

New Bounds for the Joint Replenishment Problem:
Tighter, but not always better

Eric Porras*, Rommert Dekker

Econometric Institute, Tinbergen Institute, Erasmus University Rotterdam, P.O. Box 1738,
3000 DR Rotterdam, the Netherlands

Econometric Institute Report EI 2005-18

Abstract
In this paper we present new bounds on the basic cycle time for optimal methods to solve the JRP.
They are tighter than the ones reported in Viswanathan [7]. We carry out extensive numerical
experiments to compare them and to investigate the computational complexity.

Keywords: joint replenishment problem, bounds, computational complexity.

1. Introduction

Most of the optimal methods to solve the JRP presented in the literature are based
on an algorithm first proposed by Goyal [2], which is based on enumeration of the
total cost function between a lower and an upper bound of T. Van Eijs [1] proposed a
modified version of Goyal’s algorithm for cyclic strategies, where an explicit formula
is introduced to obtain the intervals over which the total cost is enumerated. The
pitfall of the algorithms by Goyal and van Eijs is that for large number of items and
relatively high minor set-up costs, they require a large number of enumerations. Some
people expect that this number increases exponentially in the number of items
involved. Viswanathan [6] and Wildeman et al. [8] proposed the use of tighter bounds
for the basic cycle time. Viswanathan [7] presented a comparative study of the
performance of different methods until 2002. However, he did not consider the work
by Wildeman et al. [8]. Thus, our objective is to perform a similar study to compare
the Wildeman bounds with those from Viswanathan [6], and to investigate whether
they can be combined to produce tighter bounds on T. Moreover, we also investigate
the computational complexity of the algorithms. Several recent papers and text books
present heuristics for the JRP ([3], [5]), but it is questionable whether they are
necessary considering the speed of the exact algorithm presented in this paper.

2. Formulation

We consider the following formulation for the JRP:

* Corresponding author:
E-mail address: porrasmusalem@few.eur.nl

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Erasmus University Digital Repository

https://core.ac.uk/display/18519211?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 2

(P)












=Ζ∈>









++= +

=
∑ MjkTTDkh

Tk
s

T
STTCMin j

M

j
jjj

j

j ,...,1,,0
2
1),(

1
k

where k is the vector of the kj’s, Dj is the constant rate of demand for item j, T is the
basic cycle time, S is the major set-up cost, and sj and hj are the ordering and holding
costs of item j. Z+ denotes the set of positive integers.

The function TC(T,k) is not jointly convex with respect to T and k. However, for a
fixed vector k the function TC(T) is convex in T, with optimal T given by:

∑

∑

=

=










+

= M

j
jjj

M

j j

j

M

kDh

k
s

S
kkT

1

1
1

*

2
),...,((1)

Substituting (1) in TC gives the optimal cost for a given k:



















+= ∑∑

==

M

j
jjj

M

j j

j
M kDh

k
s

SkkTC
11

1 2),...,(

For given T, an optimal value of k is given in Wildeman et al. [8] by:












++−= 2

8
1

2
1

2
1)(

TDh
s

Tk
jj

j
j for j = 1,…, M, (2)

Now suppose we have an upper bound on T. We can use this as a starting value to

enumerate the intervals with constant vectors k. For given T(i-1) and k(i-1) we can
determine the next break point T(i) from:

{ })()(max i
jj

i TT = (3)

where

)1(
2

)1()1(
)(

+
= −− i

j
i

jjj

ji
j kkDh

s
T for j =1,…, M. (4)

Notice that the optimal T associated with the vector k(i-1), say *

)1(−iT , as given by

equation (1), does not necessarily belongs to the interval),[)1()(−ii TT . However, as
stated in the following theorem, the overall optimal solution for TC has an associated
optimal T, say Topt, equal to some *

)1(−iT , with corresponding optimal k given by

)(*
)1(−iTk .

 3

Theorem 1. Let kopt be the vector of *
jk values that minimize the function TC(T,k)

among all possible T values as given by equation (5). Let),[)1()(−i
opt

i
opt TT be the interval

associated with kopt. Then Topt =),...,,(**
2

*
1

*
)1(Mi kkkT − ∈),[)1()(−i

opt
i

opt TT .

Proof. See the Appendix.

In the next section we discuss the bounds used in Viswanathan’s algorithm and the
bounds suggested by Wildeman et al. [8], which were implemented in the algorithm
proposed in this paper.

3. Bounds on T and solution method for problem (P)

As shown by van Eijs [1], an upper bound on T can be obtained from:

∑

∑

=

=

+
= M

j
jj

M

j
j

upp

Dh

sS
T

1

1)1(

)(2

Note that for a large number of items and relatively high minor set-up costs, the

previous upper bound can be very large. This increases considerably the
computational effort to find the optimal TC. In Viswanathan [6] a tighter upper bound,
denoted by)(V

uppT , is obtained in the following way: start in)1(
uppT and use equations (1)

and (2) recursively to find the first *
)1(−iT that lies inside its corresponding interval

),[)1()(−ii TT . The function TC will be monotone increasing between the overall
optimal T and *

)1(−iT .
Van Eijs [1] proposed a lower bound on T for cyclic policies as follows:

U

VElow TCST /2, =

where TCU is an upper bound on the total cost TC(T,k), e.g. from applying)1(

uppT .
This lower bound can be improved further by inserting in the last equation the best

value of TC found so far in each step of the optimization algorithm. However, except
for large values of the major set up cost and moderate minor set-up costs, the resulting
lower bound can be very small. Starting with Tlow,VE Viswanathan [6] finds a tighter
lower bound on T, say)(V

lowT , by using a similar procedure as the one described for
)(V

uppT . To avoid a large number of iterations to get the improved lower and upper
bounds, Viswanathan stops the search if before reaching the best possible lower
(upper) bound, the ratio)()(/ V

low
V

upp TT is below a predetermined value.
Wildeman et al. [8] used an entirely different approach to find bounds on T. They

first obtained a lower envelope to the TC(T) curve, say TC(R), by relaxing the
integrality requirement of the kj’s. Then the procedure finds a locally optimal solution
for the original function TC in T = T(R), where T(R) is the optimal solution of the

 4

relaxation (R). Then by determining the intersection between the level line
corresponding to the feasible TC and the TC(R) curve, a lower bound on the interval
(0,T(R)] is obtained using bisection. It can be shown that the function TC(R) is convex
in T [8] and therefore an upper bound on T, say)(W

uppT , can be obtained by the same

bisection procedure on the interval [T(R),)1(
uppT], whenever)()1(W

uppupp TT > , otherwise use
)1(

uppT . This procedure is summarized below:

First let TkDh
Tk

s
Tk jjj

j

j
jj 2

1)(+=φ for j = 1,…, M.

It is easy to verify that the function)(Tk jjφ is strictly convex in T with a minimum

for jj kxT /*= , with)/(2*
jjjj Dhsx = . Now a lower bound on T, say)(W

lowT , is
obtained from:

)
2
1()))((),((

1

*
*

)(

∑
=

+−
= M

j
jjj

j

j

W
low

xDh
x
s

RTRTTC

ST
k

 (5)

where T(R) is the optimal basic cycle time for the relaxation (R) of problem (P):

(R) { }MjkTTTC j

R ,...,2,1,1,0),(min)(=≥>k .

For the evaluation of T(R) first assume w.o.l.g. that **

2
*
1 Mxxx ≤≤≤ L and denote by

)(⋅′h the derivative of TC(R). Wildeman et al. [8] gives the following formula for T(R):

∑

∑

=

=

+
= *

1

*

1
)(2

)(j

j
jj

j

j
j

Dh

sS
RT (6)

where { }0)(:1max* * <′≤≤= jxhMjj .

In Fig. 1 we show a graphical representation of the procedures to find the
Viswanathan and Wildeman bounds.

Improved Wildeman bounds and optimization algorithms

We can improve the Wildeman lower bound in the following way: in each step of
the optimization algorithm presented below check if the locally optimal value of
TC(T) is better than TC(T(R),k(T(R))), and whenever this is the case find a new)(W

lowT
by replacing in equation (5) TC(T(R),k(T(R))) with the best value of TC(T). When we
follow this improvement procedure the algorithm is called Porras-Wild+, otherwise

 5

it is referred to as Porras-Wild. Notice than the original Wildeman bounds can also
be improved by using the same iterative procedure described for the Viswanathan
bounds. This algorithm is referred to as Porras-WV. Finally, the algorithm with
Viswanathan bounds is called Visw. For Visw and Porras-WV we stop the iterative
procedure to improve the bounds when the ratio Tupp/Tlow reaches the value 1.1.

Fig.1: Graphical procedure to obtain the Viswanathan and the Wildeman bounds.

Below we formulate the complete algorithm, which is similar to van Eijs [1] but
incorporates the result of Theorem 1 and different bounds on T.

Algorithm to solve (P)

Step 0. Initialization
Select BOUNDS = Porras-Wild, Porras-Wild+, Porras-WV or Visw.
Evaluate the bounds)(⋅

lowT and)(⋅
uppT according to the selected BOUNDS.

Set k(0) = k()(⋅
uppT) using equation (2), ∞=)0(

minTC , T (0) = ∞ and n = 1.

Evaluate)1(
jT for j = 1, …, M using formula (4).

 6

Step 1. For k(n−1) determine T (n) from (3) and set J (n) = { j:
j

max {)(n
jT }}.

Evaluate *
1−nT using (1).

Set:
[]





∞
∈

=
−

−
−

−
−

otherwise
TTTifTTCTC

TC
nn

n
n

n
n

n
)1()(*

1
)1(*

1
)1(

min)(
min

,)},(,min{ k

Obtain the elements of the new vector k(n), according to:







∉

∈+
=

−

−

)()1(

)()1(
)(1

nn
j

nn
jn

j
Jjfork
Jjfork

k

and set
)1(

2
)()(

)1(

+
=+

n
j

n
jjj

jn
j kkDh

s
T if j∈ J(n). Otherwise)()1(n

j
n

j TT =+ .

If BOUNDS = Porras-Wild+ improve)(W

lowT using (5) and TC(T).

Step 2. If T (n) ≤)(⋅

lowT STOP with)(
minmin),(nTCTTC =k and Topt = *

1−nT .
Otherwise set n = n + 1 and GOTO step 1.

END of the algorithm.

Computational complexity of the algorithms

Notice that in each step of the above algorithm the value of one ore more of the kj’s
is increased by one, hence the maximum number of steps needed is given by:

∑
=

−=
M

i
uppjlowj TkTkstepsofMaximum

1
)()(# (7)

For fixed Tlow and Tupp this number increases linearly in the number of items, M.

This has been unnoticed in the literature, as most papers give no explicit expression
for the optimal kj-values, like equation (2). Next assume that the initial list of)1(

jT -
values is sorted before entering Step (1) of the algorithm. Since the items change their
kj values one by one at each step of the algorithm with only one Tj-value updated in
each round, it follows that the number of computation steps of the algorithm is O(M
log M) under constant upper and lower bounds.

In the remainder of the complexity analysis, we need to set bounds on the s and hD
values. This comes from a practical reason, since we assume that in reality there is
always an effort associated with the handling or receiving of an item. Similarly, items
are assumed to cause holding costs when kept on stock. Thus, for sj∈[smin, smax] and
hjDj ∈[hDmin, hDmax] we distinguish the following cases:

 7

a) S fixed.
For the Viswanathan bounds, first notice that Tlow,VE is proportional to 1/M, since

the total cost TC adds up M positive terms in sj and hjDj, plus a constant term in S. By
(2) it follows that kj(Tlow,VE) is proportional to M. Similarly,)()1(

uppj Tk is proportional to
M. Now the iterative procedure of using equations (1) and (2) is linear in M, since the
maximum number of kj changes is given by (7) using Tlow=Tlow,VE and Tupp=)1(

uppT . It
follows that under the Viswanathan bounds the algorithm has complexity O(M2 log
M).

For the Wildeman bounds, since we take the intersection of a relaxation of (P) with
the TC curve, it follows from (6) that)1()(uppTRT ≤ . Therefore:

UTCRTRTTC ≤)))((),((k

and since the second term in the denominator of (5) is a positive constant it follows
that VElow

W
low TT ,

)(> . From this we have that after applying the Viswanathan iterative

procedure to)(W
lowT we get)()(V

low
W

low TT ≥+ . From the preceding and using again the fact
that TC adds M positive terms, we have from (5) that)(W

lowT is proportional to 1/M.
Therefore, from (2) we have that ki()(W

lowT) is proportional to M. In a similar way it can
be seen that)()(W

uppi Tk is proportional to M. From this it follows that the number of
steps in the algorithm is proportional to M2⋅log(M). Notice that the complexity to
obtain T(R) is O(M log M), since M *

jx -values need to be sorted. Therefore the
complexity of the overall algorithm remains O(M2 log M) under Wildeman bounds.

b) S increases in M but M/S is bounded.

For the Viswanathan bounds we have that Tlow,VE remains bounded. Similarly the
T*-values given by (1) remain bounded and therefore the number of steps in the
iterative procedure to improve the bounds remain bounded as M increases. It follows
that the maximum number of steps given above increases only linearly in M and thus
the complexity of the algorithm is O(M log M).

For the Wildeman bounds we have that)(W
lowT and)(W

uppT remain bounded as M
increases. Therefore the number of steps in the algorithm increases linearly in M. It
follows that the algorithm complexity is O(M log M).

For S↓0, the number of steps of the algorithm increases more than in the previous
cases, however it is not such an interesting case since a practical lower bound on T
can be used. Moreover, for small values of S the JRP is less relevant, and independent
ordering for the items should be applied.

4. Computational results

We implemented the four algorithms presented previously using a similar
experiment setting as Viswanathan [7], but with the inclusion of two extra values for
the major set-up cost, so the values S = 0.5, 1, 5, 10, 20, 50, 100 were considered. The
number of items considered were M = 10, 20, 50. For each value of S and M we

 8

generated 100 problems, with the minor set-up costs sj and the unit holding costs hj
randomly generated from U[0.5,5] and U[0.2,2]. For each problem instance, demands
for the individual items were randomly generated from U[100, 100000]. Therefore, a
total of 7×3×100 = 2,100 problems were solved with each algorithm. In order to
assess the effect of the number of items in the computational complexity of the
algorithms, we also carried out extended experiments for M=250 (S=20, 25, 50, 100,
125), M=1000 (S= 20, 50, 100, 500) and M=5000 (S=100, 500, 2500).

In Table 1 we present a summary of the results for the four algorithms under
consideration. The average number of intervals evaluated to get the optimal solution
(including the ones needed to improve the bounds), the average lower bound, the
average upper bound and the average CPU time is reported (including the
computation time to obtain the solution of the relaxation (R)). We consider the latter
as the performance criterion for the different algorithms.

Remark. We consider a ratio S/sj varying from 0.1~1 until 20~200. From numerical
results, we found that for ratios between 0.05 and 0.5 the JRP is still relevant with
respect to independent EOQ ordering (savings up to 5%) (see Porras and Dekker [4]).

As we can see from Table 1, Porras-Wild and Porras-Wild+ performed very
similar, both dominating Visw in all problems solved except for M=5000 (S=100,
500, 2500), where the latter performs better. The reason is that for moderate number
of items (M≤1000), the computation effort to improve the bounds in Visw consumes
an important part of the overall time to find the optimal solution, together with the
fact that the Wildeman procedure gives tighter initial bounds with less computational
effort. This effect can also be appreciated in the results for Porras-WV, where the
iterative procedure to improve the bounds increases the computation time
considerably with respect to Porras-Wild. As the number of steps increases only
linearly in M once the bounds are fixed, then for moderate M Wildeman bounds
perform better. For M large (>1000) the effect is reversed, and the increment in the
number of intervals in Porras-Wild becomes more relevant in the performance of the
algorithm, thus Visw needs less CPU time. As for Porras-WV, it outperformed Visw
in all problems solved, even for large number of items.

Finally, from the numerical results we can see that for M/S constant the CPU time
for Visw and Porras-Wild remain bounded by a polynomial of O(M log M). Consider
for example the results corresponding to M/S=10, 2 summarized in Table 2. We found
an empirical bound for the CPU time of 1.2(c log c) in Visw and of 2(c log c) in
Porras-Wild, where c is the increment factor in the number of items. From here we
can see that for moderate M (<1000) Porras-Wild needs less computation time than
Visw. The algorithms were implemented in Maple® v. 9.0 and ran using a Pentium
1.8 GHz processor.

 9

Table 1. Comparison of JRP algorithms for determining the optimal cyclic policy with s i ~U[0.5,5]

 Average no. of intervals evaluated Average Tlow (years) Average Tupp (years) Average CPU time (sec.)
M S Visw Porras-Wild Porras-Wild+ Porras-WV Visw Porras-Wild Porras-Wild+ Porras-WV Visw Porras-Wild Porras-Wild+ Porras-WV Visw Porras-Wild Porras-Wild+ Porras-WV
10 0.5 78.3 31.2 24.1 28.9 0.0022 0.0033 0.0038 0.0035 0.0074 0.0077 0.0077 0.0069 0.810 0.072 0.068 0.240

1 49.1 21.0 18.0 17.6 0.0034 0.0043 0.0046 0.0048 0.0078 0.0082 0.0082 0.0074 0.627 0.063 0.060 0.202
5 14.4 10.2 10.0 6.8 0.0080 0.0067 0.0068 0.0082 0.0093 0.0100 0.0100 0.0092 0.321 0.047 0.045 0.148
10 8.0 8.0 7.8 4.1 0.0101 0.0078 0.0079 0.0101 0.0107 0.0113 0.0113 0.0106 0.218 0.045 0.044 0.122
20 4.6 6.0 6.0 2.4 0.0122 0.0093 0.0093 0.0122 0.0125 0.0131 0.0131 0.0125 0.130 0.042 0.042 0.093
50 2.4 4.6 4.6 1.3 0.0162 0.0119 0.0119 0.0162 0.0167 0.0170 0.0170 0.0167 0.075 0.040 0.040 0.073
100 1.4 3.8 3.8 1.1 0.0214 0.0147 0.0147 0.0214 0.0217 0.0219 0.0219 0.0217 0.064 0.039 0.039 0.063

20 0.5 179.8 102.1 73.9 92.8 0.0018 0.0023 0.0028 0.0024 0.0069 0.0071 0.0071 0.0063 2.480 0.320 0.281 0.810
1 113.5 66.6 53.8 58.6 0.0026 0.0031 0.0035 0.0033 0.0070 0.0076 0.0076 0.0067 2.009 0.198 0.174 0.571
2 71.1 44.0 39.7 36.2 0.0037 0.0040 0.0043 0.0045 0.0073 0.0082 0.0082 0.0072 1.550 0.147 0.126 0.512
5 34.3 27.0 25.2 20.2 0.0059 0.0055 0.0056 0.0066 0.0083 0.0090 0.0090 0.0082 0.988 0.138 0.118 0.468
10 16.3 18.7 18.4 9.1 0.0084 0.0065 0.0066 0.0084 0.0092 0.0099 0.0099 0.0092 0.687 0.100 0.099 0.387
20 9.0 14.0 14.0 4.6 0.0101 0.0078 0.0078 0.0101 0.0106 0.0113 0.0113 0.0105 0.449 0.092 0.092 0.294
50 3.9 9.6 9.6 2.2 0.0129 0.0098 0.0098 0.0129 0.0133 0.0139 0.0139 0.0133 0.235 0.084 0.084 0.206
100 2.0 7.2 7.2 1.3 0.0161 0.0118 0.0118 0.0161 0.0166 0.0170 0.0170 0.0166 0.134 0.081 0.081 0.125

50 0.5 532.2 440.3 287.7 374.8 0.0013 0.0014 0.0019 0.0015 0.0061 0.0063 0.0063 0.0056 13.400 3.780 2.850 6.100
1 340.3 273.1 211.6 235.1 0.0019 0.0019 0.0023 0.0022 0.0062 0.0068 0.0068 0.0059 9.626 1.178 1.119 3.020
5 100.4 106.1 97.8 70.4 0.0043 0.0038 0.0040 0.0045 0.0069 0.0080 0.0080 0.0069 4.878 0.546 0.505 2.124
10 53.2 67.7 66.4 35.3 0.0060 0.0049 0.0051 0.0063 0.0076 0.0087 0.0087 0.0076 3.507 0.407 0.397 1.844
20 23.0 48.9 48.4 14.9 0.0081 0.0060 0.0060 0.0081 0.0087 0.0095 0.0095 0.0087 2.247 0.336 0.331 1.357
25 20.5 44.2 44.2 13.8 0.0085 0.0064 0.0064 0.0085 0.0092 0.0099 0.0099 0.0091 1.960 0.327 0.327 1.220
50 10.8 30.0 29.9 7.7 0.0100 0.0076 0.0076 0.0100 0.0104 0.0112 0.0112 0.0104 1.240 0.293 0.293 0.820
100 5.4 21.7 21.7 3.1 0.0120 0.0090 0.0090 0.0120 0.0123 0.0130 0.0130 0.0123 0.687 0.282 0.282 0.603

250 20 289.4 631.2 612.3 258.2 0.0044 0.0034 0.0035 0.0046 0.0063 0.0080 0.0080 0.0062 45.4 11.9 9.7 30.6
25 248.1 528.0 521.0 231.9 0.0050 0.0038 0.0039 0.0051 0.0066 0.0082 0.0082 0.0066 39.2 10.2 8.0 26.8
50 78.4 345.8 340.0 65.5 0.0071 0.0049 0.0050 0.0071 0.0078 0.0087 0.0087 0.0078 23.8 7.5 6.5 16.6
100 44.7 226.5 224.0 36.8 0.0083 0.0060 0.0061 0.0083 0.0089 0.0095 0.0095 0.0089 14.0 5.8 5.4 10.3
125 44.0 216.7 195.1 31.5 0.0086 0.0064 0.0064 0.0087 0.0093 0.0099 0.0099 0.0091 11.5 5.2 5.0 10.1

1000 20 1587.0 5287.2 5194.0 1486.0 0.0026 0.0019 0.0023 0.0028 0.0037 0.0062 0.0062 0.0037 536.0 432.8 420.7 441.1
50 715.8 3410.0 3165.2 608.2 0.0042 0.0028 0.0030 0.0042 0.0050 0.0077 0.0077 0.0050 416.2 280.1 279.5 312.2
100 484.2 2128.3 2166.5 407.0 0.0057 0.0038 0.0038 0.0057 0.0066 0.0082 0.0082 0.0066 263.7 152.2 151.8 200.8
500 101.2 819.8 805.0 94.2 0.0087 0.0063 0.0063 0.0087 0.0094 0.0097 0.0097 0.0092 82.7 74.6 74.3 71.0

5000 100 3081.0 24230.0 22158.0 2948.4 0.0036 0.0026 0.0026 0.0037 0.0039 0.0048 0.0048 0.0039 5402.6 8735.0 8715.6 5190.8
500 1140.8 10467.0 10174.0 1098.0 0.0061 0.0040 0.0040 0.0062 0.0067 0.0071 0.0071 0.0067 2336.1 3263.0 3260.0 2282.2
2500 272.5 4265.8 4126.2 270.5 0.0087 0.0063 0.0063 0.0086 0.0092 0.0096 0.0096 0.0090 738.4 1718.2 1718.2 728.8

 10

Table 2. Computational complexity of the algorithms

 Average no. of intervals Average CPU time (sec.)
M S M/S Visw Porras-Wild Visw Porras-Wild
10 1 10 49.1 21.0 0.627 0.063

5 2 14.4 10.2 0.321 0.047
20 2 10 71.1 44.0 1.550 0.147

10 2 16.3 18.7 0.687 0.100
50 5 10 100.4 106.1 4.878 0.546

25 2 20.5 44.2 1.960 0.327
250 25 10 248.1 528.0 39.2 10.2

125 2 44.0 216.7 11.5 5.2
1000 100 10 484.2 2128.3 263.7 152.2

500 2 101.2 819.8 82.7 74.6
5000 500 10 1140.8 10467.0 2336.1 3263.0

2500 2 272.5 4265.8 738.4 1718.2

5. Conclusions

In this paper we showed by numerical experiments that the bounds on T proposed
by Wildeman [8] can be incorporated in an algorithm to solve the JRP that
outperforms the best reported in Viswanathan [6] for a number of problem
configurations, namely for moderate M. We show that this can happen in spite of the
fact that Wildeman bounds are not always tighter than the latter. We also showed that
the original Wildeman bounds can be further improved by two procedures, with
Porras-WV resulting in tighter bounds than Visw for a number of problem
configurations. Finally we showed that the JRP can be solved in O(M2 log M)
polynomial time, provided that the si and the hiDi remain bounded from below.
Heuristics do not seem to be necessary for problems with less than 1000 items, since
optimal methods can solve the JRP under mild conditions in polynomial time.

References

[1] M.J.G. van Eijs, A note on the joint replenishment problem under constant demand, Journal of the

Operational Research Society 44 (1993) 185-191.
[2] S.K. Goyal, Determination of optimum packaging frequency of items jointly replenished,

Management Science 21 (1974) 436-443.
[3] A.L. Olsen, An evolutionary algorithm to solve the joint replenishment problem using direct

grouping, Computers & Industrial Engineering 48 (2005) 223-235.
[4] E. Porras, R. Dekker, Generalized solutions for the joint replenishment problem with correction

factor, in: Report Series Econometric Institute, Erasmus University Rotterdam, EI 2005-19 (2005).
[5] E.A. Silver, D.F. Pyke, R. Peterson, Inventory Management and Production Planning and

Scheduling, John Wiley & Sons (Eds.) (1998).
[6] S. Viswanathan, A new optimal algorithm for the Joint Replenishment Problem, Journal of the

Operational Research Society 47 (1996) 936-944.
[7] S. Viswanathan, On optimal algorithms for the Joint Replenishment Problem, Journal of the

Operational Research Society 53 (2002) 1286-1290.
[8] R.E. Wildeman, J.B.G. Frenk, R. Dekker, An efficient optimal solution method for the joint

replenishment problem, European Journal of Operational Research 99 (1997) 433-444.

 11

Appendix

Proof of Theorem 1
First note that from (2) it follows that T *(k1,…,kM) is monotone decreasing in k. Now
let k(i) be the adjacent locally optimal vector to kopt for)1(−> i

optTT and suppose that
)1(*)(−> i

optopt TT k . By the convexity of TC(T) it follows that TC is decreasing in

),[)1()(−i
opt

i
opt TT which implies that the minimum of TC is found in)1(−i

optT . It follows that

TC(T) is increasing for)1(−> i
optTT . Again by the convexity of TC this implies that

)1()(*)(−< i
opt

i TT k ⇒)()(*)(*
opt

i TT kk < , which is a contradiction by the monotonicity of
T . Therefore,)1()(−< i

optopt TT k and the minimum of TC is to the left of)1(−i
optT .

Proceed in a similar way to show that)(*)(i
optopt TT ≥k , implying Topt =)(*

optT k . �

