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Quite often transportation companies face two types of jobs, ones which they can plan 

themselves and ones which have to be done on call. In this paper we study the scheduling of 

these jobs, while we assume that job durations are known beforehand as well as windows in 

which the jobs need to be done. We develop several heuristics to solve the problem at hand. 

The most successful are based on defining an appropriate buffer. The methods are assessed 

in extensive experiments on two aspects, viz. efficiency, in the sense that they carry out 

many jobs and certainty, in the sense that they provide information beforehand about which 

jobs they will execute.   

 

Key words: stochastic scheduling, distribution problems 

 

1. INTRODUCTION  

 

In this paper we focus on a problem often encountered in transportation. There are two 

types of jobs (tasks) to be scheduled on a fleet of vehicles. One type of jobs, the so-called 

plan jobs, can be scheduled at any moment during a time window. The jobs of the second 

type, the call jobs, have to be executed at the moment the customer calls in. Only a time 

window in which the customer will call her/his job is known in advance, but not the exact 

moment of the call. The second type of jobs are considered more important, thus have a 

higher priority. The question the scheduler faces is how to maximize the expected weighted 

number of completed jobs while being able to give a certain guarantee to customers that their 

jobs will be executed.  

We encountered this problem with barge transportation of chemicals, where call jobs are 

mailto:gabor@ese.eur.nl
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orders for transporting highly reactive substances, and supply transportation in the army, 

where call jobs are orders coming from the battle field. In both cases, plan jobs are regular 

tasks, for which the exact completion time is less important. 

The variant of our problem with known call moments is related to interval scheduling 

problems, in particular to the class in which, given a set of parallel machines available, the 

weight of each job and the time window in which it should be executed, one has to 

maximize the number of (weighted) jobs that can be feasibly scheduled. Arkin and 

Silverberg(1997) showed that if the starting time and completion time for each job are given, 

the problem can be reformulated as a minimum cost network flow problem and thus solved 

in polynomial time. The interval scheduling problem with a fixed number of machines 

becomes NP-hard if each job can be carried out by a given subset of machines. Heuristics 

and exact algorithms for this variant are discussed in Kolen and Kroon (1993). The interval 

scheduling problem is also NP-hard if for each job only a time window is known and not the 

exact interval when the job should be completed. Approximation algorithms for time 

constraint scheduling problems, with the objective of maximizing the number of weighted 

jobs completed, can be found in Bar-Noy et al. (2001) and Berman and Dasgupta (2000). 

Rojanasoonthon and Bard (2005) describe an exact algorithm based on branch and price for 

a scheduling problem with time windows arising from a NASA application. Several other 

heuristics to tackle similar problems are described in Pinedo (2005). 

If the call moments are random, the problem we focus on in this paper bares similarities 

with fleet management problems. In fleet management problems, one has to assign a set of 

vehicles to customer demands that arise randomly in time. Typically, each vehicle and 

customer is situated at a certain location, and moving vehicles from one location to another 

requires one or more time periods. The problem in this paper is related to the variant in 

which all vehicles, respectively customers are situated at one location. Fleet management 

problems can be formulated as multistage stochastic integer programs, which are notoriously 

difficult. As an alternative, several approximation algorithms have been proposed during the 

last two decades. Powell (1987), Frantzeskakis and Powell (1990), Cheung and Powell 

(1996) propose approximation algorithms for the case without time windows. For the variant 

with time windows, Powell and Carvalho (1998) propose an approximate dynamic algorithm 

based on a linear approximation of the value functions. In a sequel of articles, Godfrey and 

Powell (2002a), (2002b), develop nonlinear approximations of the value function which 

experimentally outperforms the linear approximation.  

The problems studied in literature manly focus on maximizing the weighted number of 
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jobs completed. In practice, however, a scheduler is often not only interested in the 

execution of as many jobs as possible, but also in being able to guarantee to customers the 

completion of their jobs beforehand. In such a context, a scheduler has to find a trade-off 

between reserving machines in advance and executing as many jobs as possible. In the 

problem studied here, call jobs are known to be more important than plan jobs and a time 

window is given in which jobs may be called. Therefore, we address the following 

questions: 

Since call jobs are more important, should one reserve machines for them in advance?  

What would be a good reservation scheme? Should one reserve machines for the entire time 

window or only for a part of the time window? What kind of guarantees can be given that 

jobs will be executed? What is the tradeoff between the quality of the solution and 

computation time when reservation schemes are combined with methods based on priority 

lists, which are very fast, and when they are combined with methods based on integer 

programming?  

In order to answer these questions, we consider three reservation policies: no reservation 

of machines for call jobs, full reservation, or reservation of machines for call jobs for their 

entire time window and a novel partial or probabilistic reservation which reserves machines 

based on the stochastic properties of the call moments. In all the experiments we use two 

basic methods to solve the problem at hand: methods based on executing jobs according to 

some priority lists and methods which create  the schedule based on integer programs. For 

both types of methods, we analyze the effect of reservation on the weighted number of 

completed jobs. The experiments we have conducted show that the use of probabilistic 

reservation outperforms pure priority list heuristics and full reservation planning in 

environments with high number of call jobs. The best performing method proved to be 

probabilistic reservation combined with integer programming based planning for plan jobs. 

However, this may be time consuming. If running time is an issue, combining partial 

reservation of machines with priority lists gives comparable results with a very low 

computational effort.  

The paper is organized as follows. In Section 2 we give a mathematical model of the 

problem in terms of machine scheduling and present the application from which it 

originated. In Section 3 we describe in detail the heuristics we have considered. Section 4 

presents the design of the computational experiments and of the results obtained. We 

finalize the paper with concluding remarks about the advantages and disadvantages of the 

proposed heuristics. 
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2. PROBLEM DEFINITION AND STRUCTURING  

2.1 General problem definition in job scheduling terms 

We next give a description of the problem in terms of machine scheduling, that best relates 

to literature. There are two types of jobs, call jobs, denoted by cJ  and plan jobs, denoted by 

pJ , which need to be executed on K machines within a finite time horizon [0,T]. We assume 

that all events (release of job, start of a job, end of a job and due date) can take place only at a 

set of discrete moments in time, denoted by  . Since the problems we encountered have 

usually long durations, and are based on agreements regarding the possible starting times of 

call jobs, this assumption is not restrictive.  

Plan jobs can be scheduled by the decision maker (i.e. the production scheduler), while call 

orders must start when the customer decides, otherwise they are lost. For each plan job 

pJn , the following data are given: release date rn, due date fn  and duration .nd For each 

call job cJn , the customer indicates in advance a time window when he/she may call her 

orders and the probability ntp  of calling  job n at time t .There is no interaction between 

the jobs or machines and each machine can execute one job at a time. Each job needs one 

machine for completion. The overall problem here is how to schedule the jobs such that the 

expected number of executed jobs is maximized, while preference is given to call jobs. In this 

paper we chose to model the fact that call jobs have priority upon plan jobs by assigning them 

higher weights and to maximize the total expected weight of the executed jobs 

We will next  illustrate this problem with an example from supply transportation in the 

army. 

 

2.1.2 – Problem with the Royal Netherlands Army  

 

In this section we describe the problem as it originated with the Royal Netherlands Army 

(RNLA) (see Scheepstal (1999) and Verduijn et al. (2000)). This was the main motivation to 

start the research. RNLA planned to go over to a different logistical concept in which flat 

racks are used as transportation units. There are different types of flat racks for different 

types of goods, such as  flat racks for ammunition, refrigerator flat racks for food or medical 

goods and tank-flat racks for liquids like petrol and water. All these different flat racks can 

be carried by one single type of truck, a so called palletized loading system. Because trucks 



 5 

can now perform different kinds of distribution tasks, the RNLA is more flexible in 

achieving its logistical tasks. In order to reach the full potential of the flexibility the 

palletized loading system offers, all trucks are grouped in one logistic service provider 

(LSP). There are two types of customer-jobs, the earlier discussed call jobs and plan jobs. 

Call jobs generally come from units in the field that are in the front zone of the battle. When 

there is a brief moment in battle in which distribution is possible, the commander wants to 

use this immediately to reload it’s stocks. Therefore the logistical units have to be on stand 

by to carry out the called jobs. The time interval in which the logistical units have to be on 

stand by is fixed several hours before on the basis of the military goals a battle unit-

commander wants to achieve. On the other hand, there are units in the field, such as units 

responsible for telecommunication links, for which the exact moment of distribution is less 

important. They therefore indicate a time interval (the time window) in which the goods may 

be delivered. The LSP can plan the actual moment of delivery within the indicated interval.  

The goal of the LSP is to optimize fleet planning within the uncertainty of the call jobs 

using the flexibility of the plan jobs. 

The translation of the above transportation planning problem to the earlier discussed 

machine scheduling problem is easy. The jobs in the machine scheduling problem are the 

call and plan jobs of the transportation planning problem. Furthermore we assume that all 

jobs are full truck loads so only the duration of the jobs is of importance and not the actual 

route. This means that the trucks can be identified as the machines of the machine 

scheduling problem. 

 

2. TYPES OF STRATEGIES  

 

In this study we consider several types of strategies, which differ in the method with which 

jobs are scheduled and in the policy to reserve machines for call jobs.  Jobs may be scheduled 

based on priority lists or based on the solution of an integer program, case in which we speak 

about a planning.  If a strategy reserves machines for call jobs, it may do so for the entire 

duration of the call jobs (the call jobs are chosen such as to maximize the weighted number of 

planned call jobs), case in which we speak about full reservation planning, or for a part of the 

call jobs, not necessarily for their entire time window, case in which we speak about partial 

reservation.  For partial reservation we propose a new method, based on the probabilistic 

characteristics of the data. Note that reservation schemes give the scheduler the possibility to 

guarantee the completion of the jobs for which machines are reserved.  If the time windows of  
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call jobs are large in comparison to their duration, full reservation schemes may perform 

badly with respect to the weighted number of completed jobs, since there are few machines 

available for plan jobs. In this case, partial reservation may be then a better solution.  

According to the above mentioned criteria, we distinguish the following strategies: strategies 

based on priority lists without/ with full/with partial reservation and  strategies based on 

integer programming planning with full/ with partial reservation.  

Before describing the heuristics in more detail, we study the deterministic version of our 

problem, on which the integer programs used in our methods are based. 

 

3.1 Static planning – the deterministic case  

 

In this section we consider the variant in which all call moments are known. Call jobs can 

then be seen as plan jobs with known start and end times. If for both plan and call jobs it 

holds that ,nnn dfr   the problem of deciding which jobs to execute can be solved in 

polynomial time by reformulating the problem as a minimum cost flow problem (see e.g. 

Arkin and Silverberg (1987)). If plan jobs have time windows with slack ( nnn dfr  ), the 

problem of scheduling the jobs (with arbitrary priorities) reduces to a parallel machine 

scheduling problem with time windows, which can be proven to be NP complete in the 

strong sense by reducing it to the Multiprocessor Scheduling Problem, a known NP 

complete problem in the strong sense (see Garey and Johnson (2002)). For a detailed proof 

of this NP-completeness result we refer to Rojanasoonthon (2004). The existence of a 

pseudo-polynomial algorithm for solving the original scheduling problem of plan and call 

jobs is thus very unlikely.  

Since in our context the machine scheduling problem with time windows is only a tool 

for finding a good feasible solution of the version with uncertain call moments, we will 

solve it by means of an integer program. There are several Integer programming 

formulations in the literature of scheduling problems with time windows (see 

Rojanasoonthon and Bard (2005), Pinedo (2005)). We choose here for a formulation 

dependent on the explicit time moments when a job may start, since it suits more the final 

goal of incorporating call jobs with stochastic starting times. 

Denote by ][ , nnnn dfrT  , the discrete time moments when job n  may be started.  

Let tnx ,  be a 0-1 variable indicating that job pc JJn   starts being executed at 

time t and ttJ '  the set of jobs that might have started at some moment in time tt ' and 
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may still be in execution at time t.  

 

The machine scheduling problem with time windows can be then formulated as 

                            Min   
 cp nJJn Tt

tnn xp ,  

                    ( 1IP  )            1, 
 nTt

tnx , for each p cn J J  ,                                  (1) 

                                         ,
'

,

'

Kx
tt Jn

tn

tt

 
 

 for each 
c p

n
n J J

t T
 

  ,                             (2) 

                                         },1,0{, tnx  for each cp JJn   and 
nt T . 

Constraints (1) say that each job may be executed at most once. Constraints (2) indicate 

that at any moment t , no more than K  machines can be used.  Note that these constraints can 

be easily modified to model the situation in which the number of machines varies in time. 

 

3.2 Stochastic planning methods  

 

In this section we return to the initial problem, where the starting times of call jobs within 

the given time window are uncertain. Our goal is to design a schedule that maximizes the 

total expected weight of completed jobs. The presence of overlapping time windows and the 

dependence of the history of the process make this problem inherently difficult. At the 

beginning of this Section we have described the types of strategies one can employ to solve 

the problem at hand. Next we present the heuristics we considered in more detail.  

 

Heuristics based on priority lists, no prior reservation for call jobs 

 

 MinSlack In this first heuristic, we execute at every moment the job with the least slack 

(the slack of a job n at time t  is equal to max( ,0)n nf d t  ). We assume that at any 

moment in time, among the jobs with 0 slack, call orders will be prioritized.  Call jobs and 

plan jobs with the same slack are executed in decreasing order of their priority by duration 

ratio and in case of ties, in decreasing order of priorities.  The idea behind this heuristic is to 

execute as many call jobs as possible (since they have higher weight) and in the same time 

to ensure that plan jobs are not postponed till a moment when their completion becomes 

impossible due to time window violations. 
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 PBD (priority by duration) At any time moment execute the job with the highest priority 

by duration ratio and in case of ties the jobs with the highest priority. This heuristic favors 

short call jobs with highest weight. Note that in this heuristic the time windows are 

completely ignored.  

By using priority lists based heuristics, the scheduler can’t guarantee the execution of any 

jobs since the list of jobs changes with the call of every job. Therefore, if guaranteeing the 

execution of jobs is an important aspect, one may consider the following heuristic. 

 

Heuristics based on priority lists with full reservation planning 

 

 CFMinSlack (Call orders First Min Slack) This method first reserves machines for call 

orders for the duration of their time window such that the maximum weighted number of 

call jobs for which machines are reserved  is attained. At each moment in time when there 

are idle machines, we execute on them unscheduled call jobs, if any, and afterwards plan 

jobs, in increasing order of their slack. Clearly, the scheduler can guarantee the completion 

of all call jobs for which machines were reserved. The heuristic reserves machines for call 

jobs by means of the integer program 1( )IP . An alternative would have been to implement 

the polynomial algorithm of Arkin and Silverbergh (1987). 

 

Heuristics based on full reservation planning 

The methods in this class are characterized by the fact that they reserves machines for call 

jobs for their entire time window and at certain moments in time they use optimal schedules 

for the remaining plan jobs.  

 

FRPlan (Full Reservation Planning) FRPlan is the base case of this group. Beforehand 

a simultaneous planning of all call and plan orders is made, while reserving machines for 

call orders during their entire time window. For this, the integer program )( 1IP  is used with 

the call moments equal to the release date and the duration of a call job equal to the duration 

of their time window.  No changes are made to this schedule during the whole time horizon, 

so beforehand we know exactly which orders will be executed. This strategy is quite 

conservative, especially when time windows of call jobs are very large in comparison to 

their duration. The decision maker can, however, guarantee the realization of all the jobs 

scheduled by the integer program. 
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FRrePlan (Full Reservation rePlanning) This schedule improves FRPlan by using 

information about the realizations of calls to make a new (hopefully better) planning. Every 

time a call job is completed, we (re)plan the remaining jobs (like in FRPlan) given the actual 

state. Notice that the orders scheduled in the initial planning may not all be executed, due to 

possible changes in the planning while call jobs are revealed. Although FRrePlan  and 

FRPlan start with the same solution, due to reoptimization, FRrePlan  will obtain a solution 

with objective value at least equal with the objective value obtained by FRPlan. On the 

other hand, FRrePlan the computational effort required by executing FRrePlan will be 

much higher than for FRPlan . Moreover, with FRrePlan, the scheduler cannot offer any 

guarantee for the completion of plan jobs. One may do the rescheduling only after certain 

periods, but that is not investigated in this paper. In order to be able to give guarantees on the 

completion of a part of the jobs, while still making use of the freed capacity, one may make 

use of the following strategy.  

 

FRPlan+inserts We use FRPlan to make an initial schedule. If at any moment capacity 

becomes available (due to call jobs completion), we consider whether any of the non 

planned orders can be inserted in the schedule without changing the original plan. Clearly, 

FRPlan+inserts will perform better than FRPlan, since it makes better use of the machines 

freed by call jobs, but will perform worse then FRrePlan, which uses at every moment an 

optimal schedule for the not completed jobs. However, the scheduler can guarantee the 

completion of the jobs initially planned with FRPlan. 

 

CLFSL (Schedule Call orders and Long orders First, insert Short orders Later) The 

idea behind CLFSL is to reserve machines for call jobs for their entire time window and to 

schedule only long plan orders in advance, while short plan jobs are executed when capacity 

is freed by call jobs. We characterize a job as long if it has a larger duration then the average 

job duration. For the reservation of machines for call jobs and the schedule of long plan 

jobs, we use 1( )IP . When capacity becomes available, we execute the highest priority call 

order which has not been scheduled so far (if any). Then we execute the short plan jobs and 

the remaining long call jobs in decreasing order of their duration and in case of ties we 

choose the one with the least slack.  
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Heuristics based on partial reservation (probabilistic planning) 

The drawback of the methods based on full reservation planning is that they may reserve 

more capacity than necessary. In the methods we will propose next, we reserve machines 

such that (hopefully) a high percentage of call jobs can be satisfied, thus having more 

available machines for plan jobs. Intuitively, one expects such a method to work well when 

the time windows of call jobs are much larger than their duration.  The machines reserved 

for future call jobs form a buffer. Deciding the optimal size of the buffer is a problem as 

difficult as the original problem. The main complicating factor is the restricted number of 

machines available at any moment in time and the fact that jobs last more time units. Due to 

these phenomena the decision of accepting a call job has repercussions on the number of 

available machines for the entire execution of the job, making the random variables 

indicating the number of available machines at different times be dependent on each other. 

Thus, calculating the buffer based on direct computation of the probability distribution of 

the number of call jobs in progress at a certain moment in time is a complicated task.  

 For a small number of machines, one could decide the size of the buffer by simulation. 

For a large number of machines, simulating the process for all possible values of the buffer 

may be very time consuming. For this situation, we propose approximations inspired from 

stochastic inventory control (see Silver et al. [1999]).  

Denote by )(tX n  the random variable indicating whether job n  is called at time t  and let 

ntp be the probability that )(tX n  takes value 1. 

At each moment in time t  we look ahead a period of time of length .S  For each Ss 0 , 

we estimate the new probabilities ,n t sp   of jobs to be called in future, given the information 

available at time t . Thus, for Ss 0 , 

,
,
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We approximate the number of jobs in execution at time st   by the number of jobs in 

execution at time st   in a system with infinite capacity.  

Let ( )nY t s  be random variables indicating whether job n  is being processed at time 

t s in the infinite capacity system. The variables ( )nY t s  are independent Bernoulli 

variables, with  
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Thus, in case of sufficient capacity, the average and the standard deviation of the number 

of jobs in progress at time st   are given by 
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For each ,0 Ss  we define the buffer at time st   as 

  ,,min)( stSststsst kCkb                             (3) 

where |}:{| nnncst dfstrJnC   is the maximum number of call jobs that could 

be in execution at time st   and Sk  is a parameter which is decided in advance via 

simulations. Note that formula (3) for calculating the buffer is very simple and it only uses 

basic parameters of the distribution of the number of calls in progress. 

Depending on the choice of S and Sk , we distinguish two types of strategies: 

-Time dependent buffer (STDB) strategies In these strategies we define S as the remaining 

planning horizon.  For several choices of the parameter Sk , we simulate the whole process 

with reservations made according to (3) for the remaining time horizon. Note that within a 

simulation Sk  is constant. Jobs are scheduled according to the heuristics with which STDB is 

combined with.  Finally we select the value of Sk  which gives the highest average of 

weighted completed jobs. 

-Current moment buffer (SCMB) In these strategies we define S as the shortest job 

duration. Beforehand, we simulate the process for several values of Sk , where at each time a 

job is called,  machines are reserved according to (3) for a time period equal to the shortest 

job duration.  Jobs are scheduled according to the heuristic with which SCMB is combined 

with. Note that since we only look ahead a short period of time, the methods based on the 

current moment buffer are not suited to be combined with planning methods, which are 

based on a schedule for the whole period of time for plan jobs. 

We have experimentally analyzed the following heuristics based on buffer reservation. 

 

STDB (simulation based time dependent buffer) heuristics 

 

Min Slack with STDB At each time moment a job is called, reserve capacity according to 

STDB for the remaining time horizon. On the non reserved machines, schedule the still to be 
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executed jobs in increasing order of their slack, starting with call jobs. As in MinSlack, we 

resolve ties between jobs with the same slack by choosing the jobs with highest priority by 

duration ratio and among jobs with the same slack and PBD, the job with the highest 

priority. 

 

Plan jobs first (PRPlan with STDB) Calculate at the beginning of the planning horizon 

how many machines should be reserved for call orders at every moment using partial 

reservation. The buffer thus calculated for each time moment t remains fixed for the entire 

planning horizon and it does not change when more information on call jobs arrives (when a 

job is called or when a call job is completed). Use the remaining capacity to schedule the 

plan orders, by solving the integer program 1( )IP . Plan orders are executed according to the 

schedule. Plan orders which are not scheduled, are not executed. The capacity available for 

call orders is equal to the buffer plus the left over capacity from scheduling the plan orders. 

Call orders are executed in decreasing order of their priority and only if there is enough 

capacity, otherwise they are skipped. If two call orders have the same priority, choose the 

one of shortest duration. Note that when using PRPlan+STDB, the scheduler can guarantee 

the completion of the plan jobs initially scheduled . 

 

Replan plan orders ( PRRePlan with STDB) In this method capacity is reserved for call 

orders according to STDB and a new schedule for plan jobs is made by using the integer 

program 1( )IP  every time new information about call orders becomes available. Call orders 

are executed in decreasing order of their priority. The rescheduling of plan jobs results in an 

increased weighted number of completed jobs with respect to PRPlanPF. The computational 

effort however, will be higher. 

 

SCMB (simulation based current moment buffer) heuristics 

 

MinSlack +SCMB Every time a job is called, we reserve machines for the duration of the 

shortest job according to formula (3). We execute on the remaining available machines jobs 

in increasing order of their slack. More precisely, at each moment in time we will execute as 

many called jobs as possible, using the buffer and the idle nonreserved machines. If after 

planning the call jobs some machines are still idle, we start executing plan jobs in increasing 

order of their slack.  



 13 

3. NUMERICAL EXPERIMENTS  

 

Design of experiments. We considered six sets of experiments. The basic time step used 

is one quarter of an hour. The first 4 sets have the following characteristics in common:  

there are 180 jobs; the release dates of plan/call jobs are uniformly distributed between 1 and 

96; the order length of plan/call orders is uniformly distributed between 4 and 20; due dates 

plan/call orders are  uniformly distributed between 3+release date + length of job and 

11+release date+ length of job; the call moments are uniformly distributed between the 

release and due date of the job. 

Dataset 1 consists of 60 call jobs and 120 plan jobs, whereas dataset 2 is made up of 120 

call jobs and 60 plan jobs. In both sets all call jobs have priority 10 and all plan jobs a 

priority of 1.  These data sets were designed for studying the effect of increased uncertainty 

(higher number of call jobs) on heuristics which favour short jobs. Note that on these 

datasets, heuristics based on executing jobs according to priority by duration ratio, favour 

short jobs. 

Dataset 3 and 4 consist of the same jobs as dataset 1 and 2 respectively, except that the 

priority is five times the job length for call jobs and equal to the job length for plan jobs. 

Note that in these datasets all jobs called at the same moment have the same slack and 

priority by duration ration. Therefore, here call jobs with the highest priority will be 

executed first. 

Datasets 5 and 6 are similar to dataset 4, but they contain 30 additional jobs of length 8 

with known call moments. The first 10 jobs are released at time 25, the next 10 jobs are 

released at time 50 and the last 10 jobs are released at time 75.  The additional jobs in data 

set 5 have priority 40 and in data set 6 priority 200. The scope of datasets 5 and 6 is to 

analyze the effects of peaks in demand on the proposed heuristics.  

To get an accurate evaluation of the performances of the different heuristics, we have 

generated all the scenarios beforehand, so that each heuristic has to handle the same jobs at 

the same moments in time. Each dataset contains 400 different scenarios, which are divided 

in 10 groups of 40 scenarios. Within each group, the only differences between the scenarios 

are the call moments of the call jobs. The release dates, due dates and durations of the jobs 

are the same within a group.  

For the methods based on simulations, we perform at each moment in time 100 

simulations per group of data with different call moments and all other parameters 
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unchanged for all values of Stk ,  between 0 and 3 with a step size of 0.1. Next an average 

performance is determined over these 100 simulations. We choose the value of Stk ,  for 

which maximum average utility is achieved.  

For all data sets we have analyzed three different capacity levels: 30, 25 and 20 machines. 

Whereas 30 machines would be able to handle most of the jobs, 20 machines won’t be able 

to execute a significant proportion of them. 

 The experiments are carried out with a simulation program, built in Microsoft Visual 

Basic 6.0, on an Intel computer with 2.33GHz processor and 3.23 GB internal memory. . If 

an integer programming model has to be solved, the program uses ILOG CPLEX 10.  

 

Experimental results  

A summary of the experimental results is given in tables 1-6 in the appendix. Tables 1, 2 

and 3 show the performance of the heuristics with respect to the average weight of the 

completed jobs. We decided to take the presumable best strategy, PrRePlan with STDB, as 

base case. Its performance is given at the bottom of the table, together with the maximum 

possible performance when the call moments are known (CMknown). In the column 

average of Tables 4-6 we show the performance of each method relative to that of PrRePlan 

with STDB, that is (the average utility of the method /average  utility of PRRePlan)  – 

100%. Furthermore, for each dataset and method, we show in the column St.dev. the 

standard deviation of the utility obtained . We chose not to present the standard deviation 

relative to the one of PrRePlan with STDB since in several cases the last value is 0. In 

Tables 6,7 and 8 we present the average computation time of the heuristics in seconds 

together with the standard deviation of the computation time.. 

Based on our experimental results, we draw the following conclusions: 

Effects of uncertainty on the average weighted number of completed jobs 

 A higher number of call jobs causes a decrease in the performance of all the heuristics 

based on priority lists without reservation and of the full reservation heuristics. The 

methods based on probabilistic reservation are less influenced by the increased number of 

call jobs. This phenomenon can be seen by comparing the results for data sets 1and 2 or 3 

and 4.  

Effects of reservation on the average weighted number of completed jobs.  

For all three values of the number of available machines, the pure priority lists based 

heuristics Min Slack and PBD are outperformed by the methods which use reservation. The 
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performance of MinSlack improves when combined with full reservation (CFMinSlack) or 

with probabilistic reservation (MinSlack+STDB or MinSlack+SCMB).  

 Full reservation versus probabilistic reservation (buffer) with respect to the average 

weighted number of completed jobs   

With only one exception, PrRePlan+STDB was the best strategy. Only for Data set 3, with 

30 machines, the average results of FRrePlan were slightly better than those of 

PrRePlan+STDB. Our experiments also showed that in case of fewer call jobs (dataset 1 and 

3), the full reservation methods FRrePlan and CFMinSlack were the methods performing best 

after PrRePlan+STDB , or in one case even better. In case of high uncertainty, (Dataset 

2,4,5,6) partial reservation schemes PrPlan+STDB, MinSlack+STDB and MinSlack+SCMB 

outperform all the deterministic heuristics.  

 Planning methods versus priority lists based heuristics with respect to the average 

weighted number of completed jobs 

When there are few machines available, planning methods perform better then priority 

lists methods. This result is easily explained by the fact that when an integer program is used 

by a heuristic, it will give the optimal solution, whereas a priority list based schedule will in 

many cases return only a suboptimal solution. The performance of priority based heuristics 

increases with the number of machines available.  

 Behaviour of heuristics in case of a peak in the number of  jobs  

The methods which give the highest utility for datasets 5 and 6 are PrRePlan+STDB  and 

MinSlack+STDB and MinSlack+SCMB. This suggests that look ahead methods are more 

appropriate for bursty data then methods based on present information. The experiments 

show that a full reservation scheme in case of known peaks is also not necessarily beneficial, 

as FRrePlan and CFminSlack performs worse than the methods based on reserving only a 

buffer.  

STDB versus SCMB with respect to the average weight of completed jobs  

In most of the cases, methods based on STDB perform slightly better than methods 

based on SCMB. The only exception is for data set 4, for 25 vehicles. Looking ahead for the 

whole time horizon proves to be beneficial when the capacity is scarce. When there are 

enough machines, the length of the look ahead period does not seem to be of high 

importance. 

The choice of the buffer size  

With respect to the buffer, the experiments only indicate that the higher the uncertainty 

and the priority of call jobs, the higher the buffer should be.  
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Computation Time  

Not surprisingly, the methods based on replanning FRrePlan and PrRePlan+STDB are 

computationally the most extensive. For datasets 2,4,5,6 PrRePlan+STDB, is in average 

1.8 times faster then FRrePlan. For dataset 3, FRrePlan runs faster, especially when the 

number of vehicles is equal to 25. The bad performance of PrRePlan+STDB could be 

explained by the fact that certain choices of the buffer lead to difficult instances for the 

integer programming solver. The priority lists based heuristics with a buffer reservation 

MinSlack+STDB and MinSlack+SCMB are in average 846.33 times faster than 

PrRePlan+STDB. The experimental results thus indicate that when capacity is scarce, 

probabilistic reservation and planning is a good method. If running time is an issue, one 

may opt for CFminSlack if the degree of uncertainty is low, or for a priority list heuristics 

combined with probabilistic reservation if the degree of uncertainty is high. The quality of 

the solution will only slightly decrease. If there are enough machines, probabilistic 

reservation with one time planning PRPlan+STDB and priority lists with probabilistic 

reservation seem to give the best results.  

With respect to the guarantees that can be given for the completion of jobs, if the 

number of available machines is large, it seems the best to use PRPlan+STDB if the degree 

of uncertainty is high (see the results on datasets 2,4,5,6). When the proportion of call jobs 

is low, it seems the best to use FRrePlan if a guarantee is needed only for call jobs, or 

FRPlan+inserts if a guarantee is needed for both call and plan jobs. 

 

5. CONCLUSIONS 

In this paper we focused on a stochastic scheduling problem often met in transportation. 

The main characteristic of this problem is that there are two types of jobs: jobs which can be 

planned by the scheduler whenever it is convenient, as long as their time window is not 

violated (plan jobs), and call jobs, which have to be executed upon the call of the customer. 

For call jobs, a time window is also known. We assumed that call jobs are more important 

than plan jobs. Our goal was to develop a policy for accepting/ rejecting jobs and a schedule 

of the accepted jobs that maximizes the expected weight of the completed jobs.  

Our experiments show that reservation is crucial when capacity is scarce. Moreover, 

partial reservation based on probabilistic attributes outperforms full reservation methods or 

simple heuristics based on pure priority lists. If capacity is little, probabilistic reservation 

works best combined with planning methods. These methods are however, computationally 

extensive. Thus, if running time is an issue, combining probabilistic reservation with priority 
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lists gives good results with little computation time. When capacity is sufficient, combining 

probabilistic reservation with priority lists yields similar results to the combination of 

probabilistic reservation and integer programming based planning.  
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APPENDIX 
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Table 2:Keyperformance heuristics , Number of machines =25 
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Table 3:Key performance heuristics,  Nrf machines=30 
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Table 4:  Computation Time (sec.), Nr. of vehicles=20 

 

Dataset 

1  Dataset 2  

Dataset 

3  

Dataset 

4  Dataset 5  Dataset 6  

Nr. machines20 Av. 

Sd. 

dev. Av. 

Sd. 

dev. Av. 

Sd. 

dev. Av. 

Sd. 

dev. Av. 

Sd. 

dev. Av. 

Sd. 

dev. 

MinSlack 0.004 0.00 0.005 0.00 0.004 0.00 0.004 0.00 0.006 0.000 0.005 0.000 

PBD 0.004 0.00 0.005 0.00 0.004 0.00 0.004 0.00 0.006 0.000 0.006 0.000 

CFminSlack 0.006 0.00 0.005 0.00 0.006 0.00 0.005 0.00 0.006 0.000 0.007 0.000 

FRPlan 0.002 0.00 0.000 0.00 0.000 0.00 0.002 0.00 0.002 0.000 0.003 0.000 

FRrePlan 64.878 0.94 3.399 0.16 5.269 0.08 2.016 0.01 2.110 0.010 2.139 0.007 

FRPlan+inserts 0.004 0.00 0.004 0.00 0.004 0.00 0.005 0.00 0.006 0.000 0.006 0.000 

CLFSL 0.005 0.00 0.005 0.00 0.005 0.00 0.005 0.00 0.006 0.000 0.006 0.000 

PRPlan+STDB 0.002 0.000 0.006 0.000 0.002 0.000 0.006 0.000 0.008 0.000 0.008 0.000 

minSlack+SCMB 0.010 0.00 0.015 0.00 0.009 0.00 0.015 0.00 0.017 0.000 0.018 0.000 

MinSlack+STDB 0.040 0.00 0.078 0.00 0.039 0.00 0.076 0.00 0.073 0.000 0.083 0.000 

PRrePlan+STDB 14.538 0.74 1.024 0.01 7.612 0.12 1.270 0.03 0.966 0.010 0.962 0.006 

CMknown 0.002 0.00 0.002 0.00 0.002 0.00 0.002 0.00 0.002 0.000 0.000 0.016 

 

Table 5: Computation Time (sec.), Nr.of vehicles=25 

 Dataset1  Dataset 2  

Dataset 

3  

Dataset 

4  Dataset 5  Dataset 6  

 

Nr. machines 25 Av. 

Sd. 

dev. Av. 

Sd. 

dev. Av. 

Sd. 

dev. Av. 

Sd. 

dev. Av. 

Sd. 

dev. Av. 

Sd. 

dev. 

MinSlack 0.005 0.00 0.005 0.00 0.005 0.00 0.076 0.07 0.006 0.000 0.007 0.001 

PBD 0.005 0.00 0.006 0.00 0.005 0.00 0.006 0.00 0.007 0.000 0.007 0.000 

CFminSlack 0.006 0.00 0.005 0.00 0.006 0.00 0.006 0.00 0.006 0.001 0.006 0.000 

FRPlan 0.000 0.00 0.002 0.00 0.003 0.00 0.005 0.00 0.005 0.000 0.002 0.000 

FRrePlan 8.591 0.43 2.857 0.09 3.850 0.13 1.959 0.01 2.064 0.009 2.142 0.008 

FRPlan+ 

inserts 0.004 0.00 0.004 0.00 0.004 0.00 0.004 0.00 0.005 0.000 0.006 0.000 

CLFSL 0.005 0.00 0.004 0.00 0.005 0.00 0.004 0.00 0.006 0.000 0.006 0.000 

PRPlanPF+ 

STDB 0.003 0.000 0.007 0.000 0.002 0.000 0.005 0.000 0.008 0.000 0.008 0.000 

minSlack+ 

SCMB 0.010 0.00 0.016 0.00 0.010 0.00 0.016 0.00 0.018 0.000 0.019 0.000 

MinSlack+ 

STDB 0.040 0.00 0.081 0.00 0.041 0.00 0.077 0.00 0.080 0.001 0.086 0.000 

PRrePlan+ 

STDB 4.443 0.12 1.579 0.01 205.594 100.89 1.947 0.04 1.156 0.012 1.188 0.009 

CMknown 0.002 0.00 0.001 0.00 0.002 0.00 0.001 0.00 0.002 0.000 0.000 0.016 
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Table 6: Computation Time (sec.), Nr. of  vehicles =30 

 Dataset1  Dataset 2  Dataset3  Dataset4  Dataset 5  Dataset 6  

Nr. machines30 Av. 

Sd. 

dev. Av. 

Sd. 

dev. Av. 

Sd. 

dev. Av. 

Sd. 

dev. Av. 

Sd. 

dev. Av. 

Sd. 

dev. 

MinSlack 0.005 0.00 0.006 0.00 0.005 0.00 0.006 0.00 0.007 0.000 0.007 0.000 

PBD 0.005 0.00 0.006 0.00 0.005 0.00 0.006 0.00 0.007 0.000 0.007 0.000 

CFmin 

Slack 0.005 0.00 0.005 0.00 0.006 0.00 0.006 0.00 0.006 0.000 0.006 0.000 

FRPlan 0.003 0.00 0.003 0.00 0.002 0.00 0.002 0.00 0.000 0.000 0.003 0.000 

FRrePlan 0.371 0.05 1.908 0.02 0.120 0.01 1.707 0.02 1.924 0.007 2.069 0.011 

FRPlan+ 

inserts 0.004 0.00 0.004 0.00 0.004 0.00 0.004 0.00 0.005 0.000 0.006 0.001 

CLFSL 0.004 0.00 0.003 0.00 0.003 0.00 0.004 0.00 0.005 0.000 0.006 0.000 

PRPlanPF+STDB 0.003 0.000 0.007 0.000 0.002 0.000 0.005 0.000 0.008 0.000 0.008 0.000 

minSlack+SCMB 0.011 0.00 0.016 0.00 0.011 0.00 0.017 0.00 0.019 0.000 0.019 0.000 

MinSlack+STDB 0.042 0.00 0.081 0.00 0.042 0.00 0.078 0.00 0.084 0.001 0.092 0.000 

PRrePlan+STDB 2.569 0.02 1.437 0.01 2.958 0.02 1.590 0.01 1.408 0.011 1.362 0.012 

CMknown 0.001 0.00 0.001 0.00 0.002 0.00 0.002 0.00 1.408 0.002 0.000 0.000 
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