
NEURAL NETWORK APPROXIMATIONS TO POSTERIOR DENSITIES:
AN ANALYTICAL APPROACH

Lennart F. Hoogerheide, Johan F. Kaashoek and Herman K. van Dijk

Econometric and Tinbergen Institutes, Erasmus University Rotterdam

Econometric Institute Report EI 2003-38

KEYWORDS: neural networks, Bayesian in-
ference, importance sampling, Markov chain
Monte Carlo.

Introduction

Markov Chain Monte Carlo (MCMC) methods
like Metropolis-Hastings (MH) and Gibbs sam-
pling are extensively used in Bayesian analyses of
econometric and statistical models. The theory of
Markov chain samplers starts with Metropolis et al.
(1953) and Hastings (1970). Indirect independence
sampling methods such as importance sampling (IS)
have also been successfully applied within Bayesian
inference. Importance sampling, see Hammersley
and Handscomb (1964), has been introduced in
Bayesian inference by Kloek and Van Dijk (1978)
and is further developed by Van Dijk and Kloek
(1980,1984) and Geweke (1989).

However, in practice, the convergence behavior of
Monte Carlo methods is still often uncertain. The
complex structure of a model or some extraordinary
properties of the data may cause this problem. We
mention three cases. First, Hobert and Casella (1996)
show that the Gibbs sampler does not converge in the
case of a hierarchical linear mixed model if the prior
is uniform. The reason is that the posterior of (at
least) one conditional variance is improper. A sec-
ond example of a complex model is a set of equations
with a near reduced rank structure for the matrix
of coefficients. We refer to the studies by Schotman
and Van Dijk (1991) and Kleibergen and Van Dijk
(1994, 1998). As a third case we mention a multi-
modal target density, which one may encounter in
mixture processes with a small number of observa-
tions around one of the different modes. This may
cause problems for all methods. If the MH candidate
density is unimodal, with a low probability of drawing
candidate values in one of the other modes, then this
mode may be completely missed, even if the sample
size gets very large. In this case importance sampling

with a unimodal normal or Student t importance den-
sity may yield a sample in which most drawings have
a negligible weight and only a few drawings almost
completely determine the sampling results.

So, an important problem is the choice of the can-
didate or importance density, especially when one
knows little about the shape of the target density.

In Hoogerheide, Kaashoek and Van Dijk (2002) the
class of neural network sampling methods is intro-
duced to sample from a target (posterior) distribution
that may be multi-modal or skew, or exhibit strong
correlation among the parameters. That is, a class of
methods to sample from non-elliptical distributions.
In these methods the neural network is used as an
importance function in IS or as a candidate density
in MH.

In this note we suggest an analytical approach to
estimate the moments of a certain (target) distribu-
tion, where we mean by ‘analytical’ that no sampling
algorithm like MH or IS is needed. The basic idea of
this approach is very simple. First, a neural network
is constructed that approximates the target density.
An important advantage of neural network functions
is their ‘universal approximation property’. That is,
neural network functions can provide approximations
of any square integrable function to any desired ac-
curacy, see Gallant and White (1989). As an ap-
plication of Kolmogorov’s general superposition the-
orem (see Kolmogorov (1957)), the neural network
approximation property is eluded by Hecht-Nielsen
(1987). This approximation property implies that the
algorithm can handle certain ‘strange’ target distri-
butions, like multi-modal, extremely skew, strongly
correlated or fat-tailed distributions.

Second, the moments of this neural network distri-
bution are computed; these moments are estimates
of the moments of the target distribution. The nice
property of the standard feed-forward 3-layer network
with our choice of activation function is that we have
analytical expressions for the moments of the distri-
bution with this neural network function as a density.
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The proposed method is applied on a set of
illustrative examples. Our results indicate that the
neural network approach is feasible, even in a case
where a ‘standard’ Gibbs approach would fail or be
extremely slow.

An analytical approach to estimate mo-
ments of a distribution

Our approach may be summarized as follows:

Step 1: Construct a neural network approxima-
tion to the target density.

Step 2: Compute the moments of the neural
network distribution; these are esti-
mates of the moments of the target dis-
tribution.

Of course, it is not immediately clear in which
cases this approach is feasible, or how to construct
a neural network approximation to a target density.
First, two assumptions are needed. The target
density has to be square integrable, and the domain
of the random variable must be bounded. In prac-
tice, the second assumption means that there is a
certain bounded area, beyond which the probability
mass is negligible. Second, in order to approximate
a certain target density f(x) of a random vector
X = (X1, . . . , Xn)′, we suggest to use the following
type of 3-layer neural network, a feed-forward
multilayer perceptron (FMLP):

nn(x1, . . . , xn) =

=
H∑

h=1

ch

(
1
π

arctan(a′hx + bh) +
1
2

)
+ d, (1)

where ah ∈ Rn and bh, ch ∈ R(h = 1, . . . , H), d ∈ R.
The reason for choosing the (scaled) arctangent func-
tion as an activation function is that it is analytically
integrable infinitely many times; we have derived an-
alytical expressions for its integrals, which are given
in the sequel of this paper. Therefore we can ana-
lytically compute the moments of the distribution of
which a density kernel is given by (1) on a bounded
region, and zero elsewhere. It should be noted that
(1) is not automatically non-negative for all input
values x, a requirement for (1) to be a good density
kernel. However, requiring the neural network func-
tion to be a ‘very good’ approximation to the target
density should result in non-negativity for (almost)
all input values.

We suggest to estimate (or ‘learn’) the parameters
(or ‘weights’) of the neural network by minimizing

the sum of squared ‘residuals’:

m∑

i=1

(
nn(xi)− f(xi)

)2
,

where {xi|i = 1, . . . , m} is a set of points in the
bounded region to which the random vector X is re-
stricted.

Three questions remain: How to choose the points
xi(i = 1, . . . , m), how to pick the number of points
m, and how to choose the number of hidden cells
H? As an answer to these questions, we suggest the
following adaptive approach to perform Step 1 above:

Step 1a: Choose initial values of H and m
(e.g., H = 50 and m = 2500).

Step 1b: Estimate the parameters of a neural
network with H hidden cells for m
points {xi|i = 1, . . . , m} drawn from
a uniform distribution on the domain
of X.

Step 1c: Compute the R2, the squared cor-
relation between the target density
f and the neural network nn in the
points {xi|i = 1, . . . , m}. If this R2 is
high enough (e.g., R2 > 0.995), then
go to Step 1d. If this R2 is too small
(e.g., R2 < 0.995), then add hidden
cells to the network (e.g., increase H
by 50), and go back to Step 1b.

Step 1d: Compute the R2 for a set of more
than m points (e.g., 2m points) in or-
der to check whether the neural net-
work also gives a good approxima-
tion to the target density outside the
‘estimation set’ {xi|i = 1, . . . , m}.
If this R2 is also large enough (e.g.
R2 > 0.99), then stop: we will use
the neural network at hand to esti-
mate the moments of the target den-
sity. If this R2 is too small, increase
the number of points m (e.g. double
m) and go back to Step 1b.

The moments of a neural network distribution

We have already mentioned that we have de-
rived analytical expressions for the moments of the
distribution of which the density is given by (1) on
a bounded region, and zero elsewhere. We shall now
formalize this, and give the expressions. Suppose the
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vector X = (X1, . . . , Xn)′ has the following density
p(x1, . . . , xn):

p(x1, . . . , xn) =





nn(x1, . . . , xn) if xi ≤ xi ≤ x̄i

(i = 1, . . . , n)

0 else
(2)

where [xi, x̄i] is the interval to which the random vari-
able Xi (i = 1, 2, . . . , n) is restricted, and where

nn(x1, . . . , xn) =

=
H∑

h=1

ch

π
arctan(a′hx + bh) +

1
2

H∑

h=1

ch + d. (3)

Then the expectation of Xk
n (k = 1, 2, . . .) is given

by:

E(Xk
i ) =

=
H∑

h=1

ch

πah1 · · · ahn

1∑

D1=0

· · ·
1∑

Dn=0

(−1)D1+···+Dn ×

×
[

k∑
m=0

(
− 1

ahi

)m
k!

(k −m)!
xk−m

i,Di
× (4)

×Jn+m

(
n∑

l=1

ahlxl,Dl
+ bh

)]

+

(
1
2

H∑

h=1

ch + d

)
1

k + 1
(x̄k+1

i − xk+1
i )×

×
n∏

l=1; l 6=i

(x̄l − xl)

and E(XiXj) (i, j = 1, 2, . . . , n; i 6= j) is equal to:

E(XiXj) =

=
H∑

h=1

ch

πah1 · · · ahn

1∑

D1=0

· · ·
1∑

Dn=0

(−1)D1+···+Dn ×

×
[
xi,Dixj,Dj Jn

(
n∑

l=1

ahlxl,Dl
+ bh

)
(5)

−ahixi,Di + ahjxj,Dj

ahiahj
Jn+1

(
n∑

l=1

ahlxl,Dl
+ bh

)

+
1

ahiahj
Jn+2

(
n∑

l=1

ahlxl,Dl
+ bh

)]

+

(
1
2

H∑

h=1

ch + d

)
1
4
(x̄2

i − x2
i )(x̄

2
j − x2

j )×

×
n∏

l=1;l 6=i,j

(x̄l − xl).

In formulas (4) and (5) we define xi,0 ≡ x̄i and xi,1 ≡
xi (i = 1, 2, . . . , n), the upper and lower bounds of the
integration intervals. The function Jn : R→ R is the
n-th integral of the arctangent function:

Jn(x) ≡
∫
· · ·

∫
arctan(x)dx · · · dx (6)

= pn(x) arctan(x) + qn(x) ln(1 + x2) + rn(x),

where pn and qn are polynomials of degree n and
n− 1, respectively:

pn(x) = pn,0 + pn,1 x + · · ·+ pn,n−1 xn−1 + pn,n xn

qn(x) = qn,0 + qn,1 x + · · ·+ qn,n−1 xn−1

The coefficients pn,k (k = 0, 1, . . . , n) are:

pn,k =





(−1)(n−k)/2

(n−k)!k! if n− k is even,

0 if n− k is odd,
(7)

and the coefficients qn,k (k = 0, 1, . . . , n−1) are given
by:

qn,k =





(−1)(n−k+1)/2

2(n−k)!k! if n− k is odd,

0 if n− k is even.
(8)

The polynomial rn (of degree at most n − 1) plays
the role of the integrating constant. For the proof of
this result we refer to Appendix A of Hoogerheide,
Kaashoek and Van Dijk (2002).

Example: Bivariate conditionally normal
distribution

We shall now apply our approach on an illustrative
example of bivariate conditionally normal distribu-
tions.

Let x1 and x2 be two jointly distributed random
variables, for which x1 is normally distributed given
x2 and vice versa. Then the joint distribution, after
location and scale transformations in each variable,
can be written as (see Gelman and Meng (1991)):

f(x1, x2) ∝ exp(−1
2
[Ax2

1x
2
2 + x2

1 + x2
2

−2Bx1x2 − 2C1x1 − 2C2x2]),

Just like Gelman and Meng (1991), we consider the
symmetric subfamily in which A = 1, B = 0, C1 =
C2 = C, with conditional distributions

x1|x2 ∼ N

(
C

1 + x2
2

,
1

1 + x2
2

)
, (9)

x2|x1 ∼ N

(
C

1 + x2
1

,
1

1 + x2
1

)
. (10)
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We consider three cases: C = 0, 4, 10. We apply our
analytical neural network approach to each case and
compare its results with the real values that are ob-
tained by deterministic integration, which is easy in
this illustrative bivariate example. We also apply the
Gibbs sampler (see e.g., Geman and Geman (1984))
to each case; we construct two Gibbs sequences and
we say that the Gibbs sampler has converged if the
two sample means of the Gibbs sequences both differ
less than 0.005. The results are in Table 1.

First note that our neural network approach
yields quite accurate estimates. Apparently the
three densities have been approximated quite well
by the corresponding neural networks. This is also
indicated by the high R2 and the contour plots in
Figure 1. Second, notice that the larger the value of
C, the more hidden cells H and ‘estimation points’
m are needed to provide a good neural network
approximation. However, for larger values of C the
Gibbs sampler also needs more drawings to reach
convergence. In fact, for C = 10 the Gibbs sampler
had not converged at all after 100000000 drawings.
The reason is that the Gibbs sequences remained in
the same mode for 100000000 iterations in a row.
Therefore, we may conclude that the Gibbs sampler
will take at least many billions of drawings to
converge to the real values in this case of bimodality.

Final remarks

We have shown an example in which our analytical
neural network approach is feasible, even in a case
where a ‘standard’ Gibbs approach would fail or be
extremely slow. In practice, the construction of a
neural network with an almost perfect fit often takes
much time. In such a case it is computationally more
efficient to construct a neural network that provides
a ‘reasonable’ approximation to the posterior density
function, and then use this as a candidate density or
importance function in MH or IS. For this approach
we refer to Hoogerheide, Kaashoek and Van Dijk
(2002).
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Corresponding author: L.F. Hoogerheide, Econo-
metric Institute, Erasmus University Rotterdam,
P.O. Box 1738, NL-3000 DR Rotterdam, The
Netherlands. E-mail: lhoogerheide@few.eur.nl

The paper by Hoogerheide, Kaashoek and Van
Dijk (2002) is available as report EI 2002-48 at:
http://www.few.eur.nl/few/research/pubs/ei/2002/reports.htm

References

Gallant, A.R. and H. White (1989): “There
exists a neural network that does not make avoidable
mistakes”, in Proc. of the International Conference
on Neural Networks, San Diego, 1988 (IEEE Press,
New York).

Geman, S. and D. Geman (1984): “Stochastic
Relaxation, Gibbs Distributions and the Bayesian
Restoration of Images”, IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, 6, 721-741.

Gelman, A. and X. Meng (1991): “A Note on
Bivariate Distributions That Are Conditionally
Normal”, The American Statistician, 45, 125-126.

Geweke, J. (1989): “Bayesian inference in econo-
metric models using Monte Carlo integration”,
Econometrica, 57, 1317-1339.

Hammersley, J. and D. Handscomb (1964): “Monte
Carlo Methods”. Chapman and Hall, London.

Hastings, W.K. (1970): “Monte Carlo Sampling
Methods using Markov Chains and their Applica-
tions”, Biometrika, 57, 97-109.

Hecht-Nielsen, R. (1987): “Kolmogorov map-
ping neural network existence theorem”, in Proc.
IEEE First International Conference on Neural
Networks, San Diego, 1987, 11-13.

Hobert, J.P. and G. Casella (1996): “The Ef-
fect of Improper Priors on Gibbs Sampling in
Hierarchical Linear Mixed Models”, Journal of the
American Statistical Association, 91(436), 1461-1473.

Hoogerheide, L.F., J.F. Kaashoek and H.K. van Dijk
(2002): “Functional Approximations to Posterior
Densities: A Neural Network Approach to Efficient
Sampling”, Econometric Institute report 2002-48,
Erasmus University Rotterdam.

4



Kleibergen, F.R., and H.K. Van Dijk (1994):
“On the Shape of the Likelihood/Posterior in Coin-
tegration Models”, Econometric Theory, 10(3-4),
514-551.

Kleibergen, F.R., and H.K. Van Dijk (1998):
“Bayesian Simultaneous Equations Analysis using
Reduced Rank Structures”, Econometric Theory,
14(6), 701-743.

Kloek, T., and H.K. Van Dijk (1978): “Bayesian esti-
mates of equation system parameters: an application
of integration by Monte Carlo”, Econometrica, 46,
1-19.

Kolmogorov, A.N. (1957): “On the representa-
tion of continuous functions of many variables by
superposition of continuous functions of one variable
and addition”, American Mathematical Monthly
Translation, Vol. 28, pp 55-59. (Russian original in
Doklady Akademii Nauk SSSR, 144, 953-956)

Metropolis, N., A.W. Rosenbluth, M.N. Rosen-
bluth, A.H. Teller, and E. Teller (1953): “Equations
of State Calculations by Fast Computing Machines”,
Journal of Chemical Physics, 21, 1087-1091.

Schotman, P.C. and H.K. van Dijk (1991): “A
Bayesian Analysis of the Unit Root in Real Ex-
change Rates”, Journal of Econometrics, 49, 195-238.

Van Dijk, H.K., and T. Kloek (1980): “Further
experience in Bayesian analysis using Monte Carlo
integration”, Journal of Econometrics, 14, 307-328.

Van Dijk, H.K., and T. Kloek (1984): “Experi-
ments with some alternatives for simple importance
sampling in Monte Carlo integration”, in Bayesian
Statistics 2, ed. by J. M. Bernardo, M. Degroot,
D. Lindley, and A. F. M. Smith, Amsterdam,
North-Holland.

5



Table 1: Results for the distributions with C = 0, C = 4 and C = 10

C=0 C=4 C=10
real moments Gibbs real moments Gibbs real moments Gibbs

values of NN values of NN values of NN
E(X1) 0.000 0.002 -0.002 1.860 1.865 1.864 4.946 4.936 -
E(X2) 0.000 0.001 -0.003 1.860 1.847 1.855 4.946 4.935 -
σ(X1) 0.846 0.839 0.846 1.666 1.670 1.666 4.894 4.894 -
σ(X2) 0.846 0.842 0.842 1.666 1.669 1.664 4.894 4.872 -

ρ(X1, X2) 0.000 -0.004 -0.005 -0.839 -0.835 -0.839 -0.979 -0.982 -
R2 0.9999 0.9961 0.9956
H 50 100 150
m 2500 5000 10000

drawings 50000 2000000 > 108

target density for C=0

–2

–1

0

1

2

x2

–2 –1 0 1 2
x1

target density for C=4

0

1

2

3

4

5

6

x2

0 1 2 3 4 5 6
x1

target density for C=10

0

2

4

6

8

10

12

x2

0 2 4 6 8 10 12
x1

neural network for C=0

–2

–1

0

1

2

x2

–2 –1 0 1 2
x1

neural network for C=4

0

1

2

3

4

5

6

x2

0 1 2 3 4 5 6
x1

neural network for C=10

0

2

4

6

8

10

12

x2

0 2 4 6 8 10 12
x1

Figure 1: Contour plots of target densities and neural network approximations
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