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Abstract

A new time series model is proposed to describe observed asymmetries in post�
war unemployment data� We assume that recession periods� when unemployment
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are equal to zero� We apply our censored latent e�ects autoregression �CLEAR�
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� Introduction

Postwar unemployment in many industrialized countries often displays the following two

features� �i� in expansionary periods unemployment decreases slowly �perhaps toward a

country�speci�c natural rate of unemployment�� and �ii� in recessionary periods� which

usually last much shorter than expansions do� the level of unemployment increases rapidly�

The last feature leads to the empirical �nding of a high degree of persistence in unem�

ployment� which may be attributed solely to those large positive shocks during recessions�

see Blanchard and Summers ��	
�� and Bianchi and Zoega ��		
�� among others�

The observed asymmetry in the time series pattern of unemployment established the

motivation in several recent studies to propose modi�cations to linear models� which

should be able to adequately describe the data� One class of these models is the �smooth�

switching regime time series model� see Ter�asvirta ��		
�� Granger and Ter�asvirta ��		��

and Tong ��		��� This model allows for di�erent dynamic structures across regimes� where

the regimes are often de�ned by �changes in the� past observations of the time series of

interest� For example� when the one�period lagged annual growth rate of unemployment

exceeds a certain threshold level� the current value of the time series is said to correspond

with a recession� see Skalin and Teraesvirta ��		
� and Franses ��		
�� among others� The

variable that determines those transitions can also be taken to be an exogenous variable

like output growth� see Ter�asvirta ��		
��

An alternative class of models that can be useful to describe asymmetries in unem�

ployment is the Markov switching model� initially put forward in Hamilton ��	
	�� see

also Hamilton ��		
� for a survey� In contrast to the above models� the Markov model as�

sumes that the transition between regimes is generated by a �rst order unobserved Markov

process� Usually� the transition probabilities are assumed to be constant over time� but

they may also depend on �lagged� exogenous variables� see Diebold et al� ��		
� and Dur�

land and McCurdy ��		
�� Recently� Bianchi and Zoega ��		
� use a multi�state Markov

switching model to construct a so�called shifting mean value model� where unemployment

is assumed to undergo a sequence of level shifts�
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In this paper we propose yet another time series model to describe the salient charac�

teristics of postwar unemployment� The main idea behind our proposal is that we assume

that recessionary periods for unemployment are caused by a few large positive shocks� In

time series technology� we assume that recessionary periods correspond with a few large

positive innovations� See Balke and Fomby ��		
� for a related view on the time series

behavior of macroeconomic aggregates� A second feature of our new model is that we do

not use dummies for those large shocks as is done in Balke and Fomby ��		
� but that

we design a model that can generate those shocks as a function of lagged explanatory

variables� like for example output� a term structure of interest rates and the oil price� In

fact� our model may then be viewed as a leading indicator model for recessions for the

series under interest� Since we wish to focus the attention solely to a few large positive

shocks� we propose a censored model for the e�ects of the explanatory variables� As the

shocks cannot be observed from the data� the latent e�ects of the explanatory variables

have to be estimated� Finally� we model the dynamics of unemployment by an autore�

gressive structure� and therefore our model can best be called a censored latent e�ects

autoregression �CLEAR� model�

The outline of our paper is as follows� In Section � we give the representation of the

CLEAR model� We discuss parameter estimation� inference on unobserved variables and

how one should calculate residuals �which in turn may be used for diagnostic purposes�� In

Section � we discuss how the CLEAR model di�ers from the time series models mentioned

earlier� Without aiming to be complete� we also suggest modi�cations to the CLEAR

model which may be useful for various alternative applications� In Section 
� we consider

a CLEAR model for monthly postwar US unemployment� We compare forecasts from

this model� and �nd improvement over other models� In Section � we conclude with some

remarks�

� The CLEAR Model

In this section we discuss various aspects of the CLEAR model� including representation�

estimation� diagnostic checking using the estimated residuals� and forecasting�

�



��� Representation

A censored latent e�ects autoregressive model of order p �CLEAR�p�� for a univariate

time series fytgTt�� can be represented by

yt � ��

pX
i��

�iyt�i � vt � �t� ���

where �t � NID��� ��
��� yp��� � � � � y� are �xed� and vt is a censored latent variable de�ned

by

vt �

�
x�t� � ut if x�t� � ut � �
� if x�t� � ut 	 �

���

with ut � NID��� ��
u�� xt a �k � �� vector of exogenous variables including a constant

and � an unknown �k � �� parameter vector� As a positive value of vt is added to the

error term� the CLEAR�p� model contains an explicit description of an innovative outlier

generating mechanism� The variable vt is zero unless x�t� exceeds a stochastic threshold

level �ut� where ut is a normal random variable� When the threshold is exceeded� vt takes

a positive value� Notice that if �u � � the model corresponds with a speci�c threshold

model as we will indicate below in Section ���� By allowing ut �� �� we introduce additional

uncertainty as to whether linear combinations of exogenous variables� which may include

leading indicator variables for the time series yt� have a positive e�ect� Hence� the variance

��
u is a measure for the quality of the predictive ability of the variables in xt�

As vt is a latent variable we can only make probability statements about its values�

The probability that vt � � equals the probability that x�t� � ut 	 �� or more formally�

Pr�vt � �jxt� �
Z �x�t�

��

�

�u

�ut��u�dut � �

��x�t�
�u

�
� ���

where 
��� and ���� are the probability density function �pdf� and the cumulative density

function �CDF� of the standard normal distribution� respectively� Likewise� the probability

that vt �� � is given by

Pr�vt �� �jxt� �
Z �

�x�t�

�

�u

�ut��u�dut � �� �

��x�t�
�u

�
� �
�






As vt is a censored random variable� its expectation does not equal x�t�� The expected

value of the shock vt follows from

E�vtjxt� �
Z �

��

�x�t� � ut�
�

�u

�ut��u�dut

�

Z �

�x�t�

�x�t� � ut�
�

�u

�ut��u�dut

�

�
x�t� �

�u
��x�t���u�
�� ���x�t���u�

��
�� �

��x�t�
�u

��
�

���

where we use that if ut � N�a� ��
u� thenZ �

b

ut
�u


��ut � a���u�dut �

�
�u
��b� a���u�

�� ���b� a���u�
� a

��
�� �

�
b� a

�u

��
� ���

see Johnson and Kotz ��	��� p� 
��
���

��� Estimation

The estimation of the model parameters � � f�� ��� � � � � �p� ��� �� �ug can be done by

maximum likelihood� To derive the likelihood function� we �rst consider the pdf of yt

given its past Yt � �yt��� � � � � y�� and given vt� that is

f�ytjYt��� vt� �� �
�

��



�
et � vt
��

�
� ���

where we write �t as the di�erence between et � yt � � �Pp

i�� �iyt�i and vt to denote

that the pdf is conditional on vt� The unconditional pdf of yt given its past equals

f�ytjYt��� xt� �� � Pr�vt � �jxt�f�ytjYt��� vt� ��jvt��

�

Z �

�x�t�

�

�u



�
ut
�u

�
f�ytjYt��� vt� ��jvt�xt��utdut� �
�

where Pr�vt � �jxt� is de�ned as in ���� Note that the model for yt is in fact a continuous

mixture with a discrete mixing distribution in vt � � and a continuous mixing distribution

for the remaining values of vt� The log likelihood function equals the sum of the logarithms

of the unconditional pdfs of yt given in �
�

L�YT jXT � �� �
TX
t��

ln�f�ytjYt��� xt� ���� �	�

�



where XT � �xT � � � � � x��� This log likelihood function can easily be maximized using

standard optimization algorithms� like Newton�Raphson� These algorithms can be based

on numerical derivatives of the log likelihood function or the analytical derivatives shown

in the appendix below� To decrease the computational burden in computing the value of

the log likelihood function� the integral in �
� can be simpli�ed using the following resultZ �

b

�

�u

�ut��u�

�

��

��ut � a�����dut �Z �

b

�p
�
�u

exp���

�
�ut��u�

��
�p
�
��

exp���

�
��ut � a�����

�� �

�p
�
�u��

� exp���

�
�������

� � ���
� �a��

Z �

b

�

�

��ut � ���

� ��a����dut �

�p
�
�u��

� exp���

�
�������

� � ��a����
����� ���b� ���

� ��a�����

����

where �� � ��u�
�
�

��u����
� Note that in our case a � et � x�t� and b � �x�t��

��� Inference on the Unobserved vt

The sequence fvtgTt�� is a sequence of unobserved stochastic variables� In Section ��� we

have derived the unconditional probability that vt � �� This probability does not depend

on the values of the time series yt� However� if we know the values of Yt� inference on vt

can be made conditional on Yt� In fact� the probability that vt � � given Yt equals

Pr�vt � �jYt� xt� � Pr�vt � �jxt�f�ytjYt��� vt� ��jvt��

f�ytjYt��� xt� ��
� ����

where Pr�vt � �jxt�� f�ytjYt��� vt� �� and f�ytjYt��� xt� �� are de�ned in ���� ��� and �
��

respectively� This conditional probability can be compared with the ex�post probabilities

of the state variables in a Markov switching model� see e�g�� Hamilton ��	
	�� Therefore�

they may also be used to analyze turning points in the business cycle for the series under

consideration�

Using the same arguments as above the expected value of the shock vt given the values

Yt equals

E�vtjYt� xt� �
R�
�x�t�

�x�t� � ut�
�
�u



�

ut
�u

�
f�ytjYt��� vt� ��jvt�x�t��utdut

f�ytjYt��� xt� ��
� ����

�



This expression can be simpli�ed by combining the results in ���� and ���� The conditional

expectation ���� gives an estimate of the magnitude of a shock at time t� For practical

purposes� the quantities in ���� and ���� may be useful to calculate�

��� Residuals and Diagnostic Checking

The CLEAR model contains an unobserved component and hence replacing the parame�

ters with their maximum likelihood values does not automatically lead to properly de�ned

residuals� An easy way to construct residuals amounts to putting the error terms ut and

�t equal to zero� The estimated residuals denoted as ��t would then be given by

��t � yt � ���
pX

i��

��iyt�� � x�t �� I�x�t�� � ��� ����

where I��� is an indicator function taking a value of � if the argument is true and zero

elsewhere�

This way of generating residuals is somewhat naive since we already have seen that

E�vtjxt� does not equal x�t�
�� A better approach to estimate residuals is to take the

expectation of �t given Yt

��t � E��tjYt� xt�

� E�yt � ���
pX

i��

��iyt�i � vtjYt� xt�

� yt � ���
pX

i��

��iyt�i � E�vtjYt� xt��

��
�

where E�vtjYt� xt� is de�ned in ����� Hence the corresponding �t of the model is simply

���
Pp

i�� ��iyt�i � E�vtjYt� xt��
Finally� one may calculate the one�step ahead forecast errors and treat these as resid�

uals� A residual at time t is then de�ned as the di�erence between yt and E�ytjYt��� xt��

The expectation of yt given its past is simply

E�ytjYt��� xt� �

Z �

��

f�ytjYt��� xt� ��dyt� ����

�The residuals de�ned in 
��� are in fact the residuals of the closely related threshold model de�ned
in 
��� below�

�



where f�ytjYt��� xt� �� is given in �
�� Note that we need numerical integration methods

to evaluate this integral� The one�step ahead forecast residuals now equal

��t � E�ytjYt��� xt�� yt ����

The estimated residuals may be used for diagnostic checking� To test for neglected

serial correlation in the residuals we propose the auxiliary regression

��t � � � ���t�� � �t� ����

The nulhypothesis � � �� i�e�� the absence of �rst order serial correlation can be tested

using an F �test� Likewise� tests for higher order serial correlation can be constructed�

The presence of �rst order ARCH e�ects can be tested via the regression

���t � �� ����t�� � �t� ��
�

The nulhypothesis � � � corresponds to the absence of �rst order ARCH e�ects� This

hypothesis can again be tested with an F �test� Tests for higher order ARCH e�ects

proceed in the same way� Finally� we can use the ����� test for normality of the residuals�

��� Forecasting

In the previous subsection we have discussed the in�sample �t of the CLEAR model� We

have shown that it is possible to use one�step ahead forecasts to generate residuals� The

one�step ahead forecast at time T conditional on YT and xT�� is given by

E�yT��jYT � xT��� �

Z �

��

f�yT��jYT � xT��� ��dyT��� ��	�

where f�yT��jYT � xT��� �� is de�ned as in �
�� Notice that we assume knowledge of the

values of explanatory variables in the innovation outlier model at time T � �� Likewise�

we can construct two�step ahead forecasts� The two�step ahead forecast conditional on

�xT��� xT��� and YT is given by

E�yT��jYT � xT��� xT��� �

Z �

��

Z �

��

f�yT��jYT��� xT��� �� f�yT��jYT � xT��� �� dyT�� dyT���

����






Multistep ahead forecasts are de�ned in a similar way� The h�step ahead forecast� condi�

tional on �xT�h� � � � � xT��� and YT � equals

E�yT�hjYT � xT�h� � � � � xT��� �Z �

��

� � �
Z �

��

f�yT�hjYT�h��� xT�h� �� � � � f�yT��jYT � xT��� �� dyT�h � � �dyT��� ����

Since it may be impossible to evaluate the multiple integrals using numerical integration�

we may have to use straightforward simulation techniques to evaluate the integrals�

The h�step ahead forecast ���� is conditional on the value of �xT�h� � � � � xT���� If the

vector xt consists of lagged explanatory variables some of these values may be known at

time T � However� for multi�step ahead forecasts it is likely that some future values of x

are unknown at time T and that they have to be replaced by forecasts�

� Comparison with Other Models and Extensions

In this section we indicate the links between our CLEAR model and existing models�

without aiming to give a comprehensive account� Similarly� we sketch some potentially

useful extensions�

��� Relation with Threshold and Mixture Models

Straightforward simpli�cations of the CLEAR model result in familiar threshold and

mixture models� If we set ut � � we obtain the following threshold autoregressive �TAR�

model

yt �

�
��

Pp

i�� �iyt�i � x�t� � �t if x�t� � �
��

Pp

i�� �iyt�i � �t if x�t� 	 ��
����

This models di�ers from the CLEAR model in several ways� First� the exogenous variables

xt enter the model without error term ut� Second� in the TAR model it is assumed to

known at time t whether x�t� enters the AR model or not� In the CLEAR model we only

know at time t the probability that vt �� �� In a sense� the CLEAR model in ��� and

��� is therefore less restrictive than the TAR model ����� Identi�cation and estimation

�especially of �� of a threshold model as in ���� is very complicated� since regime switching

	



is based on an unknown linear combination of variables� see also Chen ��		��� Therefore�

it may be more convenient to consider the smooth transition version of ����

yt � ��

pX
i��

�iyt�i � x�t�F �x�t�� � �t ����

where F is for instance a logistic function� see also Granger and Ter�asvirta ��		�� and

Ter�asvirta ��		
��

If ut does not enter the AR part of the CLEAR model� we obtain the following model

yt �

�
��

Pp

i�� �iyt�i � x�t� � �t if x�t� � ut � �
��

Pp

i�� �iyt�i � �t if x�t� � ut 	 �
��
�

Like in the CLEAR model� the probability that x�t� enters the AR model in ��
� is equal

to the probability that ut � �x�t�� The model in ��
� amounts to a discrete mixture

of two AR models with mixing proportion ���x�t���u�� see Everitt and Hand ��	
�� for

a discussion about mixtures� Note that this mixing proportion changes over time as it

depends on the value of xt� Therefore� also the probability of being in a recession changes

over time� The closest link of a CLEAR model to a Markov switching model is to allow

the transition probabilities in the latter model� which determine the changes between the

two regimes� to depend on x�t�� as in Diebold et al� ��		
��

��� Extensions

The CLEAR model ��� and ��� can be extended in several directions� A straightforward

extension is to add moving error terms to ��� resulting in a CLEARMA model� Another

extension of the model concerns the impact of the shock vt� The shock vt enters the AR�p�

model ��� as an innovation outlier� which means that a positive vt lifts the time series to

a higher level after which it may return slowly to its equilibrium level �depending on the

largest AR root�� Note that new shocks may lift up the level of the series again before it

reaches its equilibrium level� Naturally� we may also add vt as an additive shock

�yt � vt� � ��

pX
i��

�i�yt�i � vt�i� � �t� ����

��



A positive shock vt lifts the time series to a higher level but it immediately returns to its

original level in the next period� unless of course vt�� �� ��

Finally� it seems that our univariate CLEAR model can be easily extended to multi�

variate time series� Also� we then have opportunities to investigate if there is a common

innovation outlier generating mechanism across variables�

� US Unemployment

To illustrate our CLEARmodel� we consider an application to seasonally adjusted monthly

observed unemployment rate of the United States �US�� �	�	�����		����� Figure � shows

a plot of the log of the unemployment rate� We notice short periods characterized by large

increases in unemployment� which can be called recessions� and longer periods with slow

decline in the unemployment rate� the expansions� To model this behavior we consider

the CLEAR model as in ��� and ���� We examine if the large increases during recessions

are captured by the censored latent e�ect variable vt� As explanatory variables for the

censored latent e�ects� we use monthly seasonally adjusted US industrial production� the

oil price in dollars de�ated by seasonally adjusted US CPI� the Dow Jones index and the

di�erence between the �� year treasury with constant maturity and a ��month treasury

bill rate of the United States�� The last variable is known to be a good predictor for turn�

ing points� see for instance Harvey ��	

�� Estrella and Hardouvelis ��		�� and Estrella

and Mishkin ��		���

The estimation period is �	�	�����		����� Earlier observations are used as starting

values� Denote yt as the log of the unemployment rate� As explanatory variables we use

ot� the log of the real oil price� rt� the di�erence between the long term and short term

interest rate� dt� the log of the Dow Jones index and it� industrial production� To make the

time series of the explanatory variables approximately stationary we take �rst di�erences

of the oil price� the Dow Jones index and industrial production� A lag order of p � �

�The data are obtained from the internet site of the Federal Reserve Bank of St� Louis except for the
Dow Jones index� which is taken from Datastream�

��
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Figure �� The logarithm of US unemployment rate�
�	�	�����		����

turns out to be appropriate to capture the dynamics in ���� After some experimentation�

we arrive at

yt � �����
�����
�

� ��	
�
�������

yt�� � vt � �t� �t � NID ���������

�������
� ����

with

vt � �����
�����
�

� �����
�������

�it�� � �����
�������

rt��� � ����

�������

�ot��� �

���
�
����
��

�dt�� � ut� ut � NID ���������

�������
�� ����

where estimated standard errors are given in parentheses� The large AR��� coe�cient in

���� indicates a very slow decay towards an equilibrium� Note that it is not necessary

that this equilibrium is ever reached since positive shocks vt may move the unemployment

rate away from this equilibrium�

�We experimented with alternative lag structures in 
���� and we found that in only one case 
�it��

instead of �it��� the optimal value of the log likelihood is slightly larger� However� in that case residual
diagnostic tests indicate misspeci�cation�

��
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Figure �� Residuals of the CLEAR model of the log of
US unemployment rate

The coe�cients of the explanatory variables in the censored regression ���� have the

expected sign� Negative growth in industrial production� declining Dow Jones returns and

a negative di�erence between long and short term interest rates increase the probability

of a positive vt in ���� and hence to a sudden increase in the level of unemployment� The

same applies to an increase in the real oil price� The model suggests that negative growth

in industrial production e�ects unemployment after � months� For the term structure�

the oil price and the Dow Jones index� we �nd that their in�uence become apparent after

��� �� and � months� respectively�

To analyze the �t of the model we compute the expected value of �t� t � �� � � � � T

given the data YT as proposed in ��
�� Figure � shows a plot of these residuals� An F �

statistic for �rst order serial correlation based on regression ���� equals ��
� which is not

signi�cant at the � � level of signi�cance�� The F �test statistic for � � � in ��
� to test

for �rst order ARCH e�ects equals ���
 with a p�value ����� Hence there seem no serious

�The same test statistics based on the naive residuals in 
��� and on the one�step ahead forecast errors
in 
��� clearly reject serial correlation� The p�values are 	��� and 	��� respectively�

��



-0.10

-0.05

0.00

0.05

0.10

70 75 80 85 90 95

Figure �� Fitted values of the censored latent regression
�x�t

���

�rst order ARCH e�ects in the residuals� The ����� normality test on the residuals equals

���
 and hence normality cannot be rejected� In sum� the CLEAR model in ���� and ����

does not seem to be misspeci�ed�

Figure � shows a plot of the �tted values of the censored regression ����� that is x�t
��� If

we compare this graph with Figure � we see that the estimated linear combination of the

explanatory variables follows the swings in the unemployment series quite well� Note again

that the linear combination only enters the AR model ���� if vt �� �� Figure 
 displays

the conditional probabilities Pr�vt �� �jYt� xt�� Likewise a Markov switching model� see

for instance Hamilton ��	
	�� we can interpret these conditional probabilities in terms of

a business cycle� We may de�ne a recession by � consecutive months for which Pr�vt ��
� j Yt� xt� � ���� A peak is de�ned by the last expansion observation before a recession�

A trough is de�ned by the last observation in a recession� Table � shows the peaks and

troughs together with the o�cial NBER turning points� Our �rst observation from this

table is that the conditional probabilities do not indicate a recession at the beginning of

the �		�s� As can be seen from Figure 
� however� there is no sequence of six months in
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Figure �� Conditional expectation of the censored latent
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Table �� Peaks and troughs for US unem�
ployment based on conditional probabili�
ties�

Unemployment� NBER
peak trough peak trough

�	��� ����� �	��� �����
�
��
 ����� ����� �����
�	��� 
���� 
���� 
����

���� 
���� 
���� 
����
� � 	���� 	����

� A recession is de�ned by � consecutive months
for which Pr�vt �� 	 j Yt� xt� � 	��� A peak
corresponds with the last expansion observa�
tion before a recession and a trough with the
last observation in a recession�

a row for �		���
��		���� for which Pr�vt �� �jYt� xt� � ���� Secondly� also the e�ects of

the �rst oil crisis starts � months later at least in the case of the CLEAR model� If we

take a closer look at Figure 
� we see that the conditional probabilities Pr�vt �� �jYt� xt�
exceed ��� for �	�������	�
���� and only for �	�
��� this probability is below ���� causing

the suggested recession to start as late as �	�
��
�

In sum� the empirical evidence sofar suggests that the CLEAR model can potentially

be used to actually understand which �combinations of� variables generate recessions�

Figure � shows the estimated conditional expectation of vt� E�vtjYt� xt�� The value

of this expectation concerns the magnitude of the innovative shocks� which lift the un�

employment rate to a higher level� Therefore� it can be used as an indication of the

magnitude of a recession� The second recession in our sample �around �	�
 ��� seems to

be the most serious recession� as it corresponds with the highest expected values of vt�

Apparently� the recession at the beginning of the �		�s did not have such a large impact

on the unemployment rate level�

Finally� we compare the out�of�sample forecasting performance of the CLEAR model

��



Table �� Forecast performance evaluation of the CLEAR model�

criteria sign test� encompassing tests�

model RMSE MAPE fraction p�value I II

forecasting sample �		������		����

CLEAR ����� ����

AR��� ����	 ����� �� �� ������ ���� ���
	� ���� ������
ARX��� ����
 ����� 	 �� ������ ��	� ������ ��
� ������

forecasting sample �		������		����

CLEAR ����� �����
AR��� ����	 ����
 �� �
 ������ ���� ����	� ���� ������
ARX��� ����	 ����� �� �
 ������ ��
� ����	� ���� ������

� A nonparametric sign test� The �rst column displays the fraction that the forecast
error of the CLEAR model is smaller in absolute value than the forecast error of
the AR
�� and ARX
�� model� The second column displays the p�value for the
corresponding nonparametric test for equal forecast accuracy�

� In column I we report encompassing tests 
with p�values between parentheses� to test
whether forecasts generated by the CLEAR model encompass forecasts generated
by the AR
�� and ARX
�� model� while in column II we investigate whether the
AR
�� and ARX
�� model forecasts encompass the CLEAR model forecasts�

with two closely related models� As competing models we take a simple AR��� model

and an ARX��� model which is the CLEAR model without censoring and with imposing

ut � �� In the ARX model it is assumed that the lagged explanatory variables enter the

autoregression in all months� while in the CLEAR model only in some months� First� we

hold out the last �� observations and in a second exercise the last �
 observations from

our sample and re�estimate the parameters of the CLEAR model� Next� we generate ��

��
� one�step ahead forecasts from the estimated CLEAR model using ��	�� and from

the estimated AR��� and ARX��� models for the period �		������		���� �and �		�����

�		������ Note that we can condition on xt to compute the one�step ahead forecasts� as

the models only contain lagged and not current values of the explanatory variables� The

��



second and third columns of Table � show the root mean squared forecast error �RMSE�

and the mean absolute percentage errors �MAPE� for the three models� The RMSE and

MAPE for the forecasts of the CLEAR model are smaller than for the other two models�

although the di�erence appear not to be very large�

The fourth and �fth columns present the outcomes of a nonparametric sign test for

equal forecast accuracy� If we look at the forecasting sample �		������		����� the fore�

cast errors of the CLEAR model are �� �	� times smaller in absolute value than the

forecast error generated by the AR �ARX� model� Compared with the CDF of a binomial

distribution with p � ��� and n � ��� these numbers are large enough to reject equal fore�

cast accuracy at the �� level� For the forecasting sample �		������		����� the CLEAR

model produces �� times out of �
 smaller forecast errors in absolute value� which is again

signi�cant at the �� level�

The �nal two columns of Table � show the outcomes of forecast encompassing tests�

Let fT�h be the forecast from the CLEAR model and !fT�h the forecast from a competing

model� Then� the forecasts from the CLEAR model are said to encompass the forecasts

from the competing model if the � coe�cient in the following regression model is zero

yT�h � !fT�h � ��fT�h � !fT�h� � eT�h� for h � �� � � � � H� ��
�

where yT�h is the true value� see Clements and Hendry ��		��� To test for � � � we use

an F �statistic� The p�values reported in the �nal two columns show that the forecasts of

the CLEAR model encompass the forecasts of the other two models� If we test whether

the forecasts of the AR or ARX model encompass the forecasts of the CLEAR model we

reject at the ��� level for the period �		������		���� and at the �� level or lower for

the period �		������		�����

To summarize this empirical section� the CLEAR model appears to describe the salient

characteristics of the US unemployment rate rather well� The censored regression gen�

erates the positive shocks to unemployment during recession� and hence the included

explanatory variables seem important from a forecasting point of view� Turning points

based on the conditional probabilities for a positive shock match the peaks and troughs

�




of the NBER reasonably well� Furthermore� the CLEAR model produces better out�of�

sample forecasts than an AR��� and an ARX��� model for the period �		������		�����

� Concluding Remarks

In this paper we have proposed a new time series model to describe asymmetries in

macroeconomic time series� The model consists of an autoregressive component and a

component corresponding to positive innovations� These innovations are generated by

a censored regression model� which contains �lagged� explanatory variables to describe

the value of the shock� The innovative shocks only enter the time series model if their

value exceeds a stochastic threshold level� As the exact values of the shocks are unknown

and censored� our new time series model is called a censored latent e�ects autoregression

�CLEAR��

The CLEAR model was illustrated for seasonally adjusted monthly US unemployment

rate� The censored regression model� which generates the innovative shocks during re�

cessions contained lagged values of leading indicators for unemployment� including the

real oil price� a term structure� the Dow Jones index and industrial production� The

models �tted the data well and its out�of�sample forecasts outperformed forecasts from

alternative models�

The censored latent e�ects model provides ample possibilities for future research work�

A new formal model identi�cation strategy based on formal diagnostic tests� like Lagrange

multiplier test for serial correlation and ARCH e�ects may be required� Extensions to

moving average disturbances and additive shocks instead of innovative shocks are straight�

forward but may require more complicated algorithms to compute the likelihood function�

The censored latent regression model can also be used to describe patterns in return

volatility� as volatility sometimes jumps to a higher level� Finally� it is of interest to

investigate the e�ects of misspecifying a CLEAR model by a standard linear model�

�	



Appendix

To derive the gradient of the log likelihood �	� function we consider partial derivatives of

the unconditional pdf of yt with respect to the model parameters f�� ��� � � � � �p� ��� �� �ug
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where et is de�ned below ��� and f�ytjYt��� vt� �� and f�ytjYt��� xt� �� are de�ned in ���

and �
�� respectively� The gradient gt�ytjYt��� xt� �� � � ln�f�ytjYt��� xt� ������ becomes

gt�ytjYt��� xt� �� �
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and hence the gradient of the log likelihood function equals

G�YT jxT � �� �
TX
t��

gt�ytjYt��� xt� ���

To construct standard errors for our maximum likelihood estimator �� we use an estimate

of the information matrix H from the scores" average outer product

�H �
�

T

TX
t��

gt�ytjYt��� xt� ���
�gt�ytjYt��� xt� ����

see Hamilton ��		�� p����� for a similar approach in Markov switching time series models�
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