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Abstract. In this paper neural networks are fitted to the real exchange rates of
seven industrialized countries. The size and topology of the used networks is found by
reducing the size of the network through the use of multiple correlation coefficients,
principal component analysis of residuals and graphical analysis of network output
per hidden layer cell and input layer cell.

1. Introduction

The flexibility of neural networks to handle complex patterns in the
data has lead to the diffusion and implementation of neural network
models in economics and econometrics; see e.g. Gallant and White
(1988) and White (1989). In this paper we consider one type of neural
network: a feed-forward 3-layer network with an input layer of I cells, a
hidden layer with H cells and an output layer with O cells. We assume
that the neural network considered is an approximation of the data
generating process:

Ye = F(ye-1, ,yt-1) + €, (1)

where y; is a continuous real-valued variable, F' is the data generating
function and €; represents an unknown noise term. Hence the dimension
O of the output layer is a priori given and equal to 1. The network will
be denoted as nn(I, H). An upper bound on the size of the input layer
I is given by nonlinear data analysis (e.g. embedding dimension, see
Takens (1981)). A crucial point is the unknown size H of the hidden
layer. A strategy to determine the size H needs to be chosen and this
strategy can also be applied to determine the size of the input layer I,
since the upper bound may be too large for practical applications.

The flexibility of a neural network makes that overfitting, i.e. fitting
the noise process, and consequently bad prediction behaviour can easily
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occur; see Bishop (1995). In simple terms: given an unlimited number
of hidden layer cells H, the network output encompasses the spectrum
of y;. In this paper, a three fold procedure in reducing the size of the
network is proposed. The basic idea is what is called by Theil (1971),
in the context of linear regression, the incremental contribution of ex-
planatory variables. That is, how much is the reduction of the explained
variance of the dependent variable y when we exclude an explanatory
variable. We apply this idea to neural networks by excluding hidden
layer cells and/or input cells from the networks.

Our starting point is a graphical comparison of network output and
observed data with only one cell excluded and with all other cells
included. Next, in order to get a quantification of network performance
with one cell excluded, the reduced contribution is measured in terms
of multiple correlation coefficients. A variable with a low incremental
contribution will be a candidate to be excluded from the model. Thirdly,
we calculate the principal components of the set of residuals obtained
by omitting successively one network cell. The vector representing the
first principal component, may reveal which cell can be excluded from
the network. As a cell pruning method, this approach is similar to the
one proposed by Mozer and Smolensky (1989). However, our approach
has the advantage that the quantities used are based on the outcome
of only one optimization procedure with all variables included. A more
elaborate exposure of the procedure mentioned above, can be found in
Kaashoek and van Dijk (1998).

The particular network, which results from the cell-pruning procedure
described above, may be used for prediction. That is, by making use of
a simple recursive procedure, the network generates a data series, called
orbit. The generated orbit may indicate the presence of nonlinear trends
in the data. As such, our analysis may be considered as a first step
of exploratory data analysis to varying trends in long economic time
series. As actual data we use the logarithm of monthly real exchange
rates, against the dollar, of five industrialized countries for the period
1957-1998.

The paper is organized as follows. In the first part, the graphical anal-
ysis, the incremental contribution of cells and the principal component
analysis of residuals are explained in the context of a standard feed
forward neural network.

In the second part the procedures are applied to two examples. First,
data are generated by a neural network ("a true neural network”),
The second example concerns actual economic data: the logarithm of
real exchange rate of the Yen against the dollar 1957-1998. Finally,
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results on real exchange rates of four other industrialized countries are
reported.

2. Network pruning

The functional form of the network used can be summarized as:

y =h'c+d, (2)
h=G(Az+0b), (3)
where h, ¢, b are H x 1 vectors, A is an H X I matrix and d and y
are scalars. The vector function G = (g1,92, -+ ,gn)' has as typical
element gp,(z) = H% We note that in the present paper the input
x is given as (y¢—1, Y2, ,Yi—1). Network output will be denoted as g.

As an example, consider a nn(1,2) network. This neural network with
one input cell and two hidden layer cells, has as functional form:

C1 C2
1+ e—01yt-1—b1 + 1+ e—02yt—1—b2

ye=d+ (4)
In order to determine the parameters of the network we minimize
the sum of the squared differences of y; and 4;, t = 1,--- ,T. As an
optimization procedure we apply a two-step method as follows. First,
the criterion function is adjusted by means of a linear regression of
(hy1,hy,1) on y; where h; = g;(Az + b). A nonlinear optimization, i.e.
the variable metric method of Davidon-Fletcher-Powell - see Press et
al. (1988) - is applied to adjust the parameters A and b according to
the criterion function.

2.1. GRAPHICAL ANALYSIS

An obvious way to look at neural network performance is to compare
the graphs of original output data (¢, y(¢)) and neural network estimates

(t,9()).

Consider now the network (2) with hidden layer cell h left out; this is
equivalent with putting ¢, equal to zero. All other parameters are left
the same. Without this hidden layer cell h, the network produces an
output called §_p. The graphs of {t,9_p(¢)} are compared to the graph
of {t,y(t)} and this comparison may give evidence of the contribution
of hidden cell & in explaining the variance of y(t).
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In a similar way the importance of input cells y;_1,--- ,y;—; can be
examined. Let {g_;(¢)},s = 1,---,I be neural network output with
inclusion of all cells except input cell (variable) ¢ (adjusted for mean
differences). Then again, visual inspection of the graphs of {¢,v;}) and
{t,9—i(t)} may show evidence for in- or exclusion of input cell i.

2.2. INCREMENTAL CONTRIBUTIONS OF CELLS

A natural candidate for quantification of the network performance is
the square of the correlation coefficient of y and ¢

(v'y)(@'9)
where ¢ is the vector of network output points. Note that y and ¢ are
adjusted for the mean.

The network performance with only one cell deleted can be measured
in a similar way. For instance, if the contribution of hidden cell A is put
to zero (¢, = 0), then the network will produce an output § 5, with
€rrors

e—h =Y —Y-h (6)

This reduced network can be measured by the square of the correlation
coefficient R% ;, between y and §_j, with

(7 )?

2
fon =) (@ 9-n)

(7)

where y and §_j, are adjusted for the mean .

Now the incremental contribution of cell A is given as the following
difference:

R’ - R?,. (8)

If the value in (8) is low for some h compared to all other values, then
this cell is a candidate for exclusion from the network.

1" Apart from consistency in the definition of multiple correlation coefficients,
which are defined in deviation of means, the inclusion of the constant d in the
network definition is motivated by the possibility to adjust easily network output
{g-r(t)} for differences in mean.
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Note that for a linear model with constant term (see e.g. equation (2)),
the R? of equation (5) equals to
!/
9 de
Rijp, =1 = Ty (9)

with

e=y—14 (10)

Suppose the h-variable is left out, and the reduced linear model is
estimated again with errors é_j then the incremental contribution of
variable h, is given as the difference between the (linear) correlation
coefficients (see Theil (1971)); in formula:
é,—hé—il —ce a1
vy
The notation é_p, is used to emphasize that these residuals are the result
of an additional regression of the reduced linear model while the errors
given in equation (6), in the linear case, would be simply the result
of putting a parameter h to zero. Since equation (11) is based on re-
estimating the model after exclusion of a variable, the decision to leave
out a network cell based on its low contribution measured by equa-
tion (8) is conservative with respect to the one which is based on the
value given in (11). However, this approach has the obvious advantage
that the quantities used are based on one nonlinear regression of a non-
linear model with possible non-identified parameters. Moreover, after
the exclusion of a cell, optimization is prolonged with all parameters
(except the one left out) equal to the results obtained in the foregoing
optimization round.

The same procedure can be applied to reduce the number of input layer
cells. In this case, {§_;(t)} is network output, given network parameters
estimates, without input cell 7. The contribution of input cell ¢ is put to
zero (Ap; = 0,h = 1,--- H), then the reduced network can be quantified
by the square of the correlation coefficient RQ_i between y and §_; with

2 (Ql_zy)Q
S LD 12)

where y and §j_; are adjusted for the mean. The contribution of cell ¢
is measured as

R? - R%,. (13)
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The relative value of incremental contributions in R? can be used in
evaluating whether an input cell can be omitted or not.

2.3. PRINCIPAL COMPONENTS ANALYSIS OF NETWORK RESIDUALS

For the hidden layer cells we define the matrix:
E_py= (6—136—27"' ae—H)a (14)

with e_p, h = 1,--- | H defined in equation (6). A principal component
analysis on the matrix F_pg, i.e. the calculation of the orthonormal
eigenvectors and eigenvalues of the symmetric matrix E' ;E_p, will
give the principal components of E_g . The first principal component,
corresponding to the maximal eigenvalue, will have maximal variance
since the amount of variance of each principal component is propor-
tional to the corresponding eigenvalue; see e.g Malinvaud (1970) and
Theil (1971). Hence the first component or better, the eigenvector v,qs
at largest eigenvalue \pqp of E' ; E_j, defines the linear combination
of elements e_j;, with the largest variance. Otherwise stated: the vector
Umaz gives the worst case combination with respect to omitting cells.
And moreover, the elements of this vector v,,., reveal which variable
may be omitted: the cell with index A for which the corresponding
element in the first principal component is minimal in absolute sense,
may be excluded: its exclusion of the model does not contribute very
much to the worst case!

Whether a decision for exclusion and/or inclusion can be based on the
factors (=eigenvector) of the first principal component only, will depend
on the relative weight of this component. Again by the above statement,
the relative importance of each component is proportional to the cor-
responding eigenvalue. Hence, the weight wy of the kth component is
given as the relative magnitude of the corresponding eigenvalue Ag:

H
W = )\k/z >\k- (15)
k=1

Similar, for the input layer cells, we define the matrix:
E_;= (6—136—27"' 36—1)7 (16)
where e_;, 2 =1,--- , I are defined as

e—i =Y = J-i- (17)
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Again, the first principal component of Er may give evidence which
input layer cell can be excluded. Of course, economic and time-series
analysis may have a stronger impact on the exclusion decision than in
the case of hidden layer cells.

3. An example of a true neural network

We start with an example which illustrates the pruning method ex-
plained above.
The data used in this section are generated by a two dimensional model:

Y2,t = Yi,t—1

(18)
Y1t = F1(y1,0—1,Y2,6-1)-

with F is the function R? — R given by a nn(2,2) neural network.
The observed data, denoted as INN0202, are only one dimensional:
{y1,t} = ys; the length of the data is 500.

Applying the procedures as explained above - see section 2- the origi-
nal (true) neural network is to be found again starting with a neural
network with 4 inputs (y;—1,yt—2, Y13, ¥t—4), and 6 hidden layer cells.
The result of an optimization are reported in Table I.

Table I. Incremental contribution in R? and principal components

Network (4,6) on Data: N N0202
Network total result: R? = 0.9999

Cell excluded: -H1 -H2 -H3 -H4 -H5 -H6
RZ.. 0.0000 0.1764 0.5934 0.0912  0.0045 0.0112

Eigenvector at first principal component of E_ ; E_g (weight = 70.30%)
Cell excluded: -H1 -H2 -H3 -H4 -H5 -H6
—0.0000 0.5001 —0.8647 —0.0198 0.0685 —0.0153

Cell excluded: -Yi—a -Yt—3 -Yt—2 -Yi—1
RZ.. 0.0000  0.0000 0.9579 0.9934
Cell excluded: “Yt—a -Yt—3 “Yt—2 “Yt—1

Eigenvector at first principal component of E’ ;E_; (weight = 92.19%)
—0.0000 0.0001 —0.6923 —0.7200

With respect to hidden layer cells, comparing the incremental contri-
butions and the eigenvectors of E' ;E_p, hidden layer cell 1 and 5
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may be excluded also. Moreover, it is obvious that input cells 1 with
Yi—a, and 2 with y;_3, can be excluded. This gives a network with 2
inputs and 4 hidden layer cells. In Table II the results of an further
optimization run are reported.

Table II. Incremental contribution in R? and principal components

Network (2,4) on Data: N N0202
Network total result: R?> = 0.9999

Cell excluded: -H1 -H2 -H3 -H4
RZ,. 0.5592 0.9565 0.0678 0.0635

Eigenvector at first principal component of E_ ; E_pg (weight = 93.58%)
Cell excluded: -H1 -H2 -H3 -H4
0.6753 —0.7374 —0.0281 —0.0265

Cell excluded: “Yt—2 ~Yt—1
RZ.. 0.9860 0.9948

Eigenvector at first principal component of E’ ;E_; (weight = 92.80%)
Cell excluded: “Yt—2 ~Yt—1
0.7300  —0.6800

Table IT shows that hidden layer cells 3 and 4 can be excluded now; see
e.g. the remarkable pattern in the eigenvectors of E' ;E_p. Hence the
original size of the true neural network is ”reconstructed” indeed.
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4. Varying trends in real exchange rates

The data used in this section are the logarithm of Yen-US dollar real
exchange rates, period January 1957 to March 1998, denoted as JPUS.
These data are the extended data of Schotman and van Dijk (1991)
who fitted a subset of the same data to a linear auto-regressive model
of order one, AR1for the period 1973 — 1988. The data are shown in
figure 1.

6.2

4.4 L L L L L L L L L
50 100 150 200 250 300 350 400 450

time index

Figure 1. JPUS data

All data are scaled down to the interval [0.1,0.9] and fed to an initial
network which is rather large: nn(5,10). The results of optimization
are summarized in Table III where apart from the incremental contri-
bution measured by R2, only the principal components (eigenvectors
of E' ;E_p and their proportional weights) of hidden layer residuals
are given.

From Table III one can conclude that hidden layer cells 3 and 9 may be
excluded. For these two cells the incremental contributions are very low.
Moreover, the factors in the first principal component (with a relative
weight of 93.72%) are also very low for these cells .
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Table III. Incremental contribution in R? and first principal component

Network (5,10) on Data: JPUS
Network total result: R?> = 0.9965

Cell excluded: -H1 -H2 -H3 -H4 -H5
RZ,. 0.9192 0.0763 0.0000 0.0001 0.0833
Cell excluded: -H6 -H7 -H8 -H9 -H10
RZ,. 0.0300 0.0258 0.0892  0.0000 0.0063

Eigenvector at first principal component of E_ ; E_pg (weight = 93.72%)

Cell excluded: -H1 -H2 -H3 -H4 -H5
—0.3919 —0.0683 —0.0047 0.0195 —0.2444
Cell excluded: -H6 -H7 -H8 -H9 -H10

—0.6730 0.3501 0.1671  0.0134 0.4218

Table IV. Incremental contribution in R? and first principal component

Network (5,8) on Data: JPUS
Network total result: R? = 0.9967

Cell excluded: -H1 -H2 -H3 -H4 -Hb5
RZ.. 0.62452 0.9187 0.9706  0.0066 0.8405
Cell excluded: -H6 -H7 -H8

RZ,. 0.4708 0.4945 0.0033

Eigenvector at first principal component of E’ ; E_g (weight = 86.30%)

Cell excluded: -H1 -H2 -H3 -H4 -H5
—0.5030 —0.3241 —0.0657 0.0039 —0.0083
Cell excluded: -H6 -H7 -H8

0.02536 0.7980 0.0092

Although all input variables, except y;—1 have a rather low contribution
(not reported here), only reduction of hidden layer cells is applied at
this stage. So, optimization is continued after removing hidden layer cell
3 and 9. In Table IV the results are summarized. Again, only results

on hidden layer cells are reported.



nn - H(1)

0 100 200 300 400 500

nn - H(3)

0 100 200 300 400 500

nn - H(5)

0 100 200 300 400 500

nn - H(7)

-4

-6

. vt

-8

-10

-12 .
0 100 200 300 400 500

Figure 2. JPUS data and nn(5, 8) network output (thick dots) without hidden layer

cell 1, 2, 3,4, 5, 6, 7 and 8 respectively.
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Figure 3. JPUS data and nn(5, 8) network output (thick dots) without input layer
cell 2, 2, 4, 5, and 6 respectively (input cell 1 represents constant term).

Table IV, and figure (4) show that, at least, hidden cells 4 and 8 are
candidates for exclusion.

First hidden cells 4 and 8 are excluded (based on low factors in the
principal component of E’ ; E_p and after an additional optimization,
still three more hidden layer cells could be excluded so finally a network

with only 3 hidden layer cells was obtained. The results are reported
in Table V.
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Table V. Incremental contribution in R? and first principal component

Network (5,3) on Data: JPUS
Network total result: R?> = 0.9965

Cell excluded: -H1 -H2 -H3
RZ.. 0.8233 0.9960 0.9159

Eigenvector at first principal component of E_ ; E_g (weight = 93.37%)
Cell excluded: -H1 -H2 -H3
—0.7074 0.0243 0.7064

Cell excluded:  -I1 (y:—5) -I2 (ye—a) -I3 (ye—3) -14 (yi—2) -I5 (ye—1)
R, 0.0197 0.2584 0.9070 0.0003 0.9012

Eigenvector at first principal component of E’ ;E_; (weight = 95.35%)
Cell excluded: -I1 (yt—5) -12 (yt—4) -13 (yt—S) -14 (yt_g) -15 (yt—l)
—0.0011 0.0203 0.9858 —0.0082 0.1663

Now all hidden layer cells have a rather large contribution. The second
hidden layer cell (H2) has a small factor in the first principal com-
ponent, however, in the second principal component (with a weight
of 6.58%, the second cell has a factor equal to 0.9997, so there is
no reason to exclude cell H2. However, the graphs of network output
with exclusion of one hidden layer cell respectively, show a remarkable
pattern: it seems that the contribution of cell H1 and cell H3 are
based on only very limited input values. Above all, the output of those
cells seems to be symmetric; see figure (4) which shows the graphs
of network output minus one hidden layer cell (compared to actual
data) and figure (5) which shows the graphs of network output based
on only one hidden layer cell each. Based on those graphs a further
reduction is applied resulting in a network with only one hidden layer
cell. After optimization the network performance can be summarized
by R? = 0.9962 which hardly differs from the one with 3 hidden layer
cells.
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Figure 4. nn(5,3) network output without one hidden layer cell (H1, H2 and H3
respectively) compared with actual data.
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Figure 5. nn(5,3) network output of only one hidden layer cell (H1, H2 and H3
respectively ) compared with actual data.
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With respect to the input variables, the reduction to only one hidden
cell has a remarkable effect on the importance of the input variables.
While according to Table V, the variable y;_1 has a small factor in the
first principal component (but a high contribution in R?), in the case of
only hidden layer cell only just this variable y;_; is important; all other
variables do hardly contribute! To visualize this effect, two figures are
supplied: both figures show graphs of network output minus the input
of one input cell but figure (6) applies to the case of three hidden cells
while in figure (7) the number hidden layer cells is only 1.
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0 100 200 300 400 500 0 100 200 300 400 500
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nn - 1(5)
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2
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0

0 100 200 300 400 500

Figure 6. nn(5,3) network output minus input of one input layer cell (11 till I5)
compared with actual data.

So, in the case of only one hidden layer cell with only input cell I5
active, one is tempted to reduce the number of input cells to 1, with
variable y; 1 as input. After optimization, such an one input- and one
hidden layer cell nn(1,1) network has a performance quantified by R? =
0.9962, which is only slightly worse than the R? for a nn(5,3) network!
This nn(1, 1) neural network has as functional form:

Cc

yr=d+ T

(19)
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or written as switching model:

yr = d(1 — F(y;—1)) + (c+ d)F(yi—1) (20)
where
Fly) = —— (1)
Y= Femayb
(22)
nn - 1(1) nn-1(2)
1 1
0.5 0.5
0 0
0 100 200 300 400 500 0 100 200 300 400 500
nn-1(3) nn - 1(4)
1 1
0.5 0.5
0 0
0 100 200 300 400 500 0 100 200 300 400 500
nn - I(5)
1
0.5

0

0 100 200 300 400 500

Figure 7. nn(5,1) network output minus input of one input layer cell (I1 till I5)
compared with actual data.

The small nn(1,1) seems to work properly, so this type of neural net-
work is used to fit 5 other US dollar real exchange rates: namely the
Canadian dollar, the French franc, the UK pound, the German (west)
mark and the Dutch guilder.
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Figure 8. Logarithm of US real exchange rates (Japan, Canada, France, United
Kingdom, Germany (West), Netherlands); real data and neural network nn(1,1)
orbit (thick lines) 1957-1998

The resulting networks can be used for prediction. As an example, the
network is used to generate a data series, called orbit, in the following
way. In the case of nn(1,1) the orbit data ¢, are generated by the
system equation:

gt = nn(Js-1) (23)

where nn represents the neural network function; see equation (19).
Only the starting value y; is taken from actual data (except for orbit
FRUS where the starting value is equal to yi2). In figure (8) the re-



18 Johan F. Kaashoek and Herman K. van Dijk

sulting neural network orbit with the actual data are exposed.

The results indicate that in all cases a nonlinear trend is a probable
model. We conclude that our analysis can be interpreted as a first step
to a more detailed analysis of the parametric form of a time series model
for real exchanges as for instance a threshold model; see Granger and
Terasvirta (1993).

5. Summary

In this paper the number of parameters in a neural network is reduced
by applying elementary procedures. The procedure calculates the in-
cremental contribution of variables, in the case of neural networks: the
hidden layer cells and input layer cells. Another descriptive measure,
the principal component analysis of residuals with one cell omitted,
confirms the in- or exclusion reasoning based on incremental contribu-
tions. The advantage of our proposed principal component procedure
is that in one stroke, two quantities, i.e. the first and last principal
component, are obtained which both give evidence which cells can be
excluded. Those two quantities are supplemented by graphical analysis
of network performance.

Our empirical analysis shows substantial evidence on nonlinear trends
in the real exchange rates. As such, these results may give rise to the
search for parsimonious models that give an adequate description of
the observed data; see e.g. Granger and Terasvirta (1993).
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