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Ward, Wilco, and several others. Furthermore, I would like to mention my appreciation

for Lennart, who had to share a room with me for four years. Whenever our working

hours coincided he was entertaining.

While working on my dissertation, I had the opportunity to present my research at

several conferences in Canada, France, Germany, the Netherlands and the United States.

Financial support from the Econometric Institute, the Tinbergen Institute and SAMSI is

gratefully acknowledged. Furthermore I want to thank the staff at the Econometric and

Tinbergen Institutes for excellent practical support. Also çok teşekkürler to Feray for her
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Chapter 1

Introduction

1.1 Motivation and structure of the thesis

The last few decades have led to an enormous increase in the availability of large detailed

data sets and in the computing power needed to analyze such data. Additionally, new

models and new computing techniques have been developed to exploit both sources. All

of this has allowed for addressing research questions via analyses which were infeasible to

carry out previously.

A discipline in which large data sets are quite common is marketing research. During

the last twenty years, a vast literature has emerged in which scanner panel data sets

are analyzed to get a better understanding of purchase behavior of households. Scanner

panel data are obtained by recording the purchases and shopping trips of a large number of

participating households over a long period of time. They contain observations on realized

purchase behavior, together with all brand prices and other marketing-mix variables in

the product category that households faced during their shopping trips. Hence, scanner

panel data can be used to link purchase decisions to the promotional environment. By

doing so, the effectiveness of, say, price promotions can be assessed.

The total effect of a price discount on own brand sales can be decomposed into sev-

eral components. First, one can distinguish between changes in demand attributable to

changes in each of the purchase timing, brand choice and purchase quantity decisions

of households, see Gupta (1988). Here, purchase timing may be modeled as a “when

to buy” decision by considering the interpurchase times of households, see Neslin et al.

(1985), Gupta (1991), Jain and Vilcassim (1991) and Helsen and Schmittlein (1993).

Alternatively, it can be represented by the “whether to buy” decision via purchase in-

cidence, see Bucklin and Lattin (1991), Bucklin and Gupta (1992), Ailawadi and Neslin

(1998) and Bucklin et al. (1998a). Wheat and Morrison (1990) compare both approaches

and conclude that modeling purchase incidence is almost always preferable to modeling

interpurchase time. As a second decomposition related to the duration of the promotion

effect, one can distinguish between an immediate effect and an adjustment effect, see
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Pauwels et al. (2002) who also consider a potentially permanent effect of price promo-

tion but do not find evidence for it. A similar lack of evidence is reported by Dekimpe

et al. (1999) and Nijs et al. (2001), suggesting that promotions usually only result in

a temporary deviation in sales relative to the non-promoted sales level. The promotion

effect during the period of deviation can be split up into an immediate effect and a subse-

quent adjustment effect lasting until the deviation in sales has vanished. The existence of

adjustment effects may have far-reaching implications for the profitability of promotions.

Chapter 2 and Chapter 3 in this thesis introduce two models for scanner panel data which

can be thought of as dealing with such adjustment effects.

Scanner panel data provide detailed information about purchase behavior of house-

holds and allow for analyses which cannot be carried out using more aggregate data,

typically store-level data containing the weekly marketing-mix and sales levels in a cate-

gory in a store. However, for household scanner panel data there are some problems too.

One of these is that scanner panel data are often expensive (in terms of effort and money)

to acquire. A second problem is the representativeness of such data, depending on the size

of the panel and on the way participating households have been selected. Store-level data

provide less detail, but should be more representative, more widely available and much

cheaper to collect. Hence, as a complement to the two scanner panel data models in

Chapter 2 and Chapter 3, Chapter 4 presents a model for store-level data which can also

be used to investigate the effectiveness of promotions on brand performance. Similar to

the preceding two chapters, the model proposed in Chapter 4 accommodates for dynamics

(although in a different way). These three quantitative marketing models constitute the

first part of this thesis.

The second part of the thesis focusses on computing techniques developed to take

advantage of the revolutionary increase in computing power of the last few decades. In

particular, the discussed methods are suitable for Bayesian analysis in which model pa-

rameters are treated as random variables and one needs to get insight into the posterior

density of these parameters. Chapter 5 provides an overview of some frequently used

computing algorithms, and it also introduces a new methodology which extends current

methods. To summarize, in this thesis we build on both the model/data developments

and the computing techniques that have allowed for new computationally intensive anal-

yses of relevant research questions. We intend to contribute to the literature by offering

new models, new results, and new algorithms.

1.2 More detailed outline of the thesis

The outline of this thesis is as follows. In Chapter 2, we develop a utility-based model for

purchase incidence, brand choice and purchase quantity. The model assumes that pur-

chase behavior of households is rational, and it accounts for the possibility that households

consume their inventory stock faster when the inventory level is higher. Inventory-driven
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consumption can be expected for perishable products such as yogurt, see Ailawadi and

Neslin (1998) and Bell et al. (1999). The existence of consumption acceleration may

strongly affect the profitability of price promotions. If it would be largely absent, a

promotion would still induce households to purchase more. However, this increase in

current sales would mainly come at the expense of future sales in the category, as house-

holds purchase earlier but do not change their needs over time. On the other hand, such

cannibalization effects would be much less if promotions (resulting in higher inventory

levels) would also induce households to consume faster, effectively increasing demand in

the category. Hence, consumption acceleration amounts to a positive adjustment effect

following a promotion. It offers a possible explanation for the frequently reported lack of

a postpromotion dip in store-level scanner data.

By applying our framework to a scanner panel data set on yogurt purchases, we find

that the speed of consumption strongly depends on the inventory level. Furthermore, by

running a simulation, we do find a dip in sales after a price promotion. However, this dip

is very small, both in terms of duration and depth. Chapter 2 is a revised version of Van

Oest et al. (2002b), and it is also partly based on Van Oest et al. (2002a).

In Chapter 3, we narrow our focus to the brand choice decision of households. The

marketing literature provides much evidence that households do not only consider current

prices when deciding which brand to buy in a category, but also take into account prices

experienced in the past via the formation of internal reference prices. These anticipated

prices “in the head of the consumer” serve as benchmarks for the current brand prices.

Internal reference price formation implies that frequent price discounts may be beneficial

in the short-run, but may also damage the brand in the long-run when households get

used to these discounts and reference prices drop. Hence, such reference price effects

amount to a negative adjustment after a promotion.

In Chapter 3, we propose a new reference price model for brand choice. By doing

so, we attempt to bridge the gap between several survey studies consistently reporting

that households have very limited price knowledge and hence may not always be able

to construct a reference price, and current reference price models which do not account

for this. Our model assumes that unobserved price recall of households evolves over time

according to a first-order Markov process in which the “forgetting state” is absorbing. The

reference price specification is flexible, allows for uncertainty in the unobserved process,

allows that households may forget past prices, and even allows that households cannot

construct a reference price at all.

We implement our model for a scanner panel data set on catsup purchases. We find

that past prices are not frequently used for reference price formation. However, when a

reference price is formed, its effect is stronger than suggested in the literature. By running

a simulation, we find that the initial gain in sales due to a temporary price reduction is

offset to a large extent by a decrease in subsequent sales. Chapter 3 is based on Van Oest

and Paap (2004).
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In Chapter 4, we develop a new model for store-level data which can be implemented to

predict the market shares of brands and to link market shares with marketing instruments

like price and promotion. The proposed model can be characterized as a Markov model,

as it relates current market shares to previous market shares. It can be used to infer share-

switching across brands when only store-level data are available, or to put it differently, it

can address the managerially very relevant question “which brands gain share from which

brands?”. This provides new insights which cannot be obtained from the frequently

considered market share attraction model. Additionally, the model structure allows for

a decomposition of own and cross price elasticities. For example, a decrease of the own

price is likely to result in an increase of the own market share. This increased market

share is a result of (i) retaining more of the own share (less switching away from the own

brand) and (ii) gaining additional share from the other brands (more switching towards

the own brand). The decomposition from our model makes it possible to quantify these

partial effects.

Application of our model to four store-level scanner data sets reveals some strong

asymmetries in share-switching across brands. However, the resulting market shares seem

balanced in the sense that for each brand the total share coming in and the total share

going out are approximately equal. Furthermore, the price elasticity decompositions indi-

cate that the retention effect is usually not the dominant factor in the reaction of market

shares to price adjustments. Chapter 4 is based on Van Oest and Franses (2004).

In Chapter 5, we discuss Monte Carlo techniques which can be used in Bayesian anal-

ysis to get insight into the posterior density of model parameters. The basic idea behind

the Monte Carlo approach is that an intractable posterior density can be investigated by

generating a sample from it, and using the drawings to make inference. For example, the

first moments of the collected sample may be reported as parameter estimates, whereas

the (centered) second sample moments give an indication of parameter uncertainty. Un-

fortunately, most posterior densities do not have a standard form, so that sampling is not

straightforward. Several techniques have been proposed to deal with such non-standard

densities. However, they all have their specific problems. A common problem is that very

large samples may be needed to obtain a representative coverage of the posterior density.

Even worse, complete density regions might be overlooked and might never be sampled

from. We start in Chapter 5 by providing an overview of some frequently applied methods.

This overview draws from Van Oest et al. (2004). Furthermore, we put forward a new

methodology in the remainder of the chapter. The corresponding discussion is based on

Bauwens et al. (2004). Our approach extends current methods, and it has been designed

to be flexible and robust with respect to the above mentioned problems. We consider

three examples to demonstrate the benefits of our methods. One of the illustrations, the

artificial example, has been borrowed from Bauwens et al. (2003).

Finally, we conclude in Chapter 6 with a summary and a brief discussion of the findings

in this thesis.
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Quantitative marketing models





Chapter 2

A model for purchase behavior with

inventory-dependent consumption

2.1 Introduction and motivation

The immediate effect of a price discount on own brand sales can be decomposed into three

components, that is, purchase time acceleration, brand switching and stockpiling, see

Gupta (1988). Purchase time acceleration refers to the effect that the brand’s promotion

induces additional households to buy in the product category, brand switching means that

the promoted brand may attract a larger fraction of the total number of buyers, and the

stockpiling effect is due to households buying a larger quantity than they would have done

without the price discount. Hence, the three components correspond to the household

decisions on “whether to buy”, “what to buy” and “how much to buy”, respectively.

Purchase time acceleration and stockpiling have in common that they both result in

larger inventory stocks for households. An important question concerning the profitability

of price promotions is whether these increased inventory levels induce faster consumption,

effectively increasing category demand, or whether consumption remains unaffected, so

that category-wide promotional activity would merely result in earlier and larger purchases

at the expense of future sales. Increased consumption after a price promotion is a possible

explanation for the frequently reported lack of a postpromotion dip in store-level scanner

data. Neslin and Schneider Stone (1996) provide an overview of existing theories.

The literature offers much support for the existence of consumption acceleration in-

duced by a higher inventory level, see Folkes et al. (1993), Wansink and Deshpandé (1994),

Ailawadi and Neslin (1998) and Chandon and Wansink (2002). Assuncão and Meyer

(1993) conclude from a theoretical framework for optimal purchase and consumption be-

havior under Markovian price uncertainty that the consumption level should rationally

increase with the inventory level. Bell et al. (1999) use the ratio of purchase quantity and

subsequent interpurchase time as a proxy for the consumption rate. By comparing this

ratio for promoted and non-promoted purchases, they find some evidence that promotions
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may increase consumption. Nijs et al. (2001) find that product perishability (which can

be expected to stimulate consumption acceleration) has a significant and positive effect

on both the short-run and long-run effectiveness of price promotions. Bell et al. (2002)

consider the effects of inventory-dependent consumption on the supply side of the market

by developing a game theoretic model of price competition between firms. They conclude

that such consumption causes more intense competition and lower profits.

The literature also provides several theories to motivate inventory-driven consumption.

Folkes et al. (1993) focus on scarcity theory, stating that scarce products are perceived as

more valuable, implying that consumption from a small inventory stock would be regarded

more costly. Assuncão and Meyer (1993) take an economic perspective and consider the

expected replacement costs of consumption. These costs are lower for households with

higher inventory levels, as such households do not face serious stock-out constraints and

therefore have the opportunity to wait for a good price deal. In contrast, a low inventory

level might result in curbed consumption to avoid having to replenish at high prices.

Wansink and Deshpandé (1994) relate the degree of consumption acceleration to usage-

related salience, which is higher if products are perishable, can be used for multiple

purposes, need refrigeration, and are stored in a visually prominent position. Chandon

and Wansink (2002) find that a larger inventory stock increases consumption more for

high-convenience products than for low-convenience products by triggering consumption

incidence.

Although inventory-dependent consumption is an important phenomenon with poten-

tially far-reaching implications for future sales and profitability, most scanner panel data

models in the literature do no allow for this and assume that the consumption rate is fixed,

see, for example, Neslin et al. (1985), Gupta (1988), Bucklin and Lattin (1991), and Buck-

lin et al. (1998a). Ailawadi and Neslin (1998) were the first to include an inventory-based

consumption function in a model for purchase incidence, brand choice and purchase quan-

tity. Their consumption function contains one inventory-sensitivity parameter, which has

to be estimated from the data.

Several models proposed in the literature consider all three purchase decisions together,

that is, purchase incidence (or purchase timing), brand choice and purchase quantity, see

Gupta (1988) and Bucklin et al. (1998a), among others. However, besides not accounting

for flexible consumption, most of these models do not allow that the purchase decisions

might be interdependent (apart from the inclusion of common explanatory variables such

as the “inventory level” and the “category value”). Krishnamurthi and Raj (1988) account

for possible interdependencies between brand choice and purchase quantity by allowing

the error terms to be correlated, but they do not consider the purchase incidence deci-

sion of households. Chiang (1991) and Chintagunta (1993) put forward models which

capture all three purchase decisions and their interdependencies by assuming that these

decisions result from a single utility maximization problem. However, both theory-based

frameworks do not allow for increased consumption induced by a higher inventory level.

Moreover, both models are based on the assumption that purchase quantities are con-



2.2 The model 9

tinuous, while scanner panel data typically concern packaged consumer goods, which are

only sold in discrete amounts.

In this chapter, we introduce a utility-based framework for purchase incidence, brand

choice and purchase quantity, which does account for inventory-dependent consumption.

The model can be used to infer the inventory-sensitivity of consumption and the joint

effect of price discounts and consumption acceleration on future sales. Our model differs

from the model of Ailawadi and Neslin (1998), as it is a utility-based framework for all

three purchase decisions together, whereas Ailawadi and Neslin consider three separate

models for purchase incidence, brand choice and purchase quantity. To put it differently,

we intend to contribute to the literature by integrating inventory-dependent consumption

and purchase behavior in a single model, while Ailawadi and Neslin only include an

innovative consumption function in a standard model. In fact, it is demonstrated in Van

Oest et al. (2002a) that the consumption function which is used in our model is more

flexible and has an even better performance than the consumption function of Ailawadi

and Neslin.

Our model also differs from the utility-based models of Chiang (1991) and Chintagunta

(1993) in at least two respects. First, in our framework, utility derived from a purchase

is determined by the increase in future consumption opportunities due to this purchase,

and utility depends on the specific consumption path which is followed. In contrast, the

models developed by Chiang and Chintagunta assume that utility is a direct function of

the quantities purchased, and they do not consider a flexible consumption rate. Hence,

the latter models do not link purchases and future consumption. The second difference is

that our model explicitly takes into account that the quantities purchased are discrete and

nonnegative for packaged consumer goods. The studies by Chiang and Chintagunta, which

are based on the discrete choice/continuous quantity framework of Hanemann (1984), do

not account for this.

The outline of this chapter is as follows. In Section 2.2, we put forward our model,

and in Section 2.3, we discuss parameter estimation. We apply our model to an A.C.

Nielsen scanner panel data set on yogurt purchases in Section 2.4. Finally, in Section 2.5,

we conclude with a discussion of the implications and limitations of our model, and we

provide some directions for further research.

2.2 The model

In this section, we develop our framework for purchase behavior and inventory-dependent

consumption. We first define the inventory process. Next we derive the consumption

function and the purchase conditions. Finally, we present the reduced form of our model.
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2.2.1 Available inventory

The inventory level Si,τ for household i at day τ is determined by the recursion

Si,τ = Si,τ−1 + wQi,τ−1 − Ci,τ−1, (2.1)

where Qi,τ−1 is the number of units purchased in the category at day τ − 1, Ci,τ−1 is

the consumption level for that day, and w is the package size for the product category

expressed in inventory/consumption units. Hence, inventory is updated daily by adding

a possible purchase and subtracting the consumed amount.

2.2.2 Consumption

For the consumption process, we assume that households are forward-looking utility maxi-

mizers with a finite planning horizon. Each household chooses its daily consumption levels

such that total discounted utility within the planning period is maximal. As households

cannot consume more than the size of their inventory stock, they have an inventory re-

striction. We note that if households would already know when to make a purchase in the

category again, this point in time should define the planning horizon. However, although

households may know in advance when to make their next shopping trip (for example,

next Saturday), they may not know when their next category purchase will occur. In

particular, this should hold for products which are not purchased on a regular basis. In

such a case, the next purchase occasion is unknown, and hence it cannot be used to define

the consumption planning horizon. On the other hand, the time of occurrence of the next

shopping trip is not suitable either, as this would imply that households never hold any

inventory when they go to the shop. This is implausible and would result in purchase

models without any inventory effect, as the “whether to buy” decision is usually modeled

conditional on a shopping occasion, see Bucklin and Lattin (1991), Chintagunta (1993),

Ailawadi and Neslin (1998), Bucklin et al. (1998a), among many others. We return to the

discussion on the planning horizon later on.

In the consumption model, we assume that households have Constant Relative Risk

Aversion [CRRA] utility, that is, household i derives instantaneous utility

u(Ci,τ ) =
C1−η

i,τ

1− η
with 0 < η < 1 (2.2)

from consuming Ci,τ units at day τ . This utility function involves one curvature (or

concavity) parameter η, and it is, for example, described in Romer (1996, p. 40). The

household’s dynamic utility maximization problem for current and future consumption is
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defined by

max
{Ci,τ+h}

Hi,τ
h=0

Hi,τ∑

h=0

1

(1 + ρ)h
u(Ci,τ+h),

subject to

Hi,τ∑

h=0

Ci,τ+h ≤ Si,τ ,

where Hi,τ is the planning horizon at day τ , and ρ > 0 is a discount rate for time. It can

be shown that the optimal consumption path is given by

Ci,τ = Si,τ
1− ν

1− νHi,τ+1
, (2.3)

Ci,τ+h = νh Ci,τ , h = 1, . . . , Hi,τ , (2.4)

where ν = (1+ρ)−
1
η is the consumption dampening factor, see Appendix 2.A. For a given

inventory level Si,τ , this path provides total discounted utility

U(Si,τ ) =
Si,τ C−η

i,τ

1− η
. (2.5)

We complete our inventory-dependent consumption function by assuming a parametric

form for the planning horizon Hi,τ . We have already discussed why the amount of time

until the next shopping trip or next purchase occasion are not suitable candidates. As

a reasonable alternative, we assume that the planning horizon is proportional to the

amount of time it takes for a household to deplete its current inventory stock at its

average consumption rate. Hence, our planning horizon is defined as

Hi,τ = exp(δ)
Si,τ

Ci

, (2.6)

where δ is the proportionality parameter and Ci is the average consumption rate of house-

hold i. For most product categories, we expect that Hi,τ is much smaller than the inventory

depletion time (Si,τ/Ci), as the household’s average consumption rate Ci also includes

periods in which the household is out of stock. We do not claim that (2.6) is an accurate

reflection of how far households plan ahead, but we believe that it can be used as a rough

approximation to the expected time until the next purchase, given the household’s cur-

rent inventory level. Moreover, our assumed planning horizon results in a consumption

function with many desirable analytical properties. By substituting (2.6) into (2.3), we

obtain our final consumption function, that is,

Ci,τ = Si,τ
1− ν

1− ν
exp(δ)Si,τ +Ci

Ci

with ν = (1 + ρ)−
1
η . (2.7)

Together with (2.1), it describes how inventory and consumption interact with each other.

The properties of our consumption function are as follows, that is,



12 A model for purchase behavior with inventory-dependent consumption

0 4 8 12 16 20

4

8

12

16

20

inventory

co
ns

um
pt

io
n

ν= 0.90 and exp(δ) = 0.40 
ν= 0.10 and exp(δ) = 0.40 
ν= 0.90 and exp(δ) = 0.10 
ν= 0.63 and exp(δ) = 0.29 

Figure 2.1: Illustration of some consumption patterns which can be reproduced by our
model. The average consumption rate has been standardized to one.

• Ci,τ is always positive, but it never exceeds the inventory level Si,τ ,

• Ci,τ is increasing in the inventory level Si,τ ,

• Ci,τ is increasing in the household’s average consumption rate Ci,

• Ci,τ is homogeneous of degree one with respect to the inventory level Si,τ and the

average consumption rate Ci, implying that the consumption process is invariant

with respect to the unit of measurement (such as ounces, pounds, or even multiples

of the average daily consumption rate).

Figure 2.1 displays some consumption patterns which can be reproduced by tuning

the dampening factor ν and the proportionality factor exp(δ) in (2.7). The average

consumption rate Ci has been standardized to one. The solid line in the graphs mimics

fixed consumption, the dashed line corresponds to a pattern such that almost the entire

inventory stock is consumed at once, and the remaining two lines are patterns in between

these two extreme cases. It can be seen that our consumption function is quite flexible. In

Van Oest et al. (2002a), it is demonstrated that (2.7) performs better than a consumption

function put forward by Ailawadi and Neslin (1998). However, they were the first to

include an inventory-dependent consumption process in a model for purchase incidence,

brand choice and purchase quantity.

Finally, although our consumption function is flexible and has nice analytical proper-

ties, we admit that it still describes a stylized process. Nonetheless, it has been derived
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from economic principles and it allows us to integrate inventory-driven consumption and

purchase behavior in a single model in a consistent way. A crucial implication of (2.7)

for the development of our purchase model is that the maximum utility level (2.5), which

can be achieved from consuming the inventory stock Si,τ , is concave with respect to Si,τ .

This follows from a tedious derivation.

2.2.3 Purchase decision

Without loss of generality, we impose that at shopping days the household’s consumption

occurs prior to its purchase decision. Furthermore, we use a new time index t for the days

at which a shopping trip is made. So, we have two time indices, that is, t refers to shopping

trips and τ refers to calendar time. We assume that purchasing q ∈ {0, 1, . . . , Q} units

of brand j ∈ {1, . . . , J} by household i ∈ {1, . . . , N} at shopping occasion t ∈ {1, . . . , Ti}
provides net utility

ψi,j,t|z
[
U(Si,t − Ci,t + wq)− U(Si,t − Ci,t)

]
− Pi,j,t q, (2.8)

where Pi,j,t is the price observed for brand j, ψi,j,t|z is the perceived quality of the brand,

and w is the package size for the product category expressed in inventory/consumption

units. As different households might perceive different brands differently, the brand qual-

ity ψi,j,t|z is allowed to vary across households. This brand quality might depend on both

observed variables and unobserved factors, denoted by z and discussed in more detail later

on. It follows from (2.8) that net utility from a purchase is the difference between the

increase in consumption utility under optimal consumption planning and the expenditure.

Hence, the household’s purchase decision is based on the future consumption opportuni-

ties that a purchase would offer. The consumption utility part of (2.8) consists of two

components, that is, a “core utility” for consuming in the product category and a brand-

specific multiplier to account for differences across brands. For notational convenience,

we rewrite (2.8) as

ψi,j,t|z
[
Vi,t(q)− Vi,t(0)

]
− Pi,j,t q, (2.9)

where

Vi,t(q) ≡ U(Si,t − Ci,t + wq). (2.10)

Partly following Hanemann (1984), Chiang (1991) and Chintagunta (1993), we specify

the brand quality ψi,j,t|z in (2.8) as

ψi,j,t|z = exp(αj|z + β1BLi,j,t + β2PMi,j,t + β3 ln(Ci) + εi,j,t), (2.11)

where the random disturbance εi,j,t is assumed to be independently and identically dis-

tributed obeying a Type-I Extreme Value distribution with scaling parameter ϑ > 0.

Hence, εi,j,t has cumulative density

F (εi,j,t) = exp(− exp(−ϑ εi,j,t)), (2.12)
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see, for example, also Allenby and Rossi (1991). In (2.11), αj|z captures the intrinsic brand

preferences of the household, BLi,j,t is a variable to deal with observed heterogeneity, such

as the brand loyalty measure of Guadagni and Little (1983), PMi,j,t is a 0/1 promotion

indicator (feature or display), and Ci is the household’s average consumption rate. The

intrinsic preferences are allowed to vary across households by assuming that households

can be grouped into an unknown number of unobserved segments. Households within

the same segment have the same intrinsic preferences, whereas households belonging to

different segments have different preferences. Basically, this is the segmentation approach

of Kamakura and Russell (1989). Chintagunta et al. (1991) and Chintagunta (1993) also

allow the intrinsic preferences to be different across households.

We note that (2.5), (2.7), (2.8) and (2.11) together imply that our purchase model is

invariant with respect to the unit of measurement for inventory and consumption. For

example, the processes for inventory and consumption may be defined in ounces, pounds,

or even in multiples of the household’s average daily consumption rate Ci, so that the

original Ci is standardized to one for each household1, see Gupta (1991) and Neslin and

Schneider Stone (1996). The invariance holds, as the intrinsic preferences αj|z and the

parameter β3 in (2.11) can fully adjust to such scaling.

The first decision a household has to make at a shopping occasion is whether to pur-

chase in the category. Clearly, not buying is optimal if this gives a higher net utility level

than buying any positive quantity from any of the available brands, or equivalently, any

positive choice/quantity combination should result in negative net utility. This would im-

ply that many conditions have to be tested to determine the purchase incidence outcome.

However, as the concavity property of the utility function U carries over to net utility

(2.9) as a function of purchase quantity q, a necessary and sufficient condition for not

purchasing is that, for all brands, not buying is preferable to buying one unit. Hence, the

no-purchase condition translates into

ψi,k,t|z [ Vi,t(1)− Vi,t(0) ]

Pi,k,t

< 1, k = 1, . . . , J, (2.13)

stating that one dollar kept in pocket (having value 1) provides more utility than one

dollar spent on any of the brands (still assuming that an integer amount is purchased).

The second decision, the brand choice decision, is conditional on purchase incidence.

So, it is given that one dollar spent on the selected brand offers more value than one dollar

kept in pocket. However, it would still be suboptimal to choose that brand if there would

exist another brand, providing even more utility for the same dollar. Hence, household i

selects brand j at shopping trip t if and only if

ψi,j,t|z [ Vi,t(q̃)− Vi,t(0) ]

Pi,j,t q̃
>

ψi,k,t|z [ Vi,t(q̃)− Vi,t(0) ]

Pi,k,t q̃
, k 6= j, (2.14)

1However, in this case, the variable Ci showing up in the brand quality specification (2.11) is still
required to be given in ounces, pounds, or some other household-invariant size. The reason is that here
Ci is also used to distinguish between light and heavy users, so that standardization would affect the
estimation results.
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where q̃ ≥ 1.

The third decision, the purchase quantity decision, is conditional on both purchase

incidence and brand choice. Clearly, it is optimal to buy q units of brand j if and only

if this gives a higher net utility level than buying any other positive amount. As for the

purchase incidence outcome, many conditions would have to be checked to verify that q is

indeed the optimal quantity. Fortunately, we can again take advantage of the concavity

property of the utility function U .

The net utility function (2.9) implies that household i prefers purchasing q̃ ≥ 1 units

of brand j to purchasing q̃ − 1 units if and only if

ψi,j,t|z [ Vi,t(q̃)− Vi,t(q̃ − 1) ]

Pi,j,t

> 1, (2.15)

meaning that a dollar spent on the q̃-th unit should offer more value than a dollar kept in

pocket. As U is a concave function and hence Vi,t is concave with respect to q̃, the left-hand

side of (2.15) is decreasing in q̃. The optimal strategy therefore consists of purchasing

additional units as long as the consumption value of the dollar spent on the marginal unit

is larger than its monetary value. This amounts to the following two optimality conditions

for q, that is,

ψi,j,t|z [ Vi,t(q)− Vi,t(q − 1) ]

Pi,j,t

> 1, (2.16)

ψi,j,t|z [ Vi,t(q + 1)− Vi,t(q) ]

Pi,j,t

< 1. (2.17)

In our model, we consider an upper bound Q for the quantity purchased, as in practice

households have such an upper bound. For example, extremely large purchase quantities

may result in transportation and storage problems. Moreover, scanner panel data sets also

suggest that households never buy above a certain level. By assuming an upper bound

Q, we effectively create a preference restriction that buying Q units is always preferred

to buying Q + 1 units, that is,

ψi,k,t|z [ Vi,t(Q + 1)− Vi,t(Q) ]

Pi,k,t

< 1, k = 1, . . . , J. (2.18)

2.2.4 Reduced form

In this subsection, we present the reduced form of our model. A detailed derivation can

be found in Appendix 2.B. We define Yi,t as a 0/1 purchase indicator for household i

at shopping trip t. Moreover, if a purchase occurs, Bi,t ∈ {1, . . . , J} denotes the brand

choice and Qi,t ∈ {1, . . . , Q} denotes the purchase quantity. The no-purchase probability
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for household i (belonging to segment z) at shopping trip t is given by

Pr(Yi,t = 0|z) = exp

(
J∑

k=1

exp
(

µi,k,t|z + ϑ ln
[
Vi,t(Q + 1)− Vi,t(Q)

] )

−
J∑

k=1

exp
(

µi,k,t|z + ϑ ln
[
Vi,t(1)− Vi,t(0)

] ))
, (2.19)

where

µi,k,t|z ≡ αk|z + β1BLi,k,t + β2PMi,k,t + β3 ln(Ci)− ϑ ln(Pi,k,t). (2.20)

Two implications of (2.19) are that the no-purchase probability increases when the inven-

tory level Si,t increases, whereas it decreases when the category value ln(
∑J

k=1 exp(µi,k,t|z))
increases, that is, when the category becomes more attractive, see Ben-Akiva and Lerman

(1985). Both relationships are plausible.

The conditional brand choice probability directly follows from the logit framework

developed by McFadden (1974). It is given by

Pr(Bi,t = j|Yi,t = 1, z) =
exp(µi,j,t|z)∑J

k=1 exp(µi,k,t|z)
, (2.21)

where the brand-invariant β3 ln(Ci) term in µi,k,t|z cancels out. The subsequent probability

that q units are purchased turns out to be

Pr
(
Qi,t = q

∣∣∣Yi,t = 1, Bi,t = j, z
)

=

(
exp

(− exp
(
µi,j,t|z + ϑ ln

[
Vi,t(q + 1)− Vi,t(q)

] ))

− exp
(− exp

(
µi,j,t|z + ϑ ln

[
Vi,t(q)− Vi,t(q − 1)

] )))
/

(
exp

(− exp
(
µi,j,t|z + ϑ ln

[
Vi,t(Q + 1)− Vi,t(Q)

] ))

− exp
(− exp

(
µi,j,t|z + ϑ ln

[
Vi,t(1)− Vi,t(0)

] )))
. (2.22)

We note that the quantity purchased is allowed to depend on the brand loyalty variable

BLi,j,t. Households might tend to purchase more units of the selected brand if this brand

is relatively familiar, see Bucklin et al. (1998a).

For completeness, we also recall some expressions and equalities, which we have ob-

tained earlier and which are needed to evaluate the probabilities above, that is,

Vi,t(q) = U(Si,t − Ci,t + wq), (2.23)

U(Si,τ ) =
Si,τ C−η

i,τ

1− η
, (2.24)

Ci,τ = Si,τ
1− ν

1− ν
exp(δ)Si,τ +Ci

Ci

with ν = (1 + ρ)−
1
η , (2.25)

Si,τ = Si,τ−1 + wQi,τ−1 − Ci,τ−1. (2.26)
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As a possible extension of the model, one can allow for different package sizes of the

various brands. By doing so, the weights w in (2.23) and (2.26) become brand-specific,

and the brand choice probability becomes (heuristically)

Pr(Bi,t = j|Yi,t = 1, z) =
exp( µi,j,t|z + ϑ ln[ U(Si,t − Ci,t + wj)− U(Si,t − Ci,t) ] )∑J

k=1 exp( µi,k,t|z + ϑ ln[ U(Si,t − Ci,t + wk)− U(Si,t − Ci,t) ] )
,

(2.27)

where it is important that Pi,k,t is the shelf price per purchase unit, not per ounce. The

probabilities (2.19) and (2.22) for purchase incidence and purchase quantity do not change.

2.3 Parameter estimation

The parameters of our model can be estimated using maximum likelihood [ML]. The

parameter estimates result from maximization of the log-likelihood function, which is

given by

lnL =
N∑

i=1

ln

(
Z∑

z=1

πz Li|z

)
, (2.28)

where πz is the size of segment z, and Li|z is the likelihood for household i given segment

membership z, that is,

Li|z =

Ti∏
t=1

[ [
Pr(Yi,t = 1|z)

]yi,t
[
Pr(Yi,t = 0|z)

](1−yi,t)

[
J∏

j=1

(
Pr(Bi,t = j|Yi,t = 1, z) Pr(Qi,t = qi,t|Yi,t = 1, Bi,t = j, z)

)I{bi,t=j}
]]

, (2.29)

In (2.29), yi,t, bi,t and qi,t denote the realizations of Yi,t, Bi,t and Qi,t, respectively, and

I{·} is the 0/1 indicator function.

Standard errors are obtained by taking the square roots of the diagonal elements of

the estimated parameter covariance matrix, which, in turn, can be computed as minus the

inverse of the Hessian of (2.28) evaluated for the optimal parameter values. Numerical

techniques, such as the BFGS algorithm or the Newton-Raphson algorithm, have to be

used to get the ML parameter estimates.

2.4 Empirical analysis

In this section, we apply our purchase model with inventory-dependent consumption to

an A.C. Nielsen scanner panel data set on yogurt purchases in the Sioux Falls SD market.

For this product category, we expect substantial consumption acceleration after a price

promotion, see Ailawadi and Neslin (1998) and Bell et al. (1999). In the analysis, we

consider five brands, which together account for about 75% of the category sales in units.
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These brands are Dannon, Nordica, W.B.B., Weight Watchers and Yoplait. The sample

period consists of 92 weeks from November 1986 to August 1988. The first 46 weeks are

used for initialization purposes and are discarded in the log-likelihood evaluation, while

the remaining 46 weeks are used for either parameter estimation or out-of-sample model

validation. Only households which limited their purchases to the five brands mentioned

above, made at least one shopping trip every four weeks, and made at least three purchases

in both the initialization and the estimation period are considered in the analysis. The

estimation sample contains 80% of these households. The remaining 20% is assigned to a

hold-out sample. The total sample consists of 171 households who made 16660 shopping

trips, resulting in 3935 purchases in the yogurt category.

We measure purchase quantities in multiples of six ounces. They range from 1 to

Q = 17 units. Furthermore, we define the household’s average consumption rate Ci as

the number of units purchased in the initialization period divided by the number of days,

and we initialize the household’s inventory process by assuming that any household starts

with an inventory level equal to its average purchase quantity in the initialization period.

However, the estimation results are not sensitive to this initialization condition, as the

inventory process “renews” itself as soon as the level becomes (virtually equal to) zero.

For all households in the sample, such renewal occurs at least once in the initialization

stage.

2.4.1 Parameter estimates

We consider two variants of our model, that is, the model without unobserved heterogene-

ity and the model with an unknown number of latent segments to capture unobserved

heterogeneity. For the latter variant, we use the AIC-3 criterion, proposed by Bozdo-

gan (1994), to determine the optimal number of segments. This measure is defined as

−2 lnL + 3K with L being the maximum likelihood value and K being the number of

parameters to be estimated. The model corresponding to the smallest AIC-3 value is

selected. The AIC-3 criterion suggests more parsimonious models than the standard AIC

criterion, but if the number of observations exceeds 20 it is less parsimonious than BIC,

the other popular measure in the literature. An extensive simulation study by Andrews

and Currim (2003) indicates that AIC-3, applied to multinomial choice data, performs

better than several other criteria including AIC and BIC. For our model, we find five

segments (with different intercept parameters) in the data set. The parameter estimates

are reported in Table 2.1.

For both the model without unobserved heterogeneity and the five-segments model,

all response parameters have the expected sign. Furthermore, almost all effects are signif-

icant at the 1% level. The only exception is the non-price promotion parameter β2 in the

latent segments model, which is however still significant at the 5% level. The most impor-

tant difference between the estimation results before and after accounting for unobserved

heterogeneity concerns the price parameter ϑ. This parameter increases from 1.70 to 2.69,
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Table 2.1: Parameter estimates for our model. The estimated standard errors are given
in parentheses.

no heterogeneity 5-segments model

β1 (brand loyalty) 0.324∗∗∗ (0.008) 0.305∗∗∗ (0.011)

β2 (promotion) 0.068∗∗∗ (0.020) 0.043∗∗ (0.020)

β3 (consumption rate) 0.491∗∗∗ (0.034) 0.245∗∗∗ (0.048)

ϑ (price) 1.702∗∗∗ (0.439) 2.689∗∗∗ (0.445)

ρ (discount rate) 0.021∗∗ (0.009) 0.024∗∗∗ (0.006)

η (curvature) 0.034∗∗ (0.016) 0.050∗∗∗ (0.013)

δ (horizon) −1.424∗∗∗ (0.167) −1.232∗∗∗ (0.127)

** significant at 5%.
*** significant at 1%.

indicating that the model without unobserved heterogeneity severely underestimates the

price effect. This finding is consistent with the studies by Chintagunta et al. (1991) and

Jain et al. (1994).

The estimates of the discount rate ρ and the curvature parameter η indicate that

households are not very willing to postpone consumption. For the five-segments model,

it is implied that the consumption dampening factor ν = (1 + ρ)−
1
η is 0.63 and the

proportionality factor for the planning horizon equals 0.29. Figure 2.1 in Subsection

2.2.2 contains the corresponding consumption function. It shows that consumption is

clearly increasing in the inventory level. As exp(δ) is substantially smaller than one, the

consumption planning horizon Hi,τ is much shorter than the inventory depletion time

(Si,τ/Ci).

2.4.2 Model performance

To see how well our model performs for the considered data set, we report the hit rates

for the purchase incidence and brand choice components, and we show the Root Mean

Squared Prediction Error [RMSPE] for the purchase quantity component. These numbers

are given in the top part of Table 2.2. In both the estimation sample and the validation

sample, the hit rate for incidence is higher than 70%, and the hit rate for choice is higher

than 75%. Furthermore, the RMSPE values for purchase quantity are smaller than three.

The bottom part of Table 2.2 contains the prediction-realization tables underlying the

hit rates for purchase incidence. These tables provide a more complete view, as they

take into account that it is much more difficult to predict the few purchase occasions in

a typical scanner panel data set correctly than to explain the many non-purchases. The

hit rate measure does not recognize this. For example, for our data set, one can obtain a
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Table 2.2: Empirical performance of our model, represented by the prediction-realization
table and corresponding hit rate for purchase incidence, the hit rate for brand choice, and
the Root Mean Squared Prediction Error for purchase quantity.

in-sample out-of-sample

hit rate for incidence (in %) 73.7 71.9

hit rate for brand choice (in %) 77.1 78.5

RMSPE for purchase quantity 2.91 2.40

purchase predicted purchase predicted

no yes no yes

purchase observed: no 58.1 16.8 60.9 18.5

purchase observed: yes 9.5 15.6 9.7 11.0

Table 2.3: Empirical performance of the habit-persistence model, represented by the
prediction-realization table and corresponding hit rate for purchase incidence, the hit rate
for brand choice, and the Root Mean Squared Prediction Error for purchase quantity.

in-sample out-of-sample

hit rate for incidence (in %) 72.0 72.1

hit rate for brand choice (in %) 72.5 73.6

RMSPE for purchase quantity 2.59 2.10

purchase predicted purchase predicted

no yes no yes

purchase observed: no 60.7 14.1 65.4 14.0

purchase observed: yes 13.9 11.3 14.0 6.7

hit rate of 75% by claiming that households never buy in the category, which is of course

very unrealistic. It can be seen from the table that actual purchase occasions are classified

correctly at a rate of 62% in-sample, whereas this rate is 53% out-of-sample.

As a benchmark for our model, we consider a model featuring habit-persistence in

the sense that the next prediction for each of the three purchase decisions coincides with

the most recent outcome. The performance measures for this model are shown in Table

2.3. It can be seen that our model clearly outperforms the habit-persistence model as far

as it concerns the purchase incidence and brand choice components. In particular, this

holds for the classification of actual purchase occasions as such. The habit-persistence

model correctly classifies 45% of the purchases in the estimation sample, whereas this

classification rate is only 32% in the validation sample. However, the purchase quantity
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Table 2.4: The estimated own price elasticities for purchase incidence, brand choice and
purchase quantity.

incidence choice quantity total

Dannon −0.35 −2.24 −0.03 −2.62

Nordica −0.80 −1.66 −0.06 −2.52

W.B.B. −0.36 −2.22 −0.02 −2.60

Weight Watchers −0.14 −2.18 −0.01 −2.33

Yoplait −0.58 −1.70 −0.05 −2.33

component of our model performs worse, as the RMSPE values for the benchmark model

are about 12% lower. Overall, we conclude that our model has a reasonable performance.

2.4.3 Price elasticity analysis

In this subsection, we consider the immediate effects of price changes on sales. Gupta

(1988) shows that the overall price elasticity for a brand can be decomposed into the sum of

elasticities concerning purchase incidence, brand choice and purchase quantity separately.

This convenient decomposition is frequently applied in the literature, see, for example,

Bucklin et al. (1998a) and Bell et al. (1999). The results for our model, applied to the

data set on yogurt purchases, are reported in Table 2.4. It can be seen that the majority

of the increase in own brand sales induced by a 1% price discount is caused by brand

switching. Furthermore, the effect of purchase time acceleration is still quite important.

However, the effect of stockpiling by purchasing larger quantities is only marginal. The

price elasticities suggest a 22/76/2 decomposition for incidence/choice/quantity. It is,

however, important to note that this decomposition, with brand switching accounting for

76%, does not imply that the other brands lose 76 units if the promoted brand would gain

100 units. The reason is that the elasticity decomposition does not consider the increase

in category sales induced by the brand’s promotion. Such category expansion would also

benefit the non-promoted brands, making the incurred loss substantially smaller than 76

units. This is pointed out by Van Heerde et al. (2003) who propose a primary/secondary

demand decomposition based on unit sales.

2.4.4 Impact of increased consumption on future sales

In the previous subsection, we have considered the immediate effects of price changes.

Here, we extend the analysis by considering the impact on future sales. The results

obtained so far indicate that consumption increases substantially after a price promotion.

First, households react to price discounts in the category by purchasing more, hence

increasing their inventory levels. Second, they react to the larger inventory stock at home
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by consuming it faster. An important question that remains is whether this consumption

acceleration following a price promotion is sufficient for brands to avoid a clear sales dip

in the subsequent weeks.

To answer this question, we perform a simulation study in which we consider the

effects of a temporary category-wide 10% price decrease on current and future category

sales. The price cut has a duration of only one week, and it applies to all five brands.

By comparing the weekly sales levels for this price-cut setting with the sales levels that

would result when all prices are kept at their original level, one can get insight into the

current and future effects of temporary category-wide price discounts.

For each week after the 46-weeks initialization period for which at least four subsequent

weeks are available in the data set, we impose a temporary 10% price cut, while keeping

the prices in the other weeks at their original level. We simulate the purchases for all

households in the estimation sample, and we add the expected purchase quantities for all

shopping trips occurring in the promotion week. This is done for all 42 weeks for which we

impose the temporary promotion, resulting in the total current sales level. At the same

time and analogously, we compute the total sales levels for each of the four weeks following

the promotion week. We perform ten repetitions of this procedure in which the segment

memberships of households are drawn from the corresponding posterior distributions, and

we add the sales values obtained from all runs. In a similar way, we also obtain the current

and future sales levels for the case that prices are not adjusted.

The results of the simulation are as follows. A temporary 10% price reduction increases

current category demand by 25.22%. However, during the next week in which prices have

returned to their original level, demand is 0.24% lower than it would have been without

the past price discount. The promotion effect does not exist anymore for subsequent

weeks. Hence, for the yogurt category, we find a very short and small dip in sales after a

price promotion. This “postpromotion dip” only lasts for one week, and it is about 1%

of the current sales effect.

2.5 Conclusions

In this chapter, we have developed a utility-based model for purchase incidence, brand

choice and purchase quantity, which accounts for inventory-driven consumption. By do-

ing so, we have combined a flexible consumption specification, as in Ailawadi and Neslin

(1998), with a rational framework for purchase behavior, as in Chiang (1991) and Chin-

tagunta (1993). Inventory-dependent consumption is an important phenomenon, as its

existence would imply that price promotions are effective tools to increase current cate-

gory demand without serious cannibalization of future demand. Such consumption also

provides a possible explanation for the frequently reported lack of a postpromotion dip in

store-level scanner data. Besides developing a new purchase model, we have introduced

a flexible consumption function, which can be used to capture consumption acceleration

in a broad class of models for purchase incidence and purchase quantity.
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Applied to A.C. Nielsen scanner panel data on yogurt purchases, our model indicates

that the speed of consumption strongly depends on the inventory level. This is consistent

with other studies in the literature. Furthermore, a decomposition of the price elasticities

suggests that 22% of the total effect of a price reduction on own brand sales is attributable

to purchase time acceleration, 76% is attributable to brand switching, and only 2% is

attributable to stockpiling. For the considered data set, we find a very short and small

dip in category sales after a category price promotion. This dip lasts for one week, and it

is about 1% of the current sales effect. Hence, for the yogurt category, the cannibalization

effect of promotional activity is only marginal.

We conclude this chapter by mentioning some limitations of our framework and we

provide some suggestions for further research. One feature of our model is that the con-

sumption process only concerns the product category as a whole, and does not depend

on the particular brand which is consumed. However, it might be more plausible that

consumption utility does depend on the household’s preferences for the consumed brand.

This would also imply that households may want to buy multiple brands at a single pur-

chase occasion. Kim et al. (2002) put forward a model of household demand with an

additive but not necessarily linear utility structure, allowing for the selection of multiple

alternatives at the same time. Another issue is that consumption is not observed in the

scanner panel data set, so that it cannot be inferred without error. As we model consump-

tion as a “deterministic” process, our framework does not account for this uncertainty.

A third limitation is that, for mathematical tractability, our model does not allow that

the error terms in the brand qualities are correlated, so that our model is prone to the

so-called Independence of Irrelevant Alternatives property. Finally, an interesting sugges-

tion for further research would be to develop a model for scanner panel data, integrating

inventory-dependent consumption and the rational response of households to uncertainty

about future prices. This kind of research would build on the studies by Assuncão and

Meyer (1993) and Erdem et al. (2003). Assuncão and Meyer show that, under Markovian

price uncertainty, consumption should rationally increase with the inventory level, but

they do not translate the theoretical framework to a model for scanner panel data. On

the other hand, Erdem et al. do develop a model for scanner panel data accounting for

how inventories and expectations about future prices affect current purchase decisions.

However, they assume that households have an exogenous (stochastic) usage requirement

for the product such that consumption above this level does not provide any additional

utility. Hence, they do not allow consumption to depend on the inventory level beyond

possible stock outs.
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2.A Derivation of the consumption function

The dynamic consumption optimization problem

max
{Ci,τ+h}

Hi,τ
h=0

Hi,τ∑

h=0

1

(1 + ρ)h
u(Ci,τ+h),

subject to

Hi,τ∑

h=0

Ci,τ+h ≤ Si,τ , (2.30)

can be solved by employing the Euler equation approach. The Lagrangian of the problem

is defined by
Hi,τ∑

h=0

[
1

(1 + ρ)h

C1−η
i,τ+h

1− η

]
− ζ




Hi,τ∑

h=0

Ci,τ+h − Si,τ


, (2.31)

where ζ is the so-called shadow price of inventory. The first-order conditions at day τ +h

and day τ + h− 1 (h = 1, . . . , Hi,τ ) are given by

1

(1 + ρ)h
C−η

i,τ+h = ζ, (2.32)

1

(1 + ρ)h−1
C−η

i,τ+h−1 = ζ, (2.33)

respectively. It immediately follows from (2.32) and (2.33) that

1

(1 + ρ)h
C−η

i,τ+h =
1

(1 + ρ)h−1
C−η

i,τ+h−1, (2.34)

which can be rewritten as

Ci,τ+h = ν Ci,τ+h−1 with ν = (1 + ρ)−
1
η , (2.35)

implying that

Ci,τ+h = νh Ci,τ , h = 1, . . . , Hi,τ , (2.36)

where ν = (1 + ρ)−
1
η is the consumption dampening factor. Following this consumption

path, total consumption within the planning period equals

Hi,τ∑

h=0

Ci,τ+h = Ci,τ

Hi,τ∑

h=0

νh = Ci,τ
1− ν Hi,τ+1

1− ν
with ν = (1 + ρ)−

1
η (2.37)

for any given current consumption level Ci,τ . Finally, as utility is strictly increasing in

consumption, the inventory restriction (2.30) should be binding, so that optimal current

consumption is given by

Ci,τ = Si,τ
1− ν

1− ν Hi,τ+1
with ν = (1 + ρ)−

1
η . (2.38)



2.B Derivation of the purchase probabilities 25

The optimal consumption path, defined by (2.36) and (2.38) for a given inventory level

Si,τ , provides total utility U(Si,τ ), that is,

U(Si,τ ) =

Hi,τ∑

h=0

1

(1 + ρ)h

(νh Ci,τ )
1−η

1− η

=
C1−η

i,τ

1− η

Hi,τ∑

h=0

(
ν1−η

1 + ρ

)h

=
C1−η

i,τ

1− η

Hi,τ∑

h=0

νh

=
C1−η

i,τ

1− η

1− νHi,τ+1

1− ν

=
Si,τ C−η

i,τ

1− η
. (2.39)

2.B Derivation of the purchase probabilities

In this appendix, we derive the reduced form of our model. To do so, we frequently use

the auxiliary result that, for any brand k and any quantity q̃ ≥ 1,

ψi,k,t|z [ Vi,t(q̃)− Vi,t(q̃ − 1) ]

Pi,k,t

< 1

⇔ exp(αk|z + β1BLi,k,t + β2PMi,k,t + β3 ln(Ci) + εi,k,t) [ Vi,t(q̃)− Vi,t(q̃ − 1) ]

Pi,k,t

< 1

⇔ exp(εi,k,t) <
Pi,k,t

exp(αk|z + β1BLi,k,t + β2PMi,k,t + β3 ln(Ci)) [ Vi,t(q̃)− Vi,t(q̃ − 1) ]

⇔ exp(εi,k,t) <
1

exp( µ̃i,k,t|z + ln[ Vi,t(q̃)− Vi,t(q̃ − 1) ] )

⇔ εi,k,t < −
(

µ̃i,k,t|z + ln
[
Vi,t(q̃)− Vi,t(q̃ − 1)

] )
, (2.40)

where µ̃i,k,t|z ≡ αk|z + β1BLi,k,t + β2PMi,k,t + β3 ln(C i) − ln(Pi,k,t). The corresponding

probability of occurrence is given by

Pr
(
εi,k,t < −

(
µ̃i,k,t|z + ln

[
Vi,t(q̃)− Vi,t(q̃ − 1)

] ))

= exp
(
− exp

(
ϑ
(

µ̃i,k,t|z + ln
[
Vi,t(q̃)− Vi,t(q̃ − 1)

] )))

= exp
(
− exp

(
µi,k,t|z + ϑ ln

[
Vi,t(q̃)− Vi,t(q̃ − 1)

] ))
, (2.41)

where µi,k,t|z = ϑµ̃i,k,t|z = αk|z + β1BLi,k,t + β2PMi,k,t + β3 ln(Ci) − ϑ ln(Pi,k,t) after repa-

rameterizing the intrinsic preferences αk|z and the response parameters β1, β2, and β3.
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The probability that household i (belonging to segment z) does not make a purchase at

shopping trip t is given by

Pr
(
Yi,t = 0

∣∣∣z
)

= Pr

(
ψi,k,t|z [ Vi,t(1)− Vi,t(0) ]

Pi,k,t

< 1, k = 1, . . . , J

∣∣∣∣
ψi,k,t|z [ Vi,t(Q + 1)− Vi,t(Q) ]

Pi,k,t

< 1, k = 1, . . . , J

)

=
Pr

(
ψi,k,t|z [ Vi,t(1)−Vi,t(0) ]

Pi,k,t
< 1, k = 1, . . . , J

)

Pr
(

ψi,k,t|z [ Vi,t(Q+1)−Vi,t(Q) ]

Pi,k,t
< 1, k = 1, . . . , J

)

=
Pr

(
εi,k,t < −( µ̃i,k,t|z + ln[ Vi,t(1)− Vi,t(0) ] ), k = 1, . . . , J

)

Pr
(
εi,k,t < −( µ̃i,k,t|z + ln[ Vi,t(Q + 1)− Vi,t(Q) ] ), k = 1, . . . , J

)

=

∏J
k=1 Pr

(
εi,k,t < −( µ̃i,k,t|z + ln[ Vi,t(1)− Vi,t(0) ] )

)
∏J

k=1 Pr
(
εi,k,t < −( µ̃i,k,t|z + ln[ Vi,t(Q + 1)− Vi,t(Q) ] )

)

=

∏J
k=1 exp(− exp( µi,k,t|z + ϑ ln[ Vi,t(1)− Vi,t(0) ] ))∏J

k=1 exp(− exp( µi,k,t|z + ϑ ln[ Vi,t(Q + 1)− Vi,t(Q) ] ))

=
exp(−∑J

k=1 exp( µi,k,t|z + ϑ ln[ Vi,t(1)− Vi,t(0) ] ))

exp(−∑J
k=1 exp( µi,k,t|z + ϑ ln[ Vi,t(Q + 1)− Vi,t(Q) ] ))

= exp

(
J∑

k=1

exp
(

µi,k,t|z + ϑ ln
[
Vi,t(Q + 1)− Vi,t(Q)

] )

−
J∑

k=1

exp
(

µi,k,t|z + ϑ ln
[
Vi,t(1)− Vi,t(0)

] ))
. (2.42)

However, if a purchase occurs, the probability of selecting brand j becomes

Pr
(
Bi,t = j

∣∣∣Yi,t = 1, z
)

= Pr

(
ψi,j,t|z [ Vi,t(q̃)− Vi,t(0) ]

Pi,j,t q̃
>

ψi,k,t|z [ Vi,t(q̃)− Vi,t(0) ]

Pi,k,t q̃
, k 6= j

)

= Pr

(
ψi,j,t|z
Pi,j,t

>
ψi,k,t|z
Pi,k,t

, k 6= j

)

= Pr
(
µ̃i,j,t|z + εi,j,t > µ̃i,k,t|z + εi,k,t, k 6= j

)

=
exp(ϑµ̃i,j,t|z)∑J

k=1 exp(ϑµ̃i,k,t|z)

=
exp(µi,j,t|z)∑J

k=1 exp(µi,k,t|z)
, (2.43)
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and the conditional probability that q units are purchased becomes

Pr
(
Qi,t = q

∣∣∣Yi,t = 1, Bi,t = j, z
)

= Pr

(
ψi,j,t|z [ Vi,t(q)− Vi,t(q − 1) ]

Pi,j,t

> 1,
ψi,j,t|z [ Vi,t(q + 1)− Vi,t(q) ]

Pi,j,t

< 1

∣∣∣∣
ψi,j,t|z [ Vi,t(1)− Vi,t(0) ]

Pi,j,t

> 1,
ψi,j,t|z [ Vi,t(Q + 1)− Vi,t(Q) ]

Pi,j,t

< 1

)

= Pr
(
−

(
µ̃i,j,t|z + ln

[
Vi,t(q)− Vi,t(q − 1)

] )
< εi,j,t < −

(
µ̃i,j,t|z + ln

[
Vi,t(q + 1)− Vi,t(q)

] )
∣∣∣−

(
µ̃i,j,t|z + ln

[
Vi,t(1)− Vi,t(0)

] )
< εi,j,t < −

(
µ̃i,j,t|z + ln

[
Vi,t(Q + 1)− Vi,t(Q)

] ))

=
Pr

(−(
µ̃i,j,t|z + ln

[
Vi,t(q)− Vi,t(q − 1)

] )
< εi,j,t < −(

µ̃i,j,t|z + ln
[
Vi,t(q + 1)− Vi,t(q)

] ))

Pr
(−(

µ̃i,j,t|z + ln
[
Vi,t(1)− Vi,t(0)

] )
< εi,j,t < −(

µ̃i,j,t|z + ln
[
Vi,t(Q + 1)− Vi,t(Q)

] ))

=

(
exp

(− exp
(
µi,j,t|z + ϑ ln

[
Vi,t(q + 1)− Vi,t(q)

] ))

− exp
(− exp

(
µi,j,t|z + ϑ ln

[
Vi,t(q)− Vi,t(q − 1)

] )))
/

(
exp

(− exp
(
µi,j,t|z + ϑ ln

[
Vi,t(Q + 1)− Vi,t(Q)

] ))

− exp
(− exp

(
µi,j,t|z + ϑ ln

[
Vi,t(1)− Vi,t(0)

] )))
. (2.44)





Chapter 3

A reference price model for brand
choice

3.1 Introduction and motivation

The literature provides ample evidence that households do not only consider current prices

when deciding which brand to buy in a category, but also take into account past prices via

the formation of internal reference points, see Krishnamurthi et al. (1992), Putler (1992),

Kalyanaram and Little (1994), among many others. A conceptual basis for such reference

price formation is provided by the Adaptation-Level Theory of Helson (1964). Kalyanaram

and Winer (1995) translate the cumulative evidence into an empirical generalization.

The idea behind reference price effects is as follows. If the price of a brand is below

its reference price, the observed price is lower than anticipated, resulting in a perceived

gain. This would make the brand more attractive. Similarly, the opposite situation

would result in a perceived loss, reducing the probability that the brand is purchased.

An important consequence of internal reference price formation is that although frequent

price discounts may be beneficial in the short-run, they may damage the brand in the

long-run when households get used to these discounts and reference prices drop. The

reduced price become anticipated and loses its effectiveness, whereas the non-promoted

price becomes unanticipated and would be perceived as a loss.

As the existence of internal reference prices would imply a tradeoff between current and

future brand sales, it is important to have a good understanding of how reference prices

are formed from past price experience. This includes questions such as (i) what is the

size of the reference effect?, (ii) what is the duration of the reference effect?, and (iii) how

often are households able to construct a reference price? Still, current brand choice models

dealing with reference price effects do not pay much attention to the operationalization

of the reference price construct.

In this chapter, we focus on internal reference prices, which are constructed from past

prices, and we do not consider external reference prices, based on the in-store prices during

the purchase occasion. The two most popular specifications for internal reference price
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are the price observed at the previous purchase occasion and an exponentially smoothed

average of previously observed prices. Examples of the former reference price include

Krishnamurthi et al. (1992), Mayhew and Winer (1992) and Chang et al. (1999), whereas

examples of the latter specification include Lattin and Bucklin (1989), Kalyanaram and

Little (1994) and Erdem et al. (2001). By assuming that the reference price of a brand

equals its previous price, a reference effect of only one period is imposed, while multi-

period dynamics may be more appropriate. An argument which is often made in favor of

one-period dynamics is that the literature consistently shows that households have a very

limited ability to recall prices, see, for example, the price knowledge surveys by Dickson

and Sawyer (1990) and Vanhuele and Drèze (2002). However, this argument would imply

that households might not even be able to recall the previously observed price. On the

other hand, the exponentially-smoothed-average measure for reference price often results

in extremely long price dynamics. For example, Briesch et al. (1997) conclude for several

product categories that the lag in the formation of reference price is about six periods.

Two limitations of current reference price specifications are that (i) the dynamics

underlying the reference price are determined a priori (possibly up to a tuning parameter),

and (ii) it is implicitly assumed that households always have sufficient price knowledge

to form a reference price. Both might result in underestimation of the size of the actual

reference effect. Briesch et al. (1997) note that a misspecified reference price model can

obscure the reference effect even when it may actually exist. Similarly, by not accounting

for the possibility that households forget past prices, one might confound households not

forming a reference price with households not reacting to it, resulting in lower response

estimates. A third limitation of current practice is that the assumed processes usually do

not account for uncertainty in reference price formation. However, as reference prices are

not observed, their existence cannot be inferred without error.

In this chapter, we propose a new reference price model, which (i) does not a priori

impose a rigid dynamic price structure, (ii) accounts for uncertainty in reference price

formation, (iii) allows that a household may forget past prices, and (iv) even allows that

a household cannot construct a reference price at all. Hence, the model is an attempt to

bridge the gap between survey studies, such as Dickson and Sawyer (1990) and Vanhuele

and Drèze (2002) which report that households have very limited price knowledge and

hence may not be able to construct a reference price, and current reference price models

which do not account for this. In the proposed framework, price recall of households is

modeled as a hidden Markov-switching process with an absorbing state, and a reference

price is constructed from the prices the household is able to recall. Our model can be used

to get insight into the extent to which past price information is used in individual brand

choice decisions, that is, it can address the question “which past prices do consumers use

in forming a reference price, and how many are used?”, raised by Kalyanaram and Winer

(1995).

The structure of this chapter is as follows. In Section 3.2, we put forward our model.

Next, in Section 3.3, we discuss parameter estimation, and in Section 3.4, we explain how
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the estimation results can be used to analyze the dynamic structure underlying reference

price formation and to analyze the extent to which internal reference prices are formed.

We apply our model to an A.C. Nielsen scanner panel data set on catsup purchases in

Section 3.5. Finally, in Section 3.6, we conclude with a discussion of the implications of

our model, and we provide some directions for further research.

3.2 The model

In this section, we develop our reference price model and we show how it can be incorpo-

rated in a scanner panel data model for brand choice.

3.2.1 Reference price

We allow that households may forget prices observed in the past, as suggested by several

price knowledge surveys in the literature. To this end, we introduce the unobserved 0/1

price recall variable Sτ
i,t such that

Sτ
i,t =

{
1 if at time t household i remembers the prices encountered at time τ ≤ t

0 otherwise,

where the time indices t and τ correspond to purchase occasions. As Sτ
i,t does not contain

a brand-index, price recall is the same across brands. Hence, a household is either able to

recall the prices of all brands or cannot recall any brand price. To keep implementation

of the model feasible, we impose that Sτ
i,t = 0 if t − τ > L, that is, we assume that

households always forget prices which were observed more than L purchase occasions

ago. The value of L has to be chosen by the researcher. As it does not affect the

number of parameters in the model, a possible selection strategy would be to set L ∈
{1, 2, . . .} such that it gives the highest maximum likelihood value. The price knowledge

of household i at purchase occasion t can be summarized in one composite price recall

variable S̃i,t = (St−L
i,t , . . . , St−2

i,t , St−1
i,t ), indicating which of the past L prices are recalled at

purchase occasion t.

The second step in the development of our model concerns the description of how price

recall of households evolves over time. We assume that, starting from purchase occasion

τ when prices were observed, the subsequent price recall variables {Sτ
i,t}t=τ,τ+1,...,τ+L obey

a first-order Markov process with states 0 and 1. Hence, the probability that prices are

recalled at the current purchase occasion depends on whether these prices were still in

memory at the previous purchase occasion. Moreover, as it is plausible that prices are

never recalled again once they have been forgotten, we let the “forgetting state” 0 be an
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absorbing state. The Markov transition probabilities are given by

Pr(Sτ
i,t = 0|Sτ

i,t−1 = 0) = 1, (3.1)

Pr(Sτ
i,t = 1|Sτ

i,t−1 = 0) = 0, (3.2)

Pr(Sτ
i,t = 0|Sτ

i,t−1 = 1) = 1− pτ
i,t, (3.3)

Pr(Sτ
i,t = 1|Sτ

i,t−1 = 1) = pτ
i,t. (3.4)

The process is initialized by setting Sτ
i,τ = 1, meaning that households are aware of the

prices of brands at the moment of purchase. The memory processes defined by (3.1)−(3.4)

are independent across households i as well as independent across purchase occasions τ

during which prices were observed.

We define the transition probability pτ
i,t as

pτ
i,t =

1

1 + exp(− [ γ0 + γ1(t− τ) ] )
. (3.5)

This conditional probability of price recall depends on the number of purchase occasions

t − τ which have passed since the prices were observed at purchase occasion τ . The

unconditional probability that the prices at purchase occasion τ are still remembered at

purchase occasion t is given by

Pr(Sτ
i,t = 1) =

t∏
τ̃=τ+1

pτ
i,τ̃ =

t−τ∏
τ̃=1

1

1 + exp(− [ γ0 + γ1τ̃ ] )
, (3.6)

which is a decreasing function in t− τ . Figure 3.1 displays some price memory patterns

which can be reproduced by tuning the parameters γ0 and γ1 in (3.5). It shows a geomet-

rically decaying pattern, a 1-period full memory pattern which amounts to the previously

observed brand price being the reference price, a 2-periods full memory pattern, and a

pattern such that prices are sometimes recalled at the next purchase occasion after which

they are kept in memory forever. The graph illustrates that our model is able to mimic

a wide variety of possible memory structures. Finally, we note that it is straightforward

to extend (3.5) such that the conditional price recall probability pτ
i,t also depends on, for

example, the number of days elapsed since the previous purchase occasion t− 1 and the

degree of promotional activity at purchase occasion τ when the prices were observed.

In our model, a reference price is only based on the prices which a household is

able to recall, where price recall develops according to a first-order Markov process with

absorbing state. We define the reference price Ri,j,t of household i ∈ {1, . . . , N} for brand

j ∈ {1, . . . , J} at purchase occasion t ∈ {1, . . . , Ti} as

Ri,j,t =

{ Pt−1
τ=t−L Sτ

i,tPi,j,τPt−1
τ=t−L Sτ

i,t

if
∑t−1

τ=t−L Sτ
i,t > 0

Pi,j,t if
∑t−1

τ=t−L Sτ
i,t = 0.

(3.7)

Hence, this reference price equals the average of the prices which are recalled provided that

at least one price observed in the past is still available in memory. However, it might also
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Figure 3.1: Illustration of some price memory patterns which can be reproduced by our
model. The unconditional probability of price recall is plotted against the number of
purchase occasions which have passed since the prices were observed.

happen that a household has forgotten all past prices. In such a case, the household does

not have enough price information to form an internal reference price, and it perceives

neither a price gain nor a loss. This is captured by the condition Pi,j,t − Ri,j,t = 0 in

case
∑t−1

τ=t−L Sτ
i,t = 0. The proposed reference price is an unweighted average from the

perspective of the household, reflecting that households may have forgotten the order in

which the recalled prices were observed. From the perspective of the researcher, it is

however a weighted average. The weights are the unobserved 0/1 price recall variables

for which the probability distributions have to be inferred from the data. Note that the

weights differ across purchase occasions and households.

3.2.2 Brand choice

Our reference price can be incorporated in a standard model for brand choice. In this

chapter, we consider a conditional logit model which (i) allows for asymmetric response of

households to price gains and losses, and (ii) accounts for heterogeneity across households

via the latent segments approach of Kamakura and Russell (1989). By doing so, we follow

the mainstream literature on modeling brand choice and reference price effects, see, for

example, Bell and Lattin (2000).

Prospect Theory, developed by Kahneman and Tversky (1979), predicts that house-

holds react more negatively to price losses than they react positively to price gains of

equal size. Indeed, many reference price studies support this hypothesis, see Mayhew
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and Winer (1992), Putler (1992), Kalyanaram and Little (1994) and Erdem et al. (2001),

among others. Kalyanaram and Winer (1995) propose this gain-loss asymmetry as an

empirical generalization. However, the literature also contains some studies which report

either a lack of significance or even an opposite effect. Such examples include Briesch

et al. (1997), Chang et al. (1999) and Bell and Lattin (2000). Besides allowing for sep-

arate response parameters for price gains and losses, it is also important to account for

household heterogeneity. Several studies show that ignoring heterogeneity might result in

biased response estimates, see, for example, Chintagunta et al. (1991), Jain et al. (1994)

and Chang et al. (1999).

We assume that household i with unobserved memory state s̃i,t = (st−L
i,t , . . . , st−2

i,t ,

st−1
i,t ), belonging to the unobserved response segment z ∈ {1, . . . , Z}, perceives utility

Ui,j,t|z,s̃i,t
= αj|z + β1|zBLi,j,t + β2|zPMi,j,t + β3|zPi,j,t + β4|zGi,j,t|z,s̃i,t

+ β5|zLi,j,t|z,s̃i,t
+ εi,j,t

≡ Ũi,j,t|z,s̃i,t
+ εi,j,t (3.8)

from purchasing brand j at purchase occasion t, where the random disturbance εi,j,t is

assumed to be independently and identically distributed obeying a Type-I Extreme Value

distribution. In (3.8), αj|z captures the intrinsic brand preferences of the household, BLi,j,t

is the brand loyalty measure of Guadagni and Little (1983), PMi,j,t is a 0/1 promotion

indicator (feature or display), Pi,j,t is the shelf price, Gi,j,t|z,s̃i,t
is the price gain relative to

the reference price, and Li,j,t|z,s̃i,t
is the price loss. The gain and loss variables are defined

as

Gi,j,t|z,s̃i,t
= I{Pi,j,t < Ri,j,t|z,s̃i,t

}(Ri,j,t|z,s̃i,t
− Pi,j,t), (3.9)

Li,j,t|z,s̃i,t
= I{Pi,j,t > Ri,j,t|z,s̃i,t

}(Pi,j,t −Ri,j,t|z,s̃i,t
), (3.10)

where I{·} is the 0/1 indicator function. We note that the reference price Ri,j,t|z,s̃i,t
is

conditional on both the price recall state s̃i,t and segment membership z, as we allow the

price recall parameters γ0 and γ1 in (3.5) to be different across the latent segments.

As suggested by the mental accounting framework of Thaler (1985), total utility

Ui,j,t|z,s̃i,t
derived from purchasing brand j consists of two components, that is, acquisition

utility and transaction utility. The acquisition component corresponds to the “monetary

value” of the deal. It is related to the discrepancy between the value of the brand for the

household and the brand price. Additionally, the transaction component corresponds to

the “psychological value” of the deal, which is determined by the discrepancy between the

brand price and the corresponding reference price. In (3.8), transaction utility is captured

by the price gain and price loss components. Brand choice models which do not consider

reference effects, such as the model of Guadagni and Little (1983), assume acquisition

utility but do not account for transaction utility. In his seminal paper on reference price

modeling, Winer (1986) refers to the discrepancy between the observed price and the

reference price as a sticker shock effect.
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It immediately follows from the distributional assumptions on εi,j,t that brand j is

chosen, providing maximum utility, with probability

Pr(Bi,t = j|Zi = z, S̃i,t = s̃i,t) =
exp(Ũi,j,t|z,s̃i,t

)∑J
k=1 exp(Ũi,k,t|z,s̃i,t

)
, (3.11)

where Zi describes the unobserved segment membership variable for household i, see

McFadden (1974).

3.3 Parameter estimation

In this section, we discuss how the parameters of our model can be estimated. Parameter

estimation is not straightforward, as the model contains two kinds of unobserved variables,

that is, segment membership and the price recall states. The price recall variables obey a

first-order Markov process, and hence are not independent. We use the EM algorithm of

Dempster et al. (1977) to deal with the unobserved response segments, see McLachlan and

Krishnan (1997) for a textbook discussion. Mixture models, such as our model, provide

a natural application area for this algorithm, see Wedel et al. (1993), Ramaswamy et al.

(1994) and Böckenholt (1999), among others. Within the EM algorithm, we apply an

iterative filter, put forward in Hamilton (1989) and also described in Hamilton (1994,

p. 692−693), to sum out the unobserved price memory states s̃i,t.

Using the shorthand notation Bi,1:t̃ to denote the sequence of brand choices Bi,1,

Bi,2, . . . , Bi,t̃, the (unconditional) likelihood function is given by

L =
N∏

i=1

Pr(Bi,1:Ti
= bi,1:Ti

)

=
N∏

i=1

Z∑
z=1

πz Pr(Bi,1:Ti
= bi,1:Ti

|Zi = z), (3.12)

where bi,1:Ti
corresponds to realized brand choice and πz = Pr(Zi = z) is the size of

segment z.

3.3.1 Applying the Hamilton filter

To evaluate the likelihood function (3.12), one needs to compute

Pr(Bi,1:Ti
= bi,1:Ti

|Zi = z)

=
∑
s̃i,1

· · ·
∑
s̃i,Ti

Pr(Bi,1:Ti
= bi,1:Ti

, S̃i,1 = s̃i,1, . . . , S̃i,Ti
= s̃i,Ti

|Zi = z), (3.13)

which involves 2LTi summations to get rid of all unobserved memory states. We note that

the Markov property of S̃i,1, . . . , S̃i,Ti
implies that all possible price recall paths have to be
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considered. For example, even if price recall is restricted to L = 4 periods and household i

has only made Ti = 6 purchases in the category, (3.13) would already consist of more than

16 million components. Fortunately, the Hamilton (1989) filter turns out to be a very

useful tool to evaluate this objective function, as it avoids such infeasible summations.

Hamilton (1989) originally developed his nonlinear filter to make inference on changes

in economic regimes using time series. He applied the filter to establish the dates of

historical business cycles, assuming that the underlying recession-expansion regimes follow

a first-order Markov process. Econometric models with latent Markov-switching processes

were first introduced by Goldfeld and Quandt (1973), and our reference price framework

can be considered a member of this class of models as well.

In our application of the Hamilton filter, the unobserved components are the composite

price recall variables S̃i,t, t = 1, . . . , Ti, for which the transition probabilities still have to

be derived. It follows from the independence assumptions made in Subsection 3.2.1 and

the assumption of complete price information at the moment of purchase that

Pr
(
S̃i,t = s̃i,t

∣∣∣S̃i,t−1 = s̃i,t−1

)

=
t−1∏

τ=t−L

Pr(Sτ
i,t = sτ

i,t|Sτ
i,t−1 = sτ

i,t−1) with St−1
i,t−1 = 1, (3.14)

where the transition probabilities Pr(Sτ
i,t = sτ

i,t|Sτ
i,t−1 = sτ

i,t−1) are defined by (3.1)−(3.5).

We initialize the process at the first purchase occasion t = 1 by setting

Pr
(
S̃i,1 = s̃i,1

)
=

0∏
τ=1−L

Pr
(
Sτ

i,1 = sτ
i,1

)
, (3.15)

where, analogous to (3.6),

Pr(Sτ
i,1 = 1) =

1−τ∏
τ̃=1

1

1 + exp(− [ γ0 + γ1τ̃ ] )
. (3.16)

We note that, for notational convenience, we suppress the dependence on segment mem-

bership z.

The Hamilton filter allows for inference on the unobserved memory state s̃i,t of house-

hold i at purchase occasion t, while taking into account the household’s purchase history

bi,1:t up to purchase occasion t. As a by-product, it also provides an evaluation of the

brand choice probability Pr(Bi,t = bi,t|Bi,1:t−1 = bi,1:t−1) unconditional on s̃i,t, which has

been summed out. We note that current brand choice may depend on previous brand

choices via the brand loyalty variable BLi,j,t. By iteratively applying the filter, one can

obtain the unconditional likelihood value for each household.

In the sequel, we use the shorthand notation ξi,t|t̃ = Pr(S̃i,t = s̃i,t|Bi,1:t̃ = bi,1:t̃) to

denote the (2L× 1) vector containing the probabilities of all possible states s̃i,t, given the

household’s observed purchase history bi,1:t̃. Basically, an iteration of the Hamilton filter
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can be split up into two steps. Starting from ξi,t|t−1, the first step consists of updating

ξi,t|t−1 to ξi,t|t, that is, updating the inference on s̃i,t by including the information contained

in the most recent purchase observation bi,t. It immediately follows from Bayes’ theorem

that

ξi,t|t =
ξi,t|t−1 ¯ Pr(Bi,t = bi,t|S̃i,t = s̃i,t, Bi,1:t−1 = bi,1:t−1)

ι′ [ ξi,t|t−1 ¯ Pr(Bi,t = bi,t|S̃i,t = s̃i,t, Bi,1:t−1 = bi,1:t−1) ]
, (3.17)

where ι is the (2L × 1) vector consisting of ones, and ¯ denotes element-by-element

multiplication. We note that the vector of probabilities Pr(Bi,t = bi,t|S̃i,t = s̃i,t, Bi,1:t−1 =

bi,1:t−1) is conditional on the memory states s̃i,t, so that it can be evaluated immediately

using (3.7)−(3.11). Furthermore, it is crucial to note that the denominator in (3.17)

amounts to the unconditional probability Pr(Bi,t = bi,t|Bi,1:t−1 = bi,1:t−1). This is the

by-product, which allows us to evaluate (3.13). In the second step of the iteration, ξi,t|t
is updated to ξi,t+1|t, that is, the next memory state s̃i,t+1 is inferred given the currently

available purchase observations bi,1:t. As price recall obeys a first-order Markov process,

the basic Markov identity

ξi,t+1|t = Λi,t+1|t
′ξi,t|t (3.18)

holds. Here, Λi,t+1|t is the row-conditional (2L × 2L) transition probability matrix for

S̃i,t. The elements Pr(S̃i,t+1 = s̃i,t+1|S̃i,t = s̃i,t) of Λi,t+1|t are defined by (3.14) and hence

(3.1)−(3.5). The output ξi,t+1|t of (3.18) can be used as the input for (3.17) in the next

iteration. This iterative procedure is initialized by setting ξi,1|0 = Pr(S̃i,1 = s̃i,1) in

accordance with (3.15) and (3.16).

In sum, the following algorithm results in an evaluation of the unconditional proba-

bility that the sequence of brand choices bi,1:Ti
is observed for household i, that is,

Initialize the unconditional probability: Pri = 1.

Initialize ξi,1|0 using (3.15) and (3.16).

Do for purchase occasion t = 1, . . . , Ti:

Compute Pr(Bi,t = bi,t|S̃i,t = s̃i,t, Bi,1:t−1 = bi,1:t−1) using (3.7)−(3.11).

Compute ξi,t|t using (3.17).

Update the unconditional probability: Pri = Pri · [ denominator of (3.17) ] .

Compute row-conditional Λi,t+1|t using (3.14) and hence (3.1)−(3.5).

Compute ξi,t+1|t using (3.18).

Return Pri .
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3.3.2 Applying the EM algorithm

To obtain the parameter estimates for our model we maximize the likelihood function

(3.12), which can be evaluated for given parameter values using the Hamilton filter. Al-

though numerical techniques such as the BFGS algorithm can be applied directly to find

the optimal parameter values, we consider the EM algorithm to take advantage of the spe-

cific structure of the problem. The EM algorithm quickly moves to reasonable (but not

yet optimal) parameter values and it is quite robust with respect to the starting values,

see, for example, Hamilton (1990). As final convergence of the algorithm is usually slow,

one can decide to first apply the EM algorithm until the steps in the parameter space

become rather small, and next one can do direct optimization of (3.12) starting from the

parameter location obtained from the EM stage.

The EM algorithm considers the complete data likelihood of our model, that is, the

joint likelihood of both observed brand choices and unobserved segment membership.

The complete data likelihood is given by

Lc =
N∏

i=1

Z∏
z=1

(
πz Pr(Bi,1:Ti

= bi,1:Ti
|Zi = z)

)I{Zi=z}
. (3.19)

After taking logarithms we obtain

lnLc =
N∑

i=1

Z∑
z=1

I{Zi = z} ln(πz)+
N∑

i=1

Z∑
z=1

I{Zi = z} ln(Pr(Bi,1:Ti
= bi,1:Ti

|Zi = z)). (3.20)

The EM algorithm contains an Expectation step and a Maximization step, which are

performed iteratively. In the E-step, the expectation of the log complete data likelihood

(3.20) is taken with respect to the unobserved segment membership variables Zi, i =

1, . . . , N , given the household’s observed purchase history bi,1:Ti
, i = 1, . . . , N , and given

the current parameter values. This results in

E[ lnLc ] =
N∑

i=1

Z∑
z=1

Πi,z ln(πz) +
N∑

i=1

Z∑
z=1

Πi,z ln(Pr(Bi,1:Ti
= bi,1:Ti

|Zi = z)), (3.21)

where, using Bayes’ theorem,

Πi,z ≡ Pr(Zi = z|Bi,1:Ti
= bi,1:Ti

) =
πz Pr(Bi,1:Ti

= bi,1:Ti
|Zi = z)∑Z

z̃=1 πz̃ Pr(Bi,1:Ti
= bi,1:Ti

|Zi = z̃)
. (3.22)

Next, in the M-step, (3.21) is maximized over all segment sizes π = (π1, . . . , πZ) and all

model parameters denoted by θ = (θ1, . . . , θZ), given the posterior segment probabilities

Πi,z computed in the E-step. This amounts to Z + 1 separate subproblems, that is,

max
π

N∑
i=1

Z∑
z=1

Πi,z ln(πz), (3.23)

max
θz

N∑
i=1

Πi,z ln(Pr(Bi,1:Ti
= bi,1:Ti

|Zi = z)), z = 1, . . . , Z. (3.24)
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The resulting parameter updates can again be used as input for the E-step, see (3.22), after

which a new iteration starts. It can be shown that subproblem (3.23) has a closed-form

solution, which is given by

πz =
1

N

N∑
i=1

Πi,z, z = 1, . . . , Z. (3.25)

In sum, an iteration of the EM algorithm consists of the follows steps, that is,

Compute the posterior segment probabilities Πi,z using (3.22).

Update the segment sizes π = (π1, . . . , πZ) using (3.25).

Update the model parameters θ = (θ1, . . . , θZ) by solving (3.24).

This iterative procedure converges and the resulting parameter values correspond to the

maximum likelihood [ML] estimates of (3.12), see Dempster et al. (1977). In the first

iteration, we initialize the EM algorithm by randomizing the Πi,z under the restriction

that
∑

z Πi,z = 1. By considering multiple runs, this is an effective and easily implemented

approach to try out different starting points.

3.4 Interpretation

In this section, we discuss how the estimation results for our model can be used to analyze

(i) the dynamic structure underlying reference price formation, and to analyze (ii) the

extent to which households are able to form an internal reference price.

Ideally, for given segment membership z, inference on the unobserved memory state

s̃i,t should be based on all available information bi,1:Ti
in the data set. This would give the

most reliable results. However, the Hamilton filter described in the previous section only

allows for inference on s̃i,t using the information bi,1:t available up to purchase occasion

t ≤ Ti. So, again using the notation ξ z
i,t|t̃ = Pr(S̃i,t = s̃i,t|Bi,1:t̃ = bi,1:t̃, Zi = z) but

now with explicit segment membership index z, we can only estimate ξ z
i,t|t, while we are

actually more interested in ξ z
i,t|Ti

. Fortunately, the smoothing algorithm of Kim (1994),

also described in Hamilton (1994, p. 694), allows us to compute ξ z
i,t|Ti

from ξ z
i,t|t. This

algorithm is characterized by the recursion

ξ z
i,t|Ti

= ξ z
i,t|t ¯ [ Λ z

i,t+1|t( ξ z
i,t+1|Ti

® ξ z
i,t+1|t ) ] , (3.26)

where ® denotes element-by-element division. Using that ξ z
i,Ti|Ti

is already available from

the Hamilton filter and starting from t = Ti− 1, the recursion (3.26) is iterated backward

to obtain all ξ z
i,t|Ti

, t = 1, . . . , Ti.

Finally, one can obtain the posterior distribution of S̃i,t = (St−L
i,t , . . . , St−2

i,t , St−1
i,t )

unconditional on segment membership z by weighting the segment-conditional ξ z
i,t|Ti

,
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z = 1, . . . , Z, with the corresponding posterior segment membership probabilities Πi,z,

z = 1, . . . , Z. This amounts to computing

Pr(S̃i,t = s̃i,t|Bi,1:Ti
= bi,1:Ti

) =
Z∑

z=1

Πi,z ξ z
i,t|Ti

, (3.27)

where Πi,z is defined by (3.22).

To increase the interpretability of (3.27), one can derive the probability that household

i is still able to recall at purchase occasion t the prices observed at purchase occasion τ

as

Pr(Sτ
i,t = 1|Bi,1:Ti

= bi,1:Ti
) =

∑
s̃i,t:sτ

i,t=1

Pr(S̃i,t = s̃i,t|Bi,1:Ti
= bi,1:Ti

), (3.28)

and one can compute the probability that household i has enough price information to

form an internal reference price at purchase occasion t as

Pr(
t−1∑

τ=t−L

Sτ
i,t > 0|Bi,1:Ti

= bi,1:Ti
) = 1− Pr(S̃i,t = (0, . . . , 0, 0)|Bi,1:Ti

= bi,1:Ti
). (3.29)

We emphasize that (3.28) and (3.29) take into account all information contained in the

household’s purchase history.

3.5 Empirical analysis

In this section, we apply our reference price model to an A.C. Nielsen scanner panel data

set on catsup purchases in the Sioux Falls SD market. The considered period consists of

114 weeks from June 1986 to August 1988. The first 57 weeks are used for initialization

purposes and are discarded in the log-likelihood evaluation, while the remaining 57 weeks

are used for either parameter estimation or out-of-sample model validation. Only house-

holds which made at least three purchases in both periods are considered in the analysis.

The estimation sample contains 80% of these households. The remaining 20% is assigned

to a hold-out sample. The total sample consists of 619 households who made together

9416 purchases in the catsup category. The brands in our data set are Heinz, Hunts, Del

Monte and Private Label.

3.5.1 Parameter estimates

We consider two variants of our model, that is, the model without unobserved hetero-

geneity and the model with an unknown number of latent response segments to capture

unobserved heterogeneity. For the latter variant, we use the AIC-3 criterion, proposed by

Bozdogan (1994), to determine the optimal number of segments. This measure is defined

as −2 lnL + 3K with L being the maximum likelihood value and K being the number

of parameters to be estimated. The model corresponding to the smallest AIC-3 value is
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Table 3.1: Parameter estimates for our model. The estimated standard errors are given
in parentheses.

no heterogeneity 2-segments model

averaged segment 1 segment 2

β1 (brand loyalty) 0.232∗∗∗ 0.200∗∗∗ 0.299∗∗∗ 0.120∗∗∗

(0.010) (0.013) (0.037) (0.040)

β2 (promotion) 0.456∗∗∗ 0.469∗∗∗ 0.372∗∗∗ 0.548∗∗∗

(0.034) (0.037) (0.076) (0.093)

β3 (price) −1.130∗∗∗ −1.077∗ −0.777 −1.321

(0.421) (0.654) (1.375) (0.893)

β4 (price gain) 0.949∗∗∗ 0.913∗∗∗ 0.203 1.494∗∗∗

(0.255) (0.330) (0.277) (0.578)

β5 (price loss) −1.092∗∗∗ −1.010∗∗∗ −1.001 −1.017∗∗∗

(0.187) (0.275) (0.612) (0.322)

γ0 (intercept) −2.105∗∗∗ −2.007∗∗∗ −2.142 −1.897∗

(0.509) (0.696) (1.971) (1.006)

γ1 (t− τ) 0.653∗ 0.686 0.688 0.684

(0.347) (0.634) (1.816) (0.687)

segment size 0.449 0.551

* significant at 10%.
** significant at 5%.
*** significant at 1%.

selected. The AIC-3 criterion suggests more parsimonious models than the standard AIC

criterion, but if the number of observations exceeds 20 it is less parsimonious than BIC,

the other popular measure in the literature. An extensive simulation study by Andrews

and Currim (2003) indicates that AIC-3, applied to multinomial choice data, performs

better than several other criteria including AIC and BIC. For our model, after setting

L = 4 (this lag in price recall gives the highest maximum likelihood value), we find two

response segments in the data set. Our parameter estimates are reported in Table 3.1. For

the two-segments model, we show both the segment-specific parameters and the segment-
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averaged parameters for which the standard errors have been obtained using the delta

method.1

For both the model without unobserved heterogeneity and the two-segments model, all

response parameters have the expected sign. Furthermore, all parameters are significant

at the 1% level in the first model, whereas in the second model this holds for all parameters

except the price parameter. However, the parameter estimates do not indicate a strong

response asymmetry concerning price gains and price losses. In the two-segments model,

the first segment contains about 45% of the households and the second segment contains

the remaining 55%. Comparison of the segment-specific parameter estimates suggests

that households in segment 2 react stronger to promotional activities of brands, while

households in segment 1 are more driven by state dependence, which is represented by

the brand loyalty variable. For both variants of our model, the estimates of the price

recall parameters γ0 and γ1 in (3.5) indicate that price memory is very limited, as γ0 + γ1

is much smaller than zero, and hence even price recall related to the previous purchase

occasion is already far below 50%.

3.5.2 Impact of purchase timing and promotion on price recall

To see whether interpurchase times and (non-price) promotional activity affect price recall,

we also estimate our model after including these variables in the price recall probability

(3.5). Here, we define promotional activity as the average promotion rate in the category

at purchase occasion τ when the prices were observed. Hence, promotional activity is

measured as 1
J

∑J
k=1 PMi,k,τ . We note that it is conceptually straightforward to include

such time-varying variables in the memory process, but a practical drawback is that

the transition probability matrix Λi,t+1|t has to be computed for each purchase occasion

to evaluate the likelihood function (3.12). This makes parameter estimation very time-

consuming. In contrast, for the original model in which (3.5) just depends on t−τ , Λi,t+1|t
only needs the be evaluated once (for each response segment) per likelihood evaluation.

It turns out that interpurchase time does not have a significant impact on price recall.

For the model without unobserved heterogeneity, the z-score is −0.668. For the two-

segments model, the z-score becomes 0.019. This lack of significance is consistent with the

price knowledge study by Vanhuele and Drèze (2002), which reports that purchase recency

does not affect price knowledge. On the other hand, the effect of promotional activity

on price recall is positive and significant at the 1% level for both models, with z-scores

of 3.011 and 2.699, respectively. So, promotional activities such as features and displays

1The segment-averaged parameter values should not be interpreted as the parameter values for “the
average household”, as any household belongs to exactly one of the unobserved segments and hence cannot
have preferences and response parameters corresponding to a convex combination. For an appropriate
meaning, we have to reformulate our model as a random effects model in which the parameters for each
household are drawn from a continuous heterogeneity distribution. In a mixture model, the heterogeneity
distribution is represented by a discrete distribution. This subtle difference is pointed out by Jain et al.
(1994). However, as the difference is only conceptual and not methodological, we continue to interpret
the segment-averaged parameter values as aggregate estimates.
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Table 3.2: Empirical comparison of our model and three competing models. From left
to right, we report the in-sample log-likelihood value without accounting for unobserved
heterogeneity, the number of segments identified by the AIC-3 criterion, the corresponding
number of parameters, the in-sample log-likelihood, the AIC-3 values, and the out-of-
sample log-likelihood.

LL no het. # seg. # par. LL in AIC-3 LL outa

our reference price −2992.3 2 23 −2961.0 5991.0 −716.2

exp. weighted average −3009.6 3 32 −2951.5 5999.0 −725.8

previous price −3011.8 3 29 −2952.7 5992.3 −718.7

no reference price −3019.0 3 23 −2973.1 6015.2 −722.4

a: The LL-out values for the final three models with two segments are −726.4,
−723.1, and −723.7, respectively.

substantially increase the probability that corresponding prices are kept in memory, and

hence affect both current and future brand choices. This result is, in a sense, consistent

with the study by Lattin and Bucklin (1989), which also demonstrates that promotional

activity has significant reference effects. Still, there is an important difference. We model

the reference effect of promotion on brand choice as an indirect effect via the reference

effect of price, whereas Lattin and Bucklin model the reference effect of promotion as an

effect in itself. However, it is not clear why such promotional activities, which only aim

at drawing the attention of households, should directly affect future brand choice utility.

3.5.3 Model performance

To see how well our model performs in-sample and out-of-sample, we compare it with

three popular alternatives in the literature. The competing models are a brand choice

model which does not account for any reference price effect, a model in which the reference

price of a brand is the price observed at the previous purchase occasion, and a model in

which the reference price is defined as an exponentially smoothed average of previously

observed prices.

Table 3.2 contains the results of the empirical comparison. The in-sample log-likelihood

values without unobserved heterogeneity show that our reference price is the most flexible

one. Interestingly, after accounting for heterogeneity, the AIC-3 criterion identifies three

segments for the three competing models, whereas it suggests only two segments for our

model. Hence, our model has one response segment less. This is probably due to its

richer dynamical structure, allowing for additional household heterogeneity to be picked

up. The AIC-3 value of our model is slightly lower than it is for the previous-price model,

but it is clearly lower than the AIC-3 values of the remaining two models. Our model also

has the highest out-of-sample log-likelihood, although the difference with the previous-
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Table 3.3: The top part shows the estimated response parameters of the price gain and
price loss variables. For the multi-segment models, these response parameters amount
to segment-weighted averages. The middle part reports the corresponding z-scores. The
bottom part contains the p-values of the LR test for the null hypothesis “no gain-loss
asymmetry”.

no heterogeneity multi-segment

gain loss gain loss

param. our reference price 0.949 −1.092 0.913 −1.010

exp. weighted average 0.045 −0.215 0.083 −0.269

previous price −0.050 −0.115 0.046 −0.111

z-score our reference price 3.722 −5.852 2.772 −3.674

exp. weighted average 0.646 −3.899 0.781 −2.238

previous price −1.008 −3.419 0.586 −2.631

p-value our reference price 0.642 0.740

exp. weighted average 0.013 0.000

previous price 0.003 0.000

price model is again quite small. The out-of-sample comparison would even become more

favorable if we set the number of response segments for all models equal to two, as in

our model. Overall, we conclude that our model has a good performance relative to three

popular alternative models.

3.5.4 Size and symmetry of the reference effect

The parameter estimates in Table 3.1 suggest that the effect of reference price on brand

choice is substantial, but without a clear asymmetry between price gains and losses. It

would however be interesting to consider these results in more detail, and to compare them

with the sticker shock effects resulting from the other two reference price specifications

that we have considered in the empirical comparison.

The top part of Table 3.3 shows the estimated price gain and price loss parameters for

the three models, and the middle part of the table provides the corresponding z-scores.

Clearly, both in an absolute sense and in terms of significance, the reference effect in our

model is largest. This is not surprising, as our reference price is the most flexible one, and

only our model is able to distinguish between households not forming a reference price and

households not reacting to it. Neglecting this distinction would result in a downward bias

of the estimated response to price gains and losses given that a reference price is available.

As the reference effect resulting from our new model is substantially larger than the size
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we would obtain from applying current practice, the impact of internal reference price

formation on brand choice might be even larger than is currently believed.

Finally, the bottom part of Table 3.3 shows the p-values of the Likelihood Ratio [LR]

test for the null hypothesis “no gain-loss asymmetry”, that is, β4 = −β5. These results are

interesting too. For our model the null hypothesis cannot be rejected at any reasonable

significance level, whereas it is strongly rejected at the 5% level for the other two models.

So, although applying current practice would result in finding an asymmetric sticker shock

effect, as predicted by Prospect Theory, this asymmetry seems to disappear when our more

advanced reference price model is considered.

3.5.5 Analyzing reference price formation

Our model can be used to get insight into (i) the probabilities that each of the past

prices is used for reference price formation, and (ii) the probability that households have

sufficient price knowledge to form an internal reference price. Current reference price

models in the literature do not allow for such inference from scanner panel data.

We discuss the results for our model with two response segments. Figure 3.2 contains

histograms revealing the extent to which households are still able to recall the prices which

were observed t− τ purchase occasions ago, where t− τ = 1, 2, 3, 4. These histograms are

obtained by computing (3.28) for all purchase occasions in the estimation sample. Figure

3.2 clearly demonstrates that price memory of households is very limited. For example,

even the recall probabilities for prices observed at the previous purchase occasion are

seldom larger than 50%. The average percentages of price recall are 21.0%, 7.3%, 3.7%

and 2.4%, for 1, 2, 3 and 4 purchase occasions ago.

Figure 3.3 shows an analogous histogram indicating to what extent households form

internal reference prices. This histogram is obtained by computing (3.29) for all purchase

occasions in the estimation sample. It can be seen that the probability of reference price

formation is usually smaller than 60%. The average probability is 31.1%. We note that

this low percentage is a direct consequence of the low price recall probabilities.

3.5.6 Price elasticity analysis

The existence of internal reference prices implies a tradeoff between current and future

brand sales. Related to this tradeoff, Greenleaf (1995) and Kopalle et al. (1996) develop

dynamic programming models to investigate the impact of reference effects on the prof-

itability of price promotions, and to obtain optimal pricing schemes. They define reference

prices at the market level. However, in our model for scanner panel data, we consider

reference prices at the household level and we can only analyze the impact on household

demand, and not the impact on profitability.

Our model suggests a strong and significant effect of reference price on brand choice,

but the managerially relevant implications for current and future brand sales are still

unclear. To get a better understanding of the effects of a price change, we perform a
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Figure 3.2: The probability that a household is able to recall the prices observed t − τ
purchase occasions ago, t − τ = 1, 2, 3, 4. The histograms are based on all purchase
occasions in the estimation sample.
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Figure 3.3: The probability that a household has enough price knowledge to form an
internal reference price. The histogram is based on all purchase occasions in the estimation
sample.
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Table 3.4: Estimated price elasticities indicating how current and future “sales” are af-
fected by a temporary own price change.

t t + 1 t + 2 t + 3 t + 4 “total”

our reference price

Heinz −4.45 1.84 0.59 0.28 0.17 −1.65

t Hunts −6.07 2.56 0.80 0.40 0.26 −1.86

Del Monte −8.54 4.49 1.47 0.74 0.39 −1.37

Rest −9.08 3.70 1.41 0.77 0.53 −2.67

exp. weighted average

Heinz −5.28 1.58 0.75 0.33 0.15 −2.55

t Hunts −7.45 2.17 1.02 0.50 0.26 −3.31

Del Monte −8.77 2.57 1.27 0.65 0.29 −3.92

Rest −8.33 1.19 0.69 0.42 0.26 −5.71

simulation study. We are not aware of studies in the literature which do something similar,

except for a study by Erdem et al. (2003) in which the effects of future price expectations

on household demand are considered. Households forming price expectations are forward-

looking, whereas households forming internal reference prices are backward-looking.

In the simulation study we investigate two scenarios. In the first situation the price

of the considered brand is temporarily adjusted by 1% at the current purchase occasion,

whereas in the second setting this price is kept at its original level. For both scenarios,

future prices are unchanged. Moreover, the prices of all other brands remain unaffected.

By comparing the current and future brand choice probabilities for the two settings, one

can obtain estimates of both the instantaneous sensitivity of own brand choice and the

lagged response via the reference price effect. For each purchase occasion in the estimation

sample which is followed by at least L = 4 future purchase occasions, we compute the

current brand choice probabilities and the brand choice probabilities for L = 4 periods

ahead. Proxies for current and future sales are obtained by adding the corresponding

probabilities over different purchase occasions. We repeat this procedure 1000 times, and

we add the “sales” values obtained from all runs. For each run, segment membership of

each household is drawn from its posterior distribution, and the price recall states are

drawn from the corresponding first-order Markov processes.

Table 3.4 reports the percent change in sales between the two scenarios, where we

distinguish between current sales and the sales levels up to L = 4 periods ahead. Fur-

thermore, the table shows the “total effect” of the temporary price change. This effect is

in percents too. It is computed as the ratio of the net change in sales over time and the

current sales level for the scenario without price adjustment. For comparison, Table 3.4
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also contains the results for the exponentially-smoothed-average reference price model.

We note that the previous-price model cannot capture dynamic effects lasting for more

than one period, while a brand choice model without any reference price component can

only capture instantaneous effects.

Table 3.4 illustrates that the impact of internal reference price formation on sales is

substantial, even though price recall of households is very limited. Although the instan-

taneous own price elasticities of all brands are located in between −10 and −4, the net

effects after L = 4 subsequent purchase occasions are rather close to zero, that is, all

net price elasticities are larger than −3. For all brands, the net effect of a price change

on current and future sales is less than 40% of its instantaneous effect. A comparison

with the results obtained for the exponentially-weighted-average reference price model

illustrates that the reference effect implied by our model is much stronger, in an absolute

sense as well as in a relative sense.

3.6 Conclusions

In this chapter, we have proposed a new reference price framework for brand choice. Price

recall of households is modeled as a hidden Markov-switching process with an absorbing

state, and an internal reference price is constructed from the prices the household is able to

recall. Features of our reference price model include that (i) it does not a priori impose a

rigid dynamic price structure, (ii) it accounts for uncertainty in reference price formation,

(iii) it allows that a household may forget past prices, and (iv) it even allows that a

household cannot construct a reference price at all. Our model can be used to analyze

how many prices observed in the past are considered for reference price formation, and

to what extent households have sufficient price knowledge to form an internal reference

price.

Applied to A.C. Nielsen scanner panel data on catsup purchases, our model has a

good performance relative to two popular reference price specifications. Our main find-

ings are as follows. First, a price supported by a feature/display has a higher probability

to be recalled than a price which is not supported by such promotional activity. Sec-

ond, contrary to the two competing reference price models, our model does not indicate

asymmetry between price gains and losses. However, our model suggests a stronger and

more significant reference price effect. This is an indication that the impact of internal

reference price formation on brand choice might be even larger than is currently believed.

Third, we find that the prices observed at the previous purchase occasion have an average

recall probability of about 20%. We estimate the average probability that a household

has sufficient price knowledge to form an internal reference price at about 30%. Fourth,

even though price recall is very limited, the impact of reference price formation on brand

choice is very substantial. For all brands in the data set, the net effect of a price discount

on current and future sales is less than 40% of its instantaneous effect.
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We conclude by mentioning some limitations of our framework and we provide some

suggestions for further research. A conceptual remark about our model is that we interpret

“recalling a price” as being equivalent to “using this price for reference price formation”.

We report price recall probabilities, but in fact we can only make inference on the prob-

abilities that past prices show up in the reference price. It might be possible that a

household is able to recall prices observed in the past, but still does not use this price

information to form a reference price. However, this is only a matter of interpretation. A

second issue is that households might have different degrees of price knowledge, see, for

example, Vanhuele and Drèze (2002) who distinguish between recallable price knowledge,

price recognition and deal spotting. Our model does not account for this. An interesting

suggestion for further research would be to allow for such limited price knowledge in a

reference price model for brand choice. Finally, we have focussed on internal reference

prices, constructed from past prices, and we have not allowed for an external reference

price, based on the in-store prices during the purchase occasion. However, several studies

indicate that both are important and can exist at the same time, see Mayhew and Winer

(1992), Rajendran and Tellis (1994) and Mazumdar and Papatla (2000).





Chapter 4

A Markov model for market shares

4.1 Introduction and motivation

In the previous two chapters, we have analyzed the effects of inventory-dependent con-

sumption and internal reference price formation on household demand. We have inferred

these effects from household scanner panel data. Such micro data provide detailed infor-

mation about purchase behavior of households and allow for analyses which cannot be

carried out using more aggregate data, typically store-level data containing the weekly

marketing-mix and sales levels in a category in a store. However, for household scanner

panel data there are some problems too. One of these is the availability, that is, scanner

panel data are relatively scarce, and it is often expensive (in terms of effort and money)

to acquire them. A second problem is the representativeness of such data, depending on

the size of the panel and on the way participating households have been selected. The

representativeness issue for household scanner panel data is addressed by Gupta et al.

(1996). Russell and Kamakura (1994) propose an integrated approach to take advantage

of both the information richness of micro data and the representativeness of aggregate

data. However, their approach does not avoid the availability of scanner panel data.

In this chapter, we turn our focus to weekly store-level data. A useful measure for

the performance of a brand relative to the other brands in a market is the weekly share

in category sales. To predict market shares and to link market shares with marketing

instruments like price and promotion, one often considers a regression type model. A

popular format for such a model is the market share attraction model which takes into

account that shares are positive and sum to unity, see Cooper and Nakanishi (1988) and

Cooper (1993) for detailed early treatments of the model and Fok et al. (2002) for a

recent review of its econometric properties. Such an attraction model delivers, among

other things, estimates of own and cross price elasticities, which in turn can be used

to draw inference on the competitive structure. With these elasticities, one can infer

what might happen to the own brand market share if the own price is lowered or when

competitors lower their prices.
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Market share models are useful to sketch competitive structures. However, there is

one thing these models cannot do, and that is, to help to understand which brands lose

share to which brands. To make this statement more precise, think about the following

situation. There are two brands, A and B, and we observe weekly sales of these brands.

Suppose for the moment that the same number of households visits the store in each

week. If the price of, say, A is lowered in a certain week, we might observe more sales

of A and less of B. This information might be useful to see if lower prices generate more

sales, but it is insufficient to understand whether the change in sales of A can be fully

attributed to households changing from B to A, or whether some buyers of A have also

switched to B. Hence, the question where the new sales come from cannot be addressed

by simply looking at weekly sales or shares data. Nonetheless, it is a managerially very

relevant question.

In this chapter, we therefore develop a method to infer share-switching from store-level

scanner data. Share-switching is related to aggregate market shares in a similar fashion

as brand-switching is related to individual brand choice behavior. Our model can be used

to get a better understanding of the competitive structure. For example, consider again

two brands A and B. It might happen that the cross price elasticities suggest that A

and B are not strong price competitors, while still much switching occurs between these

two brands. In that case, competition between A and B might be due to low customer

loyalty for both brands. An explanation for such competition is that households behave

as variety-seekers, that is, households might derive utility from brand-switching itself,

besides the utility resulting from the selected brand. In such a case, increasing customer

loyalty should be more important than pricing strategies. McAlister and Pessemier (1982)

provide a classification scheme of the variety-seeking literature.

A second contribution of our model is that it allows for a decomposition of own and

cross price elasticities. For example, a decrease of the own price is likely to result in an

increase of the own market share. This increased market share is a result of (i) retaining

more of the own share (less switching away from the own brand) and (ii) gaining additional

share from the other brands (more switching towards the own brand). The decomposition

from our model makes it possible to quantify these partial effects. This is an additional

insight which cannot be obtained from market share attraction models.

The structure of this chapter is as follows. In Section 4.2, we outline in a little more

detail the situation, which was already briefly touched upon above, concerning weekly

sales of brands and week-to-week share-switching. Next, in Section 4.3, we put forward

our model, and in Section 4.4, we explain how the model can be used to get insight into

the competitive structure. Parameter estimation is discussed in Section 4.5. In Section

4.6, we apply our method to four store-level data sets concerning two product categories.

Finally, we conclude in Section 4.7 with a discussion of the implications of our method.

We also provide some directions for further research.
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Figure 4.1: A numerical example of share-switching.

4.2 On store-level data and share-switching

Consider the case where we have weekly store-level scanner data, for t = 1, . . . , T . For

the moment, we assume that T = 2. Figure 4.1 sketches a possible situation involving

the market shares of three brands A, B and C. At t = 1 the three brands have shares

of 30%, 50% and 20%, while the shares at t = 2 are given by 36%, 38% and 26%,

respectively. These observed changes in market share from t = 1 to t = 2 are the result

of unobserved share-switching from and to each of the three brands, which is represented

by the arrows. The numbers on the arrows indicate which fraction of the market share

at t = 1 is transferred. So, in the left panel of Figure 4.1, brand A retains 80% of its

market share, it loses 10% of its share to brand B, and it loses another 10% to brand C.

Similarly, brand B retains 70% of its share, and it loses 20% and 10% to brand A and

brand C, respectively. It is further seen that brand C retains 90% of its share, whereas

the remaining 10% moves to brand A. It is easily checked that these switching fractions

indeed give the market shares at time t = 2. For example, at t = 2 brand A has a share

of 36%, which is 0.80× 30% + 0.20× 50% + 0.10× 20%. However, these share-switching

fractions do not uniquely determine the market shares at t = 2, and the right panel gives

another set of share-switching fractions resulting in the same shares. When the length

T of the observed period becomes sufficiently large, unique share-switching estimates can

be obtained. Share-switching may also be related to marketing activity. For example, a

price decrease for brand A at t = 2 might result in additional share-switching from each

of the three brands at t = 1 to brand A at t = 2, where increased share-switching from A

to A amounts to increased customer retention.

4.3 The model

In this section, we develop our share-switching model. To this end, we define the market

share of brand j at time t by Mj,t, j = 1, . . . , J , t = 1, . . . , T . Furthermore, we define
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the fraction of the market share Ml,t−1 of brand l moving to brand k at time t by λl,k,t.

It is convenient to collect the market shares observed at time t in the vector Mt =

(M1,t, . . . ,MJ,t)
′ and to collect the share-switching fractions at time t in the matrix

Λt =




λ1,1,t · · · λ1,J,t

...
. . .

...

λJ,1,t · · · λJ,J,t


.

For example, in the left panel of Figure 4.1 we would have

Mt−1 =




0.30

0.50

0.20


, Mt =




0.36

0.38

0.26


, Λt =




0.80 0.10 0.10

0.20 0.70 0.10

0.10 0 0.90


.

4.3.1 General structure of the model

The share-switching fractions as contained in Λt satisfy two conditions. First, these share-

switching fractions just redistribute each brand’s market share, so that they have to sum

to one for each given brand, that is,

J∑

k=1

λl,k,t = 1, l = 1, . . . , J, (4.1)

or in matrix notation,

Λt ιJ = ιJ , (4.2)

where ιJ denotes the J × 1 vector consisting of ones. Second, by definition, the current

market share of each brand is the sum of the portions carried over to that brand from

each brand’s previous market share. This leads to the first-order Markov equation

Mk,t =
J∑

l=1

λl,k,tMl,t−1, k = 1, . . . , J, (4.3)

which is also the key equation in the aggregate Markov model of Leeflang (1974), see also

Leeflang et al. (2000). In matrix notation, it is given by

Mt = Λ′tMt−1. (4.4)

We note that our model differs from the model of Leeflang (1974) in various respects.

Advantages of our model include that (i) estimation results are invariant with respect to

which market share equation is disregarded to account for the sum constraint, (ii) param-

eter estimation is based on simple maximum likelihood and does not require optimization

under inequality conditions, and (iii) the involved covariance matrix is positive definite

by construction.
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We have already mentioned that the share-switching fractions λl,k,t might be correlated

to marketing activity. However, even if such observable variables are included, it cannot

be expected that share-switching is fully explained. To account for this, we decompose the

share-switching matrix Λt into a deterministic component Λ̃t and a random component

Et, that is,

Λt = Λ̃t + Et, (4.5)

where

Λ̃t =




λ̃1,1,t · · · λ̃1,J,t

...
. . .

...

λ̃J,1,t · · · λ̃J,J,t


, Et =




e1,1,t · · · e1,J,t

...
. . .

...

eJ,1,t · · · eJ,J,t


.

All elements of the error matrix Et have expectation zero, so that the expectation of the

share-switching matrix Λt is Λ̃t. Substituting (4.5) into (4.4) gives

Mt = Λ̃′tMt−1 + E ′
tMt−1, (4.6)

decomposing market shares into an explained and an unexplained component. This con-

stitutes the first part of our model.

To interpret the elements of Λ̃t (which have to be estimated using actual data) as

share-switching fractions, we require that the “redistribution condition” is maintained,

that is,

Λ̃t ιJ = ιJ . (4.7)

By postmultiplying both sides of (4.5) by ιJ and substituting (4.2) and (4.7), it follows

that the rows of the error matrix Et have to sum to zero, that is,

Et ιJ = 0, (4.8)

or
J∑

k=1

el,k,t = 0, l = 1, . . . , J. (4.9)

Next, by transposing (4.6), postmultiplying both sides by ιJ , and incorporating the con-

ditions (4.7) and (4.8), it follows that

M ′
t ιJ = M ′

t−1Λ̃t ιJ + M ′
t−1Et ιJ

⇔ M ′
t ιJ = M ′

t−1 ιJ + M ′
t−1 0

⇔ 1 = 1 + 0. (4.10)

So, both the market shares Mt = Λ′tMt−1, generated from our model given Mt−1, and

the market shares Λ̃′tMt−1, predicted from our model, sum to unity. That is, the sum

condition for market shares is always met. On the other hand, the range condition that

market shares are restricted between zero and one does not necessarily hold. This range

condition is satisfied for predicted market shares, provided that the elements of Λ̃t are

non-negative. However, there is no guarantee for generated market shares, because of the
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additive way the disturbance Et is incorporated in Λt, see (4.5). Although an additive

structure might result in violation of the range condition for generated market shares,

we still opt for it, as (i) it allows for closed-form expressions, keeping estimation of the

model parameters fast and simple, and (ii) predicted market shares in which one is often

interested still satisfy both the sum condition and the range condition. It follows from

(4.10) that one of the J market share equations in (4.6) is redundant, so that only the

parameters of J − 1 equations have to be estimated.

4.3.2 Detailed structure of the model

We complete the model by specifying the elements of Λ̃t and by assuming a distribution

for the elements of the error matrix Et. First, we define the elements of Λ̃t by the logit

structure

λ̃l,k,t =
exp(αl,k + x′k,tβ)

∑J
j=1 exp(αl,j + x′j,tβ)

, l = 1, . . . , J, k = 1, . . . , J, (4.11)

so that the redistribution condition (4.7) and the non-negativity requirement for Λ̃t are

indeed satisfied. Similar to the conditional logit model of McFadden (1974), not all

intercept parameters αl,k are identified. For identification purposes, we set αl,J = 0,

l = 1, . . . J . These parameters correspond to the redundant J-th market share equation.

It is seen from (4.11) that each share-switching fraction λ̃l,k,t from brand l to brand k

has its own intercept with parameter αl,k, and that λ̃l,k,t depends on the marketing-mix

variables of the receiving brand k through the shared response parameters β.

We consider all brand-pair specific intercepts to relate current market shares to previ-

ous market shares. This is similar to what Lattin and McAlister (1985) do by including all

brand-pair specific similarity parameters in a first-order Markov model for brand choice.

Related to that research, Che et al. (2003) operationalize a similarity variable whose re-

sponse parameter indicates the extent to which households are seeking or avoiding variety

in their brand choice decision.

We further note that xk,t in (4.11) only contains the index k of the receiving brand,

so that share-switching is not affected by the marketing-mix of the supplying brand l.

This is consistent with the brand-switching models of Givon (1984) and Seetharaman and

Chintagunta (1998), which aim to quantify variety-seeking and inertia in brand choice.

In (4.11), the marketing-mix variables in xk,t are in first-differences, as share-switching

corresponds to changes in market shares, rather than absolute market share levels. We

emphasize that, as in the conditional logit model, the estimation results of our share-

switching model are invariant with respect to which brand is taken as the base brand

J .

For the share-switching errors el,k,t we would want to consider a distribution which

is, on one hand, parsimonious in its parameterization, and which is, on the other hand,

flexible enough to reflect uncertainty patterns in share-switching. We assume that the el,k,t
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are distributed independently as N(0, σ2
l,k,t) with σ2

l,k,t = σ2Mγ1

l,t−1M
γ2

k,t−1. So, the share-

switching errors obey a normal distribution, and they are allowed to be heteroscedastic

in the sense that the variance might depend on the market shares of the supplying brand

l and the receiving brand k. One might expect that γ1 < 0 and γ2 > 0, that is, there is

more uncertainty for share-switching from a weak brand with a small market share to a

strong brand with a large market share, and there is less uncertainty for share-switching

in the opposite direction.

Several restrictions can be imposed on the heteroscedasticity structure. For example,

if one believes that only the market share of the receiving brand matters, one can set

γ1 = 0. But one can also consider the parameter restriction γ1 = −γ2, resulting in

σ2
l,k,t = σ2

(Mk,t−1

Ml,t−1

)γ2 , so that the variance directly depends on the size of the receiving

brand relative to the size of the supplying brand.

In Appendix 4.A, it is shown that if the elements el,k,t of Et are independently

N(0, σ2Mγ1

l,t−1M
γ2

k,t−1) distributed before imposing the error summation restrictions (4.9),

the restriction in (4.9) implies that our final model reads as

M̃t =




M1,t

...

MJ−1,t


 ∼ N( µt, σ

2Vt ), (4.12)

where

µt =




∑J
l=1 λ̃l,1,tMl,t−1

...∑J
l=1 λ̃l,J−1,tMl,t−1


 , (4.13)

and

Vt =
J∑

l=1

M2+γ1

l,t−1


− 1∑J

j=1 Mγ2

j,t−1




Mγ2

1,t−1
...

Mγ2

J−1,t−1




(
Mγ2

1,t−1 · · ·Mγ2

J−1,t−1

)
+ diag

(
Mγ2

1,t−1, . . . , M
γ2

J−1,t−1

)

 .

(4.14)

It is seen from (4.14) that the restriction in (4.9) induces that the market shares are

negatively correlated. This is a desirable feature, as, by definition, a larger market share

for one brand results in a smaller total market share for all other brands.

4.3.3 Model extension: inclusion of an outside good

In the discussion so far, we have defined Mt = (M1,t, . . . , MJ,t)
′ as a vector containing

the market shares of the J brands. A straightforward and useful extension would be

to redefine Mt such that it also includes the market share MJ+1,t of an outside good



58 A Markov model for market shares

J + 1, representing the share of customers who do not make a purchase at time t. This

outside good would become the natural base brand, so that αl,J+1 = 0, l = 1, . . . J + 1,

for parameter identification. Furthermore, one can set xJ+1,t = 0, as by definition the

outside good does not have its own marketing-mix.

As (i) the dimension of Mt increases from J to J+1, (ii) the no-purchase share equation

J +1 is redundant, and (iii) exp(αl,J+1 +x′J+1,tβ) = 1, l = 1, . . . , J +1, an extended model

becomes

M̃t =




M1,t

...

MJ,t


 ∼ N( µt, σ

2Vt ), (4.15)

where

µt =




∑J+1
l=1 λ̃l,1,tMl,t−1

...∑J+1
l=1 λ̃l,J,tMl,t−1


 , (4.16)

Vt =
J+1∑

l=1

M2+γ1

l,t−1


− 1∑J+1

j=1 Mγ2

j,t−1




Mγ2

1,t−1
...

Mγ2

J,t−1




(
Mγ2

1,t−1 · · ·Mγ2

J,t−1

)
+ diag

(
Mγ2

1,t−1, . . . , M
γ2

J,t−1

)

 ,

(4.17)

and

λ̃l,k,t =
exp(αl,k + x′k,tβ)

1 +
∑J

j=1 exp(αl,j + x′j,tβ)
, l = 1, . . . , J + 1, k = 1, . . . , J. (4.18)

We note that all intercept parameters αl,k in (4.18) are identified.

Inclusion of the share of no-purchase in the model allows for a richer analysis, as

the analysis would not only consider how category sales are distributed across brands,

but also how total category demand changes over time. For example, it might well be

that absolute sales of a brand decrease at time t, while the corresponding market share

increases. A model without an outside good would only focus on the increased market

share (the secondary demand effect), whereas the sales decrease (the primary demand

effect) might be managerially more relevant.

Van Heerde et al. (2003) put forward a unit sales decomposition for the primary and

secondary demand effects of a price promotion. Using this decomposition, they find that

the primary demand effect is larger than was previously believed, see, for example, Gupta

(1988). This is a second argument to keep track of the no-purchase share.

Third, if the no-purchase option is not accounted for, share-switching from, say, brand

A to brand B should not be related to the number of customers actually switching from
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A to B. For example, if some of the customers of brand A at time t do not make a

purchase at time t + 1, the share of A would decrease relative to the share of B, implying

a transfer of market share from A to B. Hence, although the notion of share-switching

is still valid if the model does not include an outside good, its interpretation is little

more difficult. Additionally, a model which does not allow for an outside good implicitly

assumes that (in the absence of marketing activity effects) the share-switching dynamics

across brands are fixed over time. This condition does not necessarily hold, as households

can be expected to have heterogeneous interpurchase times, so that different households

may buy in different weeks.

An important issue is whether purchase timing is related to brand-switching. For

example, consider a market for a product category with only two brands, A and B.

Furthermore, suppose there exists substantial heterogeneity in purchase timing across

households, and the market can be split up into two groups of households. The first group

is completely loyal to brand A, whereas the second group considers both brands. If there

is no clear relationship between a household’s loyalty and purchase frequency, the effect of

not including an outside good on the share-switching estimates should be reasonably small.

But now suppose that the group of potential switchers consists of frequent purchasers only

and the group of loyal households consists of infrequent purchasers only. In that particular

case, share-switching between brand A and brand B cannot be considered fixed over time,

as the overall tendency to purchase A or B differs between current purchasers and current

non-purchasers. A relatively large group of non-purchasers would indicate that very few

households loyal to brand A made a purchase at time t, implying relatively much growth

potential for brand A at time t + 1, compared to the potential for brand B. Again, such

a transfer of market share would not be induced by customers actually switching from

brand B to brand A at time t + 1, but would be induced by the interaction with the

no-purchase option.

4.4 Interpretation

In this section, we discuss how our share-switching model can provide insight into the

competitive structure. The well-known market share attraction model is often used to

compute own and cross price elasticities to infer what might happen to the own brand

market share if the own price is lowered or when competitors lower their prices. Our

model can deliver such elasticities as well. Additionally, our model can be used to infer

the magnitudes of share-switching across brands. Traditional market share models, such

as the attraction model, do not allow for this.

To derive the price elasticities, we first introduce some additional notation. We recall

that λ̃l,k,t is interpreted as the fraction of the share of brand l moving to brand k at

time t. Hence, λ̃l,k,t corresponds to share-switching conditional on the supplying brand l,

that is, the share-switching fractions away from l sum to unity, or
∑J

k=1 λ̃l,k,t = 1. As an

additional measure, we define the share-switching portion λ̄l,k,t = Ml,t−1λ̃l,k,t, which relates
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switching from brand l to brand k to the total market. Clearly,
∑J

l=1

∑J
k=1 λ̄l,k,t = 1. The

share-switching portion λ̄l,k,t is an unconditional measure, which is in contrast to the

share-switching fraction λ̃l,k,t.

We define the share-switching price elasticity δl→k,j,t as

δl→k,j,t =
∂λ̄l,k,t

∂Pj,t

Pj,t

λ̄l,k,t

=
∂λ̃l,k,t

∂Pj,t

Pj,t

λ̃l,k,t

, (4.19)

where Pj,t denotes the price of brand j at time t. The interpretation of (4.19) is that a

one percent price increase of brand j at time t results in δl→k,j,t percent additional share-

switching from brand l to brand k. We note that δl→k,j,t is not necessarily zero if j 6= l, k,

that is, when the price adjustment concerns a brand different from the two brands l and k

for which share-switching is considered. For example, if brand j lowers its price, it might

gain some share from brand l which would have gone to brand k otherwise.

If price is one of the marketing-mix variables included in (4.11), with response param-

eter βp, then it immediately follows from the logit structure of (4.11) that

δl→k,j,t =

{
βp Pk,t (1− λ̃l,k,t) if k = j

−βp Pj,t λ̃l,j,t if k 6= j
, (4.20)

see, for example, Ben-Akiva and Lerman (1985). Although prices are considered in first-

differences in (4.11), the Pj,t in (4.19) and (4.20) are price levels.

The share-switching price elasticities above determine the reaction of market shares to

price changes, as market shares are eventually the result of share-switching. For our model,

it can be shown that the elasticity of the expected market share E(Mk,t) =
∑J

l=1 λ̄l,k,t

with respect to the price Pj,t is given by

δk,j,t =
∂E(Mk,t)

∂Pj,t

Pj,t

E(Mk,t)
=

∑J
l=1 λ̄l,k,t δl→k,j,t∑J

i=1 λ̄i,k,t

. (4.21)

This market-share price elasticity can also be written as

δk,j,t =
J∑

l=1

ηl→k,j,t with ηl→k,j,t =
λ̄l,k,t∑J
i=1 λ̄i,k,t

δl→k,j,t, (4.22)

where ηl→k,j,t is the contribution of share-switching from brand l to brand k in the overall

effect of a price adjustment of brand j on the market share of brand k. So, (4.22) provides

a decomposition of the reaction of market share into components attributable to changes

in share-switching from each of the brands towards the brand whose market share is

affected.

The decomposition (4.22) provides interesting insights which cannot be obtained from

market share attraction models. For example, a decrease of the own price can be expected

to result in an increased market share by (i) retaining a larger part of the own current share

(own customers have a smaller incentive to switch away) and (ii) taking over additional
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share from competing brands (customers of competing brands have a larger incentive to

switch). The part of the increased market share attributable to retaining more of the own

share is ηk→k,j,t/δk,j,t with j = k, whereas the part attributable to gaining more of the

competitive share is given by 1 − (ηk→k,j,t/δk,j,t). In other words, the decomposition can

be used to analyze which part of the reaction of the own market share to an own price

reduction is caused by increased customer retention, and which part is not. We note that

each component ηl→k,j,t in the decomposition (4.22) consists of the share-switching price

elasticity δl→k,j,t multiplied by a weight proportional to the corresponding share-switching

portion λ̄l,k,t. Hence, contributions are determined by both the price-sensitivity and the

relative magnitude of corresponding share-switching.

The price elasticities defined by (4.21) amount to a generalization of a result estab-

lished by Bucklin et al. (1998b). This result is a relationship between price elasticities

and aggregate brand-switching, which has been derived on the basis of the conditional

logit model. Basically, it states that1

δk,j,t =

{
βp Pk,t (1− λ̃k,k,t) if k = j

−βp Pj,t λ̃k,j,t if k 6= j
, (4.23)

which, using (4.20), boils down to

δk,j,t = δk→k,j,t. (4.24)

In terms of our model, this relationship states that the reaction of market share to a price

adjustment is only caused by the effect on customer retention, and not by the effect on

share-switching from competing brands. This is more restrictive than our price elasticity

specification.

4.5 Parameter estimation

The parameters of our share-switching model can be estimated using maximum likelihood

[ML]. The parameter estimates result from maximization of the log-likelihood function,

which, in the absence of an outside good, is given by

lnL = −(T − 1)(J − 1)

2

[
ln(2π) + ln(σ2)

]
+

1

2

T∑
t=2

log det(V −1
t )

− 1

2σ2

T∑
t=2

(M̃t − µt)
′ V −1

t (M̃t − µt), (4.25)

where µt and Vt are defined by (4.13) and (4.14), respectively. We note that the inverse

of Vt is given by V −1
t =

( ∑J
l=1 M2+γ1

l,t−1

)−1 [
M−γ2

J,t−1 ιJ−1 ι′J−1 + diag(M−γ2

1,t−1, . . . , M
−γ2

J−1,t−1)
]
,

1Bucklin et al. (1998b) actually consider the logarithm of price in the conditional logit model, so that
the price term disappears in their result.
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see Appendix 4.A, and that it is straightforward to adjust (4.25) for inclusion of an outside

good in the model. Standard errors are obtained by taking the square roots of the diagonal

elements of the estimated covariance matrix, which, in turn, can be computed as minus

the inverse of the Hessian of (4.25) evaluated for the optimal parameter values. Numerical

techniques, such as the BFGS algorithm or the Newton-Raphson algorithm, have to be

used to get the ML parameter estimates.

4.6 Empirical analysis

In this section, we apply our model to weekly store-level scanner data, drawn from the

ERIM data base (GSB, University of Chicago) for catsup and peanut butter in the Sioux

Falls SD market (henceforth referred to as market 1) and in the Springfield MO market

(henceforth referred to as market 2). The considered period consists of 124 weeks from

1985 to 1988. The last 20 weeks are used for out-of-sample forecasting. For each product

category, the number of brands is restricted to four by considering the three largest brands

and a “rest brand”. This Rest brand represents several smaller brands as well as private

labels. We allow for marketing-mix effects by including price and 0/1 display variables.

Table 4.1 contains a few summary statistics. We note that the prices of the Rest brands

have been computed by taking the ratio of corresponding aggregate sales in dollars and

aggregate sales in units. It can be seen that, in general, the price of the Rest brand is

lower than the prices of the other three brands. Furthermore, the table shows that for

both catsup and peanut butter the Rest brand has a larger market share in the Springfield

area than in the Sioux Falls area.

4.6.1 Parameter estimates

In the subsequent discussion of our share-switching model, we focus on the heteroscedas-

ticity specification σ2
l,k,t = σ2Mγ2

k,t−1, so that the model is given by (4.11)−(4.14) after

setting γ1 = 0. However, we have also considered other specifications. For the unre-

stricted variance σ2
l,k,t = σ2Mγ1

l,t−1M
γ2

k,t−1, we find that γ1 is not significant at the 10% level

for three of the four data sets. This parameter is only significant at the 5% level for the

Springfield catsup market. On the other hand, γ2 is significant at 1% for three of the four

category-markets, and it is still significant at 5% for the remaining data set. So, it seems

that the effect of the supplying brand l on the variance is dominated by the effect of the

receiving brand k. Even after setting γ2 = 0, the variance parameter γ1 turns out to be

insignificant at the 10% level for two of the four data sets. Hence, we set γ1 = 0 for all

four category-markets, and we continue with σ2
l,k,t = σ2Mγ2

k,t−1.

In the empirical applications, we focus on how given category sales are distributed

across brands, and we do not deal with category expansion effects. Although inclusion of

an outside good would certainly have its benefits, as discussed earlier, it might be difficult

to construct this outside good requiring additional data information such as store traffic,
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Table 4.1: A summary of the data, that is, the average values and the standard deviations
(given in parentheses) of the market shares, prices and 0/1 display variables.

share price display

catsup 1

Heinz 0.51 (0.22) 1.16 (0.10) 0.41 (0.49)

Hunts 0.26 (0.19) 1.09 (0.09) 0.54 (0.50)

Del Monte 0.17 (0.16) 1.09 (0.09) 0.40 (0.49)

Rest 0.07 (0.08) 0.87 (0.05) 0.09 (0.28)

catsup 2

Heinz 0.37 (0.16) 1.34 (0.07) 0.68 (0.47)

Hunts 0.22 (0.14) 1.34 (0.11) 0.75 (0.43)

Del Monte 0.10 (0.09) 1.37 (0.09) 0.56 (0.50)

Rest 0.30 (0.11) 0.84 (0.07) 0.88 (0.33)

pbutter 1

Skippy 0.31 (0.19) 1.68 (0.12) 0.39 (0.49)

Jif 0.25 (0.13) 1.72 (0.11) 0.17 (0.38)

Peter Pan 0.25 (0.16) 1.68 (0.16) 0.35 (0.48)

Rest 0.19 (0.11) 1.36 (0.12) 0.19 (0.39)

pbutter 2

Skippy 0.10 (0.06) 1.78 (0.21) 0.10 (0.31)

Jif 0.16 (0.07) 1.81 (0.20) 0.10 (0.30)

Peter Pan 0.36 (0.16) 1.70 (0.25) 0.67 (0.47)

Rest 0.37 (0.13) 1.23 (0.13) 0.66 (0.47)

see, for example, Chintagunta (2000). So, we illustrate our model for the simplest case

possible, minimizing data requirements, but we emphasize that our modeling approach

would extend immediately to a situation dealing with category expansion.

Table 4.2 reports the estimates of the response parameters β1 and β2 for price and

display and the estimates of the two variance parameters σ2 and γ2. The effect of price

on market share is significant at the 1% level and has the expected sign for both catsup

and peanut butter in the two considered areas. Display has a significant effect (at the 5%

level) with the expected sign for the two catsup markets, but the effect is not significant

for the two peanut butter markets. Furthermore, the heteroscedasticity parameter γ2 is

positive and significant for all four category-market combinations. The sign of γ2 is as

expected.
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Table 4.2: Estimates of the marketing-mix response parameters and the variance param-
eters. The estimated standard errors are given in parentheses.

catsup 1 catsup 2 pbutter 1 pbutter 2

β1 (price) −0.860∗∗∗ −1.099∗∗∗ −0.686∗∗∗ −0.406∗∗∗

(0.110) (0.145) (0.079) (0.040)

β2 (display) 0.452∗∗∗ 0.383∗∗ −0.046 0.129

(0.108) (0.166) (0.148) (0.108)

σ2 0.291∗∗∗ 0.171∗∗∗ 0.103∗∗∗ 0.102∗∗∗

(0.058) (0.040) (0.026) (0.022)

γ2 0.870∗∗∗ 1.043∗∗∗ 0.419∗∗∗ 0.987∗∗∗

(0.081) (0.115) (0.145) (0.111)

** significant at 5%.
*** significant at 1%.

4.6.2 Model performance

To see how well our model performs in terms of in-sample fit and out-of-sample forecasting,

we compare it with three popular alternatives. We emphasize here that these models do

not have the same attractive interpretation opportunities as our model has.

The first competing model is the full effects attraction model in which the attraction

of brand k at time t is defined by

Ak,t = exp

(
αk +

S∑
s=1

J∑
j=1

β(s)j,k ln(x(s)j,t) + εk,t

)
. (4.26)

Here, αk is a brand-specific intercept, x(s)j,t is the value of marketing-mix variable s

for brand j at time t (in our case, s = 1 corresponds to price and s = 2 corresponds to

display), β(s)j,k is the involved response parameter, and εk,t is a disturbance term. The εk,t

are distributed independently as N(0, σ2
k,t). We note that, in this full effects specification,

the attraction of a brand may be affected by the marketing-mix variables of each of the

considered brands.

Bell et al. (1975) show that under certain axioms the market share of a brand is

proportional to its attraction, so that

Mk,t =
Ak,t∑J
i=1 Ai,t

. (4.27)
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The full effects attraction model is given by (4.26) and (4.27). We note that in case the

variables x(s)j,t are considered in levels instead of logarithms, the model above is often

referred to as an MNL model for market shares.

The second model we consider is the differential effects specification in which compe-

tition is restricted in the sense that the attraction of a brand is only affected by its own

marketing-mix, that is, β(s)j,k = 0 if j 6= k. The differential effects attraction model is

defined by (4.27) and

Ak,t = exp

(
αk +

S∑
s=1

β(s)k ln(x(s)k,t) + εk,t

)
. (4.28)

As our share-switching model is dynamic by definition, we include lagged market shares in

(4.26) and (4.28) in the same way as price and display are included. The literature often

considers one common lagged market share parameter for all brands, see, for example,

Brodie and De Kluyver (1984), Chen et al. (1994), Kumar and Heath (1990) and Naert

and Weverbergh (1981). However, we find that this does not improve the predictions. For

comparability with our share-switching model, we consider the MNL specifications of the

two attraction models described above, that is, lagged market shares are in logarithms

but prices and displays are in levels.

Finally, the third model we consider is a first-order vector autoregression, or VARX(1)

model, with price and display included as exogenous variables. In the model, the market

shares, prices and displays of the first J − 1 brands are considered in deviation from

the base brand J . Furthermore, the market shares are taken in logarithms, so that the

dependent variables amount to log-ratios of market shares.

We estimate the parameters of the two attraction models by applying a linearizing

transformation such that these models are also defined in terms of J − 1 log-ratios of

market shares, see, for example, Fok et al. (2002). For the VARX(1) model, we apply

Ordinary Least Squares estimation to each of the J − 1 equations separately. This is

equivalent to maximum likelihood estimation, see, for example, Hamilton (1994). For

all three competing models, we generate appropriate market share predictions using the

simulation approach described in Fok et al. (2002).

Table 4.3 shows the in-sample and out-of-sample values of the Root Mean Squared

Prediction Error [RMSPE] for the considered models. In general, the table indicates that

our model does not perform best within sample, but it does deliver more accurate out-of-

sample forecasts. To be more specific, for three of the four category-markets our model

is outperformed in-sample by all three competitors. The in-sample fit is only comparable

to the fit of the differential effects model for the Sioux Falls catsup market. A partial

explanation for the in-sample result might be the parsimonious parameterization of our

model. It only contains 16 parameters, just like the differential effects model, whereas

the VARX(1) model contains 30 parameters and the full effects model even needs 43

parameters.
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Table 4.3: In-sample fit and out-of-sample forecasting performance, reflected by the Root
Mean Squared Prediction Error.

catsup 1 catsup 2 pbutter 1 pbutter 2

in-sample our model 0.142 0.098 0.116 0.078

full effects 0.132 0.079 0.102 0.063

diff. effects 0.142 0.085 0.109 0.073

VARX(1) 0.135 0.082 0.106 0.066

out-of-sample our model 0.147 0.103 0.120 0.084

full effects 0.162 0.124 0.150 0.096

diff. effects 0.135 0.118 0.158 0.092

VARX(1) 0.139 0.111 0.148 0.101

On the other hand, Table 4.3 also shows that our model generates the most accurate

out-of-sample forecasts for three of the four data sets. Actually, our share-switching model

is the only model for which the in-sample and out-of-sample RMSPE values match closely.

The other three models combine small RMSPE values in-sample with large out-of-sample

forecasting errors. Now we have investigated the in-sample and out-of-sample performance

of our model relative to three competing models, we can focus on the additional insights

that our model can provide.

4.6.3 Price elasticity analysis

Table 4.4 contains the estimated market-share price elasticities δk,j,t for our model. Fur-

thermore, it provides estimates of ηk→k,j,t/δk,j,t, indicating which proportions of the price

elasticities can be attributed to changes in customer retention.

The retention effect

It can be seen from the 16 diagonal elements in the right-hand part of Table 4.4 that

increased customer retention accounts for 29% to 50% of the total increase in own market

share when the own price is lowered. On average, this is about 42%. So, for the four

considered markets, we find that the majority of the gain in market share is caused by

gaining additional share from competing brands, and not by increasing own customer

retention. Similarly, the off-diagonal elements in the right-hand part of Table 4.4 show

that the part of the decrease in own market share when a competing brand lowers its

price, attributable to decreased own customer retention, is at most 50% in 39 out of 48

cases. On average, this retention effect is about 40%. So, also for a competitive price

adjustment, the retention effect does not seem to be dominating.
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Table 4.4: The left-hand part shows the estimated market-share price elasticities δk,j,t.
The index j indicates the brand whose price is changed, and the index k indicates the
brand whose market share is affected. Correspondingly, the right-hand part shows the
estimated shares ηk→k,j,t/δk,j,t of changed customer retention for brand k in the price
elasticities δk,j,t. The reported values amount to averages over time.

k k

price elasticities shares of retention effect

catsup 1

Heinz −4.44 4.25 4.38 5.13 0.50 0.37 0.34 0.39

j Hunts 2.03 −6.03 2.27 2.09 0.50 0.38 0.36 0.16

Del Monte 1.42 1.55 −6.73 0.91 0.53 0.38 0.35 0.00

Rest 0.43 0.36 0.23 −6.24 0.43 0.52 0.30 0.29

catsup 2

Heinz −4.13 2.86 3.84 2.21 0.47 0.44 0.47 0.42

j Hunts 1.65 −6.63 2.76 2.07 0.47 0.46 0.39 0.48

Del Monte 0.77 0.93 −8.45 0.32 0.41 0.50 0.40 0.62

Rest 1.05 1.72 0.85 −2.99 0.49 0.45 0.05 0.47

pbutter 1

Skippy −5.90 2.79 1.78 2.12 0.43 0.54 0.22 0.48

j Jif 2.69 −6.65 2.11 2.12 0.36 0.43 0.45 0.46

Peter Pan 1.67 2.04 −5.58 2.28 0.55 0.36 0.41 0.32

Rest 1.18 1.20 1.36 −5.25 0.36 0.30 0.52 0.42

pbutter 2

Skippy −4.49 0.72 0.45 0.43 0.37 0.41 0.36 0.58

j Jif 1.25 −4.44 0.93 0.83 0.42 0.38 0.40 0.57

Peter Pan 1.53 1.79 −2.79 1.42 0.42 0.46 0.46 0.40

Rest 1.08 1.18 1.05 −1.99 0.25 0.27 0.52 0.48
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Asymmetric price competition

Table 4.1 shows that for all four category-market combinations the prices of the three

national brands are comparable, whereas the price of the Rest brand is substantially

lower. It therefore seems reasonable to assume that the perceived quality of brands

summarized in the Rest group is also lower than the perceived quality of the national

brands, as otherwise Rest should have an enormous market share. A finding, which is

due to Blattberg and Wisniewski (1989), predicts that price promotions are more effective

for higher-price higher-quality [HPHQ] brands than for lower-price lower-quality [LPLQ]

brands. This means that HPHQ brands can gain more share from LPLQ brands by

offering a price reduction than vice versa. Kamakura and Russell (1989) and Allenby and

Rossi (1991) provide additional empirical support for this asymmetric price competition

result, and Blattberg et al. (1995) make it an empirical generalization. This empirical

generalization is refined by Sethuraman et al. (1999) who state that the asymmetry holds

in terms of cross price elasticities but tends to disappear when absolute cross price effects

are considered.

The literature offers several explanations for asymmetric price competition. Blattberg

and Wisniewski (1989) argue that the asymmetry can result from a U-shaped heterogene-

ity distribution for the quality preferences concerning any two brands with regular prices

such that the indifference point is located towards the lower quality end of this distribu-

tion. This implies that customers of LPLQ brands are more price sensitive than customers

of HPHQ brands. Allenby and Rossi (1991) propose an alternative explanation that any

price reduction induces a positive income effect, stimulating switching from low-quality

brands to high-quality brands. They formalize this through rotating utility indifference

curves. Hardie et al. (1993) consider reference effects and loss aversion concerning the

prices and qualities of brands. They explain asymmetric price competition from the notion

that losses in terms of price or quality, incurred by brand-switching, are weighted more

heavily than resulting gains. Bronnenberg and Wathieu (1996) conditionally support the

result of Blattberg and Wisniewski. They state that it holds if and only if the quality gap

between an HPHQ brand and an LPLQ brand is sufficiently large compared to the price

gap. If this condition does not hold, asymmetric price competition is reversed.

The market-share price elasticities in Table 4.4 indicate that asymmetric price com-

petition holds for both catsup and peanut butter in the Sioux Falls market. For example,

in the Sioux Falls peanut butter market, Rest loses 2.12% of its share when Skippy lowers

its price by one percent, whereas this is only 1.18% in the opposite direction. However,

it can also be seen from the table that the asymmetric price competition effect is some-

times reversed in the Springfield market. For catsup, a one percent price reduction of Del

Monte turns out to be less effective than a one percent price reduction of the Rest brand.

For peanut butter, the asymmetric price competition effect of Blattberg and Wisniewski

is reversed for Skippy and Jif relative to the cheaper Rest brand. The explanation of

Bronnenberg and Wathieu (1996) would be that, in the Springfield market, the perceived
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difference in quality between these national brands and the Rest brand is insufficient to

account for the price difference. We note from Table 4.1 that the price gap between the

national brands and the Rest brand is larger in the Springfield market than in the Sioux

Falls market, and that in the Springfield market the Rest brands also have larger market

shares. This indicates that the Rest brands offer “good value” in the Springfield market,

which is consistent with the Bronnenberg-Wathieu finding.

4.6.4 Share-switching analysis

Our model can be used to analyze share-switching patterns. Also this provides insights

which cannot be obtained from market share attraction models. Table 4.5 shows the share-

switching estimates, averaged over the in-sample period, for the considered markets. It re-

ports the row-conditional share-switching fractions λ̃l,k,t and the absolute share-switching

portions λ̄l,k,t = Ml,t−1λ̃l,k,t.

A casual inspection of the share-switching fractions λ̃l,k,t in Table 4.5 indicates that

Heinz has the most loyal customer base in the two catsup markets, whereas Peter Pan can

be regarded as having the most loyal customer base in the two peanut butter markets. It

can also be seen that, compared to the Sioux Falls market, customers in the Springfield

market are more loyal to the Rest brand, representing several smaller brands and private

labels, than they are loyal to the more expensive national brands. This holds for both

catsup and peanut butter. Furthermore, there appears to be little share-switching between

Del Monte and the Rest brand in both catsup markets.

The share-switching portions λ̄l,k,t reveal some strong asymmetries. For example, in

the Sioux Falls peanut butter market, on average 4.4% of the total market switches from

Skippy to Peter Pan, whereas on average only 1.0% switches from Peter Pan to Skippy.

In both peanut butter markets, we find that Skippy loses much more share to Peter Pan

than vice versa, Peter Pan loses much more share to the Rest brand than vice versa, and

the Rest brand loses much more share to Jif than vice versa. However, for all brands in

all four markets, the average total share coming in (the sum of column elements) and the

average total share going out (the sum of corresponding row elements) are approximately

equal. This is a necessary condition for stationarity of market shares. Hence, although

we find asymmetries in share-switching, our model seems to support the finding of Lal

and Padmanabhan (1995) that market shares are mostly stationary, see also Dekimpe and

Hanssens (1995) who consider stochastic trends.

4.7 Conclusions

In this chapter, we have proposed a model for market shares which can be used to infer

share-switching across brands from store-level scanner data. Such insights cannot be ob-

tained from market share attraction models. A second contribution of our model is that it

allows for a decomposition of own and cross price elasticities into components attributable
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Table 4.5: Share-switching estimates (in percents), that is, the row-conditional share-
switching fractions λ̃l,k,t from brand l to brand k and the absolute share-switching portions
λ̄l,k,t = Ml,t−1λ̃l,k,t from brand l to brand k. The reported values amount to averages over
time.

k k

share-switching fractions share-switching portions

catsup 1

Heinz 69.2 15.7 11.6 3.5 33.3 8.6 6.3 1.8

l Hunts 27.0 56.7 11.3 4.9 7.9 13.4 3.3 1.3

Del Monte 27.7 17.4 53.3 1.5 5.6 3.5 8.3 0.3

Rest 51.8 8.7 0.0 39.6 3.4 0.5 0.0 2.5

catsup 2

Heinz 84.9 6.3 1.9 6.9 31.8 2.9 0.9 3.1

l Hunts 11.2 73.9 3.8 11.1 3.3 16.3 1.0 2.7

Del Monte 18.3 9.8 71.6 0.3 1.7 0.9 5.8 0.0

Rest 7.8 8.6 1.6 82.1 2.3 2.7 0.5 24.3

pbutter 1

Skippy 67.7 11.7 13.6 7.0 18.5 3.7 4.4 2.5

l Jif 21.1 62.6 10.2 6.2 5.9 15.4 2.9 1.7

Peter Pan 3.5 11.9 71.9 12.7 1.0 3.7 17.5 3.8

Rest 13.5 13.4 9.5 63.7 2.9 3.0 1.9 11.3

pbutter 2

Skippy 60.5 13.1 17.5 9.0 6.0 1.3 1.9 0.9

l Jif 7.4 59.2 22.4 11.0 1.3 9.7 4.1 1.9

Peter Pan 2.9 6.8 74.5 15.8 1.2 2.9 26.3 6.6

Rest 4.7 9.0 11.3 75.0 1.8 3.4 4.4 26.4
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to changes in share-switching from each of the brands towards the brand whose market

share is affected. This decomposition can, for example, be used to investigate which part

of the reaction of the own market share to an own price reduction is caused by increased

own customer retention, and which part is not.

We have illustrated our model for store-level scanner data concerning catsup and

peanut butter in the Sioux Falls SD and Springfield MO markets. The elasticity de-

compositions indicate that the part of the reaction of own market share to an own or a

competitive price reduction, attributable to changed own customer retention, is usually

less than 50%.

We have also investigated whether the price elasticities obtained from our model are

consistent with the finding of Blattberg and Wisniewski (1989) that higher-price higher-

quality brands draw more share from lower-price lower-quality brands by offering a price

reduction than vice versa. This result is supported for both catsup and peanut butter in

the Sioux Falls market, but it is not supported in the Springfield market. An explanation

for the disparity, consistent with the considered data, is that in the Springfield market

the perceived quality gap between the expensive national brands and the cheaper Rest

brand is not always sufficient to account for the price difference. This explanation would

be in accordance with a result in Bronnenberg and Wathieu (1996).

Finally, we have inferred share-switching across brands. The share-switching estimates

indicate that Heinz has the most loyal customer base in the two catsup markets, whereas

Peter Pan can be regarded as having the most loyal customer base in the two peanut

butter markets. Although the estimated share-switching portions reveal some strong

asymmetries across brands, the resulting market shares seem balanced in the sense that

for each brand the total share coming in and the total share going out are approximately

equal.

Our share-switching model and the empirical analysis can be extended in several di-

rections. First, although we have discussed how an outside good can be incorporated in

the model to deal with changes in total category demand, we have not included it in the

empirical part of this chapter. It would however be interesting to estimate the interactions

between the no-purchase share and the market shares of each of the brands. The analysis

would also be enriched by considering both primary and secondary demand effects.

Another interesting extension would be to relate our model to the aggregate logit

approach for market shares. Aggregate logit models, in the tradition of Berry et al.

(1995), average out individual brand choice probabilities over a heterogeneity distribution

for the model parameters to obtain the market shares. This allows for more flexible model

specifications. However, as closed-form expressions are usually not available, the model

parameters would have to be simulated for each hypothetical household. Additionally,

one would have to determine the number of drawings required to obtain reasonably stable

estimation results. Nonetheless, it would be very interesting to combine state dependence

and unobserved heterogeneity in an aggregate model for market shares.
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Finally, we have treated the marketing-mix variables in our model as being exogenous,

while in fact they might well be endogenous. For example, the price of a brand might

be correlated with its shelf location. If the latter is not observed by the researcher, it

can be represented by an unobserved error term in the model, implying potential cor-

relation between the price variable and the error term. Villas-Boas and Winer (1999)

demonstrate that not accounting for such endogeneity might result in seriously biased

parameter estimates. Berry et al. (1995) deal with endogeneity of marketing-variables by

explicitly modeling price setting behavior of firms, whereas Villas-Boas and Winer (1999)

and Chintagunta (2000) adopt an instrumental variables approach. Chintagunta provides

an explicit blueprint for the implementation of an aggregate logit model that allows for

both unobserved heterogeneity and price endogeneity.
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4.A Derivation of the distribution for market shares

In this appendix, we derive the distribution of the market shares Mt = Λ̃′tMt−1 + E ′
tMt−1

after imposing the restrictions
∑J

k=1 el,k,t = 0, l = 1, . . . , J on the error matrix Et. Before

imposing these restrictions, the share-switching errors el,k,t are assumed to be indepen-

dently N(0, σ2
l,k,t) distributed. We provide a further specification of this heteroscedasticity

structure at the end of the appendix.

We first derive the distribution of (el,1,t, . . . , el,J,t)
′, given

∑J
k=1 el,k,t = 0, l = 1, . . . , J .

Without imposing the summation restriction, the density of (el,1,t, . . . , el,J,t)
′ is given by

f(el,1,t, . . . , el,J,t) ∝ exp

(
−1

2

J∑

k=1

e2
l,k,t

σ2
l,k,t

)
, (4.29)

where ∝ denotes “is proportional to”. To impose that
∑J

k=1 el,k,t = 0, we make a

transformation of variables from (el,1,t, . . . , el,J−1,t, el,J,t)
′ to (el,1,t, . . . , el,J−1,t, z)′ with z =∑J

k=1 el,k,t. Note that el,J,t = z−∑J−1
k=1 el,k,t. As the Jacobian matrix of this transformation

has determinant one, the transformed density becomes

f(el,1,t, . . . , el,J−1,t, z) ∝ exp

(
−1

2

[
J−1∑

k=1

e2
l,k,t

σ2
l,k,t

+
(z −∑J−1

k=1 el,k,t)
2

σ2
l,J,t

])
. (4.30)

Now, imposing the restriction z =
∑J

k=1 el,k,t = 0 gives

f(el,1,t, . . . , el,J−1,t, 0) ∝ exp

(
−1

2

[
J−1∑

k=1

e2
l,k,t

σ2
l,k,t

+
(
∑J−1

k=1 el,k,t)
2

σ2
l,J,t

])

= exp

(
−1

2
ẽ′l,t Γl,t ẽl,t

)
(4.31)

with ẽl,t = (el,1,t, . . . , el,J−1,t)
′ and Γl,t = 1

σ2
l,J,t

ιJ−1 ι′J−1 + diag( 1
σ2

l,1,t
, . . . , 1

σ2
l,J−1,t

), where the

diag operator transforms a vector into a diagonal matrix with the vector elements on the

diagonal. It follows from (4.31) that (el,1,t, . . . , el,J−1,t)
′ ∼ N(0, Ωl,t) with

Ωl,t = Γ−1
l,t

= − 1∑J
j=1 σ2

l,j,t




σ2
l,1,t
...

σ2
l,J−1,t




(
σ2

l,1,t · · ·σ2
l,J−1,t

)
+ diag

(
σ2

l,1,t, . . . , σ
2
l,J−1,t

)
, (4.32)

l = 1, . . . , J . We note that it is easily verified that Ωl,t Γl,t = IJ−1, the (J − 1)× (J − 1)

identity matrix, so that Ωl,t is indeed the inverse of Γl,t. Next, as Mt = Λ̃′tMt−1 +E ′
tMt−1,

so that 


M1,t

...

MJ−1,t


 =

J∑

l=1

Ml,t−1




λ̃l,1,t

...

λ̃l,J−1,t


 +

J∑

l=1

Ml,t−1




el,1,t

...

el,J−1,t


 , (4.33)
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and (el,1,t, · · · , el,J−1,t)
′, l = 1 . . . , J , are independently distributed, it follows that

M̃t =




M1,t

...

MJ−1,t


 ∼ N( µt, Ṽt ), (4.34)

where

µt =




∑J
l=1 λ̃l,1,tMl,t−1

...∑J
l=1 λ̃l,J−1,tMl,t−1


 , (4.35)

and

Ṽt =
J∑

l=1

M2
l,t−1 Ωl,t . (4.36)

The general distribution of the market shares after imposing the summation restrictions∑J
k=1 el,k,t = 0, l = 1, . . . , J is given by (4.34)−(4.36). It is now straightforward to impose

a specific heteroscedasticity structure σ2
l,k,t on the model by substituting it into (4.36) via

(4.32). By imposing that σ2
l,k,t = σ2Mγ1

l,t−1M
γ2

k,t−1, we obtain

Ṽt = σ2

J∑

l=1

M2+γ1

l,t−1


− 1∑J

j=1 Mγ2

j,t−1




Mγ2

1,t−1
...

Mγ2

J−1,t−1




(
Mγ2

1,t−1 · · ·Mγ2

J−1,t−1

)
+ diag

(
Mγ2

1,t−1, . . . , M
γ2

J−1,t−1

)



≡ σ2 Vt. (4.37)

We note that by analogy with Ωl,t = Γ−1
l,t , the inverse of Vt is given by V −1

t =
( ∑J

l=1 M2+γ1

l,t−1

)−1

[
M−γ2

J,t−1 ιJ−1 ι′J−1 + diag(M−γ2

1,t−1, . . . , M
−γ2

J−1,t−1)
]
.
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Monte Carlo integration methods





Chapter 5

A radial-based Monte Carlo
methodology

5.1 Introduction

In the first part of this thesis, we have discussed three new models which can be used

to analyze purchase behavior of households and to analyze market shares of brands. In

the empirical applications, we have obtained parameter estimates such that the observed

data are “most likely” and we have computed the corresponding (asymptotic) standard

errors. Hence, we have treated the model parameters as unknown constants which have

to be recovered, and the resulting parameter estimates are functions of the data. We have

actually adopted the classical approach of making inference.

In the classical framework, inferential procedures such as testing for parameter signif-

icance are based on assuming a “true” data generating process (by imposing parameter

restrictions) from which an infinitely large hypothetical data set can be obtained. A test

statistic is constructed from the observed data, and its realization is compared to the

corresponding distribution resulting from the hypothetical data set. If the realized value

is “unlikely” for the assumed “true” data generating process, the underlying hypothesis is

rejected. In the classical approach, the concept of “probability” is objective in the sense

that “probability” is defined as the fraction of occurrences when a process is repeated

infinitely often.

A second approach to inference which we have not considered so far is the Bayesian

approach. In this Bayesian framework, the parameters of a model are considered to be

random variables themselves, so that the concept of “true parameter values” on which

any classical analysis is conditioned does not have a Bayesian counterpart. Instead, a

Bayesian believes that the model parameters can take on a wide range of values. The

beliefs that are present on the parameter outcomes are summarized in a so-called prior

density. This density should be constructed before observing the data. An important

implication of the probability concept above is that probabilities are subjective, as they



78 A radial-based Monte Carlo methodology

are states of the mind which may differ from one person to another. We refer to Poirier

(1995) for an extensive comparison of the classical and the Bayesian approach to inference.

The prior density only reflects prior expectations about the parameters. When actual

outcomes of the data generating process become available, these prior beliefs can be

updated by incorporating the new information from the data. This way of “learning” is

formalized by Bayes’ theorem. Let y = (y1, . . . , yN) summarize the available data and let

θ denote the vector of model parameters. As both are stochastic, the joint density of the

data y and the parameters θ can be written as the product of a marginal density and a

conditional density in two ways, that is,

p(y, θ) = p(y) p(θ|y) = p(θ) p(y|θ). (5.1)

Rearranging this identity results in Bayes’ theorem, that is,

p(θ|y) =
p(θ) p(y|θ)

p(y)
. (5.2)

However, as the denominator in (5.2) does not depend on θ and only serves as a scaling

constant, it is convenient to represent Bayes’ theorem by

p(θ|y) ∝ p(θ) p(y|θ), (5.3)

where ∝ denotes “is proportional to”. Bayes’ theorem (5.3) relates the prior density

p(θ), containing only prior beliefs about the parameters θ, to the posterior density p(θ|y)

which also accounts for the observed data y. The link between the prior density and the

posterior density is the likelihood function p(y|θ). A consequence of (5.3) is that learning

from the data is entirely done through this likelihood function.

The posterior density p(θ|y) contains all what is known about the parameters θ after

observing the data y. However, the format of the information in p(θ|y) is not very conve-

nient. For example, if θ is ten-dimensional, p(θ|y) is a function of ten variables of which

the shape cannot be plotted. For sensible interpretation, one is usually interested in the

posterior means, variances and correlations. Furthermore, one might be interested in the

posterior probability that θ belongs to a region D of the parameter space, for example,

to obtain (smoothed) histograms of the marginal densities, or for testing purposes. In all

cases, interest is focused on the integral

E[g(θ)|y] =

∫
g(θ) p(θ|y) dθ, (5.4)

where g is the relevant function. We note that the probability that θ ∈ D results from

(5.4) by setting g(θ) = I{θ ∈ D}, where I{·} is the 0/1 indicator function. If the posterior

density is only known up to a scaling constant, so that p(θ|y) does not integrate to unity,

(5.4) should be replaced by

E[g(θ)|y] =

∫
g(θ) p(θ|y) dθ∫

p(θ|y) dθ
. (5.5)
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In this chapter, we discuss several methods to compute (5.4) and (5.5), and we also put

forward a new methodology which extends current methods. In the overview, we consider

both deterministic integration and Monte Carlo integration. The former approach means

that the involved integrand is evaluated at many fixed points, after which the integral is

approximated by a weighted sum of these function evaluations. The latter approach is

based on the idea that E[g(θ)|y] can be approximated by the sample mean 1
n

∑n
i=1 g(θi),

where θ1, . . . , θn are drawings obtained from the posterior distribution. The difference

between Monte Carlo integration and deterministic integration is nicely characterized

by the equivalency relationship (5.4). Monte Carlo algorithms focus on the left-hand

posterior expectation, whereas deterministic methods aim to explicitly evaluate the right-

hand integral.

The outline of this chapter is as follows. In Section 5.2, we provide an overview of some

relevant and frequently used integration methods. Most of the discussed algorithms serve

as building blocks in the development of our proposed Monte Carlo approach. We discuss

this Monte Carlo methodology, referred to as adaptive radial-based direction sampling, in

Section 5.3. Section 5.4 contains some simple applications to illustrate the performance

of the algorithms. Finally, we make some concluding remarks in Section 5.5.

5.2 Review of some integration methods

In this section, we review some deterministic and Monte Carlo integration methods. The

focus is on the algorithms themselves, and we do not pay much attention to their empirical

application. Bauwens et al. (1999) provide a Bayesian treatment of time series models.

Koop (2003) explains how various Monte Carlo methods can be applied to make inference

in a broad class of econometric models including linear regression models with panel data

and qualitative and limited dependent variable models.

5.2.1 Deterministic integration

For ease of exposition, we focus on computing the integral (5.4), which is assumed to

be one-dimensional with bounds θ and θ. Deterministic integration rules evaluate the

integrand f(θ) ≡ g(θ) p(θ|y) at many fixed points, and use an appropriately weighted sum

of the evaluations as an approximation to the value of the integral. Hence, deterministic

integration methods are characterized by the relationship

∫
f(θ) dθ ≈

n∑
i=1

wif(θi), (5.6)

where θ1, . . . , θn are the evaluation points and w1, . . . , wn are the corresponding weights.

We note that most deterministic integration rules can be extended to multi-dimensional

integrals in a straightforward way. However, as the number of required function evalu-

ations increases exponentially with the dimension of the integration problem, such inte-
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gration rules become soon infeasible. As a result, they are rarely used when the number

of variables exceeds three or four. We refer to Stoer and Bulirsch (1993) and Cheney and

Kincaid (1994) for extensive textbook discussions on deterministic integration methods.

The trapezoid integration rule approximates the integral (5.4) by replacing the inte-

grand f(θ) by a linear interpolating function. This results in the approximation

∫ θ

θ

f(θ) dθ ≈ θ − θ

2
f(θ) +

θ − θ

2
f(θ). (5.7)

Similarly, Simpson’s rule replaces the integrand f(θ) by a quadratic interpolating function

with equidistant interpolation points. This gives rise to the approximation
∫ θ

θ

f(θ) dθ ≈ θ − θ

6
f(θ) +

4(θ − θ)

6
f

(
θ + θ

2

)
+

θ − θ

6
f(θ). (5.8)

Alternatively, Gaussian integration rules which do not need evaluation of the integrand

at the bounds θ and θ can be used, see Stoer and Bulirsch (1993) and Cheney and

Kincaid (1994). However, finite integration bounds, as required for the trapezoid rule and

Simpson’s rule, can always be obtained by an appropriate transformation of variables,

see, for example, Bauwens et al. (1999, p. 70). To decrease the approximation error,

deterministic integration rules are usually applied to many small subintervals of [θ, θ].

An important issue that remains is how many evaluation points are needed to achieve

a predetermined level of accuracy. Furthermore, one wants to obtain this numerical

accuracy using a minimal number of function evaluations, as evaluations are costly in

terms of computing time. For the trapezoid rule and Simpson’s rule, an iterative procedure

can be applied such that evaluations points are added in subintervals of [θ, θ] as long as

this results in a substantial improvement. Hence, evaluation points are only added in

those regions where they are needed. We first consider the entire interval [θ, θ]. Let A1

be the integral approximation resulting from either the trapezoid rule or Simpson’s rule

without splitting up [θ, θ] into smaller subintervals. Moreover, let A2 be the approximation

when [θ, θ] is split up into two equally large parts for which the subintegrals are evaluated

separately. Cheney and Kincaid (1994) explain why |A1 − A2| < 15 ε can be used as a

criterion to determine whether intervals have to be split up further to achieve an accuracy

level of ε for the Simpson’s rule. Similarly, |A1 − A2| < 3 ε can be used as a criterion for

the trapezoid rule. If the stopping condition is met, the integral is approximated by A2.

In the alternative case, at least one further partition has to be made. Subintervals are

split up until they all satisfy their corresponding stopping criteria, where the tolerance

level for each subinterval is taken proportionally to the length of that subinterval, so that

the total accuracy level remains ε.

5.2.2 Independence sampling: direct methods

In this subsection, we turn to Monte Carlo integration. Basically, a Monte Carlo method

consists of two steps. First, a sample θ1, . . . , θn is collected from the posterior distribution
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with density (or density kernel) p(θ|y). Subsequently, this sample is used to estimate the

expectation E[g(θ)|y] by the corresponding sample mean 1
n

∑n
i=1 g(θi). For example, the

probability Pr(θ ∈ D|y) = E[ I{θ ∈ D} |y] is estimated by the number of drawing falling

into the region D, that is,
∑n

i=1 I{θi ∈ D}, divided by the sample size n.

In the ideal case, the sample θ1, . . . , θn can be obtained directly from the posterior.

However, even when the posterior distribution is non-standard, so that it is not straight-

forward to collect a sample from this posterior, direct sampling methods are useful. They

can serve as building blocks for more involved algorithms. For example, any sampling

algorithm is based on collecting drawings from the uniform U(0, 1) distribution, so that

suitable methods to generate these “random numbers” are of utmost importance.

Uniform sampling

The most commonly used method to sample from the uniform distribution is the linear

congruential random number generator [LCRNG]. This generator creates a sequence of

“random numbers” u1, . . . , un using the recursion

ui = (a ui−1 + b) mod M, i = 1, . . . n, (5.9)

where mod M gives the remainder after division by M . The multiplier a and the modulus

M are strictly positive integers, while the increment b is also allowed to be zero. The initial

value u0 of the sequence is called the seed. To map u1, . . . ,un to the unit interval, these

values are divided by M . We note that the recursion (5.9) is completely deterministic,

so that the generated “random numbers” are actually not random at all. For properly

chosen a, b and M , it only seems as if they are random.

An immediate consequence of the first-order recursion (5.9) is that the process repeats

itself as soon as a realized value occurs for the second time. As there are only M possible

values to encounter, the process must renew itself in at most M steps, that is, the max-

imum period is M . However, if a, b and M are not chosen with care, the actual period

might be much shorter. Furthermore, even if the process has full period M , the random

number generator is not necessarily a good one.

In practice, multiplicative LCRNGs are frequently considered. These arise from (5.9)

by setting b = 0, so that the increment is turned off. Two popular multiplicative LCRNGs

are the Lewis-Goodman-Miller generator, obtained by setting a = 16,807 and M = 231−1,

and the Payne-Rabung-Bogyo generator, obtained by setting a = 630,360,016 and M =

231 − 1. We refer to Law and Kelton (1991) for details.

Inversion method

The inversion method is another direct sampling method. It directly translates uniform

U(0, 1) drawings into drawings from the (univariate) distribution of interest. The un-

derlying idea is simple. If the random variable X follows a distribution with cumulative
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Figure 5.1: Illustration of the inversion method for the standard normal distribution.

distribution function [CDF] denoted by F , then the corresponding CDF value U = F (X)

is uniformly distributed, as

Pr(U ≤ u) = Pr(F (X) ≤ u) = Pr(X ≤ F−1(u)) = F (F−1(u)) = u (5.10)

with F−1 denoting the inverse CDF. Based on this result, the inversion method consists of

two steps. First, a uniform sample u1, . . . , un is collected. Next, this sample is transformed

into realizations x1 = F−1(u1), . . . , xn = F−1(un) from the distribution of interest. Figure

5.1 illustrates the inversion method for the standard normal distribution. Clearly, as the

standard normal CDF is steepest around 0, that region is “hit” most frequently, so that

most drawings have values relatively close to 0. On the other hand, not many drawings

fall into regions far away from 0, as these regions are difficult to “hit”. This mechanism

induces that drawings are assigned to regions in accordance with their probability mass.

We note that the inversion method is particularly suitable to sample from (univariate)

truncated distributions. For example, if a distribution is truncated to the left of some

value a and to the right of some value b, then all drawings should fall into the region (a,b).

This is easily achieved by sampling u1 . . . , un uniformly from the interval (F (a), F (b)),

instead of sampling them from the interval (0, 1). All that has to be done is redefining

ui ≡ F (a) + [ F (b)− F (a) ] ui, i = 1, . . . n. (5.11)

Although it is desirable that the inverse CDF F−1 has a closed form expression, this

is not required. It is not even necessary that the CDF itself has a closed form expression.

However, in such situations one has to resort to a numerical approximation. For example,

an approximate CDF can be constructed by evaluating the probability density function

(or a density kernel) at many points to build a grid, and using linear interpolation. As

the resulting approximation is piecewise linear, inversion is straightforward.
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5.2.3 Independence sampling: indirect methods

If it is impossible to draw directly from the distribution of interest, hereafter referred to

as the target distribution, indirect methods may be considered. Such methods aim to

collect a representative sample for the target distribution by considering an alternative

“candidate” distribution. This candidate distribution should be easy to sample from, and

for a good performance it should provide a reasonably accurate approximation to the

original target distribution. Indirect sampling methods involve a correction mechanism

to account for the difference between the target density and the candidate density. In

this subsection, we discuss two indirect sampling approaches resulting in independent

drawings, so that the Law of Large Numbers [LLN] and the Central Limit Theorem

[CLT] still apply.

Rejection sampling

The first indirect method we discuss is rejection sampling. By adopting this approach, one

collects a sample from the candidate distribution, and decides for each drawing whether it

is accepted or rejected. If a drawing is accepted, it is included in the sample representing

the target distribution. Rejection means that the drawing is thrown away. Note that the

rejection step is the correction mechanism which is employed in rejection sampling.

To apply the rejection method to a target density p, one first needs to specify an

appropriate candidate density q. For example, one might consider a normal or Student-t

density. Next, a constant c > 0 has to be found such that

p(x) ≤ c q(x) (5.12)

for all x, so that the graph of the kernel c q of the candidate density is entirely located

above the graph of the target density p. We note that (5.12) implies that p is allowed

to be a kernel of the target density, as the constant c can always adjust to p. However,

the candidate density q should be such that the ratio p(x)
q(x)

is bounded for all x, so that c

is finite. Basically, the rejection method consists of uniformly drawing points below the

graph of c q, and accepting the points falling below the graph of p. The remaining points

are rejected. This idea is illustrated by Figure 5.2 for a bimodal target density. The

following rejection algorithm collects a sample of size n from the target distribution with

density p, that is,

Initialize the algorithm:

The set of accepted drawings S is empty: S = ∅.
The number of accepted drawings i is zero: i = 0.

Do while i < n:

Obtain y from candidate distribution with density q.
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Figure 5.2: Illustration of rejection sampling.

Obtain u from uniform distribution U(0, 1).

If u < p(y)
c q(y)

then accept y:

Add y to the set of accepted drawings: S = S ∪ {y}.
Update the number of accepted drawings: i = i + 1.

Return S.

To minimize the fraction of rejected drawings, one should take the constant c as small as

possible, that is,

c = max
x

p(x)

q(x)
. (5.13)

Clearly, the optimal c is small if variation in the ratio p(x)
q(x)

is small. This explains that a

candidate density providing a good approximation to the target density is desirable. We

note that a natural application of rejection sampling arises when truncated distributions

are considered. The candidate density is the density without truncation. Candidate

drawings are accepted if they are feasible, and are rejected otherwise.

Importance sampling

Importance sampling is another indirect approach to obtain an estimate for E[g(X)],

where X is a random variable from the target distribution. It dates back to Hammersley

and Handscomb (1964), and it was introduced in econometrics by Kloek and Van Dijk

(1978). The method is related to rejection sampling. The rejection method either accepts
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Figure 5.3: Illustration of importance sampling. The weight function reflects the impor-
tance of drawings from the candidate density.

or rejects candidate drawings, that is, drawings either receive full weight or they do not

get any weight at all. Importance sampling is based on this notion of assigning weights to

drawings. However, in contrast to the rejection method, these weights are not based on

an all-or-nothing situation. Instead, they can take on any possible value, representing the

relative importance of drawings. If q is the candidate density, or importance function, and

p is a kernel of the target density, then importance sampling is based on the relationship

E[g(X)] =

∫
g(x) p(x) dx∫

p(x) dx
=

∫
g(x) w(x) q(x) dx∫

w(x) q(x) dx
=

E[w(Y ) g(Y )]

E[w(Y )]
, (5.14)

where Y is a random variable from the candidate distribution, and w(y) = p(y)
q(y)

is the

weight function which should be bounded. It follows from (5.14) that a consistent estimate

of E[g(X)] is given by the weighted mean

ĝw =

∑n
i=1 w(yi) g(yi)∑n

j=1 w(yj)
, (5.15)

where y1, . . . , yn are realizations from the candidate distribution and w(y1), . . . , w(yn)

are the corresponding weights. Figure 5.3 provides a graphical illustration of the method.

Points for which the graph of the target density is located above the graph of the candidate

density are not sampled often enough. To correct for this, such drawings are assigned

relatively large weights (weights larger than one). The reverse holds in the opposite case.

We note that although importance sampling can be used to estimate characteristics of
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the target density (such as the mean), it does not provide a sample according to this

density. Drawings are generated from the candidate distribution. Hence, in a strict

sense, importance sampling is not a sampling method, but a pure integration method. To

obtain a sample representation of the target distribution, one may draw x1, . . . , xn with

replacement from the sample y1, . . . , yn, n ¿ n, with probabilities proportional to the

importance weights w1, . . . , wn. This is the sampling/importance resampling approach of

Rubin (1987).

The performance of the importance sampling algorithm is strongly affected by the

choice of the candidate distribution. If the importance function q is inappropriate, the

weight function w(x) = p(x)
q(x)

would vary a lot and it might happen that only a few drawings

with extreme weights almost completely determine the estimate ĝw. This estimate would

be unstable. In particular, a situation such that the tails of the target density are fatter

than the tails of the candidate density is concerning, as this would imply that the weight

function might even tend to infinity. In such a case, E[g(X)] would not even exist, see

(5.14). It is for this reason that a fat-tailed Student-t importance function is usually

preferred to a normal candidate density, see Kloek and Van Dijk (1978) and Van Dijk

and Kloek (1980), among others. The regularity conditions and numerical accuracy of

importance sampling are discussed by Geweke (1989).

5.2.4 Dependence sampling

Another approach to sample from non-standard distributions is the Markov Chain Monte

Carlo [MCMC] approach. An MCMC method aims to collect a sample representative for

the target distribution by construction of a Markov chain converging to that distribution.

After a sufficiently long burn-in period, so that the influence of the initialization condi-

tions has become negligible, drawings from the Markov chain are regarded as drawings

from the target distribution itself. However, as Markov chain sampling naturally induces

correlation, the resulting drawings are not independent, so that the Law of Large Numbers

[LLN] and the Central Limit Theorem [CLT] no longer apply. We refer to Ross (1997)

for an introductory textbook discussion on Markov chain theory.

Metropolis-Hastings algorithm

The Metropolis-Hastings [MH] algorithm, introduced by Metropolis et al. (1953) and

generalized by Hastings (1970), is an MCMC approach which can be used to draw from

the posterior distribution for a wide variety of models. It has similarities with rejection

sampling, as a rejection mechanism is involved. However, rejected drawings are dealt with

in a different way. An excellent exposition on the MH algorithm is Chib and Greenberg

(1995) in which theory and intuition as well as application of the algorithm are discussed.

An important survey on the broader class of MCMC methods is Tierney (1994).

The MH algorithm constructs a Markov chain mimicking the target density p after a

burn-in period. This is done as follows. Given the current state x, a candidate state y is
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drawn from a transition density q(x, ·) ≡ q(·|x) from which sampling is straightforward.

The state y is accepted with probability α(x, y), depending on both the current state x

and the candidate state y. Acceptance implies that the chain moves to y. Rejection means

that the move is not made, that is, the next state is again x. This procedure defines one

iteration of the MH algorithm, and it is repeated many times. The appropriate acceptance

probability turns out to be defined by

α(x, y) = min

{
p(y) q(y, x)

p(x) q(x, y)
, 1

}
, (5.16)

see Chib and Greenberg (1995) for an explanation. In sum, the MH algorithm constructs

a Markov chain of length n as follows, that is,

Initialize the algorithm:

Choose a feasible initial state x0.

Do for i = 1, . . . , n:

Obtain y from candidate transition density q(xi−1, ·).
Obtain u from uniform distribution U(0, 1).

Compute transition probability α(xi−1, y), defined by (5.16).

If u < α(xi−1, y) then accept transition:

xi = y.

Else reject transition:

xi = xi−1.

Return x1, . . . , xn.

We note that the rejection step, determining whether the chain moves or stays, is the

correction mechanism employed in the MH approach. For example, if a state x would not

be visited often enough, there is a large probability that the chain settles down for a while

whenever such a state occurs, as subsequent candidate states y are assigned low acceptance

probabilities α(x, y). The opposite holds if a state x would occur too frequently.

Several approaches can be adopted to specify the candidate transition density q. Two

popular specifications are such that the resulting Markov chain is either an independence

chain or a random walk chain. An independence chain has the property that the candidate

state y is drawn independently of the current state x, that is,

q(x, y) = q(y). (5.17)

Typical choices for q are normal or Student-t densities. It follows from (5.16) and (5.17)

that the acceptance probability in an independence chain is given by

α(x, y) = min

{
p(y) q(x)

p(x) q(y)
, 1

}
= min

{
w(y)

w(x)
, 1

}
, (5.18)
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that is, the minimum of a ratio of importance weights and one. The interpretation of (5.18)

is that a transition from x to y resulting in a larger importance weight is always made,

whereas a transition resulting in a smaller importance weight is not always performed.

We note that (5.18) establishes a link with importance sampling. The second specification

of q that we discuss corresponds to a random walk chain. For such a chain, the transition

step y − x is drawn instead of the state y itself, that is,

q(x, y) = q(y − x). (5.19)

Typical choices for q(y−x) are normal or Student-t densities centered around 0, so that the

expectation of the next state y = x+(y−x) is the current state x. As a third possibility,

we mention that if the transition density is symmetric, that is, q(x, y) = q(y, x) for all

x, y, the acceptance probability α(x, y) reduces to

α(x, y) = min

{
p(y)

p(x)
, 1

}
, (5.20)

as in the original Metropolis algorithm, see Metropolis et al. (1953). The acceptance

probability (5.20) has a similar interpretation as (5.18). A transition from x to y im-

plying an increase in the target density is always made, whereas a transition implying

a decrease is not always performed. As for any indirect sampling method, the choice of

the candidate density q strongly affects the quality of the resulting sample. Other prac-

tical implementation issues concern the length of the burn-in period for “convergence”

of the Markov chain, and the number of effective drawings needed to obtain accurate

estimates. Cowles and Carlin (1996) and Brooks and Roberts (1998) provide summaries

of convergence diagnostics for MCMC methods.

Gibbs sampling

The MH algorithm is a general MCMC approach. A more problem-specific method within

the MCMC class is the Gibbs sampling algorithm of Geman and Geman (1984). The

Gibbs sampler is based on decomposing the multi-dimensional random variable X into

k components X1, . . . , Xk, which are not necessarily univariate. It constructs a Markov

chain, converging to the target distribution, by iteratively drawing the k components of

X conditional on the values of all other components. For many seemingly intractable

target densities, it is possible to derive a set of conditional densities for which sampling

is straightforward. The Gibbs sampler exploits this notion, as it precisely considers these

conditional densities. Its usefulness is, for example, demonstrated by Gelfand et al. (1990),

Gelfand and Smith (1990) and Smith and Roberts (1993). Casella and George (1992)

provide a tutorial on Gibbs sampling using simple examples to explain how and why the

method works.

For implementation of the Gibbs sampler, it is needed that all full conditional dis-

tributions can be sampled from. These conditional distributions are described by the
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densities p(xj|x−j), j = 1, . . . , k, where x−j = (x1, . . . , xj−1, xj+1, . . . xk) denotes the set of

k − 1 components excluding the j-th component. The Gibbs sampling algorithm collects

n drawings xi = (x1
i , . . . , x

k
i ), i = 1, . . . , n, as follows. The components xj

i , i = 1, . . . , n,

j = 1, . . . , k, are augmented into a single sequence x1
1, . . . , x

k
1, x

1
2, . . . , x

k
2, . . . , x

1
n, . . . , xk

n,

and the elements of this Gibbs sequence are generated such that

xj
i is obtained from p(xj|x−j

i−1), i = 1, . . . , n, j = 1, . . . , k,

where x−j
i−1 = (x1

i , . . . , x
j−1
i , xj+1

i−1 , . . . xk
i−1) denotes all components except xj at their most

recent values. The complete algorithm is as follows, that is,

Initialize the algorithm:

Choose a feasible initial state x0 = (x1
0, . . . , x

k
0).

Do for drawing i = 1, . . . , n:

Do for component j = 1, . . . , k:

Obtain xj
i from conditional target density p(xj|x−j

i−1).

Return x1, . . . , xn.

We note that the Gibbs sampler may be regarded as a special case of the MH algorithm in

which rejections do not occur, see, for example, Chib and Greenberg (1995) and Gelman

et al. (1995, p. 328).

Figure 5.4 illustrates how the Gibbs sampler works for two 2-dimensional target dis-

tributions featuring correlation and bimodality. Clearly, as each time one of the two

components (either x1 or x2) is fixed while the other component is sampled from its con-

ditional distribution, the sampling paths move in orthogonal directions parallel to the

coordinate axes. The horizontal position is updated given the current vertical position,

and the vertical position is updated given the current horizontal position. The graph

shows sampling paths after 10 iterations and after 1000 iterations, and it indicates that

the orthogonal movement may cause the Gibbs sampler to break down. First, the two

left-hand graphs demonstrate that high correlation results in a slowly moving sampling

path, so that the Gibbs sampler might be stuck in a local region for quite a long time.

This problem increases when the correlation between the two components becomes higher.

Second, the two right-hand graphs demonstrate that if the target density has two modes

located far away from each other, “mode hopping” seldom occurs. This essentially induces

the same problem as high correlation, that is, the Gibbs sampler might again be stuck in

a local region for a long time. As a result, an enormous number of drawings would be

needed to obtain a representative coverage of the target density. A reparameterization

of the sampling problem may be an effective way to deal with such high correlations, see

Gilks and Roberts (1996).
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Figure 5.4: Illustration of the Gibbs sampler for a correlated target density (left) and a
bimodal target density (right). The generated sample paths are shown for 10 iterations
(above) and 1000 iterations (below).

For application of the Gibbs sampler, it is desirable but not necessary that all k

conditional distributions can be directly sampled from. If a “difficult” conditional den-

sity is one-dimensional, an approximate cumulative distribution function [CDF] can be

constructed by building a density grid and using linear interpolation. Subsequently, the

inversion method can be applied to the piecewise linear approximation. This griddy

Gibbs sampling approach is proposed by Ritter and Tanner (1992). Alternatively, an MH

acceptance-rejection step might be incorporated in the Gibbs algorithm to sample from the

(not necessarily univariate) “difficult” conditional density. Although this latter method

is actually a special case of the MH algorithm, it is usually called the MH-within-Gibbs

approach.

Data augmentation

For many models containing latent variables (such as probit choice models with unob-

served random utilities), the parameters θ have a non-standard posterior distribution.

Moreover, evaluation of the likelihood function, and hence evaluation of the posterior

density, might be complicated and computationally intensive. However, standard distri-

butions would arise if the latent data, denoted by z, would be known. For example, the

binary probit model (which can be used to predict purchase incidence) would reduce to
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a linear regression model with known variance. Hence, “observing” z would greatly fa-

cilitate the sampling procedure. The data augmentation algorithm of Tanner and Wong

(1987) is a useful extension of the Gibbs sampler which is based on this notion. It extends

the sampling space, as both the parameters θ and the latent data z are sampled. In the

algorithm, z is drawn conditional on θ, and θ is drawn conditional on z. So, the latent

data are imputed using the current parameter values, and subsequently the parameters

are sampled as if the latent data are observed. By repeating this procedure many times,

a sampling sequence is constructed involving both θ and z. Disregarding z, this process

results in a Markov chain for the parameters θ converging to the posterior distribution.

Data augmentation for the conditional probit model is discussed by Albert and Chib

(1993), McCulloch and Rossi (1994) and McCulloch et al. (2000). Wei and Tanner (1990)

and Chib (1992) consider data augmentation for the censored regression model.

Gibbs sampling with auxiliary variables

Gibbs sampling with auxiliary variables is a sampling approach developed by Damien

et al. (1999). Similar to data augmentation, latent variables are incorporated in the

sampling process to facilitate drawing from the set of full conditional distributions. How-

ever, contrary to data augmentation, the latent variables are not “missing data” from the

model. Instead, they are introduced in an artificial way. The method of Damien et al.

may be interpreted as a reversion of the independence chain MH algorithm. We recall

that the MH algorithm first draws a candidate state y, given the current state xi−1, and

subsequently considers a uniform drawing u ∈ (0, 1) to determine whether the candidate

state is accepted. The sampling approach of Damien et al. turns this around, that is,

first an auxiliary drawing u from the uniform distribution is obtained and subsequently

the state y is sampled inside the acceptance region determined by u. The gain of this

reversion is that the state y is accepted by definition. However, the price to pay is that

sampling inside the acceptance region amounts to drawing from a truncated distribution.

We refer to Damien et al. (1999) for details.

5.3 Adaptive radial-based direction sampling

In this section, we introduce the class of adaptive radial-based direction sampling methods.

5.3.1 Introduction and motivation

In the overview, we have discussed several methods to draw from the posterior, or target,

density. For rejection sampling, importance sampling, and the MH algorithm, we have

noted that it is important to find a reasonably accurate candidate density. An inaccurate

candidate distribution may give rise to many rejected drawings, or many drawings with

negligible weights, implying that an enormous number of drawings is needed to obtain

reliable estimates. Even worse, complete regions of the target density with substantial
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density mass may be missed, so that the resulting sample cannot be representative at all.

A partial solution to find a suitable candidate density would be to update it sequentially.

This can be done by iteratively collecting a sample via the current candidate density and

using the information contained in the sample to improve the approximation to the target

density. Updating can either be done for a fixed number of rounds, or until a convergence

criterion has been met. Kloek and Van Dijk (1978), Van Dijk and Kloek (1980) and Oh

and Berger (1992) consider parametric updating of the candidate density, whereas Givens

and Raftery (1996) apply kernel density estimation.

We have also discussed the Gibbs sampling algorithm as a powerful tool to sample

from the target distribution. In particular, Gibbs sampling with data augmentation is a

natural and efficient way to draw the parameters of models containing latent variables.

For such models, we do not expect our proposed Monte Carlo methodology to outper-

form the Gibbs sampler. However, there are some drawbacks too. First, for convenient

implementation of the Gibbs algorithm, it is necessary that sampling is straightforward

for most of the conditional densities. This is not always the case, and obtaining an appro-

priate sampling scheme might require a large analytical effort. For “difficult” conditional

densities, one may resort to construction of an approximate grid, or alternatively, one may

incorporate an MH acceptance-rejection step. A second complication is that movement

of the Gibbs sampler may be very slow if the target density features strong correlations

or multi-modality, as movement is orthogonal and parallel to the coordinate axes. We

have illustrated this problem in Subsection 5.2.4. In principle, an appropriate reparam-

eterization, or orthogonalization, of the sampling problem should reduce the burden, see

Gilks and Roberts (1996). However, no guarantees can be given that this reparameteri-

zation approach should work well in practice. This has led Gilks et al. (1994) to develop

a new class of MCMC methods, called “adaptive direction sampling” [ADS], in which the

sampling directions are not restricted anymore. For example, the hit-and-run algorithm,

developed by Belisle et al. (1993) and generalized by Chen and Schmeiser (1996), and the

snooker algorithm of Gilks et al. (1994) are contained in the ADS class. Convergence of

ADS is discussed in Roberts and Gilks (1994). However, the practical performance of the

ADS algorithms turns out to be somewhat disappointing.

We propose the class of adaptive radial-based direction sampling [ARDS] methods

to sample from target distributions which are possibly multi-modal, skew, and feature

strong correlation. For such complicated densities, it might be difficult to come up with

a suitable candidate density, and also the Gibbs sampler may break down. The ARDS

algorithms are based on a composite transformation of the m-dimensional parameter

space. This transformation contains (i) an orthogonalizing step, and (ii) a transformation

to radial coordinates consisting of a distance measure and an (m−1)-dimensional vector of

directions. The aim of the orthogonalizing step is to rescale the sampling space such that

most of the density mass of the target distribution is located around the origin. The radial

transformation amounts to a generalization of the well-known polar transformation. The

“direction” can be regarded as defining a line through the origin, whereas the “distance”
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can be interpreted as defining a specific point on this line. In the ARDS approach,

directions are obtained by applying either an MH or an importance sampling step. Next,

the one-dimensional distance is sampled, given the obtained direction, by constructing a

density grid of the target distribution and subsequently applying the (numerical) inversion

method. The resulting direction-distance combination can be transformed to a drawing in

the original space. The idea behind ARDS is that suitable lines, or sampling directions,

can be obtained by employing a correction mechanism as in the MH algorithm or in

importance sampling, and that drawing from the target density along such lines amounts

to a one-dimensional sampling/integration problem, which is computationally feasible.

As the target density is perfectly followed along the given lines, and additionally, all lines

cross the “center” of the target density, the ARDS approach should result in relatively

accurate estimates. In the ARDS methodology, the orthogonalizing transformation is

sequentially updated by using the estimates of the first and second moments of the target

distribution obtained in successive sampling rounds. Basically, this is the parametric

candidate updating approach adopted by Kloek and Van Dijk (1978), Van Dijk and Kloek

(1980) and Oh and Berger (1992).

The advantages of the ARDS methodology are threefold. First, the algorithms are

quite parsimonious in their use of information on the shape of the target density, that

is, they can often be applied successfully without a preliminary study of the shape of

the posterior density. Chen et al. (2000) refer to such algorithms, freeing the researcher

from computational details, as black-box sampling. Second, the algorithms are flexible

and quite robust, that is, they can handle a large variety of target distributions featuring

multi-modality, strong correlation, extreme skewness and fat tails. Third, the algorithms

can handle multiple linear inequality conditions on the parameter space without any

additional complications in implementation. In practice, one may want to impose such

parameter restrictions, for example, for identification purposes or because of theoretical

considerations. The ARDS approach extends earlier methods like the method of Box and

Muller (1958), the adaptive direction sampling [ADS] algorithms proposed by Gilks et al.

(1994), the mixed integration method by Van Dijk et al. (1985), and the spherical-radial

integration method by Monahan and Genz (1997). We provide details later on.

5.3.2 The radial transformation

As the radial transformation is at the heart of the ARDS algorithms, we first describe

the transformation from Cartesian coordinates to radial coordinates. In our notation,

y = (y1, . . . , ym) denotes the Cartesian coordinates of a point, and (ρ, η) denotes the

corresponding radial coordinates. Here, η = (η1, . . . , ηm−1) indicates the direction of the

point relative to the origin, and ρ is related to the Euclidean distance.
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In a general form, the radial transformation may be characterized by its inverse trans-

formation

y1 = ρ h1(η1, . . . , ηm−1),
... (5.21)

ym−1 = ρ hm−1(η1, . . . , ηm−1),

ym = ρ hm(η1, . . . , ηm−1),

where m ≥ 2 is the dimension, and h(η) = (h1(η), . . . , hm(η)) are differentiable functions.

The radial transformation maps the Cartesian coordinates y to a position h(η) on the

unit circle (the direction) and a stretching factor ρ which further determines the position

of y given h(η) (the distance). It can be shown that the Jacobian of the general radial

transformation is given by

Jy(ρ, η) = det
(

∂y(ρ,η)
∂η′

∂y(ρ,η)
∂ρ

)
= ρm−1 det

(
∂h(η)
∂η′ h(η)

)
≡ Jy(ρ) Jy(η). (5.22)

The form of this Jacobian has two important implications which are used in ARDS. First,

it turns out that implementation of the ARDS algorithms is only based on the Jacobian

factor Jy(ρ), and does not depend on Jy(η). The factor Jy(η) drops out of the calculations,

because of the multiplicative structure of (5.22). Second, as Jy(ρ) = ρm−1 is invariant with

respect to the functions h1, . . . , hm, our approach can be applied to any transformation

satisfying (5.21).

The polar transformation

A well-known special case of the general transformation described above is the two-

dimensional polar transformation with inverse transformation

y1 = ρ cos(η), (5.23)

y2 = ρ sin(η). (5.24)

The standard polar transformation from y ∈ R2 to (ρ, η) ∈ R+× (0, 2π), which is one-to-

one with (5.23)−(5.24), is given by

ρ =
√

y2
1 + y2

2, (5.25)

η = sgn(y2) arccos(y1/ρ). (5.26)

The left panel of Figure 5.5 illustrates the relationship between orthogonal coordinates

and standard polar coordinates. A property of the standard polar transformation is that

ρ ∈ R+, implying that the direction η only defines one half of a line, and not a full

line. However, in ARDS, we draw from the target density along unbounded lines to take

into account as much of the shape of this target density as possible. The signed polar
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Figure 5.5: The relationship between Cartesian coordinates and polar coordinates in
the two-dimensional case: standard polar coordinates in the left panel and signed polar
coordinates in the right panel.

transformation from y ∈ R2 to (ρ, η) ∈ R× (−π/2, π/2) is a variant of the standard polar

transformation such that η does define a complete line. It is given by

ρ = sgn(y1)
√

y2
1 + y2

2, (5.27)

η = arcsin(y2/ρ), (5.28)

with inverse transformation again defined by (5.23)−(5.24). The relationship between

orthogonal coordinates and signed polar coordinates is shown in the right panel of Figure

5.5.

An efficient radial transformation

A drawback of the polar transformation is that it is possible but not straightforward to

generalize it to more than two dimensions, see Muirhead (1982, Theorems 1.5.5 and 2.1.3).

Furthermore, the polar transformation is computationally not very efficient. We therefore

propose a transformation which satisfies (5.21), is easy to generalize to more than two

dimensions, and is more efficient than the polar transformation. For m dimensions, the

transformation from (y1, . . . , ym) ∈ Rm to (ρ, η) = (ρ, η1, . . . , ηm−1) ∈ R × {η ∈ Rm−1 :

η′η < 1} is given by

ρ = sgn(ym)
√

y′y, (5.29)

ηj =
yj

ρ
, j = 1, . . . , m− 1, (5.30)
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Figure 5.6: The relationship between Cartesian coordinates and radial coordinates in the
two-dimensional case.

with inverse transformation

yj = ρ ηj, j = 1, . . . m− 1, (5.31)

ym = ρ
√

1− η′η . (5.32)

The Jacobian of this transformation is given by

Jy(ρ, η) = Jy(ρ) Jy(η) = ρm−1(1− η′η)−1/2. (5.33)

Basically, y is transformed to m − 1 Cartesian coordinates η on the unit circle and a

stretching factor ρ. This is illustrated in Figure 5.6 for m = 2 dimensions. We note that

the sign of ρ determines whether y is located above or below the y1 axis.

5.3.3 Adaptive radial-based Metropolis-Hastings sampling

We start by defining the adaptive radial-based Metropolis-Hastings sampling algorithm

[ARMHS], which is based on a candidate generating density that is taken to be multi-

variate normal with parameters µ and Σ. However, in fact, any elliptically contoured

candidate distribution can be considered without affecting the sampling results. Any

density within the elliptical class is of the form cm(det(Σ))−1/2f((x − µ)′Σ−1(x − µ)),

where cm is a normalizing constant, see, for example, Muirhead (1982, Section 1.5). El-

liptical distributions are symmetric, unimodal, and their kurtosis is determined by the

function f . A fundamental property is that they are preserved under affine transfor-

mations, although the mean and the covariance matrix might change. This property is

essential for the derivation of the ARDS algorithms. The normal density would arise
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when f(u) = exp(−u/2). The m-variate Student-t density with ν degrees of freedom

corresponds to f(u) = (1 + u/ν)−(ν+m)/2. As drawing from a normal distribution is more

efficient than drawing from a Student-t density or any other elliptically contoured den-

sity, the normal distribution is used in the implementation of ARMHS and any other

ARDS algorithm. We emphasize that, although for expository purpose the subsequent

discussion is focussed on convenient normal candidate drawings, these drawings may be

obtained from any member of the class of elliptical distributions.

ARMHS is related to the independence chain MH algorithm. It considers drawings

from a normal N(µ, Σ) candidate density, where hopefully µ and Σ provide good approxi-

mations to the unknown mean and covariance matrix of the target distribution. However,

in contrast to the standard MH algorithm, these drawings are not immediately used for

construction of a Markov chain in the original parameter space. Instead, a composite

transformation is made. For expository purpose, we treat this transformation explicitly

in two steps.

The first step in the composite transformation concerns a location-scale transformation

of a realization x into a realization y. The aim of this orthogonalizing step is to rescale

the sampling space such that most of the density mass of the target distribution is located

around the origin. This rescaling corresponds to the affine transformation1

y = y(x|µ, Σ) = Σ−1/2(x− µ), (5.34)

with inverse transformation

x = x(y|µ, Σ) = µ + Σ1/2y, (5.35)

and Jacobian

Jx(y) = det(Σ1/2). (5.36)

The second step is the radial transformation from y to (ρ, η), defined by (5.29) and (5.30),

with inverse transformation given by (5.31) and (5.32), and Jacobian (5.33).

Combining the two transformations results in the composite transformation, denoted

by (
ρ

η

)
=

(
ρ(x|µ, Σ)

η(x|µ, Σ)

)
≡

(
ρ( y(x|µ, Σ) )

η( y(x|µ, Σ) )

)
, (5.37)

with inverse transformation

x = x(ρ, η|µ, Σ) ≡ x( y(ρ, η) |µ, Σ), (5.38)

and Jacobian

Jx(ρ, η) = Jy(ρ, η) Jx(y) = Jy(ρ) Jy(η) det(Σ1/2). (5.39)

Applying the two transformations to a candidate realization x∗i from N(µ, Σ) provides

a one-dimensional distance ρ∗i and an (m − 1)-dimensional direction η∗i . Discarding the

1Σ1/2 denotes the Cholesky decomposition of Σ, and Σ−1/2 denotes the inverse matrix of Σ1/2.
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distance ρ∗i , the candidate direction η∗i is either accepted or rejected in an MH step, that

is, the direction becomes

ηi =

{
η∗i with probability α(ηi−1, η

∗
i )

ηi−1 with probability 1− α(ηi−1, η
∗
i )

(5.40)

for an appropriate acceptance probability α(ηi−1, η
∗
i ), which is derived below. An iteration

of ARMHS is completed by drawing from the target distribution on the line defined by

the direction ηi. This can be done as follows. First, one draws a distance ρi from the

transformed target density p(ρ|ηi), given the direction ηi, by constructing a density grid

and using the (numerical) inversion method. Next, ρi and ηi are transformed to the

original space by inverting the composite transformation applied earlier. In sum, an

iteration of ARMHS consists of the following steps, that is,

1. Generate x∗i from N(µ, Σ).

2. Transform x∗i to y∗i using (5.34).

3. Transform y∗i to ρ∗i and η∗i using (5.29) and (5.30).

4. Apply MH step to ηi, see (5.40).

5. Generate ρi from p(ρ|ηi) by constructing a grid and using the inversion method.

6. Transform ρi and ηi to yi using (5.31) and (5.32).

7. Transform yi to xi using (5.35).

We note that the first two steps can be combined by immediately drawing y∗i from

N(0, Im), where Im denotes the m×m identity matrix.

Step 4 of an ARMHS iteration requires the acceptance probability α(ηi−1, η
∗
i ), and

step 5 requires the distribution of the distance ρ conditional on the direction ηi. It is

shown in Appendix 5.A that, for all elliptically contoured candidate distributions with

mean µ and covariance matrix Σ,

α(ηi−1, η
∗
i ) = min

{
I(η∗i )

I(ηi−1)
, 1

}
, (5.41)

where

I(η) =

∫ ∞

−∞
κ(ρ|η) dρ, (5.42)

and where κ(ρ|η) is a kernel of the conditional density p(ρ|η), defined by

p(ρ|η) ∝ κ(ρ|η) = p( x(ρ, η|µ, Σ) ) |Jy(ρ)|. (5.43)

Under very mild regularity conditions, the sampled Markov chain converges in distribution

to the target distribution, see Bauwens et al. (2004).
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An interesting property of the acceptance probability (5.41) is that it does not depend

on the functional form of the candidate density provided that this candidate density is

elliptically contoured. However, it does depend on the generated direction η and hence

on the mean and covariance matrix of the candidate distribution. To compute (5.41),

requiring evaluation of the one-dimensional integral I(η), we use the iterative Simpson’s

procedure discussed in Subsection 5.2.1. As the density of ρ conditional on η is pro-

portional to the integrand of I(η), the function evaluations required in the Simpson’s

procedure can also be used to construct a grid for p(ρ|η). Hence, sampling of the distance

ρ conditional on the direction η, that is, step 5 in the ARMHS iteration, is straightforward

and cheap in terms of computing time. To capitalize on the obtained density grid, one

may consider several drawings of ρ for each drawing of η. This amounts to collecting sev-

eral drawings from the target density along the considered line. Although such drawings

would be dependent, the approach still provides consistent estimates, see Geweke (1999,

p. 44).

The integral I(η) has infinite integration bounds. However, we use finite bounds for its

numerical evaluation. Of course, it is important to take these bounds such that practically

all density mass of ρ given η is included, but for the sake of efficiency it is also desirable

that the integration interval is as small as possible. To obtain bounds for ρ, we impose

minimum and maximum values for each element of x in the original space. It is often

possible to find sensible bounds by either theory and/or common sense. More generally, by

imposing bounds on the values of x we impose linear inequality conditions on the original

parameter space. These restrictions are of the form c′jx ≤ bj, where j indicates the number

of the restriction. For given η, the conditions imposed on the original space translate to

bounds ρmin and ρmax for ρ through the relationships ρmin = maxj{ρj : ρj < 0} and

ρmax = minj{ρj : ρj > 0}, where ρj =
bj−cj

′µ
cj
′(x̃−µ)

with x̃ = x(ρ = 1, η|µ, Σ). As additional

linear restrictions reduce the integration interval for I(η), making evaluation of I(η) more

efficient, they do not put a burden on the algorithm, but they might result in an efficiency

gain. We note that µ should be in the feasible region, and that one may want to split up

the integration interval (ρmin, ρmax) into two subintervals (ρmin, 0) and (0, ρmax) and apply

deterministic integration to these subintervals separately. The Jacobian Jy(ρ) = ρm−1

implies that the integrand of I(η), and hence p(ρ|η), has value 0 at ρ = 0. Taking this

given point into account turns out to be rewarding.

For implementation of ARMHS, the mean µ and the covariance matrix Σ of the normal

candidate distribution have to be specified. Heuristically, the quality of the sample should

improve if µ and Σ are close to, rather than far from, the target mean and covariance

matrix, respectively. ARMHS employs an adaptive updating approach. Given a generated

sample x1, x2, . . . , xn from a previous run of the algorithm, µ and Σ are replaced by their
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Monte Carlo estimates, which are given by

µ̂ =
1

n

n∑
i=1

xi, (5.44)

Σ̂ =
1

n

n∑
i=1

(xi − µ̂)(xi − µ̂)′, (5.45)

respectively. Using these estimates, one can proceed with a new sampling round. This

process can be repeated any number of times. We note that information coming from

a “wrong” sample may have a misleading effect and may worsen convergence. Hence,

convergence should be monitored by usual tools, see Van Dijk and Kloek (1980) and

Oh and Berger (1992). However, as only the direction η, and not the distance ρ, is

generated from the candidate distribution, the risk of collecting a “wrong” sample is

limited. ARMHS is quite robust, as the distance ρ conditional on the direction η is

immediately obtained from the target distribution, that is, sampling on a given line mimics

the target density. To monitor convergence over sampling rounds, we find the Mahalanobis

distance particularly useful. It is defined as Mahj = (µ̂(j) − µ̂(j−1))′[Σ̂(j)]−1(µ̂(j) − µ̂(j−1)),

where j indicates the sampling round. The Mahalanobis distance measures the extent to

which the estimated posterior mean changes between successive sampling rounds, while

taking into account parameter uncertainty and the underlying correlation structure.

Illustration

Figure 5.7 illustrates ARMHS for a bivariate bimodal target distribution. The upper two

graphs display the target density in the original space. A point, representing a realization

from the normal candidate distribution N(µ, Σ), is shown in the contour plot. If µ and

Σ would coincide with the mean and the covariance matrix of the target distribution,

the location-scale transformation would lead to the target density depicted in the middle

graphs. The gain of the orthogonalizing transformation is that the density mass is better

located around the origin in the sense that a line through the origin, defined by a direction

η, “hits the density mass” more easily. As ARMHS precisely considers such lines, the

location-scale transformation may lead to a substantial improvement for appropriate µ

and Σ. The target density after applying the radial transformation is depicted in the

bottom two graphs.

We have distinguished seven steps in an iteration of ARMHS. The visualization of

these steps in Figure 5.7 is as follows. In step 1, the point in the upper contour plot

is drawn from N(µ, Σ). This point is transformed in step 2 to the point in the middle

contour plot. Step 3 provides the point in the bottom contour plot. The direction η, that

is, the horizontal position of the point in the bottom contour plot, is either accepted or

rejected in step 4. In this illustration, we accept η. Step 5 consists of drawing one (or

several) distance(s) ρ on the vertical line through the point. Step 6 can be represented

by the transformation of points generated on the line in the bottom contour plot to
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Figure 5.7: Adaptive radial-based direction sampling: target density in original space
(above), target density after location-scale transformation (middle) and target density
after radial transformation (below).
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Figure 5.8: The marginal target density p(η), the marginal candidate density q(η), and
the weight function p(η)/q(η) (up to scaling constants). The original target density is the
same as in the previous figure.

points generated on the line in the middle contour plot. Similarly, step 7 results in points

generated on the line in the upper contour plot. We note that the MH acceptance-rejection

mechanism employed in ARMHS takes into account the shape of the target density, so

that most of the generated lines correspond to directions with “high” density.

Figure 5.8 shows the marginal target density p(η) resulting from the bottom two graphs

in Figure 5.7. This density looks ill-behaved. However, similar to the relationship between

the standard independence chain MH algorithm and standard importance sampling, it is

not directly the target density that matters in the MH step of ARMHS. What matters is

the ratio of the target density to the candidate density, that is, p(η)/q(η), where q(η) is

the marginal density resulting from the elliptically contoured candidate distribution. It is

seen from Figure 5.8 that the weight function p(η)/q(η) is well-behaved in the sense that

variation in its values is only moderate. We further note from the bottom two graphs in

Figure 5.7 that the transformed target density is bimodal with respect to the distance ρ.

However, this is not a problem, as a grid for p(ρ|η) can always be constructed easily.

5.3.4 Adaptive radial-based importance sampling

Adaptive radial-based importance sampling [ARIS] replaces the MH step of ARMHS for

the direction η by an importance sampling step. In ARIS, every sampled direction ηi

is kept, a distance ρi is sampled conditional on it, and the resulting radial coordinates

are transformed to a drawing xi in the original space, which is weighted according to the
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appropriate importance weight

w(ηi) =
p(ηi)

q(ηi)
∝ I(ηi), (5.46)

where I(η) is defined by (5.42), see Appendix 5.A. In sum, an iteration of ARIS consists

of the following steps, that is,

1. Generate x∗i from N(µ, Σ).

2. Transform x∗i to y∗i using (5.34).

3. Transform y∗i to ρ∗i and η∗i using (5.29) and (5.30).

4. Apply importance sampling step to ηi: ηi = η∗i with weight w(ηi) defined by (5.46).

5. Generate ρi from p(ρ|ηi) by constructing a grid and using the inversion method.

6. Transform ρi and ηi to yi using (5.31) and (5.32).

7. Transform yi to xi using (5.35).

Again, the first two steps can be combined by immediately drawing y∗i from N(0, Im),

where Im denotes the m×m identity matrix.

An interpretation of ARIS is that one samples from the target distribution on lines

with directions being derived from the elliptically contoured candidate distribution. Each

line receives a weight, indicating the importance of the underlying direction. The weight

of a line is carried over to any realization on that line. Alternatively, one may interpret

ARIS as being just a special case of standard importance sampling. A realization x in

the original space is a function of a realization (ρ, η) in the transformed space, see (5.38),

implying that the importance weight of (ρ, η) is also the importance weight of x. Taken

together, step 1 to step 5 of an ARIS iteration can be regarded as providing a realization

(ρi, ηi) from a candidate distribution with density

qimp(ρ, η) = q(η) p(ρ|η), (5.47)

and providing the corresponding importance weight

w(ρ, η) =
p(ρ, η)

qimp(ρ, η)
=

p(η) p(ρ|η)

q(η) p(ρ|η)
=

p(η)

q(η)
, (5.48)

which coincides with (5.46). We note that the importance function qimp takes into account

the shape of the target density through p(ρ|η). This is not the case in standard impor-

tance sampling with importance function q(η) q(ρ|η) in the transformed space, explaining

that the importance function of ARIS is more accurate than the importance function in

standard importance sampling with a normal or Student-t candidate density. As ARIS
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can be interpreted as a special case of importance sampling, its convergence properties

follow immediately, see Geweke (1989) for details.

Similar to ARMHS, the parameters µ and Σ of the location-scale transformation can

be updated by replacing them by their Monte Carlo estimates. These estimates are given

by

µ̂w =

∑n
i=1 w(ηi) xi∑n

i=1 w(ηi)
, (5.49)

Σ̂w =

∑n
i=1 w(ηi) (xi − µ̂w)(xi − µ̂w)′∑n

i=1 w(ηi)
, (5.50)

where x1, x2, . . . , xn is the collected sample, and w(η1), w(η2), . . . , w(ηn) are the corre-

sponding importance weights.

5.3.5 A classification of related methods

The ARDS methodology is related to several algorithms put forward in the literature.

First, it can be regarded as an extension of the well-known method of Box and Muller

(1958) to generate two normal random variables. The latter method is based on the

two-dimensional standard polar transformation, whereas the ARDS algorithms can be

implemented for a broad class of radial transformations. Furthermore, the ARDS methods

generate directions η using an MH or an importance sampling step, and generate distances

ρ from a very accurate numerical approximation to the model-specific target distribution.

Basically, the Box-Muller method generates a direction η and a distance ρ for a bivariate

normal distribution, and transforms the resulting direction-distance combination to the

original space. The employed polar transformation implies that η is uniformly distributed

between 0 and 2π and that ρ2 has a χ2-distribution with two degrees of freedom, or

equivalently, an exponential distribution with mean 2. In the Box-Muller algorithm,

drawings from the exponential distribution are obtained through the inversion method,

see, for example, Law and Kelton (1991, p. 491).

It is also interesting to compare ARDS with the class of adaptive direction sampling

[ADS] algorithms proposed by Gilks et al. (1994). In ADS, only information on the shape

of the target density is used, and no candidate density is considered. ADS was developed

as a flexible alternative to the Gibbs sampler, which is restricted by its orthogonal sample

paths. Another difference is that, when using ARDS, one generates distances ρ from

a numerically very accurate approximation to the target distribution. This step is not

spelled out in ADS. As ARMHS and ARIS are members of the MH and importance

sampling classes, the convergence properties of these methods are well established. This

is not so transparent for the ADS methods, see Gilks et al. (1994) and Roberts and Gilks

(1994).

The proposed ARDS class contains several algorithms. So far, we have discussed

ARMHS and ARIS. However, one may also define an adaptive radial-based rejection
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sampling variant [ARRES]. In this algorithm, the sampled direction ηi is accepted if

u < w(ηi)
c

, and it is rejected otherwise. Here, u is uniformly drawn in (0, 1) and c is a

constant such that w(η) ≤ c for all η ∈ {η ∈ Rm−1 : η′η < 1}. The Monte Carlo updates

(5.44) and (5.45) for µ and Σ apply to the accepted transformed drawings.

As another variant, one can replace sampling of the distances ρ by evaluating the

one-dimensional integral of interest after transforming the original integral to radial coor-

dinates and conditioning on the generated directions η. One can combine such determin-

istic integration with respect to ρ with rejection sampling, importance sampling or MH

sampling with respect to η, and evaluate posterior moments. For the case of importance

sampling, this has been done in the so-called mixed integration method of Van Dijk et al.

(1985). A related method is described by Monahan and Genz (1997) who use the term

spherical-radial integration. These methods can be regarded as special cases of the ARDS

class in which the step of generating random drawings of ρ is reduced to evaluating only

a one-dimensional integral. A limitation of deterministic integration with respect to ρ

is that one has to compute a different one-dimensional integral for each moment of the

target distribution in which one is interested.

5.4 Applications

In this section, we use a set of models to illustrate the versatility of the radial-based

algorithms. We compare ARMHS and ARIS to the (independence chain) MH algorithm

and to importance sampling. In all examples, the MH method and importance sampling

are based on a Student-t candidate density with 5 degrees of freedom. We start with

an artificial example in which the moments of the posterior distribution are known by

construction. Next, we consider two empirical examples. The first empirical example

involves a regression model with scale contamination to investigate a study from Justel

and Peña (1996) concerning the oxidation of nitric acid in a plant. Second, we consider a

mixture model as in Frühwirth-Schnatter (2001) to analyze economic growth in the USA.

We note that in these two empirical examples the mixture process refers to the data

space. However, such mixture processes may give rise to bimodality, extreme correlation

and skewness in the parameter space.

An artificial example

To illustrate the performance of ARDS, we first consider an 8-dimensional trimodal mix-

ture distribution featuring skewness, high correlation (varying from −0.95 to 0.90) and

multimodality. This target distribution is given by

p1 N(µ1, Σ1) + p2 N(µ2, Σ2) + p3 N(µ3, Σ3),
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where

µ1 = 1.5 (1, 2, 3, 4, 5, 6, 7, 8)′,

µ2 = 1.5 (5, 6, 7, 8, 1, 2, 3, 4)′,

µ3 = 1.5 (8, 7, 6, 5, 4, 3, 2, 1)′,

Σ1 = Σ2 = Σ3 = I8,

p1 = p2 = p3 = 1/3.

We estimate the first and second moments of this distribution using ARMHS, ARIS,

MH and importance sampling. This is done in several sampling rounds. In our adaptive

approach, additional sampling rounds are considered as long as the Mahalanobis distance

is larger than 0.02. However, in the experiment we allow for at most 8 rounds. In any

round, ARMHS and ARIS draw 5000 directions and 5 distances per direction, resulting in

a sample of size 25000. To make the computing times comparable, the MH and importance

sampling algorithms are allowed to collect a larger sample of size 250000. The mean for

the initial candidate density is set at 6 for all eight components. Furthermore, the scale is

taken sufficiently large so that the MH algorithm and importance sampling can initially

cover the whole target density.

The estimates of the location and scaling parameters are reported in Table 5.1, together

with the true parameter values. The table indicates that ARMHS and ARIS do a good job,

whereas the MH algorithm and importance sampling fail. ARIS only needs 5 rounds to

reach convergence (according to our definition), whereas the other three algorithms need

the maximum number of rounds. However, after eight rounds also ARMHS has converged,

whereas the other two algorithms clearly have not, see the reported Mahalanobis distances

which concern the final sampling round. We note that the average computing times per

sampling round are comparable for the four algorithms.

The acceptance rates for ARMHS and MH (reported for the final round) show a

large difference in values. Furthermore, the moment estimates, obtained from importance

sampling, are almost completely determined (99.7%) by only 5% of the drawings. In

contrast, in ARIS the 5% most influential drawings only account for 29.2% of the total

weight.

Finally, to see whether the favorable results are merely a coincidence, we repeat the

experiment above ten times for different seeds of the random number generator. The

results are robust. ARMHS succeeds 9 times and ARIS even succeeds for all 10 repeti-

tions, whereas MH and importance sampling only have success rates of 30%, making the

outcomes of the latter two methods unreliable.



108 A radial-based Monte Carlo methodology

T
ab

le
5.

2:
S
am

p
li
n
g

re
su

lt
s

fo
r

th
e

sc
al

e
co

n
ta

m
in

at
io

n
m

o
d
el

.

b
ou

n
d
s

A
R

D
S

in
it

ia
li
za

ti
on

A
R

M
H

S
A

R
IS

M
H

IS
la

rg
e

sa
m

p
le

m
in

.
m

ax
.

m
ea

n
s.

d
.

m
ea

n
s.

d
.

m
ea

n
s.

d
.

m
ea

n
s.

d
.

m
ea

n
s.

d
.

m
ea

n
s.

d
.

β
1

−1
0.

00
10

.0
0

0.
00

2.
00

0.
81

0.
19

0.
81

0.
19

0.
81

0.
20

0.
81

0.
20

0.
81

0.
19

β
2

−1
0.

00
10

.0
0

0.
00

2.
00

1.
01

0.
52

1.
00

0.
55

1.
01

0.
58

1.
02

0.
57

1.
01

0.
54

β
3

−1
0.

00
10

.0
0

0.
00

2.
00

−0
.6

1
0.

09
−0

.6
1

0.
10

−0
.6

1
0.

10
−0

.6
1

0.
10

−0
.6

1
0.

10

σ
0.

00
10

.0
0

5.
00

2.
00

2.
84

1.
32

2.
77

1.
38

3.
06

1.
38

3.
09

1.
39

2.
82

1.
36

ω
1.

00
10

.0
0

5.
00

2.
00

3.
40

2.
35

3.
48

2.
39

3.
60

2.
48

3.
70

2.
58

3.
48

2.
40

p
0.

00
1.

00
0.

50
0.

20
0.

47
0.

34
0.

51
0.

34
0.

43
0.

34
0.

43
0.

34
0.

49
0.

34

d
ra

w
in

gs
p
er

it
er

at
io

n
(η
×

ρ
)

50
00
×5

50
00
×5

25
00

00
25

00
00

n
u
m

b
er

of
it

er
at

io
n
s

5
4

4
4

av
er

ag
e

ti
m

e
p
er

it
er

at
io

n
(i

n
s)

39
.8

37
.6

43
.1

47
.0

M
ah

al
an

ob
is

d
is

ta
n
ce

0.
02

0.
00

0.
01

0.
01

ac
ce

p
ta

n
ce

ra
te

(i
n

%
)

58
.2

11
.4

5%
m

os
t

in
fl
u
en

ti
al

w
ei

gh
ts

(i
n

%
)

19
.6

62
.8



5.4 Applications 109

0.0 0.4 0.8 1.2 1.6

1

2
β1 
β1 ARMHS 
β1 MH 

−1 0 1 2 3

0.4

0.8 β2 
β2 ARMHS 
β2 MH 

−1.0 −0.8 −0.6 −0.4 −0.2 0.0

2

4
β3 
β3 ARMHS 
β3 MH 

0 2 4 6 8

0.2

0.4
σ 
σ ARMHS 
σ MH 

2 4 6 8 10

0.2

0.4 ω 
ω ARMHS 
ω MH 

0.0 0.2 0.4 0.6 0.8 1.0

1

2
p 
p ARMHS 
p MH 

Figure 5.9: Marginal densities for the scale contamination model.

Scale contamination

Justel and Peña (1996) investigate a data set from Brownlee (1965, p. 491−500) concern-

ing the oxidation of ammonia to nitric acid in a plant. The data set contains 21 daily

observations on four variables. The stack loss rate yt, that is, the proportion of ingoing

ammonia to the plant that escapes unabsorbed, is related to the amount of air flow x1,t

(representing the rate of operation of the plant), the temperature of the cooling water

x2,t, and the concentration of the circulating acid x3,t. However, several observations

might be classified as outliers. In a regression setting, it is sufficient to allow for scale

contamination, as in the model

yt = β1 x1,t + β2 x2,t + β3 x3,t + εt,

εt ∼ N(0, σ2
t ),

σt =

{
σ with probability 1− p

ωσ with probability p,

For identification of the two variance regimes, we impose that ω > 1. The prior for the

parameter vector (β1, β2, β3, σ, ω, p)′ is chosen proportional to [(1−p)σ+pωσ]−1 within the

parameter bounds reported in Table 5.2. The prior density is zero outside these bounds.

Estimates of the mean and the covariance matrix of the six model parameters are

obtained by considering drawings from ARMHS, ARIS, MH and importance sampling.

The sampling setup is similar to the setup in the previous example. The parameter
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estimates are reported in Table 5.2, together with the corresponding large sample values

(computed from 250000 ARMHS drawings). All four methods trace back the response

parameters β1, β2 and β3 accurately. However, this is not the case for the remaining three

parameters. In particular, MH and importance sampling underestimate the left mode of

the bimodal marginal density of σ, resulting in overestimation of the mean of σ. This is

also illustrated in Figure 5.9 in which the large sample marginal densities (250000 ARMHS

drawings) and the estimated densities from 25000 ARMHS drawings and from 250000

MH drawings are shown. Furthermore, MH and importance sampling underestimate the

right mode of the bimodal marginal density for the mixture probability p, resulting in

underestimation of the mean of p. We note from Table 5.2 that the average computing

times per sampling round are again comparable for the four considered algorithms, and

that all algorithms have converged (in terms of our Mahalanobis distance definition)

within 4 or 5 rounds.

The difference between the reported acceptance rates of ARMHS and MH is striking.

The acceptance rate of the former method is about five times as high as the acceptance

rate of the latter method. Furthermore, the distribution of the importance weights for

ARIS is much more uniform than the weight distribution for importance sampling. In the

final round of the importance sampling procedure, the 5% most influential drawings have

63% of the total weight, whereas this is only about 20% in ARIS. Again, this demonstrates

the accuracy of the ARDS algoritms.

A mixture model for the growth rate of US GNP

As another illustration of our algorithms, we consider a mixture model with two AR(1)

regimes for the growth of real gross national product [real GNP]. This model is similar

to the model considered in Frühwirth-Schnatter (2001) where another recent sampling

method is discussed. The model is given by

yt =

{
β11 + β12 yt−1 + εt with probability p

β21 + β22 yt−1 + εt with probability 1− p,

εt ∼ N(0, σ2), (5.51)

where yt denotes the quarterly growth rate. We investigate data concerning US real GNP

(source: Economagic). The data consist of observations from the first quarter of 1959 to

the last quarter of 2001. Figure 5.10 displays both the real GNP level and the quarterly

growth rate (defined as 100 times the first difference of the logarithm). The priors for

β11, β12, β21, β22 and p are chosen uniform, and the prior for σ is taken proportional to

1/σ. For identification, it is imposed that β11 < β21. Again parameter bounds apply, see

Table 5.3. The sampling setup is identical to the setup in the previously considered scale

contamination example.
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Figure 5.10: Real GNP of the United States in billions of dollars (above), and its quarterly
growth rate in percents (below).
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Figure 5.11: Marginal densities for the two-regime mixture model for US real GNP.
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The parameter estimates are reported in Table 5.3, together with the corresponding

large sample values (computed from 250000 ARMHS drawings). Furthermore, Figure

5.11 shows the large sample marginal densities, and the densities estimated from 25000

ARMHS drawings and from 250000 MH drawings. The large sample densities (obtained

from 250000 ARMHS drawings) are smooth, while this is not always the case for the

“small sample” densities. However, we note that the “small sample” MH densities have

been constructed from the same number of drawings as the smooth large sample ARMHS

densities. In general, the ARMHS, ARIS and importance sampling estimates are close

to each other, but the MH estimates are sometimes quite different. In particular, this is

illustrated in the density of the mixture probability p. MH overestimates the left mode

and underestimates the right mode. The average computing times per sampling round

are again comparable for the four considered algorithms, but only ARIS has “converged”

within 8 rounds, although the Mahalanobis distance for ARMHS is also small. The accep-

tance rates (ARMHS and MH) and the total weight of the 5% most influential drawings

(ARIS and importance sampling) again provide support for the ARDS algorithms.

5.5 Conclusions

In this chapter, we have provided an overview of some frequently used integration meth-

ods. These methods can be applied to get insight into the posterior density of model

parameters. We have also paid attention to the limitations of current algorithms, and

we have proposed a new methodology which extends current methods. In particular,

we have focussed on extending the Metropolis-Hastings [MH] and importance sampling

methods by applying a radial transformation to the parameter space of the posterior,

or target, density. In our adaptive radial-based direction sampling [ARDS] algorithms,

sampling does not take place in the m-dimensional parameter space directly, but in an

(m − 1)-dimensional subspace of directions. The final dimension, which corresponds to

a distance measure, is drawn from the target density (conditional on the directions) us-

ing the inversion method. In this way, the shape of the posterior density is perfectly

taken into account along the sampled directions. For a given number of drawings, this

approach requires more function evaluations of the posterior density than a traditional

MH or importance sampling algorithm. The usual type of tradeoff occurs, that is, with a

more sophisticated algorithm one hopes to get “correct” results with less drawings than

with a less sophisticated algorithm. It may also happen that a simple method cannot

deliver reliable results. It would however be surprising when ARDS cannot provide good

results while the simpler, computationally less intensive, methods can. This is confirmed

by three illustrations. Moreover, one can use the ARDS algorithms as a preliminary step

in which the posterior distribution is explored to prepare for a method more tailored to

the problem being studied. Our methods can be characterized as black-box algorithms,

see Chen et al. (2000). We emphasize that there is no claim that the ARDS algorithms

are superior in theory to other kinds of algorithms. Such a claim would not make sense.
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For any model/data combination, a sufficient research effort might result in a specific

algorithm performing better than ARDS or other algorithms. However, this is not guar-

anteed, and the effort required may not be rewarding. An interesting extension of the

discussed methodology would be to incorporate ARMHS in a Gibbs algorithm, where a

subset of the parameters can be sampled directly, while the remaining parameters cannot.
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5.A Derivations

In this appendix, we derive the conditional density p(ρ|η), the weight function w(η) and

the acceptance probability α(ηi−1, η
∗
i ). First, it follows from (5.38) and (5.39) that the

target density p(x) in terms of ρ and η is given by

p(ρ, η) = p( x(ρ, η|µ, Σ) ) |Jx(ρ, η)|
= p( x(ρ, η|µ, Σ) ) |Jy(ρ)| Jy(η) det(Σ1/2), (5.52)

implying that

p(ρ|η) ∝ p(ρ, η)

= p( x(ρ, η|µ, Σ) ) |Jy(ρ)| Jy(η) det(Σ1/2)

∝ p( x(ρ, η|µ, Σ) ) |Jy(ρ)|
≡ κ(ρ| η), (5.53)

and implying that

p(η) =

∫ ∞

−∞
p(ρ, η) dρ

=

∫ ∞

−∞
p( x(ρ, η|µ, Σ) ) |Jy(ρ)| Jy(η) det(Σ1/2) dρ

∝ Jy(η)

∫ ∞

−∞
p( x(ρ, η|µ, Σ) ) |Jy(ρ)| dρ

= Jy(η)

∫ ∞

−∞
κ(ρ|η) dρ. (5.54)

Similarly, it follows from (5.38) and (5.39) that the elliptically contoured candidate density

q(x) = cm(det(Σ))−1/2f((x− µ)′Σ−1(x− µ)) in terms of ρ and η is given by

q(ρ, η) = q( x(y(ρ, η)|µ, Σ) ) |Jx(ρ, η)|
= cm(det(Σ))−1/2f(ρ2) |Jy(ρ)| Jy(η) det(Σ1/2)

∝ f(ρ2) |Jy(ρ)| Jy(η), (5.55)

so that

q(η) =

∫ ∞

−∞
q(ρ, η) dρ

∝ Jy(η)

∫ ∞

−∞
f(ρ2) |Jy(ρ)| dρ

∝ Jy(η). (5.56)
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Note that (5.55) implies that ρ and η are independent. Finally, we obtain from (5.54) and

(5.56) that

w(η) =
p(η)

q(η)

∝
∫ ∞

−∞
κ(ρ|η) dρ

≡ I(η) (5.57)

and

α(ηi−1, η
∗
i ) = min

{
w(η∗i )

w(ηi−1)
, 1

}

= min

{
I(η∗i )

I(ηi−1)
, 1

}
. (5.58)



Chapter 6

Summary and conclusions

In this thesis, we have discussed several models and methods with the general intention

to “get more out of data”. In the first part, we have considered the modeling component

of this objective, where the focus is on marketing research, and in particular, on purchase

behavior of households and on market shares of brands. We have introduced three new

models to analyze household scanner panel data and store-level scanner data. In the

corresponding analyses, we have adopted the classical approach and we have estimated

the model parameters using maximum likelihood. Additionally, in the second part of the

thesis, we have addressed the algorithmic component of Bayesian data analysis. We have

discussed several sampling-based methods to investigate the posterior density of model

parameters, and we have put forward a new methodology. In the current chapter, we

conclude with a summary and we discuss our main findings.

In Chapter 2 and Chapter 3, we have presented two models for scanner panel data.

Both models can be thought of as dealing with adjustment effects following a price promo-

tion. Such adjustments imply that promotions do not only have an impact on current sales,

but also affect future sales. Even if the deviation in sales relative to the non-promoted

sales level is not permanent (as frequently reported in the literature), the existence of

adjustment effects may have far-reaching implications for the profitability of promotions.

We have developed a utility-based model for purchase incidence, brand choice and

purchase quantity in Chapter 2. The model assumes that purchase behavior of households

is rational, and it accounts for the possibility that households consume their inventory

stock faster when the inventory level is higher. Increased consumption after a price

promotion (through a higher inventory level) would effectively increase demand in the

product category, and would prevent that a large part of the current increase in sales

comes at the expense of future sales. Hence, consumption acceleration amounts to a

positive adjustment effect. It offers a possible explanation for the frequently reported

lack of a postpromotion dip in store-level scanner data. For the yogurt category, we find

that the speed of consumption strongly depends on the inventory level, which is consistent

with other studies in the literature. However, a simulation study shows that the increase

in consumption is not strong enough to prevent a small dip in sales immediately after a
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price promotion. The dip disappears after one week, and it is about one percent of the

current sales effect.

In Chapter 3, we have proposed a new reference price model for brand choice. This

model takes into account that households may use prices experienced in the past to form

comparison prices for the current brand choice decision. The unique feature of our model

is that it allows that households may not always be able to recall, and hence use, past

price information. Current brand choice models either do not account for reference effects,

or they assume that households always have sufficient price knowledge to form a reference

price. As internal reference price formation would imply a potentially strong negative

adjustment after a price promotion, it is important to have a good understanding of how

reference prices are formed from past price experience. This includes questions such as (i)

what is the size of the reference effect?, (ii) what is the duration of the reference effect?,

and (iii) how often are households able to construct a reference price? To address these

questions, we have explicitly modeled the price recall process of households by assuming

that unobserved price recall evolves over time according to a first-order Markov process

in which the “forgetting state” is absorbing. The resulting reference price specification

is flexible, allows for uncertainty in the underlying process, allows that households may

forget past prices, and even allows that households cannot construct a reference price at

all.

Our main findings for the catsup category are as follows. First, a price supported

by a feature/display has a higher probability to be recalled than a price which is not

supported by such promotional activity. Second, our model does not indicate a response

asymmetry concerning perceived price gains and losses. This runs counter to an empirical

generalization in the literature, see Kalyanaram and Winer (1995). However, our results

also suggest that the impact of internal reference price formation on brand choice might

be even larger than is currently believed. Third, we find that price recall by households

is very limited. Nonetheless, a simulation shows that the initial gain in brand sales due

to a temporary price reduction is largely offset by a decrease in subsequent sales.

In Chapter 4, we have discussed a Markov model for market shares. The proposed

model can be used to infer share-switching across brands when only store-level data are

available. This provides new insights which cannot be obtained from the frequently con-

sidered market share attraction model. Additionally, the model structure allows for a

decomposition of own and cross price elasticities. This decomposition can be used to

analyze which part of the reaction of the own market share to an own or a competitive

price reduction is caused by changed customer retention, and which part is not.

Application of our model to four store-level scanner data sets has revealed some strong

asymmetries in share-switching across brands. Nonetheless, the resulting market shares

seem balanced in the sense that for each brand the total share coming in and the total

share going out are approximately equal. Furthermore, we find that the retention effect

is usually not the dominant factor in the reaction of market shares to price changes.

Interestingly, the estimated price elasticities violate the frequently reproduced finding of
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Blattberg and Wisniewski (1989) that higher-price higher-quality [HPHQ] brands draw

more share from lower-price lower-quality [LPLQ] brands by offering a price reduction

than vice versa. Still, our results appear to be consistent with a refinement suggested

by Bronnenberg and Wathieu (1996). This extension states that it is necessary that the

quality gap between an HPHQ brand and an LPLQ brand is sufficiently large to account

for the price gap.

Finally, in Chapter 5, we have considered Monte Carlo techniques which can be used

in Bayesian analysis to get insight into the posterior density of model parameters. The

basic idea behind the Monte Carlo approach is that an intractable posterior density can

be investigated by generating a sample from it, and using the drawings to make inference.

We have provided an overview of some frequently applied methods, and we have put

forward a new and flexible methodology. Our algorithms extend current methods and

should often result in more accurate and more reliable samples. They can often be applied

successfully without a preliminary study of the shape of the posterior density. The good

performance of the methods has been illustrated by three examples. Nonetheless, more

research would be needed to fully validate our claim that the proposed methodology can

be used effectively in a broad area of applications.





Nederlandse samenvatting
(Summary in Dutch)

In de afgelopen decennia is de beschikbaarheid van grote databases en de rekenkracht van

computers, benodigd om deze data te analyseren, enorm toegenomen. Tegelijkertijd zijn

nieuwe rekentechnieken en modellen ontwikkeld om data en rekenkracht te combineren.

Dit alles heeft geleid tot nieuwe mogelijkheden om relevante onderzoeksvragen te beant-

woorden. In dit proefschrift bouwen we voort op deze ontwikkelingen en introduceren we

zowel nieuwe modellen als nieuwe rekentechnieken.

Kwantitatieve marketing modellen

Een vakgebied waarbinnen vaak met grote databases wordt gewerkt is de kwantitatieve

marketing. In de afgelopen twintig jaar zijn veel wetenschappelijke artikelen verschenen

over modellen en methoden om zogenaamde scanner panel data te analyseren met als doel

nieuwe en betere inzichten te verkrijgen in het aankoopgedrag van huishoudens. Scanner

panel data worden verzameld door de aankopen en winkelbezoeken van een groot aantal

huishoudens te registreren gedurende een lange periode (doorgaans meerdere jaren). Er

wordt beschreven wanneer huishoudens aankopen binnen een productcategorie hebben

gedaan, welke merkkeuzes hierbij hoorden en wat de aankoophoeveelheden waren. Verder

zijn voor ieder winkelbezoek van ieder huishouden in de database de prijzen en eventuele

promoties van alle merken bekend. Door deze informatie te combineren kunnen aankoop-

beslissingen van huishoudens worden gekoppeld aan de promotionele activiteiten van de

verscheidene merken. Op die manier kunnen inzichten worden verkregen in bijvoorbeeld

de effectiviteit van prijspromoties. In hoofdstuk 2 en hoofdstuk 3 van dit proefschrift

worden twee nieuwe modellen besproken om scanner panel data te analyseren. In deze

modellen wordt uitdrukkelijk rekening gehouden met de mogelijkheid dat promotionele

activiteiten niet alleen het huidige verkoopniveau verhogen, maar ook nog kunnen door-

werken op toekomstige verkoopcijfers. Dergelijke dynamische effecten kunnen van grote

invloed zijn op de winstgevendheid van prijspromoties.

Scanner panel data bevatten gedetailleerde informatie over het aankoopgedrag van

huishoudens en bieden meer mogelijkheden voor analyse dan data op een hoger aggrega-

tieniveau, zoals data op winkelniveau met de wekelijkse prijzen, promoties en verkoopcij-
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fers van alle merken binnen een productcategorie. Het gebruik van data op het niveau

van individuele huishoudens heeft echter ook een paar nadelen. Het eerste nadeel is kos-

tentechnisch. Het is vaak duur (uitgedrukt in geld en/of inspanning) om scanner panel

data te verkrijgen. Een tweede nadeel is de mogelijk beperkte representativiteit van der-

gelijke data. Dit zal afhangen van het aantal huishoudens in het panel en van de manier

waarop de deelnemende huishoudens zijn geselecteerd. Data op winkelniveau zijn veel

minder gedetailleerd dan data op het niveau van individuele huishoudens, maar hier staat

tegenover dat ze representatiever zijn, ruimer voorradig zijn en goedkoper zijn om te ver-

zamelen. Als aanvulling op de voorgaande twee hoofdstukken wordt in hoofdstuk 4 een

model besproken voor data op winkelniveau. Ook dit model kan worden gebruikt om de

effectiviteit van promoties te bepalen. We zullen de drie modellen (hoofdstukken 2, 3 en

4) hieronder kort bespreken.

Een model voor aankoopgedrag met flexibele consumptiesnelheid

Een aankoopbeslissing met betrekking tot een productcategorie, bijvoorbeeld yoghurt, kan

worden opgedeeld in drie componenten. Ten eerste moet een huishouden bij winkelbezoek

beslissen om het product wel of niet aan te schaffen. Deze beslissing zal bijvoorbeeld

afhangen van de nog aanwezige voorraad thuis en van promotionele activiteiten binnen

de productcategorie. Indien tot aankoop wordt overgegaan, dient het huishouden tevens

een merkkeuze te maken en de aankoophoeveelheid te bepalen. Zowel merkkeuze als

aankoophoeveelheid kunnen afhangen van de marketing-mix (prijzen, displays, etc.) van

de verschillende merken. Verder kan de omvang van de aankoop ook worden bëınvloed

door het voorraadniveau van het huishouden.

Een prijspromotie van een merk binnen een productcategorie kan van invloed zijn op

zowel de wel-of-niet-kopen beslissing, merkkeuze als aankoophoeveelheid. Indien een huis-

houden door de promotionele activiteit wordt verleid een aankoop in de categorie te doen

en/of een grotere hoeveelheid te kopen dan gebruikelijk, zal de promotie leiden tot een

grotere voorraad bij het huishouden thuis. Een belangrijke vraag met betrekking tot de

winstgevendheid van prijspromoties is of de toegenomen voorraad zal leiden tot een hogere

consumptiesnelheid. Indien dit inderdaad het geval is, zullen prijskortingen de effectieve

vraag naar het product vergroten. Echter, indien huishoudens hun consumptiesnelheid

niet aanpassen, zal categoriepromotie slechts leiden tot eerdere en grotere aankopen ten

koste van toekomstige aankopen. Met name voor bederfelijke producten die voor meerde-

re doeleinden kunnen worden gebruikt valt een voorraadafhankelijke consumptiesnelheid

te verwachten. Toegenomen consumptie na prijspromotie is een mogelijke verklaring voor

de vaak gerapporteerde afwezigheid van een zogenaamde postpromotiedip in scanner data

op winkelniveau. Met andere woorden, toegenomen consumptie na een promotie zou er-

voor kunnen zorgen dat het verkoopniveau onmiddellijk na de promotie niet of nauwelijks

inzakt.
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In hoofdstuk 2 modelleren we het aankoopgedrag van huishoudens. We integreren

de drie aankoopbeslissingen (wel-of-niet-kopen, merkkeuze en aankoophoeveelheid) in één

raamwerk waarin wordt uitgegaan van rationeel aankoopgedrag en waarin tevens wordt

toegestaan dat huishoudens hun voorraad sneller consumeren wanneer het voorraadniveau

hoger is. Wanneer we ons model toepassen op scanner panel data betreffende aankopen

van yoghurt, vinden we dat de consumptiesnelheid sterk afhangt van het voorraadniveau.

Een simulatiestudie toont echter aan dat de toename in consumptie niet sterk genoeg is

om een kleine dip in verkopen onmiddellijk na een prijspromotie te voorkomen.

Een model voor merkkeuze met referentieprijzen

In hoofdstuk 3 concentreren we ons op de merkkeuzebeslissing van huishoudens. We in-

troduceren een model dat rekening houdt met de mogelijkheid dat huishoudens in het

verleden waargenomen prijzen gebruiken om referentiepunten te vormen waarmee de hui-

dige merkprijzen worden vergeleken. Indien de huidige prijs van een merk lager ligt dan

de geanticipeerde referentieprijs, zal dit worden ervaren als een meevaller. Hierdoor kan

de aankoopkans van het betreffende merk toenemen. Het tegenovergestelde zal gelden

wanneer de huidige prijs van het merk hoger ligt dan de corresponderende referentieprijs.

De unieke eigenschap van het besproken model is dat het toestaat dat huishoudens niet

altijd in staat zullen zijn om zich prijzen uit het verleden te herinneren en deze prijzen te

gebruiken bij de merkkeuzebeslissing. Zulke beperkte prijskennis wordt gesuggereerd door

verscheidene studies in de literatuur, die zijn gebaseerd op het observeren en interviewen

van consumenten in supermarkten. Ons model kan worden gebruikt om inzicht te ver-

krijgen in de mate waarin prijzen uit het verleden worden herinnerd om referentieprijzen

te vormen.

We passen ons referentieprijs model toe op scanner panel data betreffende aankopen

van ketchup. De belangrijkste bevindingen zijn als volgt. Ten eerste heeft een prijs die

wordt ondersteund door een “feature” of “display” een grotere kans later te worden herin-

nerd dan een prijs die niet door zulke promotionele activiteiten wordt ondersteund. Ten

tweede suggereert ons model dat huishoudens niet gevoeliger zijn voor prijstegenvallers

(met betrekking tot de referentieprijs) dan voor meevallers. Dit is een enigszins verrassend

resultaat, omdat deze asymmetrie veelvuldig is gerapporteerd in de literatuur. Ook sug-

gereren onze resultaten dat de invloed van referentieprijzen op merkkeuze mogelijk zelfs

groter is dan tot op heden werd aangenomen. Dit is een belangrijke implicatie, omdat

het onderschrijft dat veelvuldige prijskortingen een nadelige uitwerking hebben op toe-

komstige verkoopcijfers. Huishoudens zullen prijskortingen als normaal gaan ervaren en

zullen het ontbreken van een prijspromotie als een tegenvaller gaan beschouwen. Dit kan

het korte-termijn voordeel grotendeels teniet doen. In overeenstemming met de interview-

studies vinden we verder dat de prijskennis van huishoudens zeer beperkt is. Zo wordt

de kans dat een huishouden zich prijzen uit het verleden kan herinneren en deze prijsin-

formatie gebruikt bij de merkkeuzebeslissing geschat op gemiddeld 31 procent. Tenslotte
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toont een simulatiestudie aan dat de onmiddellijke toename in verkopen voortvloeiend

uit een prijskorting inderdaad grotendeels teniet wordt gedaan door een negatief effect op

toekomstige verkoopcijfers. Het netto effect van een prijskorting blijkt minder te zijn dan

40 procent van het onmiddellijke effect.

Een Markov model voor marktaandelen

In hoofdstuk 4 bespreken we een model dat de huidige marktaandelen van merken relateert

aan de marktaandelen resulterend uit de vorige periode. Dit model kan worden gebruikt

om inzicht te verkrijgen in de overgangen van marktaandelen van en naar ieder merk.

Met andere woorden, het model kan worden gebruikt voor inferentie waarbij de vraag

“welk merk pakt marktaandeel van welk merk?” centraal staat. Verder maakt het model

een decompositie van prijselasticiteiten mogelijk. Deze decompositie kan worden gebruikt

om de totale reactie van marktaandeel op een eigen of competitieve prijsverandering

op te splitsen in een gedeelte toewijsbaar aan veranderde “customer retention” (eigen

marktaandeel uit de vorige periode dat behouden blijft) en een resterend gedeelte. Dit

alles leidt tot inzichten die niet kunnen worden verkregen aan de hand van het populaire

attractiemodel voor marktaandelen.

We implementeren ons model voor vier scanner data sets op winkelniveau. Deze data

betreffen de productcategieën ketchup en pindakaas op twee verschillende locaties in de

Verenigde Staten. Voor drie van de vier data sets geeft ons model betere voorspellin-

gen dan twee versies van het attractiemodel en een vector autoregressie. De geschatte

overgangen van marktaandelen geven aan dat er een aantal sterke asymmetrieën bestaan

tussen de beschouwde merken. Desalniettemin zijn de resulterende marktaandelen in ba-

lans in de zin dat voor ieder merk het binnenkomende marktaandeel en het uitgaande

marktaandeel ongeveer gelijk aan elkaar zijn. Verder vinden we dat veranderde “custo-

mer retention” doorgaans niet de dominante factor is in de reactie van marktaandelen op

prijsveranderingen. Een ander interessant resultaat is dat de geschatte prijselasticiteiten

niet overeen komen met het in de literatuur veelvuldig bevestigde resultaat dat hoge-

prijs hoge-kwaliteit [HPHK] merken meer marktaandeel kunnen overnemen van lage-prijs

lage-kwaliteit [LPLK] merken via het geven van een prijskorting dan andersom. On-

ze prijselasticiteiten zijn echter wel consistent met een verfijning van dit asymmetrische

prijscompetitie resultaat. De verfijning is dat het resultaat alleen geldt wanneer het ver-

schil in kwaliteit tussen een HPHK merk en een LPLK merk “voldoende groot” is om het

verschil in prijs te compenseren.

Monte Carlo integratie methoden

In het tweede gedeelte van dit proefschrift bespreken we een aantal rekentechnieken die

in het bijzonder geschikt zijn voor Bayesiaanse analyse. Een belangrijk verschil tussen

de klassieke benadering van econometrie/statistiek en de Bayesiaanse benadering ligt in
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de interpretatie van de modelparameters. Vanuit klassiek oogpunt zijn de parameters

van een model onbekende constanten met een zekere ware waarde. De parameterwaarden

kunnen dan worden geschat met de methode van maximale aannemelijkheid, zoals we

hebben gedaan in het eerste gedeelte van het proefschrift. De Bayesiaanse interpretatie

is echter totaal verschillend. Vanuit een Bayesiaans perspectief zijn de modelparameters

kansvariabelen waarbij een breed scala aan uitkomsten mogelijk is. Met andere woorden,

een parameter heeft niet één ware waarde, maar wordt gekarakteriseerd door onzekerheid.

Deze onzekerheid kan worden weergegeven door een kansverdeling. De kansdichtheid die

wordt toegekend aan parameters is subjectief (kan van persoon tot persoon verschillen op

basis van verschillende opvattingen en kennis) en kan worden bijgewerkt wanneer nieuwe

gegevens (data) beschikbaar komen. Om tot bruikbare interpretatie van de resulterende

kansverdeling te komen is men vaak gëınteresseerd in gemiddelden, spreidingsmaatstaven

en kansen dat de parameters in een bepaald interval/gebied liggen. Monte Carlo me-

thoden zijn zeer geschikt om dit soort grootheden uit te rekenen voor hoog-dimensionale

en gecompliceerde kansdichtheden. Het basisidee achter deze simulatietechnieken is dat

trekkingen uit een kansverdeling kunnen worden gebruikt om deze kansverdeling te ana-

lyseren. In hoofdstuk 5 bespreken we een aantal veelvuldig gebruikte Monte Carlo me-

thoden. Verder introduceren we een nieuwe effectieve methodologie die voortbouwt op

bestaande algoritmen. De voorgestelde techniek maakt gebruik van een transformatie

naar radiaal-coördinaten.

Samenvattend, in dit proefschrift bespreken we nieuwe modellen, nieuwe resultaten,

en nieuwe algoritmen. We hopen hiermee een waardevolle bijdrage te leveren aan zowel

de econometrische literatuur als de marketing literatuur.
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