ac 

b i r i Ac (n, N )  rh 

5 1 0.4 0.00 0.00 
5 2 1 0.07 0.60 
5 2 0 0.48 0.49 
5 4 3 0.00 1.33 
5 4 0.5 0.12 0.35 
5 7 6 0.00 0.41 
5 7 4 0.00 0.00 
5 7 1 0.03 0.26 
5 12 6 0.00 0.02 

Case 1 
Van der Duyn Schouten and Vanneste [11] 

apply an (n, N)-strategy for two identical compo- 
nents 1 and 2. An (n, N)-strategy prescribes to 
replace a component  when it has failed or when 
its age has reached the value N and, if one of the 
components  is replaced, to replace the other when 
its age is greater  than or equal to n. Define the 
lifetime distribution vector Pi of component  i as 

P i = ( P [  ', P] . . . . .  p ~ ' ) .  

Van der Duyn Schouten and Vanneste [11] use 
five lifetime distribution vectors Pi  = p ( l )  . . . . .  p(5) 

and nine combinations of b i, r i and Ac. This 
yields a total of 45 different examples, in which b i 
is constant. Table 1 gives the five lifetime distri- 
bution vectors; the nine combinations of bi, r i 
and Ac can be found in Table 2. The v e c t o r s  p(4) 

and p(5) are obtained as a discretisation of the 
Weibull (3, 1.4) and the Weibull (6, 3) distribu- 
tion, respectively. A Weibull ( a , / 3 )  distributed 
stochastic variable has a cumulative distribution 
function 

F ( t )  = 1 - e -~' /")~.  

In Section 2 we assumed that breakdown costs 
are incurred each time a component  fails, whereas 
in [11] breakdown costs are incurred only once 
when both components  fail simultaneously. To 
make a good comparison, the evaluation of the 
costs of our approach (but not the determination 
of the policy) will here be done according to [11]. 

Table 2 gives, for the distribution vector p(5) 
and for the nine combinations of b~, r i and Ac, 
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Table 3 
Minimum, average and maximum percentage increases of  
gt*~,N~ and grh over g * averaged over p(l),. . . ,p(5~ 

(n, N )  rh 

Minimum 0.00 0.00 
Average 0.05 0.26 
Maximum 0.51 1.33 

Table 4 
Data  of  36 examples 

b i = 20 
r i = 1, 5, 10, 15, 20, 25, 30, 35, 40 

Ac = 10%, 35%, 60% and 85% of r i 
Pi = pt5~ = (0.99, 0.97, 0.92, 0.84, 0.75, 0.66, 0.56, 

0.46, 0.37, 0.29, 0.22, 0.16, 0.11, 0.08) (m i = 14) 

the percentage increases of g(n,N) o v e r  g , and 
grh over g *. Here  g * (n. N) are the average costs of 
the optimal (n, N)-strategy, grh of our roiling 
horizon approach,  and g * of an optimal strategy. 
The percentage increases of g * and grh (over (n, N) 
g *) are defined as (g*~n. N ~ - g  * ) /g*  and ( g r h -  
g * ) / g  *, respectively. In Table 3 the minimum, 
average and maximum of the percentage in- 
creases of  g* * (n, N~ and grh (over g * )  are given, 
averaged over all five lifetime distribution vec- 
tors. 

From the results of Table 3 it can be seen that 
the (n, N)-strategy performs very well: the aver- 
age deviation from an optimal solution is 0.05%. 
However, our approach performs only slightly 
worse: 0.26%. The good performance of the 
(n, N)-s t ra tegy is probably caused by exploiting 
the special structure of two identical components.  
At the same time this is a major drawback of the 
approach of [11], as only two identical compo- 
nents are dealt with. Based on the embedding 
technique commonly used for Markov chains, the 
authors define a Markov chain with a state space 
that has ee(m i) instead of ee(m/2) states (with m i 
the maximum age of a component) .  This embed- 
ding technique appears  to be  successful only for 
systems with a small numbers  of components  
( <  3), since it reduces the dimension of the state 
space only by one. 

Our  approach does not use the special struc- 
ture of two identical components,  which implies 
that many more components  can be dealt with: 
taking a decision at a decision epoch requires 
only ~ ( n  2) time. Besides, the components  need 
not be identical. 

Case 2 
To obtain more insight into what effects play a 

role in the behaviour of  our approach when pa- 

rameters  change and the number  of components  
grows, we now apply our approach to two, three 
and four components.  We use other parameters  
than those in [11]. The examples in [11] are 
somewhat arbitrary, there is no justification for 
parameters  chosen. There  are examples with very 
small control limits ( =  2) and examples with very 
large control limits ( =  m i ) .  These situations are 
not very likely to appear  in practical situations. In 
our approach breakdown costs are incurred for 
each failed component.  This corresponds more 
with the practical observation that the probability 
of simultaneous failure is negligible (under the 
assumption of independently operating compo- 
nents). For ease of analysis we take identical 
components,  though this is not necessary, of 
course. However, by doing so, we avoid (large) 
differences between control limits, which is 
favourable with respect to discretisation effects. 

We take for r i nine different values and, for 
each of these, four values of Ac (that are per- 
centages of ri). Consequently, we have 36 differ- 
ent examples, in which the breakdown costs b i 
are constant. The values are chosen such that the 
ratio of preventive to corrective replacement  
costs, r i / ( r  i + bi) , varies from 1/21 = 0.05 to 
40 /60  = 0.67. As lifetime distribution vector Pi 
for component  i we take the vector p¢5) of Table 
1. This is the vector that gives the largest devia- 
tion of our approach from the optimal solution in 

Table 5 
Minimum, average and maximum percentage increases of g~*h 
over g * for n = 2, 3 and 4 components  

n = 2  n = 3  n = 4  

Minium 0.00 0.00 0.02 
Average 0.71 2.18 4.29 
Maximum 4.70 9.92 19.00 
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Table 6 
Average savings percentages in case of heuristic replacement 
or optimal replacement, compared to the 'single control limit 
strategy' for n = 2, 3 and 4 components 

n = 2  n = 3  n = 4  

(gs*cl- gr*h)/gs*,t 11.27 13.64 13.43 
( g ~  -- g* )/g~*~ 11.85 15.27 16.43 

the comparison with the (n, N)-strategy of [11] 
(1.33%, see Table 2). The data are summarised in 
Table 4. 

In Table 5 the minimum, average and maxi- 
mum percentage increases of grh over g are 
given. The deviation increases with the number of 
components. This can be explained as follows. A 
larger number of components imply that there 
are more opportunities for joint replacement. 
Moreover, these opportunities are more interest- 
ing when set-up costs are high. In the optimal 
solution of the above examples we indeed see 
more combining when the number of components 
and the set-up costs increase, an effect our ap- 
proach does not take into account, due to the 
decomposition applied. However, our approach 
still realises a great part of the savings that can be 
obtained compared to the implementation of the 
individual control limits. 

This is illustrated in Table 6. When the indi- 
vidual control limits are implemented, we have 
the situation that joint replacement occurs indi- 
rectly when two or more components are at their 
control limits. Let gs~ denote the costs of this 
'single control-limit strategy'. In Table 6 the aver- 
age costs of the three policies are compared: In 
the first row the average savings percentage is 
shown that can be obtained when applying our 
approach compared to the single control limit 
strategy; the second row gives the average savings 
percentage that can be obtained in case of opti- 
mal replacement. 

Harmonisation effects 
Our approach relies on a decomposition. As 

the initial planning in Phase 3 is based on individ- 
ual control limits, global interactions between 
components may be ignored. For instance, if there 

are many components there will frequently be a 
joint replacement in the optimal solution. This 
effect may be so strong that in practice a compo- 
nent is hardly ever replaced alone. In that case 
set-up costs will practically always be shared. To 
illustrate this effect, consider, for instance, the 
block replacement of n indentical components. 
In that case there is a substantial decrease of the 
optimal replacement interval if n increases (the 
interval of a single component may even be infi- 
nite). If the control limits in our approach are not 
harmonised (i.e., adjusted to the fact that multi- 
ple components are replaced together), this may 
result in substantial deviations from the optimal 
solution. 

From Table 6 it follows that most of the sav- 
ings (compared to individual replacement) can be 
obtained. However, this can be improved consid- 
erably when dealing with the harmonisation ef- 
fect described above. This effect can be dealt 
with in various ways, which we do not thoroughly 
scrutinise in this paper. We apply a simple form 
of harmonisation: in the determination of the 
individual control limit strategies, we divide the 
set-up costs by n, the number of components, as 
if set-up costs are always shared (which is often 
the case in the above examples). Table 7 gives the 
results of this approach when applied to the 36 
examples, for two, three and four components. 

From Table 7 we see that the deviation is 
much smaller, and does not increase significantly 
with the number of components. In the examples 
with large set-up costs (viz. 85% of ri) , the devia- 
tion from the optimal solution is mostly 0.00%. 
The large deviations of 1.94%, 2.02% and 1.88% 
are now found in the examples with small control 
limits (typically 2 and 3) and small set-up costs 
(10% of rg). This is probably due to the fact that 

Table 7 
Minimum, average and maximum percentage increases of gr~ 
(harmonised) over g * for n = 2, 3 and 4 components 

n = 2  n = 3  n = 4  

Minimum 0.00 0.00 0.00 
Average 0.14 0.17 0.21 
Maximum 1.94 2.02 1.88 
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the time is not well enough discretised, since in 
all other examples (even with set-up costs of 
10%) the deviation stays below 1%. By 'scaling', 
this discretisation effect may be eliminated, as is 
suggested by experiments described by Dekker, 
Wildeman and Van Egmond [6]; the deviation 
from the optimal solution then stays below one 
percent. 

As one would expect, harmonisation also has a 
favourable effect on the savings that can be ob- 
tained by applying our approach compared to the 
implementation of the individual control limits; 
these savings are now quite close to the optimal 
values. 

4.2. F in i t e  t i m e  h o r i z o n  

For a finite time horizon we apply our ap- 
proach also to two, three and four components. 
We take the same parameters as for an infinite 
time horizon, see Table 4. As time horizon we 
take five decision epochs, that is, T = 5. We firstly 
took as lifetime distribution vector Pi = / 9 ( 5 ) -  This 
vector yields small control limits in the first exam- 
ples (especially when r i = 1 and 5). We calculated 
for each possible starting state the deviation of 
the total costs of our approach from the total 
costs of an optimal solution. As in the case of an 
infinite time horizon, deviations increase with the 
number of components. 

To make a good investigation into what causes 
these deviations, discretisation effects because of 
small control limits have to be avoided. To obtain 
somewhat larger control limits, we consider other 
lifetime distribution vectors Pi, all discretisations 
of a Weibull (or, 3) distribution, such that control 
limits vary from 7 to 10. In Table 8, gr], equals 
the total costs of our approach averaged over all 
possible starting states. Tabulated are the mini- 
mum, average and maximum percentage in- 
creases of g~  over g*,  taken over all 36 exam- 
ples. The results do not differ significantly from 
the results with lifetime distribution vector Pi = 

p(5). The deviations are typically due to a finite 
horizon effect. 

This finite horizon effect is the following. If 
the individual control limits are relatively small 
compared to the length of the time horizon, there 

Table 8 
Minimum, average and maximum percentage increases of grh 
over g * for n = 2, 3 and 4 components; Pi is a discretised 
Weibull (c~, 3) distribution: for r i = 1 a = 25; for r i = 5, 10, 15 
a = 14; for r i= 20,...,40 a =9 

n=2 n=3 n=4 

Minimum 0.00 0.00 0.00 
Average 0.28 1.65 2.95 
Maximum 1.64 7.45 14.62 

will often be more than one replacement of each 
component within the horizon. By the definition 
of residual values (see Section 3.4), it is in general 
favourable in the optimal solution to replace 
components in such a way that at the last epoch T 

- 1 there will be a joint replacement, so as to 
end with as good as new components. For large 
set-up costs and many components this may be so 
important that the optimal strategy will often 
advance replacements or plan extra replacements 
to make this possible. Our approach does not 
take this into account, as it does not use the 
residual values. The effect typically occurs for 
starting states with large differences between ages. 

E l i m i n a t i n g  the  h o r i z o n  e f f ec t  

The finite time horizon effect causes a very 
capricious character of the optimal strategies, 
whereas our approach has a more stable be- 
haviour. The finite horizon effect is eliminated in 
three cases, viz. when: 1) The individual control 
limits are relatively large compared to the length 
of the time horizon; 2) a residual value is chosen 
that corresponds to the situation that joint re- 
placement is also possible after the finite time 
horizon; and 3) the ages are not very different. 

In case 1) the finite horizon effect is not so 
strong, because it is not very favourable in an 
optimal solution to have more than one replace- 
ment within the horizon. This can for instance be 
seen in an example with two components. In 
Table 9 we see the influence of the lifetime 
distribution on the deviation for different lengths 
T of the time horizon. For a = 21 the deviation 
for a time horizon of length 5 is very small. This 
is a scaling effect: Deviations grow again for 
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larger horizons. Thus the finite horizon effect 
does not disappear; only if the horizon is small 
enough, the effect falls beyond the horizon. How- 
ever, this observation is interesting, since in prac- 
tice the control limits are often relatively large 
compared to the length of the time horizon. 

Case 2) and case 3) apply when the multi-com- 
ponent  system is maintained on a rolling horizon 
basis. In practical situations a finite time horizon 
is mostly used in a rolling horizon approach; the 
actions in the first period(s) of the horizon are 
implemented,  after which a new finite time hori- 
zon starts, and so on. In that case we should 
define residual values that correspond to the situ- 
ation that after the finite horizon components  
can still be jointly replaced. We now take as 
residual values those of our approach for an 
infinite time horizon. This does not change the 
solution according to our approach,  since we do 
not use the residual values for the determination 
of a strategy; it does, however, change the aver- 
age costs and, consequently, the optimal solution. 
The optimal strategies become more stable be- 
cause they are not any longer very eager to end 
with new components.  

Another  very important  observation is that in a 
roiling horizon approach not all starting states 
are equally probable; in a long-term plan, ages of 
components  will be more synchronised. That  is 
why we also consider the deviation of our ap- 
proach from an optimal strategy when the devia- 
tions per  starting state are weighted according to 
the limit probabilities in the infinite horizon case. 
These are the steady-state probabilities of being 
in a state s of the n-dimensional state space. We 
took the probabilities of the strategy induced by 
our approach,  for an infinite t ime horizon. To see 
what happens when this rolling horizon view is 

Table  9 
P e r c e n t a g e  inc reases  of  grh over  g * for two c o m p o n e n t s  and  

d i f fe ren t  va lues  of T; ri = 30, Ac = 25.5 ( = 85% of ri), Pi is a 
d i sc re t i sed  We ibu l l  ( a ,  3) d i s t r ibu t ion  

T 

1 2 3 4 5 6 7 8 9 10 

6 0.00 0.01 0.30 2.01 2.22 1.36 0.85 0.98 2.38 2.05 
9 0.00 0.00 0.01 0.05 1.03 1.96 1.72 1.20 0.81 0.57 

21 0.00 0.00 0.00 0.01 0.02 0.05 0.11 0.20 0.58 1.24 

Tab le  10 

P e r c e n t a g e  inc reases  of  gr*h over  g*  for the  or ig ina l  and  
rol l ing hor izon def in i t ion;  Pi is a d i sc re t i sed  Weibu l l  ( a ,  3) 

d i s t r ibu t ion  

r i = 5 r i = 30 
AC = 4.25 AC = 25.5 

( =  85% of ri), ( = 85% of  ri), 
a = 1 4  a = 9  

n = 2  n = 3  n = 2  n = 3  

Or ig ina l  def in i t ion  1.07 2.22 1.03 5.40 
Rol l ing  hor izon def in i t ion  0.00 0.00 0.00 0.17 

applied, we arbitrarily take two combinations of 
r i and Ac, both for two and three components,  
and with Pi according to a discretised Weibull 
(a ,  3) distribution (these are four of the examples 
summarised in Table 8). 

In Table 10 the results are tabulated. The 
'Rolling horizon definition' corresponds to the 
alternative definition of residual values and the 
deviations weighted according to the limit proba- 
bilities as described above. The solutions accord- 
ing to this definition are compared to the solu- 
tions according to the original definition of the 
residual values and unweighted deviation. It is 
clear that our approach performs very well when 
the residual values according to the rolling hori- 
zon definition are used. 

5. Conclusions 

In this paper  we analysed a mult i-component  
replacement  problem in an operational planning 
phase. Given an infinite or a finite time horizon 
with discrete decision epochs, the objective was 
to specify a replacement  action at each epoch, so 
as to minimise average or total costs. We pre- 
sented a rolling horizon approach based on a 
component  decomposition and we used Markov 
decision theory and dynamic programming. Nu- 
merical experiments for a maximum of four com- 
ponents show that strategies induced by our ap- 
proach yield average costs less than one percent 
above the optimal values (after dealing with har- 
monisation and horizon effects). 

The advantage of our approach is that an 
action in a certain state is determined indepen- 
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dently of other states. Since the computational 
effort of determining an action is only quadratic 
in the number of components, this implies that 
we can handle many more components than other 
approaches published so far. Most of these ap- 
proaches are limited to a few (not more than five) 
components. Unfortunately, this also implies that 
a comparison with other approaches for many 
components is difficult. 

Our approach has some interesting potentials 
that are not scrutinised in this paper and that can 
be subjects for future research. Since mainte- 
nance activities are combined on a short-term 
basis, typical operational circumstances such as 
one-off savings can be taken into account; it is 
interesting to study the applicability of the ap- 
proach when dealing with other operational cir- 
cumstances such as manpower constraints. Our 
approach also provides planning possibilities, 
which is an important feature when work prepa- 
ration is necessary. Another  aspect is that insight 
is obtained into why maintenance activities are 
combined. The penalty functions indicate how 
much it costs to execute activities at times other 
than initially planned. As new maintenance deci- 
sions are generated quickly, this yields possibili- 
ties for interactive planning. Our approach is 
flexible in the sense that it can be applied to 
many maintenance systems. In this paper lifetime 
is used as state parameter.  Our approach may 
also be applied to, for instance, a system in which 
the state of deterioration can only be determined 
through inspection and repair is necessary to 
renew a component.  In such a system, decisions 
concerning when to inspect and when to repair 
have to taken. 
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