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Abstract. In this paper we adapt the well-known parametric approach from fractional programming
to solve a class of fractional programs with a noncompact feasible region. Such fractional problems
belong to an important class of single component preventive maintenance models. Moreover, for a
special but important subclass we show that the subproblems occurring in this parametric approach
are easy solvable. To solve the problem directly we also propose for a related subclass a specialized
version of the bisection method. Finally, we present some computational results for these two methods
applied to an inspection model and a minimal repair model having both a unimodal failure rate.
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1. Introduction

In [2] a framework in the form of an optimization problem is presented which
incorporates almost all of the single component preventive replacement models
in the literature where age is the only decision variable. Since in most preventive
replacement models in practice this is the only decision variable it is useful for
unification purposes to have at hand a general framework describing all these
apparently different models. Classical examples of the above models are given by
age-replacement, block-replacement, inspection and minimal repair [4, 27]. Having
this general framework it is important to present efficient algorithms to solve the
corresponding optimization problem. Unfortunately this issue is highly neglected
in the maintenance literature which is primarily focused on the construction of
models and so the purpose of this paper will be to present two algorithms which
solve the optimization problem of [2]. Since the objective function in the general
framework is a cost/time ratio with a noncompact feasible region it seems natural
to apply fractional programming techniques. This shows another example of a
practical problem to which these techniques can be applied and as stressed by [26]
in his recent survey on fractional programming this issue is of importance.

We begin by presenting in Section 2 the parametric approach for a special class
of fractional programs with a noncompact feasible region. Next we introduce in
Section 3 the framework of [2], which can be solved by the described parametric
procedure. Since in most cases of practical interest the objective function of the
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406 A. I. BARROS ET AL.

maintenance framework has some nice additional properties we are able to further
simplify the parametric approach. In particular, we will show in Section 3.1 for an
important subclass that the parametric problem is easy to solve and simultaneously
derive localization results for global minima. In Section 3.2 we will derive for
a related class an alternative algorithm which can be seen as a specialization
of the classical bisection method. Finally, in Section 4 we present and compare
the computational results obtained when applying these two procedures to the
inspection and the minimal repair model having both a unimodal failure rate
function.

To conclude this introduction we like to observe that [1] discuss in very gen-
eral terms the parametric approach for a more general framework involving also
condition based replacement policies. However, their paper is mainly focused on
the probabilistic properties of the underlying model and without being aware of
related results in fractional programming rediscovers the validity of the paramet-
ric approach. Due to the generality of their model they did not give a solution
procedure for the parametric problem, which stopping rule to use or derive rate
of convergence results. Observe all these issues are addressed in this paper for a
slightly less general framework which has important applications in practice [2].

2. Fractional Programming and the Parametric Approach

In this section we consider the fractional programming problem

inf fg(x) : 0 < x <1g (P )

with g : (0;1)�! IR given by

g(x) =
N(x)

D(x)
:

The following conditions are now imposed on the functions N and D.
� The function N : [0;1)�! IR is continuous and strictly positive on (0;1)

with N(0) := limx#0 N(x) > 0 and N(1) := limx"1N(x) � 1.
� The function D : [0;1)�! IR is continuous, strictly increasing and positive

on (0;1), with D(0) := limx#0 D(x) and D(1) := limx"1D(x) � 1.
� The limit 1 � g(1) := limx"1 g(x) exists if N(1) = D(1) =1.

Observe, if D(0) > 0 we extend the domain of g to [0;1) by setting g(0) = N(0)
D(0) ,

and in this case the feasible region of (P ) is given by [0;1).
By the above assumptions it is clear that g is continuous on (0;1) and �? :=

inf0<x<1 g(x) satisfies 0 � �? <1.
If N(1) is finite and D(1) = 1 it follows that g(1) = 0 and so �? equals

zero. Also in this case g(x) > 0 for every feasible x and so the optimization prob-
lem (P ) has no optimal feasible solution. Since we are interested in optimization
problems (P ) which have an optimal feasible solution we will only consider the
remaining cases.
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(i) Both N(1) and D(1) finite;
(ii) N(1) infinite and D(1) finite;
(iii) Both N(1) and D(1) infinite.

Fractional programming problems with noncompact feasible regions yield, be-
side the existence or not of an optimal feasible solution, problems when applying
usual fractional programming solution procedures, as discussed by [22] and [9].
In particular, while for linear fractional programming with a compact feasible
region the methods of [20], [21] and [10] are equivalent [28], for the noncompact
case this equivalence fails. Moreover, as shown by [22], the methods of [20] and
[21] may fail for the noncompact case to recover an optimal feasible solution.
Recently [8] and [9] have proposed modifications of respectively the methods of
[21] and [10] for linear fractional programs with a noncompact feasible region.
Basically, the difficulties created by a noncompact region are whether an optimal
feasible solution exists and if so, whether it is possible to apply Dinkelbach’s
algorithm [14] to recover such a solution. Observe, since Dinkelbach’s algorithm
uses iteratively an optimal feasible solution of the so-called parametric problem for
appropriate values of � > �? one presumes that these solutions indeed exist. This
clearly holds for compact feasible regions but it is not clear in advance whether
it also holds for noncompact feasible regions. To return to the first question and
to decide for the class of optimization problems (P ) whether an optimal feasible
solution exists we note that this always holds for case (ii). For the remaining cases
the following necessary and sufficient condition is easy to derive.

LEMMA 1. For cases (i) and (iii) the optimization problem (P ) has an optimal
feasible solution if and only if there exists a feasible x0 satisfying g(x0) � g(1):

Proof. If (P ) has an optimal feasible solution then there exists a feasible x0

satisfying g(x0) = �? � g(1) and so the if part is verified. Moreover, if there
exists some feasible x0 satisfying g(x0) � g(1) and additionally g(1) = �? then
clearly x0 is an optimal feasible solution. If �? < g(1) then for D(0) > 0 the
result follows from the continuity of g on [0;1) and Weierstrass theorem [5]. A
similar proof applies for D(0) = 0 or equivalently g(0) =1.

We will assume in the remainder that (P ) has an optimal feasible solution. This
implies that inf in (P ) can be replaced by min and the set X ? of optimal feasible
solutions of (P ) is nonempty.

Consider now the following parametric problem associated with (P ) given by

inf fg�(x) : 0 � x <1g (P�)

with g� : [0;1)�! IR defined by

g�(x) := N(x)� �D(x);

for � 2 IR. Let also p : IR �! [�1;1) be the associated parametric function

p(�) := inf fg�(x) : 0 � x <1g
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and X ?(�) the (possibly empty) set of optimal feasible solutions of (P�). For
D(0) = 0 the feasible region of (P�) differs from the feasible region of the
”classical” parametric problem with a compact feasible region as introduced by
[14] or with an arbitrary feasible region as discussed by [11]. This modification
is made in order not to exclude zero beforehand to become an optimal feasible
solution of (P�). However, for the optimization problem (P ) under some conditions
the point zero will never be an optimal feasible solution of (P�) for � � �? and so
taking the closure of the original feasible region will not influence the structure of
the parametric problem. Similarly as in [11] one can show the following result.

LEMMA 2.
(a) p(�) < +1 for every � 2 IR, and the function p is decreasing.
(b) p(�) < 0 if and only if � > �?. Moreover, p(�?) � 0.
(c) If (P ) has an optimal feasible solution then p(�?) = 0.

Another useful result relating (P ) and (P�) is given by the next lemma. Observe
the first part is also discussed by [11]) but due to our modification of the feasible
region for D(0) = 0 we also need to show its validity for this case.

LEMMA 3. If p(�?) = 0, then (P ) and (P�?) have the same set of optimal feasible
solutions (which may be empty).

Proof. If D(0) > 0 then the proof is given by (d) of Proposition 2:1 of [11].
Let now D(0) = 0 and suppose that x? is an optimal feasible solution of (P ).
Then clearly N(x)

D(x) �
N(x?)
D(x?)

= �? for every x > 0 and this implies that N(x) �

�?D(x) � 0 = N(x?) � �?D(x?). Since the functions N and D are continuous
this yields that x? is an optimal feasible solution of (P�?). Moreover, if p(�?) = 0
and x? is an optimal feasible solution of (P�?) then x? must be positive due to
N(0) > 0 and D(0) = 0. Since for every x > 0 we have that N(x)� �?D(x) �
N(x?) � �?D(x?) = 0 this implies that x? is an optimal feasible solution of (P ).
Finally, if either the optimal feasible solution set of (P ) or of (P�?) is empty then
by contradiction and the previous observation one can show that the other set is
also empty.

It is well known that Dinkelbach’s algorithm is nothing else than the Newton–
Raphson root finding procedure applied to the function p. Therefore we must know
at least for which values of � the function p is finite-valued. Among other results
this issue is discussed in the next lemma.

LEMMA 4. If N(1) and D(1) are finite, or N(1) is infinite and D(1) is finite
then the function p is finite-valued, concave and continuous on (�1;1).

If both N(1) and D(1) are infinite then the function p is finite-valued, con-
tinuous and concave on (�1; g(1)).
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Proof. Clearly for the case that N(1) and D(1) are finite or N(1) is infinite
butD(1) is finite, the function p is finite-valued and concave. Hence, by a standard
result in convex analysis [18] the function p must be continuous on IR.

Finally, if both N(1) and D(1) are infinite and g(1) exists we obtain easily
that g�(1) = 1 if � < g(1) and g�(1) = �1 if � > g(1). This implies that
the function p is finite-valued on (�1; g(1)) and since p is concave it must be
continuous on (�1; g(1)) [18].

The next example illustrates that for N(1) and D(1) infinite it might occur that
p(g(1)) = �1 for g(1) <1.

EXAMPLE 5. Let the functions N and D be given by

N(x) =

�
1 if 0 � x � 1
x� lnx if x > 1

;

and D(x) = x. For these functions it follows that the optimization problem (P )
satisfies �? = 1 � exp(�1) and the optimal feasible solution is given by x? =
exp(1). Moreover, g(1) = 1 and p(1) = �1.

By the concavity of the function p the next result is easy to verify. Remember the
scalar a 2 IR is called a supergradient of the function p at the point �0 if

p(�) � p(�0) + a (�� �0)

for every� 2 IR. Observe the next result holds without any monotonicity conditions
on D.

LEMMA 6. If (P�) has an optimal feasible solution x� then �D(x�) is a super-
gradient of p at the point �. Moreover, for x�1 and x�2 optimal feasible solutions
of (P�1), respectively (P�2 ) with �2 < �1 we have D(x�2) � D(x�1).

Since for the optimization problem (P ) it is assumed that the function D is strictly
increasing the following result is an easy consequence of Lemma 6.

LEMMA 7. If x�1 and x�2 are optimal feasible solutions of (P�1), respectively
(P�2) with �2 < �1 then x�2 � x�1 . Moreover, if the nonempty optimal feasible
solution set X ? of (P ) satisfies X ? � (0;1) then 0 is no optimal feasible solution
of (P�) for every � � �?.

Proof. The first part is an immediate consequence of Lemma 6 and D strictly
increasing. Clearly the second part holds for X ?(�) empty. Therefore assume
X ?(�) nonempty and by the first part it is sufficient to show the result for � = �?.
Observe now by (c) of Lemma 2 and Lemma 3 that X ?(�?) = X ? � (0;1) and
this proves the result.

As already observed applying Dinkelbach’s algorithm might not be possible if we
only know that (P ) has an optimal feasible solution. Additionally, we also need
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to identify some interval containing �? on which the parametric problem has an
optimal feasible solution. Unfortunately we cannot use Lemma 4 to identify such
an interval since it might happen for p(�) finite that the corresponding problem
(P�) has no optimal feasible solution as shown by the next example.

EXAMPLE 8. Let the functions N and D be given by

N(x) =

�
1 if 0 � x � 1
x if x > 1

; and D(x) =

�
x if 0 � x � 1
x� 1

x
+ 1 if x > 1

:

For these functions it follows that the optimization problem (P ) satisfies �? = 4
5

and its optimal feasible solution is given by x? = 2. Moreover, g(1) = 1 and
p(1) = �1. However the parametric problem does not have an optimal feasible
solution for � = 1.

The next results relate for the three cases (i), (ii) and (iii) the conditions that (P )
has an optimal feasible solution to the conditions that (P�) has an optimal feasible
solution for appropriate values of �. At the same time it identifies an interval on
which the parametric problem has an optimal feasible solution.

LEMMA 9. If N(1) and D(1) are finite the optimization problem (P ) has an
optimal feasible solution if and only if (P�0) with �0 := g(1) has an optimal
feasible solution. Moreover, if (P ) has an optimal feasible solution then (P�) has
an optimal feasible solution for all � � g(1), and p(�) = 0 implies � = �?.

Proof. If (P�0) has an optimal feasible solution then there exists some feasible
x0 satisfying

p(�0) = g�0(x0) � g�0(1) = 0

and so forD(0) = 0 the pointx0 cannot be zero due toN(0)��0D(0) = N(0) > 0.
Since g�0(x0) � 0 this implies g(x0) � �0 and applying Lemma 1 yields that (P )
has an optimal feasible solution.

To show the reverse implication we observe since (P ) has an optimal feasible
solution that by Lemma 1 there exists a feasible x0 satisfying g�0(x0) � 0 =
g�0(1). Hence for every � � �0 we obtain by the monotonicity of the function D
that

0 � g�0(1)� g�0(x0) =
�
N(1)�N(x0)

�
� �0

�
D(1)�D(x0)

�
�

�
N(1)�N(x0)

�
� �

�
D(1)�D(x0)

�
= g�(1)� g�(x0)

and this shows that p(�) � g�(x0) � g�(1) for every � � �0. Since the functions
D and N are continuous we obtain by a similar argument as used in Lemma 1 that
the parametric problem (P�) has an optimal feasible solution for � � �0.

To prove the last part we observe by (b) of Lemma 2 that � � �? � �0 if
p(�) = 0. Moreover, since (P ) has an optimal feasible solution this implies using
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the just proved result that (P�) has an optimal feasible solution. Hence, there exists
some feasible x� such that

0 = p(�) = N(x�)� �D(x�) � N(x)� �D(x)

for every x � 0. Clearly for D(0) = 0 it follows that x� cannot be zero and so
g(x) � g(x�) = � for every feasible x proving the last result.

Using the same arguments as in Lemma 9 one can show the following result, for
case (ii), i.e. N(1) infinite and D(1) finite.

LEMMA 10. If N(1) is infinite and D(1) is finite the optimization problems (P )
and (P�) for all � 2 IR, have an optimal feasible solution. Moreover, if p(�) = 0
then � = �?.

Finally we will consider case (iii).

LEMMA 11. If both N(1) and D(1) are infinite then the parametric problem
(P�) has an optimal feasible solution for every � < g(1). Moreover, if (P ) has an
optimal feasible solution and p(�) = 0 then � = �?.

Proof. The first part is easy to verify and so we omit its proof.
To verify the second part observe since p(�) = 0 that g�(x) � 0 for everyx > 0.

This implies that g(x) � � for every x > 0 and hence �? � �. If � < �? � g(1)
then by the first part the problem (P�) has an optimal feasible solution and so there
exists some x� � 0 for D(0) > 0 or x� > 0 for D(0) = 0 satisfying g�(x�) = 0
and hence g(x�) = � < �?. This yields a contradiction with the definition of �?
and so � = �?.

As shown by Example 8 it is in general not true that also (P�0 ) has an optimal
feasible solution and so the above result is the best possible.

The following important theorem relates, for all the three cases, the optimization
problem (P ) to its parametric problem (P�).

THEOREM 12. If (P ) has an optimal feasible solution then p(�) = 0 if and only
if � = �?. Also, if (P ) has an optimal feasible solution then the optimal feasible
solution set of (P ) equals the optimal feasible solution set of (P�) for � = �?.

Proof. The above result is an immediate consequence of Lemma 2 and respec-
tively Lemma 9 for case (i), Lemma 10 for case (ii) and Lemma 11 for case
(iii).

By Lemmas 9, 10 and 11 and Theorem 12 it is clear that with a proper chosen starting
point�1 we can apply Dinkelbach’s algorithm to find an optimal feasible solution of
(P ). Observe that such a value can be found by simply taking �1 := g(x0) � g(1),
with x0 a feasible point. Clearly, ifN(1) andD(1) are infinite and �? < g(1) <
1we could have used some feasiblex0 satisfying g(x0) = g(1), but if this holds it
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may happen that (P�0 ) does not have an optimal feasible solution. However, due to
�? < g(1) there must exist some feasible x0 satisfying g(x0) < g(1) and hence,
by using this value we can still properly apply Dinkelbach’s algorithm. Notice, by
Lemma 1 we know that there exists some feasible x0 satisfying g(x0) � g(1) or in
case N(1) and D(1) infinite and �? < g(1) some x0 satisfying g(x0) < g(1).

Dinkelbach’s algorithm can now be summarized as follows:

ALGORITHM 1 (Dinkelbach).
Step 1.
Let �1 := g(x0), k := 1 and Goto Step 2.
Step 2.
Determine x�k := argmin0�x<1g�k(x) and GoTo Step 3.
Step 3.
Let �k+1 := g(x�k).
If �k+1 = �k
Then Stop.
Else Let k := k + 1 and GoTo Step 2.

By the previous lemmas it follows that the parametric problem (P�k ) always
has an optimal feasible solution and by a similar reasoning as in [14] one can show
that the sequence f�k : k � 1g is decreasing with limk"1 �k = �?. Moreover, if
�k = �k+1 for some finite k then �k = �? and the algorithm stops with the optimal
feasible solution x�k (Theorem 12). As shown by [25] the sequence f�k : k > 1g
converges superlinear or sometimes quadratic to the value �? if the algorithm does
not stop after a finite number of iterations.

Observe also that the stopping rule p(�k) � ��with � > 0 some given constant
can be used. If at iteration k this stopping rule holds it follows by the supergradient
inequality applied at �k and using Lemma 6 and Theorem 12 that

�� � p(�k) � p(�?)� (�k � �?)D(x�k) = � (�k � �?)D(x�k)

with x�k belonging to X ?(�k). This inequality implies that �k < �? + �D(x�k)
�1

and since the sequence �k, k > 1 decreases to �? we obtain

�? � g(x�k) = �k+1 � �k � �? + �
�
D(x�k)

��1
:

Finally, observe that the efficiency of Dinkelbach’s algorithm strongly relays
on the ease to solve the parametric problem (P�), and that this depends on the
structure of the original problem (P ). As we will see in the next section, there are
several classes of maintenance problems for which the parametric problem (P�) is
easy to solve. Moreover, in that section we will also specialize the above results to
a general single-component preventive maintenance model.
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3. A General Single-Component Maintenance Model

[2] argue that the objective function of any preventive maintenance model, where
age is the only decision variable to start preventive maintenance, necessarily has
the form of the optimization problem (P ) with

N(x) := c+

Z x

0
m(z)h(z) dz

and

D(x) := d+

Z x

0
h(z) dz

with c > 0; d � 0 and m : [0;1)�! IR a continuous and positive function, while
the function h : [0;1)�! IR is continuous and strictly positive on (0;1). A
proof of their result can be found in [15]. Well-known examples are the average
cost and expected total discounted cost versions of the age replacement and block
replacement model [6], the minimal repair and standard inspection model [12] and
models where preventive maintenance is only possible at opportunities [13, 2].
Other less known models which fit into the above framework are discussed in
[7, 12] and [2].

Observe that this problem falls into the fractional programming class discussed
in the previous section. Introducing

1 � �0 := lim
x"1

Z x

0
m(z)h(z) dz � 0

and

1 � �1 := lim
x"1

Z x

0
h(z) dz > 0

we have that N(1) := c + �0 and D(1) := d + �1. Moreover, to describe
maintenance activities the only realistic situations correspond also to cases (i), (ii)
and (iii). Also, if the optimization problem (P ) has an optimal feasible solution
and d > 0 it is only realistic from a maintenance point of view to assume that
any optimal feasible solution is strictly positive. An example of (i) is given by
the age replacement model, while the block replacement and inspection model
satisfy the assumptions of (iii). To guarantee that g(1) also exists for case (iii) we
introduce the additional assumption that m(1) := limx"1m(x) exists, implying
g(1) = m(1). For this special problem we can specialize Lemma 1 as follows:

LEMMA 13. If �0 and �1 are finite then the optimization problem (P ) has an
optimal feasible solution if and only if there exists a feasible x0 satisfyingR

1

x0
m(z)h(z) dzR
1

x0
h(z) dz

�
c+ �0

d+ �1
:
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Moreover, if �0 and �1 are infinite and m(1) < 1 then the optimization
problem (P ) has an optimal feasible solution if and only if there exists some
feasible x0 satisfyingZ x0

0

�
m(1)�m(z)

�
h(z) dz � c� dm(1):

The above result does not exclude for d > 0 that 0 is an optimal feasible solution
of (P ). However, in the remainder we will always assume that for d > 0 the point 0
is not an optimal feasible solution and so the nonempty set X ? of optimal feasible
solutions satisfies X ? � (0;1). Observe that, for �0 and �1 finite it is easy to
verify, if m(1) exists and m(1) > g(1) = c+�0

d+�1
, that the sufficiency condition

stated in Lemma 13 holds. Also for this case, if we have found some x0 satisfying
m(x) > g(1) for every x � x0, then g(x0) < g(1) and so �1 = g(x0) can be
used to start Dinkelbach’s algorithm.

3.1. APPLYING THE PARAMETRIC APPROACH

Before specializing the results derived in Section 2 notice that if (P ) has an
optimal feasible solution and d > 0 it can be easily shown that X ? � (0;1) if
m(0) < g(0). Using now Lemma 7 it is relatively easy to prove the validity of the
following lower bound on the optimal feasible solution of (P�) for � appropriately
chosen.

LEMMA 14. If the nonempty optimal feasible solution set X ? of (P ) satisfies
X ? � (0;1) and the continuous function m : [0;1)�! IR is decreasing on [0; b]
for some b � 0 then x� > b for any optimal feasible solution x� of (P�) with
�? � �. Moreover, the same result holds for any optimal feasible solution of (P ).

Proof. Clearly, for b = 0 the result follows by Lemma 7 and so we assume
that b > 0. Using Lemma 6 and the function D strictly increasing it is enough to
prove these results for �?. Hence, suppose x�? is an optimal feasible solution of
(P�?). By Lemma 7 it follows that x�? > 0 and so by the first order necessary
conditions for a global minimum and h strictly positive on (0;1) we obtain that
m(x�?)� �? = 0. If x�? � b this implies since m is decreasing on [0; b] and h is
strictly positive on (0;1) that

g0�?(x) = h(x)(m(x) � �?) � h(x)
�
m(x�?)� �?

�
= 0

for every 0 < x � x�? . Hence by the mean value theorem [24] this yields
g�?(0) � g�?(x�?) and since x�? is an optimal feasible solution it must follow that
0 is also an optimal feasible solution contradicting Lemma 7. This proves the first
part and by the first part and Theorem 12 the second part follows immediately.

Before discussing a class of functions for which the parametric problem is easy
to solve we observe if (P ) has an optimal feasible solution that for any scalar �k
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generated by Dinkelbach’s algorithm with starting value �1 := g(x0) it follows
by Lemmas 9, 10 and 11 that the set X ?(�k) of optimal feasible solutions of
(P�k) is a nonempty set. Moreover, if additionally 0 is no optimal feasible solution
of (P ) (only needed for d > 0) and m is decreasing on [0; b] with b � 0 we
know by Lemma 14 that x�k > b for every x�k belonging to X ?(�k). By these
observations it follows that the constrained optimization problem (P�k) is actually
unconstrained and so by the Karush–Kuhn–Tucker conditions for an optimum and
the strict positivity of h on (0;1) we obtain that

X ?(�k) � fx 2 IR : m(x)� �k = 0; b < xg : (1)

Hence to find an optimal feasible solution of the parametric problem (P�) we have
to generate in the general case all stationary points x > b.

Another way to solve the global optimization problem (P�) is given by one
of the algorithms discussed by [16] if we know additionally an upper bound
u on the set of optimal feasible solutions of (P�) and an upper bound on the
values maxfm(x) : b � x � ug and maxfh(x) : b � x � ug. In this case the
optimization problem (P�) reduces to the optimization of an univariate Lipschitz
continuous function over a compact interval. Moreover, by Lemma 7 it follows for
�k+1 � �k that

x�k+1 � x�k

and hence we have an upper bound on the set X ?(�k+1)

X ?(�k+1) � fx 2 IR : m(x)� �k+1 = 0; b < x � x�kg :

At the same time it shows using Theorem 12 that limk"1 x�k = xb with xb the
biggest optimal feasible solution of (P ). By the previous observation it is now easy
to introduce a class of functions for which the parametric problem (P�) has a nice
structure and is therefore almost trivially solvable.

DEFINITION 15. [3] A function f : [0;1) is called unimodal if there exists some
0 � z0 <1 such that f is decreasing on [0; z0] and increasing on (z0;1).

It is clear for any unimodal function f that 1 � f(1) := limz"1 f(z) exists.
Moreover, if additionally f is continuous, one can also find constants 0 � b1 �

b2 � 1 satisfying f attains its minimum on [b1; b2]. In this case the continuous
function f is called unimodal with parameters 0 � b1 � b2 � 1. The next
theorem characterizes the optimal feasible solution set of (P�) and (P ) and shows
that under a unimodality assumption the inclusion in (1) can be replaced by an
equality. Observe a weaker result for the optimization problem (P ) with d = 0
using a completely different approach is given by [12].

THEOREM 16. If the optimal feasible solution set X ? of (P ) satisfies X ? �

(0;1), the continuous function m : [0;1)�! IR is unimodal with parameters
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0 � b1 � b2 < 1 and for � � �? the parametric problem (P�) has an optimal
feasible solution then the optimal feasible solution set X ?(�) of (P�) equals the
closed interval

fx 2 IR : m(x)� � = 0; b2 < xg :

Moreover, under the same conditions the optimal feasible solution set of (P ) is
given by the closed interval

fx 2 IR : m(x)� �? = 0; b2 < xg :

Proof. Clearly by (1) we have that

X ?(�) � fx 2 IR : m(x)� � = 0; b2 < xg :

Consider therefore an arbitrary point x > b2 satisfying m(x) � � = 0 and let x�
denote an optimal feasible solution of (P�). Since by Lemma 14 the inequality
x� > b2 holds and m is increasing on [b2;1) we obtain due to m(x�) = � that
m(y) = � for every

min fx; x�g � y � max fx; x�g

and so g0�(y) = 0. Applying now the mean value theorem yields g� is constant on
the interval [minfx; x�g;maxfx; x�g] and hence g�(x) = g�(x�). This shows the
first part and the second part follows immediately from this and Theorem 12.

By Theorem 16 it is relatively easy using for example a standard bisection algorithm
[5] to compute an optimal feasible solution of (P�) for the appropriate �. Clearly
for the subset of unimodal functions m which are strictly increasing on (b2;1) we
obtain that (P�) for the appropriate � has a unique optimal feasible solution and
this implies by Theorem 16 that the optimization problem (P ) also has a unique
optimal feasible solution.

Finally, if the continuous function m is unimodal with parameters 0 � b1 �

b2 < 1 and the function h is decreasing it is also possible for d = 0 to solve (P )
by using a specialized version of the bisection method. This will be discussed in
the next section.

3.2. SPECIALIZED BISECTION METHOD

Besides the Newton–Raphson root finding approach, another important method to
find the unique root of the univariate equation p(�) = 0 is given by the classical
bisection method. Basically this method constructs a succession of smaller intervals
containing the root. Although at each iteration the diameter of the interval is halved,
the convergence rate of this method is only linear in opposition to the Dinkelbach
algorithm. [19] proposes a variant of this method, resorting to the bounds produced
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by the Dinkelbach method, which converges superlinearly. However, the bisection-
like method introduced in this section aims at solving directly (P ), and fully exploits
the very special structure of the maitenance model discussed in this section.

Since the function D is strictly increasing its inverse D : [d; d + �1) �!
[0;1) exists and is also strictly increasing. Let us consider also the function
� : ( 1

d+�1
; 1
d
] �! [0;1) given by

�(y) = yN(D ( 1
y
)):

Clearly by the above definition it follows that the objective function g of the
optimization problem (P ) equals g(x) = �( 1

D(x) ). It is now possible to prove the
following result for the function �. In the next lemma notice that if both b = 0 and
D(0) = d = 0 then 1

D(b) =1.

LEMMA 17. The function � is convex on ( 1
d+�1

; 1
D(b) ) if and only if the continuous

function m is increasing on (b;1).
Proof. Clearly, the function � is convex on ( 1

d+�1
; 1
D(b) ) if and only if the

function y 7�! yN(D ( 1
y
)) is convex on ( 1

d+�1
; 1
D(b) ). Adapting slightly the proof

of Theorem I:1:1:6 of [18] one can easily show using the criteria of increasing
slopes that y 7�! yN(D ( 1

y
)) is convex on ( 1

d+�1
; 1
D(b) ) if and only if y 7�!

N(D (y)) is convex on (D(b); d+�1). The derivative of the last function equals
m(D (y)) and since by our assumption the function m is increasing on (b;1)
and D is strictly increasing the equivalence follows.

A direct consequenceof the above lemma and the subgradient inequality for convex
functions is given by the next result.

LEMMA 18. If the continuous function m is increasing on (b;1) and a > b is
some arbitrary point then

g(x) � m(a) +
�
g(a) �m(a)

� D(a)

D(x)

for every x > b.
Proof. By Lemma 17 it follows that the function � is convex on ( 1

d+�1
; 1
D(b) ).

This implies by the subgradient inequality that

g(x) = �( 1
D(x) ) � �( 1

D(a) ) + �0( 1
D(a) )

�
1

D(x) �
1

D(a)

�
= g(a) + �0( 1

D(a) )
�

1
D(x) �

1
D(a)

�
:

It is easy to verify that �0(y) = �(y)�m(D (y�1))
y

and substituting y = 1
D(a) yields

the desired inequality.
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To derive a specialized bisection algorithm we restrict ourselves in the remainder
of this section to an optimization problem (P ) with d = 0 for which the continuous
function h is decreasing and the function m is unimodal and continuous with
parameters 0 � b1 � b2 < 1. Examples of these models are given by age
replacement, inspection and minimal repair with a unimodal failure rate function
[27].

Under the above conditions it follows that the strictly increasing function D is
concave and so its inverse function D is convex. Moreover, since d = 0 we have
that D (0) = 0 and using its convexity we obtain that D (�x) � �D (x) for
every 0 < � < 1.

To start the discussion on our specialized bisection algorithm we observe the
following. Let [d0 � r0; d0 + r0] be the initial interval of uncertainty containing an
optimal feasible solution of (P ). By Theorem 16 we may choose d0 � r0 equal to
b2 and d0 + r0 equal to x�1 with x�1 obtained in Step 2 of Algorithm 1 for � = �1.
If dk is the midpoint of the (k + 1)th uncertainty interval [dk + rk; dk � rk] �
[d0 � r0; d0 + r0] then we know for lk := minfg(di) : i � kg that lk � g(x?) with
x? an optimal feasible solution and so by Theorem 16 and Lemma 18 it follows
for x = x? and a = dk that

lk � m(dk) +
�
g(dk)�m(dk)

� D(dk)

D(x?)
: (2)

This implies for g0(dk) > 0 or equivalently g(dk)�m(dk) < 0 that lk�m(dk) �
g(dk)�m(dk) < 0 and so the above inequality yields that

D(x?) �
g(dk)�m(dk)

lk �m(dk)
D(dk):

Hence by our previous observation about the function D we obtain that

x? = D (D(x?)) � D 
�
g(dk)�m(dk)

lk �m(dk)
D(dk)

�
�

g(dk)�m(dk)

lk �m(dk)
dk:

Moreover, if g0(dk) < 0 or equivalently g(dk)�m(dk) > 0 it follows by (2) that
lk > m(dk) and

D(x?) �
g(dk)�m(dk)

lk �m(dk)
D(dk):

Again by a similar argument we obtain

x? �
g(dk)�m(dk)

lk �m(dk)
dk:

Observe, if g0(dk) = 0 then dk is the optimal feasible solution and we stop the
algorithm. By these observations it follows for

�k :=
g(dk)�m(dk)

lk �m(dk)
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that the midpoint of the new interval of uncertainty is given by

dk+1 =

( 1
2(dk + rk + �kdk) if g0(dk) < 0
1
2(dk � rk + �kdk) if g0(dk) > 0

:

Moreover, the radius of the new interval equals

rk+1 =

( 1
2(rk + (1� �k)dk) if g0(dk) < 0
1
2(rk + (�k � 1)dk) if g0(dk) > 0

:

By the above results the interval of uncertainty is reduced by more than a half if
lk < g(dk) and so this algorithm improves the classical bisection method [5]. We
can state this specialized bisection algorithm in the following way:

ALGORITHM 2 (Specialized Bisection).
Step 1.
Let [b2; x�1 ] be the initial interval.
Compute d1; r1, let k := 1 and Goto Step 2.
Step 2.
Compute g0(dk) and Goto Step 3.
Step 3.
If g0(dk) = 0
Then Stop with dk the optimal feasible solution.
Else Compute �k; dk+1; rk+1, let k := k + 1 and GoTo Step 2.

For this specialized bisection algorithm we can also derive a stopping rule which is
comparable to the stopping rule of the Dinkelbach algorithm. Such a stopping rule
is needed in order to give a fair comparison in the next section of the specialized
bisection algorithm and the Dinkelbach algorithm. First notice the trivial result

0 � �? � g(dk) = g(x?)� g(dk): (3)

Using Lemma 18 and substituting x = x? > b2 and a = dk > b2 we have

g(x?) � m(dk) +
�
g(dk)�m(dk)

� D(dk)

D(x?)
(4)

and so by (4) and (3) we obtain

0 � �? � g(dk) �
�
m(dk)� g(dk)

� D(x?)�D(dk)

D(x?)
:

Since the function D is concave and hence Lipschitz continuous on the interval
[dk � rk; dk + rk] with Lipschitz constant Lk := D0(dk � rk) it follows that

0 � �? � g(dk) � �Lk j m(dk)� g(dk) j
rk

D(x?)
:

jogo357.tex; 9/09/1997; 15:43; v.6; p.15



420 A. I. BARROS ET AL.

Hence, the specialized bisection algorithm stops if the stopping rule

�Lk j m(dk)� g(dk) j rk > ��

for some positive � > 0 holds and by the above inequality this guarantees the
absolute error � �

D(x?)
. This stopping rule is comparable with the stopping rule

for the Dinkelbach algorithm discussed in Section 2. Observe, if g0(dk) = 0 and
hence dk is the optimal point then m(dk) � g(dk) = 0 and the stopping rule is
automatically satisfied.

In the next section we will present some computational results comparing both
methods.

4. Computational Results

In this section we present some computational experiments with the Dinkelbach
algorithm and the specialized bisection algorithm applied to the inspection and
minimal repair model. For both models we assume that the distribution F of the
time to failure of one component has a failure rate function given by

r(z) =

(
��(�z)��1 if 0 � z < 

��(�z)��1 + �
�
( z�

�
)��1 if z � 

Such a function was proposed by [17] to model a unimodal failure rate. Observe
for both models we have d = 0; c := c2 > 0 and h(z) = 1 for every z � 0.
Moreover, for the inspection model it follows that m(z) = c1F (z), c1 > 0, while
for the minimal repair model we have m(z) = c1r(z), c1 > 0.

Before discussing the results we first mention how the parameters of the above
failure rate function were generated. Since � is a scale factor this value was set
equal to one in all the test problems. The remaining parameters �; �; �;  were
generated uniformly on the intervals [0:5; 3:5], [0; 1], [0; 10] and [0:5; 3:5]. Also,
the parameters c1 and c2 are uniformly drawn from [0; 0:5] and [0; 1:5]. For both
models we generated ten problems. Finally, the stopping rule of both the Dinkelbach
algorithm and the specialized bisection algorithm used � = 10�6. By doing so both
stopping rules are comparable. Observe, since r(1) =1 that the minimal repair
model has a feasible solution. Moreover, since

Z x

0
r(z) dz =

(
(�x)� if 0 � x < 

(�x)� + (x�
�

)� if x > 

we do not have to use for the minimal repair model any numerical procedure to
evaluate the objective function at any point. However, for the inspection model we
need to approximate the objective function. Therefore we used Romberg integration
[23] to evaluate this function. Observe, as the computational results in Table II
show, that this affects the total execution time. All computations were done on a
COMPAQ PROLINEA 4=66 with mathematical coprocessor.
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We will start by discussing the results contained in Table I which refers to the
minimal repair model. For this table the entries on row Dinkel. report the results
obtained using the Dinkelbach algorithm. Similarly, the entries of row Sp.Bis.
report the results using the specialized bisection method. The column It refers to
the average number of iterations performed by the corresponding algorithm. The
column Sec refers to the average execution time in seconds measured by the unit
”TPTIMER” in Turbo Pascal version 5:0. The last column % Sub refers to the
percentage of the total time needed to solve the subproblems in the Dinkelbach
algorithm. To solve the subproblems in Step 2 of this algorithm we used the
standard bisection method.

Table I. Minimal Repair Model

Method It Sec % Sub

Dinkel. 5:8 0:017 89:65
Sp.Bis. 11:0 0:008

Although the average number of iterations in the Dinkelbach algorithm is less
it takes on average more time to solve the minimal repair model. This is obviously
caused by the fact that in Step 2 of the Dinkelbach algorithm the subproblems are
solved using bisection.

If both algorithms are used to solve the inspection model the integral
R x

0 F (z) dz
has to be approximated. Therefore a numerical approximation is needed in every
iteration. The results for solving the inspection model using both methods are
contained in Table II.

Table II. Inspection Model

Method It Sec % Num % Sub

Dinkel. 4:2 0:770 98:31 1:50
Sp.Bis. 8:9 1:499 96:14

This table is constructed in a similar way as Table I, but it contains an extra
column, % Num. This column contains the percentage of the total running time
needed for the Romberg integration to approximate the integrals in the model.

Also in this case the average number of iterations in the Dinkelbach algorithm
is less than the average number of iterations in the specialized bisection method.
Furthermore, the specialized bisection method takes on average considerably more
time than the Dinkelbach algorithm. This is due to the fact that in each iteration of
both methods we need to compute an integral and this takes more time than solving
the subproblems in Step 2 of the Dinkelbach algorithm. From the above results, it
seems, if the parametric problem is easy solvable, that the Dinkelbach algorithm
is preferred to the improved bisection method to solve classical one-component
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maintenance models whenever we need to call for a numerical procedure to evaluate
the objective function.
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