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Abstract 
 
This article studies specific aspects of the joint replenishment problem in a real supply chain setting. 
Particularly we analyze the effect on inventory performance of having minimum order quantities for 
the different products in the joint order, given a complex transportation cost structure. The policies 
suggested have been tes ted in a simulation model with real data. 
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1. Introduction 
 
One of the most important aspects affecting the performance of a given supply chain 
is the management of inventories, since the decisions taken in this respect have a 
significant impact on material flow time, throughput and availability of product. 
Particularly interesting and very often found in real supply chains, is the problem of 
coordination in the replenishment of multiple products when they share common 
resources (i.e. same mode of transportation or same stocking location), with the idea 
of benefiting from the savings in fixed costs. Special attention has been turned to this 
problem in the literature for the last three decades. Nevertheless, few studies relate the 
mathematical models so far developed with real supply chains or inventory 
applications. Most of the models encountered in the literature for the joint 
replenishment problem are based on assumptions that do not always hold in real 
settings. For instance they ask for the specification of minor set-up cost for the 
replenishment of an item, i.e., fixed costs associated with each particular product, 
which for real supply chains are difficult to estimate. 
 
In consequence, the objective of this article is to study the impact of joint 
replenishment policies in a real supply chain, and the effect of non- linear 
transportation costs. We investigate how inventory performance is affected by 
minimum order quantities for the individual items. Classical theoretical models 
overlook this important aspect. 
 
In the next section we describe the case study. Section 3 presents a literature review 
on joint replenishment. Section 4 describes the simulation model and its main 
assumptions. In section 5 we discuss the results of the experiments carried out with 
the simulation tool. Sections 6 presents analytical considerations using the EOQ 
procedure, and the final conclusions are presented in section 7. 
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2. Case study 
 
The company 
We consider a start-up company that commercializes gift items in The Netherlands 
and Belgium. The company orders the items from a manufacturer located in China, 
who in turn receives raw material and components from a variety of suppliers (see 
product description). The company keeps inventory of items at a Distribution Center 
(DC) in The Netherlands by means of a Vendor-Managed Inventory contract with the 
distributor, who is responsible of sending out the items to the final retailers. The items 
are shipped to The Netherlands by container (either full container or less-than-a-full 
container) and once in the port of Rotterdam a third party trucking company brings 
the items to the DC. 
 
The product 
The items are produced in 23 different types and cons ist of a chip (which contains a 
music song) and other components. The items are homogeneous for transportation. 
The minimum order quantity for a specific chip is 10,000. There are eight different 
chips, each of them containing one specific song. Each chip is used in a family of 
different items (see table 2 in section 4). The manufacturing process for the chips 
comprises two steps, namely the masking of the chip, which needs to be done only 
once, and the production process itself. Once the chip has been masked its production 
time is 20 days. 
 
Lead times 
Other lead times are as follows: the time to assemble the items is 14 days and 
transportation from China to the port of Rotterdam adds another 18-22 days. Finally, 
3 to 5 days are needed to take the items from Rotterdam to the DC. Thus, we have a 
maximum total lead time for the items of 61 days (all days considered are calendar 
days). Shipping the items by air would reduce the lead time considerably, but due to 
the high costs associated it is not considered as an option. There is, however, another 
way for the company to reduce the total lead time by keeping inventories of certain 
subassemblies in order to speed up the production process. We consider this option to 
reduce the total lead time to 39 days. 
 
Stock control 
In the retail stores a rack with 20 different gift items with 5 copies of each is 
displayed. During the week, the distributor checks the inventory of items at the stores. 
In case of stockouts or low stocks it replenishes the racks with available inventory 
from the DC. Since not all the 23 different items can be displayed in any particular 
rack, they are evenly distributed among the stores, in order to have all items selling to 
final customers. Stockouts may occur but since no track of backorders is kept at the 
selling points we have no form of evaluating stockout costs, also because substitution 
of items may occur in such case. Therefore, we consider a lost sales inventory system. 
The only report about the inventory status is generated at the DC according to the 
stock policy of the distributor described above. This is the only source of demand 
information. Accordingly, we are interested in the customer service level only at this 
point of the supply chain, measured as the ready rate, which can be translated into a 
fill rate by assuming a constant demand rate at the DC. 
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Problem definition 
The main problem is to coordinate the replenishment of orders for groups or chip-
families of items while keeping total costs low (transportation and holding costs) and 
achieving a certain customer service level at the DC. The main constraints are 
specified minimum order quantities for the production of families of items at the 
assembly plant due to the chip lot sizes, and different shipment sizes due to the use of 
half or full containers for transporting the items from China to The Netherlands. 
 
Cost structure 
 
Transportation costs 
We can identify two main components in the transportation cost for the items: the 
shipping cost from China to Rotterdam (R’dam) and the cost associated with the 
handling of the items from the time they reached the port of R’dam until they finally 
arrive at the DC (including the transportation cost form R’dam to the DC). Thus, the 
first component represents the sea transportation cost and is included in the cost of the 
items, since the manufacturer charges this cost free on board (FOB) in Rotterdam, 
provided that a minimum order quantity is ensured by the company. Accordingly, if a 
replenishment order is between 45,000 and 52,000 items a full container is used and 
the manufacturer charges 1.25 USD per item (we use a conversion rate of 1 USD = 1 
euro). If the company decides to order less than 45,000 items, a less-than-a-full 
container (LFC) is sent and the price charged by the manufacturer is 1,27 USD per 
item. No shipments with less than 10,000 items is allowed. In consequence, we 
include in the transportation cost a penalty cost of 0,02 USD per item for not using a 
full container. 
 
The second component is our real set-up cost, and is incurred by the company in any 
replenishment occasion once a shipment arrives in the port of R’dam, according to the 
following: 
 
If a full container arrives the associated cost is 700 euros, which includes the handling 
container-related cost and the transportation from the port of R’dam to the DC. For 
orders which contains less than 45,000 items the cost associated with a LFC is given 
by: 
 
Cost of handling and transportation for LFC = (210 + y) + 5.45x   euros 
 
where x is the total number of items (in thousands) in the shipment and y is given by 
the following rule: 
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Note: If more than one container is needed, then always one will be full and the total 
cost will be the sum of the costs associated with the container sizes involved in the 
shipment according to the rules previously presented. 
 
Set-up costs were not identified and not charged. 
 
Holding costs 
As a consequence of keeping stock of items at the DC, the company incurs a holding 
cost which includes the storage cost and the cost of capital invested in inventory. Of 
the two components, the latter is the most important, since the money borrowed by the 
company for working capital has a high risk due to the fact that the company is 
starting to be positioned in the market. We use an annual holding cost rate of 25%. 
 
An inventory of chips may be held at the assembly plant. In that case the company 
will have a VMI contract with the manufacturer with two main advantages: the 
reduction of the total lead time for the production process and the relaxation of the 
minimum order quantities for the items. The holding cost for the company in this case 
is only the cost of capital tied up in inventory, which is 20% annually. The cost of the 
chips is as follows: 
 

Orders from 10,000 to 40,000 chips:  0.400 USD per chip 
From 50,000 chips on:   0.375 USD per chip 

 
Administration related costs are negligible compared with transportation or holding 
costs, so for the sake of simplicity we don’t take them into account. 
 
Demand data 
When dealing with joint replenishment one of the important aspects to consider is 
whether the different products are homogeneous in terms of demand. We performed 
an analysis of demand data for individual items to evaluate the differences between 
items and to check whether it was possible to group them according to their demand 
rates. 
 
We consider the demand generated at the DC as real demand. We classified the items 
according to their demand rates in fast movers (FM), medium-high movers (MHM), 
medium-low movers (MLM) and slow movers (SM). These four categories were 
clearly identified from the histogram of the demand distribution. Moreover, no 
seasonal patterns or correlations were detected for the demand of items. Although one 
could not really expect that demand would behave stationary, we did not have 
indications to model that explicitly. We performed a normality test for the aggregated 
demand in the categories to see whether this could be a reasonable assumption for the 
demand of items in our simulation model. The null hypothesis of normality was not 
rejected at 5% significance level with a p-value of 0.20. We established a weekly total 
average demand of 2,942 items and we found an empirical ratio for the 4 categories of 
items of 3.1:2.5:1.8:1 (FM:MHM:MLM:SM). The demand rates for the four 
categories are shown in Table 1, where the C.V. (coefficient of variation) is also 
reported (see table 2 in section 4 for composition of families). 
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Table 1 

 
 Category  Average weekly  Weekly standard  C.V. 

      demand per item  deviation per item 
FM (4 items)          202           131  0.649 
MHM (4 items)          166           106  0.638 
MLM (7 items)           121             83  0.686 
SM (8 items)            65             44  0.677 

 
 
 
3. Literature Review 
 
Inventory models found in papers related to the JRP literature basically fall in two 
main categories according to the nature of demand: deterministic and stochastic 
models. In the deterministic methods it is assumed that the major ordering cost is 
charged at a basic cycle time T and that the ordering cyc le of each item is some 
integer kj multiple of T, which is called a (kj, T) policy. In this line of research Goyal 
[4] proposed a solution method for the JRP based on enumeration, and therefore only 
suitable for small instances of the size problem. Moreover, he did not specify bounds 
for the problem and therefore one cannot test for optimality. Wildeman et al. [11] 
presented a more suitable optimal solution method for larger problems based on 
Lipschitz optimisation. Other authors focused on heuristic procedures. All of the 
methods suggested by these authors ask for the allocation of minor set up costs, which 
in our case were not present. Another important short coming of these methods is the 
treatment of the major ordering cost, which is often presented as a constant cost 
regardless of the number of items included in the order. 
 
In the stochastic arena, Balintfy [2] first introduced the use of (S,c,s) systems or “can-
order” systems, in which items are replenished up to level S if they reach a reorder 
level s. Coordination is achieved by including in the order any other item of the same 
family whose inventory level is below its can order level c. Later, Silver [7] proposed 
a method to determine in an optimal way the parameters of the (S,c,s) system. 
Although this policy performs relatively well, Ignall [5] showed that optimality 
cannot be guaranteed. Alternatively to (S,c,s) systems, for which a continuous review 
policy is needed, Atkins and Iyogun [1] proposed the use of periodic replenishment 
policies, where all items or specific subsets of them are ordered in every 
replenishment opportunity up to a base stock level S. Here the objective is to select 
optimal values of the review time and the order up to level S. Eynan and Kropp [3] 
presented an algorithm to find optimal values of the review time under stochastic 
demands using firstly a single item model and then extending it to the multi- item case. 
Although this algorithm could be used in real applications, the authors don’t consider 
a complex structure of the fixed cost. 
 
Viswanathan & Piplani [10] and Ramirez & Espinosa [6] discuss some real 
applications of coordination, by means of quantity discounts and capacity constraints 
in transportation. However, they do not consider minimum order quantities or a 
staircase transportation cost function. 
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The methods found in the JRP literature are important from a theoretical perspective. 
Few studies of the joint replenishment problem have been related to real supply 
chains, and to the best of our knowledge there are no methods available in the 
literature when minimum order quantities are a restriction of the system. 
 
 
4. Simulation model 
 
A simulation model was built to analyze the problem in which the net inventory and 
inventory position are controlled individually for each item with a time step of one 
week. Demands not met from stock are lost. The demand of each item is considered 
normally distributed with parameters given in table 1. For demands with large value 
of C.V. we cut off the negative part of the left tail of the normal distribution by setting 
to zero all negative demands, which caused only a marginal distortion. In table 2 we 
present the families of items considered in the simulation model. 
 
 

Table 2. Families of items  
 
 Family    Type of item 

(chip #)      FM  MHM  MLM   SM 
 
IC 1          6     14    23 
IC 2    7       20    15 
IC 3    8       16 
IC 4                       13, 15, 22 
IC 5        11   3, 19 
IC 6                           4, 12, 21 
IC 7    1    17          9 
IC 8    2    10     18 

 
 
Two inventory policies are considered, according to the following: 
 
Case 1. (kj, T) joint replenishment with minimum order quantities for the chips. 
 
(a) The system is controlled at chip level, using feasible subsets of chips for the joint 
replenishment. We consider a base replenishment time of T weeks and a frequency 
factor kj for chip j. The quantities ordered for the families of items have to satisfy the 
minimum order quantity for the chip and the lot sizes for individual items are 
determined by ensuring an equal number of days in stock according to average 
demand. This is done in the following way: we search for kj and T such that the 
service level is at least 90%. Due to the discrete nature of demand, we applied 
enumeration instead of continuous optimization to determine optimal policy 
parameters. What follows is the detail description of the algorithm considered. 
 
STEP 0. Select an appropriated set of values of the frequencies kj, using the following 
initial criterion: Set kj = 1 for the family with the highest rate of average demand, kj = 
2 for the family with the second higher rate of average demand and so on. Define 
AddQj as an additional quantity of chip j and set its value initially equal to zero. 
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STEP 1. For each selected set of values of the kj run the simulation using different 
values of T, starting with a value of one week and then increasing its value in steps of 
one week. Order the following quantity for item i inside family j (or equivalent 
containing chip j): 
 
Qij = ijj wAddQMOQ )( +  
 
where MOQ is the minimum order quantity per family and the weights wij are 
evaluated according to average demand as follows: 
 

jA

ij
ij D

D
w

,

=     and   1=∑
i

ijw        for all chip j 

 
where ijD  is the weekly accumulated average demand of item i inside family j, and  

jAD ,  is the weekly aggregated average demand of family j. 
 
STEP 2. For each run of the simulation model evaluate the average annual 
transportation cost using the cost structure presented in section 2, and the average 
annual holding cost of the system. Compute for each item i inside family j the % of 
time that the net inventory is zero. Compute the % of time that the net inventory of the 
system (all families) is zero by averaging values for each family. 
 
STEP 3. For all values of T for which the % of time that the net inventory of the 
system is zero is less than 10%1, compute the total average costs as the sum of the 
average transportation cost and the average holding cost. 
 
STEP 4. Select new values of the kj using the following general rule: families with 
higher rates of demand will have lower values of kj and families with lower rates of 
demand will have higher values of the kj. 
 
STEP 5. Repeat steps 1 through 4 trying for different values of AddQj, according to 
the following rule: for each family whose maximum % of time out of stock over all 
items inside that family at the end of the simulation run is higher than 10%, increase 
AddQj in steps of 500 chips (the minimum number allowed for a set of production in 
the masking process) until an acceptable value of the % of time out of stock is 
reached. 
 
STEP 6. Select the best values of the kj and T for which the average total cost is the 
lowest of all trials. 
  
(b) Same considerations as in part (a) but with pre-determined sizes of container to be 
used in the replenishments. This set of experiments is motivated by the idea that using 
the algorithm presented in part (a) we could get a solution in which different sizes of 
containers are used in every replenishment opportunity, which from the point of view 

                                                 
1 We set the value of 10% according to the customer service level required at the DC as an equivalent 
measure of the fill rate. 
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of transportation efficiency is not optimal. We define the following structure of 
experiments: 
 
A. Experiments using only one specific size of container (see table 2): 
 
FC: Full container (45,000-52,000). Includes: FC1, FC2, FC3 and FC4. 
LFC40: Less-than-a-full-container with 40,000 items. 
LFC30:     “                   30,000     “  .  
LFC20:     “                   20,000     “  . 
LFC10:    “                   10,000     “  . 
 
B. Experiments with containers of different sizes (Table 3). 
 
The choice made for the container sizes is based on proper combinations of containers 
that allow to distribute the families in the different replenishments according to their 
average rate of demand in order to better control the stockouts and to keep inventory 
levels not too high, and at the same time on the efficient use of the transportation 
system. We consider the following experiments: (as before, the letters indicate the 
type of container followed by the number in thousands of the units it contains) 
 
(FC50+LFC30). Full container plus one LFC in every replenishment. We send always 
a coordinated replenishment of all items, and we exploit the advantages of using 
always a full container. 
 
(FC50, LFC30, LFC30). Full container and two LFC’s sent alternately. The use of the 
LFC allow us to better match supply with demand of the families with low rates of 
demand, namely for chips 4 and 6. On the other hand we exploit the advantage of 
using a full container in every three replenishments. 
 
(FC50, LFC30). In this experiment we try to reduce the % time out of stock for chips 
4 and 6 by sending them in every two replenishment and at the same time still 
exploiting the full container economical advantage. 
 
(LFC30, LFC30, LFC20). We sacrifice the use of full container for using only LFC’s 
that better allow us to distribute the items according to their rates of demand. 
 
(FC50, LFC30, LFC45). We exploit economies of scale offered by the use of full 
container but to use it alternately with LFC to better match supply and demand for the 
fast and slow movers. 
 
Case 2. Joint replenishment with no constraint of minimum order quantities for the 
chips, because of keeping stock of chips at the assembly plant, but with a minimum 
order quantity for the total replenishment lot size (container constraint). 
 
The system is controlled using an order-up-to-level inventory policy considering a 
customer service level to be guaranteed at the DC. We compare the performance of 
the system using the following two control policies: 
a)  (T,S),  b)  (T,s,S). 
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In case (a) the system is reviewed every T time units. The lot sizes for the individual 
items are evaluated according to the order-up-to-level Si of each item. The 
replenishment will be effective only if the total replenishment size is at least equal to 
the minimum order quantity required by the container. Using the simulation we search 
for the best values of the parameters T and S that gives the minimum annual total cost, 
given 10% as the maximum allowable percentage of time that the system is out of 
stock (the same customer service level used in case 1). One way to choose the order-
up-to- level Si for item i is to relate its value to the average demand of the item during 
the review time T plus the lead time. Accordingly, we start out our search of the 
parameter Si by initially setting its value using the following equation: 
 

LTzLTDS iii +++= σ)(     (3) 
 
where Di and s i are the annual average demand and standard deviation of item i, L is 
the total lead time, and z is a multiplier of s  that determines the cycle service level. 
 
We run the simulation for the (T,S) policy using the same cost structure as the one in 
case 1, namely the transportation cost structure presented in section 2. We search for 
the best value of Si by varying the value of z. 
 
In case (b) the coordination is performed using the following strategy: the inventory 
position of each item inside its family is checked with a constant review time T equal 
for all items. When the inventory position of an item drops below its reorder point si, 
it triggers the replenishment order for the family to which it belongs. The lot sizes for 
the items inside the family are evaluated again according to the order-up-to-level Si of 
each item and the replenishment is finally effective only if the minimum order 
quantity for the container is satisfied. We look for the best possible values of the 
parameters T, s and S by trying different values and computing total average annual 
cost. 
 
Whichever policy is used, every time a replenishment of items is ordered, the system 
incurs a transportation cost according to the underlying cost structure. After a constant 
lead time, the replenishment arrives to the system and the status of all inventories is 
updated. The simulation model evaluates the holding cost associated with the average 
inventory held per year at the DC plus the holding cost associated with the average 
number of chips in stock at the assembly plant. To keep things not too complex in the 
simulation model, we do not keep track of the inventory of chips, we rather calculate 
the average stock directly while assuming an initial value of 25,000 chips. 
 
 
5. Experiments and discussion of results 
 
Case 1 (a). No intermediate stocks. MOQ for the chips. Experiment with free values 
of kj (see Table 1) 
 
We vary the review time T and evaluate for each value the following: 
 

• Average total cost of the system per year = Average annual transportation cost 
+ Average annual holding cost 

• Average % time out of stock over all items 
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Summary of simulation results      
         
Table 1. Experiments varying frequencies kj     

         
Definition of experiments         

Chips  {7,8}  {2,5}   {1,3}   {4,6}  
Average total               

demand  978  796  675  390  

(items/week)               

Ratios 1 : 1.2 : 1.45 : 2.5  

                

Experiment #                                kj values          

1 1  2   3   4  

2 1  2   2   3  

3 1  1   2   3  

4 1  1   1   2  

5 2  3   3   4  

6 2  2   3   4  

         

Results          

T Average Annual  Average Annual   Average Annual   Average  

(weeks) Transp. Cost  Holding Cost  Tot. Cost  % Out of  

  (euros)  (euros)   (euros)   Stock  

Experiment # 1*: {7,8} kj=1;  {2,5} kj=2;  {1,3} kj=3;  {4,6} kj=4;  All AddQj=0      

14 4,567   31,710   36,277   8.8  

  (185)*  (247)   (354)   (0.3)  

Experiment # 2: {7,8} kj=1;  {2,5} kj=2;  {1,3} kj=2;  {4,6} kj=3;  All AddQj=0      

18 3,593   19,618   23,211   9.4  

  (229)  (236)   (406)   (1.9)  

Experiment # 3: {7,8} kj=1;  {2,5} kj=1;  {1,3} kj=2;  {4,6} kj=3 AddQj=500     

18 4,088   31,424   35,512   6.0  

  (178)  (417)   (520)   (2.3)  

Experiment # 4: {7,8} kj=1;  {2,5} kj=1;  {1,3} kj=1;  {4,6} kj=2;  All AddQj=0      

24 3,120   23,033   26,153   8.9  

  (228)  (359)   (489)   (1.6)  

Experiment # 5: {7,8} kj=2;  {2,5} kj=3;  {1,3} kj=3;  {4,6} kj=4 AddQj=1,000      

10 4,668   24,466   29,135   5.8  

  (260)  (297)   (409)   (1.6)  

Experiment # 6: {7,8} kj=2;  {2,5} kj=2;  {1,3} kj=3;  {4,6} kj=4 AddQj=1,000       

12 3,661   20,242   23,903   6.1  

  (143)  (296)   (310)   (1.4)  

         

                                      Total cost and % out of stock for the experiments      

T 10  12   14   18 24 

           

Exp. 1  73,282     (1.8%)   49,378    (4.6%)    36,277    (8.8%)   20,485   (17.5%)  -  

Exp. 2  90,415     (0.9%)   62,651    (2.1%)    42,962    (3.4%)   23,211   (9.4%)  12,447   (27.5%)  

Exp. 3 126,725    (0.3%)  89,974     (1.1%)   65,652    (1.9%)  35,512   (6.0%)  15,042   (19.5%) 

Exp. 4  173,052   (1.8%)   131,717  (1.3%)    98,704   (1.6%)   55,132    (3.0%)  26,153   (8.9%)  

Exp. 5  29,135     (5.8%)   20,429   (12.0%)    16,346   (17.6%)   12,179   (25.2%)    -  

Exp. 6 36,604     (3.6%)   23,903    (6.1%)     17,402   (14.9%)    13,012   (26.1%)    -  

         
*) The numbers in parenthesis are the standard deviations of the average values.  
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Summary of simulation results   

     

Table 2. Experiments with one type of container  
     

T Average Annual Average Annual Average Annual Average 
(weeks) Transp. Cost Holding Cost Total Cost % Out of 

  (euros) (euros) (euros) Stock 
FC1 Two subsets of 4 chips with kj = 2 for all chips and additional chip in each  

  replenishment with frequency factor pj = 8: {1,2,3,4,Xpj}, {5,6,7,8,Xpj}. 
16 2,222  36,028  38,251  7.6 

  (135)* (120) (189) (0.9) 
FC2 Two subsets with chips 7 and 8 (higher demand) with kj = 1 and the 

  remaining chips with kj = 2: {7,8,1,2,4}, {7,8,3,5,6}.   
16 2,222  33,307  35,529  7.2 

  (134) (260) (312) (1.0) 
FC3 Two subsets of 4 chips with kj = 2 for all chips and 10,000 additional items  

  in the replenishment (the additional items are distributed among the families 
  according to relative average demand): {1,2,3,4}+10000, {5,6,7,8}+10000. 

16 2,222  31,666  33,889  7.2 
  (112) (187) (254) (0.7) 

FC4 Two subsets of 3 chips with kj = 3 and 20,000 additional items in the replenishment 
  (same consideration as in FC1.3), and one subset of 2 chips with kj = 3 and 30,000 
  additional items: {1,2,4}+20000, {3,5,6}+20000, {7,8}+30000.   

16 2,222  34,365  36,587  7.8 
  (139) (205) (289) (0.6) 

LFC40 LFC with 40,000 items.      
  Two subsets of 4 chips with kj = 2: {1,2,3,5}, {4,6,7,8}.   

14 5,265 24,872 30,137 7.7 
  (126) (142) (183) (0.8) 

LFC30 LFC with 30,000 items.      
  Two subsets of 3 chips each with kj = 3 and one subset of 2 chips with kj = 3 and 
  10,000 additional items in the replenishment: {1,2,4}, {3,5,6}, {7,8}+10000. 

10 5,844  27,794  33,638 5.7 
  (209) (310) (398) (0.6) 

LFC20 LFC with 20,000 items.     
  Four subsets of 2 chips each with kj = 4: {1,2}, {3,4}, {5,6}, {7,8}.  

6 7,434  37,753  45,188  4.2 
  (114)* (157) (377) (0.4) 

LFC10 LFC with 10,000 items.     
  8 subsets of 1 chip each with kj = 8: {1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}. 

4 7,188  20,567  27,755  12.8 
  (191) (108) (291) (1.4) 
     
     
*) The numbers in parenthesis are the standard deviations of the average values. 
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Sumary of simulation results    

     

     
     

Table 3. Experiments with different size of container   
     
     
     
     

T Average Annual Average Annual Average Annual Average 
(weeks) Transp. Cost Holding Cost Total Cost % Out of 

  (euros) (euros) (euros) Stock 
(FC50+LFC30) Full container and one LFC with 30,000 items. One subset containing 

  all chips with kj = 1: {1,2,3,4,5,6,7,8}.     
26 3,354  30,776  34,130  9.3 

  (129)* (266) (387) (0.8) 
(FC50,LFC30,LFC30) Full container and two LFC with 30,000 alternately. Chips 1,2,3,5,7 and 

  8 with kj = 2 and chips 4,6 with kj = 3, to get the following sequence of 
  replenishments:      
  {4,6,5,7,8}, {1,2,3}, {5,7,8}, {4,6,1,2,3}, {5,7,8}, {1,2,3}, {4,6,5,7,8}, … 

14 3,684  20,351  24,034  8.3 
  (162) (237) (364) (1.4) 

(FC50,LFC30) Full container and one LFC with 30,000 alternately. One subset with  
  5 chips and one subset with 3 chips and all kj = 2: {1,2,3,4,5}, {6,7,8}. 

14 3,354  27,839  31,193  9.6 
  (149) (369) (470) (1.2) 
(LFC30,LFC30,LFC20) Two LFC with 30,000 items and one LFC with 20,000, alternately.  

  Two subsets with 3 chips and one subset with two chips and all kj = 3: 
  {2,4,7}, {3,6,8}, {1,5}.       

10 5,390  20,693  26,083  8.4 
  (198) (155) (267) (1.6) 

(FC50,LFC30,LFC45) Full container, LFC with 30,000 and LFC with 45,000, alternately. Set kj = 3  
  for chips 4,5 and 6, and kj = 2 for chips 1,2,3,7 and 8 to get the sequence: 
  {4,6,7,8}+10000, {1,2,3}, {5,7,8}+15000, {1,2,3,4,6}, {7,8}+10000, {1,2,3,5}+5000, 
  {4,6,7,8}+10000, {1,2,3}, {5,7,8}+15000, {1,2,3,4,6}, …   

16 2,697  20,638  23,335  9.7 
  (233) (374) (499) (1.4) 

     
     

     
*) The numbers in parenthesis are the standard deviations of the average values. 
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Summary of simulation results      

        

Table 4. Experiments for the system with no minimum order quantities  

a) (T,S) Policy     
    

 

 
MOQ_Container = 10,000 items, lead time (L) = 6 weeks     

Cycle Average Annual Average Annual Average Annual Average Average Average # Average #
Service Transp. Cost Holding Cost Tot. Cost % Out of TRS of chips/year of FC/year

Level (%) (euros) (euros) (euros) Stock       
T=1               

99.87                 6,318                 5,248              11,566         10.6       11,450         25,000  0 
                   (240)* (68) (298) (1.5) (136)    

99.93                 6,591                 5,479              12,070           8.6       11,303  " 0 
  (139) (88) (207) (1.0) (118)    

  T=2               
99.53                 5,958                 5,450              11,409         11.7       12,539  " 0 

  (158) (46) (195) (1.0) (154)    
99.74                 6,369                 5,792              12,161           8.9       12,415  " 0 

  (182) (120) (257) (1.3) (310)    
  T=4               
98.61                 5,975                 6,285              12,260         11.7       15,060         25,000  0 

  (177) (85) (212) (1.4) (682)    
99.18                 6,374                 6,773              13,147           8.0       14,371  " 0 

  (282) (192) (359) (2.2) (571)    
  T=6               
94.52                 6,357                 7,636              13,993           9.2       16,888         35,000  0 

  (425) (355) (570) (3.5) (613)    
96.41                 6,281                 7,824              14,105           7.3       17,540  " 0 

  (479) (431) (704) (3.4) (785)    
  T=8               
94.52                 5,481                 8,617              14,098         10.1       22,991  " 0 

  (435) (472) (758) (4.1) (1504)     
96.41                 5,807                 9,337              15,144           5.3       22,384  " 0 

  (138) (242) (368) (1.6) (621)    
  T=10               
88.49                 5,361                 9,806              15,168           8.7       26,687         50,000  0 

  (146) (230) (368) (2.2) (303)    
91.92                 5,459               10,282              15,741           6.3       27,252  " 0 

  (111) (223) (328) (1.8) (475)    
  T=12               
88.94                 5,070               10,704              15,774           8.2       31,909         50,000  0.2 

  (70) (142) (169) (0.8) (353)    
91.92                 5,115               11,239              16,354           6.3       32,761  " 0.2 

  (66) (197) (156) (0.8) (342)    
T=14               
84.13                 4,756               11,865              16,621           9.9       36,813         60,000  0.2 

  (150) (169) (242) (0.8) (330)    
88.49                 4,853               12,234              17,087           8.3       37,801  " 0.2 

  (122) (123) (90) (0.6) (385)    
        

*) The numbers in parenthesis are the standard deviations of the average values.   

LTzLTDS +++= σ)(
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Table 4. Cont.       

b) (T,s,S) Policy        
        
MOQ_Container = 10,000 items, lead time (L) = 6 weeks     

Cycle Average Annual Average Annual Average Annual Average Average Average # Average #
Service Transp. Cost Holding Cost Tot. Cost % Out of TRS of chips/year of FC/year

Level (%) (euros) (euros) (euros) Stock       
 

T=2,                
99.74                6,383                5,775              12,158          8.9     12,363         25,000  0 

  (224) (57) (245) (1.3) (301)    
99.87                6,531                6,026              12,557          7.9     12,420  " 0 

  (192) (137) (313) (1.2) (210)    
T=2, s=.8S               

99.74                6,425                5,763              12,188          8.8     12,290         25,000  0 
  (229) (154) (367) (1.7) (307)    

99.87                6,572                6,038              12,610          7.5     12,508  " 0 
  (161) (125) (251) (1.0) (370)    

  T=2, s=.7S               
99.87                6,277                5,876              12,153        10.0     13,404         25,000  0 

  (212) (127) (324) (1.5) (385)    
99.93                6,434                6,155              12,589          8.1     13,903  " 0 

  (87) (93) (1390 (1.0) (417)    
  T=4, s               
99.74                5,702                6,686              12,388          9.4     19,011         30,000  0 

  (110) (140) (232) (1.1) (674)    
99.87                5,757                6,981              12,738          7.7     19,716  " 0 

  (63) (173) (227) (1.40 (659)     
  T=4, s=.8S               

99.18                6,156                6,684              12,840          9.1     15,262         25,000  0 
  (216) (188) (403) (1.8) (622)    

99.53                6,466                7,122              13,588          7.0     14,471  " 0 
  (350) (220) (552) (1.2) (1086)    

   T=4, s=.7S                
99.74                5,899                7,221              13,120          9.1     17,716         30,000  0 

  (88) (120) (196) (0.9) (343)    
99.87                5,885                7,454              13,339          8.0     18,231  " 0 

  (123) (100) (194) (1.0) (426)    
T=6, s               
99.87                5,364                8,417              13,781          9.5     23,294         30,000  0 

  (359) (80) (364) (0.4) (469)    
99.93                5,275                8,683              13,958          8.4     25,710  "   

  (306) (182) (471) (1.1) (764)    
  T=6, s=.8S               

94.52                6,172                6,959              13,131          8.7     16,730         30,000  0 
  (268) (274) (532) (2.5) (725)    

96.41                6,517                7,576              14,093          5.5     16,631  " 0 
  (100) (149) (239) (0.96) (241)    

 
 
 

LzDLs σ+=
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We use the average % time out of stock at the DC as an indirect measure of the fill 
rate to measure customer service level, rather than using the fill rate itself, because we 
do not model demands at the DC. Following the algorithm presented in the last 
section we defined the six experiments showed in Table 1, starting out with 
experiment 1 in which we selected the initial values for the ki and then we try to 
improve them by using different subsets of the frequencies as defined by experiments 
2 through 6. 
 
The best strategy was found setting kj=1 for chips {7,8}, kj=2 for chips {1,2,3,5} and 
kj=3 for chips {4,6} and T=18 weeks, with total associated average costs of 23,211 
euros and average ready rate of 9.4%. This policy produces a replenishment strategy 
in which a combination of full containers and different sizes of LFC are sent 
alternately. In this way we exploit the advantages of sending full containers. On the 
other hand, the use of LFC allows more flexibility to better control the inventory 
levels of items according to their rate of demand. 
 
Case 1 (b). Experiments with predetermined size of container (Tables 2 and 3) 
The experiments that used only one size of container resulted in very high annual 
costs, mainly because of the high holding costs involved. By using different sizes of 
container we can produce better strategies. The best one found was in experiment 
(FC50, LFC30, LFC45) with associated average costs of 23,335 euros and average 
ready rate of 9.7% (see Table 3), slightly worse than in case 1(a). This strategy allows 
to closely match the supply of items with the differences in average demand of the 
families by balancing better the amount of items sent in each shipment. 
 
Case 2. Experiments using (T,S) and (T,s,S) policies (Table 4) 
 
For both control policies (T,S) and (T,s,S) we vary the control parameters and evaluate 
for each case the following: 
 

• Average total cost of the system per year = Average annual transportation cost 
+ Average annual holding cost of items + Average annual holding cost of 
chips 

• Average % time out of stock over all items2 
• Average total replenishment size (TRS) 
• Average number of chips held in stock 
• Average number of full containers used per year 

 
For all the experiments we set a maximum allowable average % time out of stock of 
10% at the DC, which is in accordance with the customer service level needed for the 
system. We run the simulation for 5 years. 
 
For the (T,S) policy we found that the best performance of the system is achieved with 
low values of the review time T. Although in this case the transportation costs are 

                                                 
2 Although in equation (3) we implicitly use the probability of no stock out in each replenishment cycle 
as a measure of service level, during the simulation we rather look at the fraction of time during which 
the net stock is zero. We do this because of ease of evaluation and to be in accordance with the type of 
customer service measure defined for the case study and also used in case 1. 
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relatively high because of frequent delivery of LFC’s, the use of such values for T 
allow us to keep the holding costs low, which are of greater impact in this case. We 
can see that the use of such a policy outperforms any possible strategy when the 
minimum order quantities are present. This is explained by the fact that the relaxation 
of the minimum order quantities let us have a better control of the individual 
inventories of items according to the differences in the demand patterns of the 
product. From the experiments we obtained that for about the same level of customer 
service level we save approximately 70% in holding costs by keeping the stock of 
chips and using a (T,S) policy rather than the policies considered in case 1. For T=1 
and a value of z=3.2, the use of this policy resulted in average total costs of 12,070 
euros with average ready rate of 8.6%, much lower than the corresponding values for 
case 1. 
 
If we use a reorder point strategy, i.e., a (T,s,S) policy, the performance of the system 
is very close to that of the (T,S) policy as we can see from the results. The best 
performance was found using T=2 and a reorder level s equal to average demand over 
the lead time plus the safety stock, with associated average costs of 12,158 euros and 
average ready rate of 8.9%. Recall that when using a reorder point we cannot order 
unless any of the items belonging to a family is below its reorder point. In such a case 
we lose the opportunity of trigger orders until the next replenishment epoch, in which 
some of the items in the system are already out of stock, and this explains why the 
best performance of the system is found under low values of the review time, 
although the effect of low holding cost is also important as in the (T,S) case (Table 4). 
 
 
6. Some considerations using the EOQ method. 
 
Assuming a deterministic demand and a constant set-up cost, we perform some 
calculations using the EOQ procedure to investigate the behavior of the system when 
using a full container under minimum order quantities. Accordingly, consider the 
following data from the case study: 
 
Total average demand of the system: D = 2,942 items/week 
Set-up cost for an order: A = 700 euros (for a full container) 
Annual holding rate at the DC: h = 25% 
Unit cost: c = 1.25 euros 
 
and apply the EOQ formula to evaluate the optimal replenishment size (1 year = 52 
weeks): 
 

entreplenishmperitems
hc
AD

EOQ 180,26
2

==  

 
with associated holding and transportation costs: 
 

eurosADhc 180,82 = , which are slightly higher than the corresponding average 
costs obtained for the (T,S) or (T,s,S) policies showed in table 4. 
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From the previous calculations we can see that the EOQ formula gives a lot size that 
does not meet the required size of a full container. If we further assume 4 to 5 chips in 
the replenishment, we can also see that imposing minimum order quantities tends to 
increase the lot size and consequently the average stock of items at the DC. 
 
 
7. Conclusions  
 
For a real supply chain we showed that in the presence of minimum order quantities 
for the items to be included in the replenishments, we can achieve coordination of 
orders and at the same time exploit the economies of scale of a transportation system 
with non- linear cost structure. Particularly, we found that a (kj, T) policy performs 
better than focusing directly on a specific container size. The (kj, T) method does have 
a varying order size. For this policy we showed that minimum order quantities can be 
incorporated in a JRP by a manual enumeration method even with complex 
transportation costs. 
 
We considered the use of intermediate stocks of chips to relax the minimum order 
quantities and we showed that this action facilitates a better control of the supply 
chain because of shorter lead times and more effective inventory strategies. 
Particularly, we successfully apply a (T,S) and a (T,s,S) inventory policy with savings 
up to 44% in total costs. 
 
We can generalize the conclusions found for our product to other similar supply 
chains for which we have a competitive product that is differentiated in families 
according to specific characteristics of the subassemblies. Today many items are 
produced in Asia because of low labor costs and then sent to Europe or US by sea in 
large quantities. 
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