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Abstract
We develop a new Bayesian approach to estimate the parameters of a latent-class

model for the joint clustering of both modes of two-mode data matrices. Posterior
results are obtained using a Gibbs sampler with data augmentation. Our Bayesian
approach has three advantages over existing methods. First, we are able to do
statistical inference on the model parameters, which would not be possible using
frequentist estimation procedures. In addition, the Bayesian approach allows us to
provide statistical criteria for determining the optimal numbers of clusters. Finally,
our Gibbs sampler has fewer problems with local optima in the likelihood function
and empty classes than the EM algorithm used in a frequentist approach. We apply
the Bayesian estimation method of the latent-class two-mode clustering model to
two empirical data sets. The first data set is the Supreme Court voting data set of
Doreian, Batagelj, and Ferligoj (2004). The second data set comprises the roll call
votes of the United States House of Representatives in 2007. For both data sets, we
show how two-mode clustering can provide useful insights.
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1 Introduction

Clustering algorithms divide a single set of objects into segments based on their similar-

ities and properties, or on their dissimilarities, see, for example, Hartigan (1975). Such

methods typically operate on one mode (dimension) of a data matrix; we refer to these

methods as one-mode clustering. Two-mode clustering techniques (Van Mechelen, Bock,

& De Boeck, 2004) cluster two sets of objects into segments based on their interactions. In

two-mode clustering, both rows and columns of data matrix are clustered simultaneously.

Many clustering methods, such as k-means clustering and Ward’s method, lack a

method to ascertain the significance of the results and rely on arbitrary methods to

determine the number of clusters. To solve these problems, one may consider model-based

techniques for clustering data. For one-mode data, model-based clustering methods have

been developed, see, for example, Fraley and Raftery (1998); Wedel and Kamakura (2000);

Frühwirth-Schnatter (2006). These model-based clustering methods use statistical tools

for inference.

In this article, we extend the model-based one-mode clustering approach to two-mode

clustering. In two-mode clustering, we cluster both the rows and the columns of a data

matrix into groups in such a way that the resulting block structure is homogenous within

blocks but differs between blocks. This requires matrix-conditional data, which means

that all elements must be comparable in size, standardized, or measured on the same

scale. Methods for two-mode clustering are in general not model-based (see, for example,

Candel & Maris, 1997; Doreian et al., 2004; Brusco & Steinley, 2006; Van Rosmalen,

Groenen, Trejos, & Castillo, 2009). One-mode model-based clustering methods usually

rely on latent-class techniques. It is not straightforward to extend these techniques to

two-mode data, because, unlike one-mode data, two-mode data cannot be assumed to be

independent. Despite this problem, Govaert and Nadif (2003, 2008) have been able to

use a latent-class approach to cluster two-mode data. They use a frequentist approach

to estimate the parameters, but they are only able to optimize an approximation of

the likelihood function using the EM algorithm (Dempster, Laird, & Rubin, 1977). In

this article, we use the same likelihood function as Govaert and Nadif (2003, 2008), but

1



we propose a Bayesian estimation procedure. This enables us to estimate the model

parameters properly and to do statistical inference on the estimation results.

The contribution of our Bayesian approach is threefold. First, our approach allows

for statistical inference on the parameter estimates. Govaert and Nadif (2003, 2008)

estimate the model parameters in a frequentist setting, but they are unable to compute

standard errors of the estimated parameters. Our Bayesian approach provides posterior

distributions and hence posterior standard deviations of the parameters. Therefore, our

approach enables hypothesis testing, which is not feasible in the frequentist setting.

Secondly, our Bayesian method has fewer computational problems than the maximum

likelihood approach. Using proper priors, we avoid some computational issues with empty

classes, which is a well known problem when using the EM algorithm for finite mixture

models. Posterior results can be obtained using Gibbs sampling with data augmentation

(Tanner & Wong, 1987). Because of the more flexible way Markov Chain Monte Carlo

methods search the parameter space, our Bayesian approach is less likely to get stuck

in a local optimum of the likelihood function. This flexibility may cause label switching,

see Celeux, Hurn, and Robert (2000). However, solutions to this problem exist (see, for

example, Frühwirth-Schnatter, 2001; Geweke, 2007).

Finally, our method can help indicate the optimal number of segments. The Bayesian

approach can be used to derive selection criteria such as Bayes factors. Methods pre-

viously proposed in the literature for selecting the optimal number of clusters (see, for

example, Milligan & Cooper, 1985; Schepers, Ceulemans, & Mechelen, 2008) seem some-

what arbitrary and lack theoretical underpinnings.

We illustrate our Bayesian approach using two data sets. The first data set comprises

votes of the Supreme Court of the United States and was also used by Doreian et al.

(2004). Our approach results in a similar solution; however, the optimal numbers of

segments are lower than in their solution. Our second application is a large data set

concerning roll call voting in the United States House of Representatives. We use our

model to cluster both the representatives and the bills simultaneously.

The remainder of this paper is organized as follows. In Section 2 we introduce our

new Bayesian approach for clustering two-mode data. We compare this Bayesian approach
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with the existing frequentist approaches of Govaert and Nadif (2003, 2008). In Section 3,

we discuss the posterior simulator for our Bayesian approach and the selection of the

numbers of segments. In Section 4, the Bayesian approach is illustrated on the Supreme

Court voting data. Section 5 deals with our second application, which concerns roll call

votes of the United States House of Representatives in 2007. Finally, Section 6 concludes.

2 The Latent-Class Two-Mode Clustering Model

In this section, we present our Bayesian approach to clustering both modes of two-mode

data simultaneously. We first give a derivation of the likelihood function and then discuss

Bayesian parameter estimation for the latent-class two-mode clustering model.

2.1 The Likelihood Function

For illustrative purposes, we start this discussion with one-mode data, that is, we have

N observations denoted by y = (y1, . . . , yN)′. These observations can be discrete or

continuous, and one-dimensional or multidimensional. We assume that each observation

comes from one of K segments, and that the elements within each segment are indepen-

dently and identically distributed. As a result, all observations must be independent.

Furthermore, we assume that the observations come from a known distribution which is

the same across segments; only the parameters of the distribution vary among the seg-

ments. These data can be described by a mixture model. Let ki ∈ {1, . . . , K} be an

indicator for the segment to which observation yi belongs, and let k = (k1, . . . , kN)′. The

conditional density of yi belonging to segment q only depends on the parameter vector θq

and is denoted by g(yi|θq). The segment membership is unknown. We assume that the

probability that observation yi belongs to segment q is given by κq for q = 1, . . . , K, with

κq > 0 and
∑K

q=1 κq = 1. We collect the so-called mixing proportions κq in the vector

κ = (κ1, . . . , κK)′. The likelihood function of this model is given by

l(y|θ, κ) =
N∏

i=1

{
K∑

q=1

κqg(yi|θq)

}
, (1)

where θ = (θ1, . . . , θK)′.
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To cluster two-mode data, we would like to extend (1) to two-mode data matrices,

with a simultaneous clustering of both rows and columns. We aim to construct a model in

which the observations that belong to the same row cluster and the same column cluster

are independently and identically distributed. In two-mode clustering, unlike in one-

mode clustering, this assumption does not ensure that all observations are independent.

As a result, a naive extension of the one-mode likelihood function to two modes will not

adequately describe the dependence structure in the data.

Assume that Y is an (N ×M) matrix with elements Yi,j, and that we want to cluster

the rows into K latent classes and the columns into L latent classes. The naive extension

of (1) to two-mode data yields

lnaive(Y|θ, κ, λ) =
N∏

i=1

M∏
j=1

K∑
q=1

L∑
r=1

κqλrg(Yi,j|θq,r), (2)

where κ = (κ1, . . . , κK)′ gives the size of each row segment, λ = (λ1, . . . , λL)′ gives the

size of each column segment, and θq,r contains the parameters of observations belonging

to row segment q and column segment r. Model (2) fails to impose that all elements in

a row belong to the same row cluster and also does not impose that all elements in a

column belong to the same column cluster; using this model, the data matrix Y would

effectively be modeled as a vector of one-mode data.

To derive the proper likelihood function, we first rewrite the one-mode likelihood

function (1) as

l(y|θ, κ) =
N∏
i

{
K∑

q=1

κqg(yi|θq)

}

=

{
K∑

q=1

κqg(y1|θq)

}{
K∑

q=1

κqg(y2|θq)

}
. . .

{
K∑

q=1

κqg(yN |θq)

}

=
K∑

k1=1

K∑

k2=1

· · ·
K∑

kN=1

N∏
i=1

κki
g(yi|θki

)

=
∑

k∈K

K∏
q=1

κ
Nq

k
q

N∏
i=1

g(yi|θki
), (3)

where we introduce some new notation in the last line. First, the set K contains all possible

divisions of the observations into the segments and thus has KN elements if there are N
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observations and K possible segments. Second, N q
k equals the number of observations

belonging to segment q according to segmentation k. Thus,
∑K

q=1 N q
k = N for a fixed

classification k. The fact that these two representations of the likelihood function of a

mixture model are equivalent was already noticed by Symons (1981).

Using this representation, we can extend the mixture model to clustering two modes

simultaneously. The resulting likelihood function for two modes is

l(Y|θ, κ, λ) =
∑

k∈K

∑

l∈L

K∏
q=1

κ
Nq

k
q

L∏
r=1

λ
Mr

l
r

N∏
i=1

M∏
j=1

g(Yi,j|θki,lj), (4)

where L denotes all possible divisions of the columns into L segments, M r
l equals the num-

ber of items belonging to segment r according to column segmentation l = (l1, . . . , lM)′.

Note that it is impossible to rewrite (4) as a product of likelihood contributions as is

possible in the one-mode case (1).

2.2 Parameter Estimation

The likelihood function (4) was already proposed by Govaert and Nadif (2003), who

estimate the parameters of this model in a frequentist setting. However, their approach

has several limitations. First, in contrast to the likelihood function in the one-mode case,

the likelihood function (4) cannot be written as a product over marginal/conditional

likelihood contributions; we only have a sample of size 1 from the joint distribution of Y,

k, and l. Therefore, the standard results for the asymptotic properties of the maximum

likelihood estimator are not applicable.

Second, standard approaches to maximize the likelihood function (4) and estimate

the model parameters are almost always computationally infeasible. Enumerating the

KNLM possible ways to assign the rows and columns to clusters in every iteration of an

optimization routine is only possible for extremely small data sets. To solve this problem,

Govaert and Nadif (2003) instead consider the so-classed classification likelihood approach,

in which k and l are parameters that need to be optimized. Hence one maximizes

l(Y;k, l|θ, κ, λ) =
K∏

q=1

κ
Nq

k
q

L∏
r=1

λ
Mr

l
r

N∏
i=1

M∏
j=1

g(Yi,j|θki,lj) (5)
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with respect to θ, κ, λ, k ∈ K, and l ∈ L. As the parameter space contains discrete

parameters k and l, standard asymptotic theory for maximum likelihood parameter es-

timation does not apply. Govaert and Nadif (2008) also consider the optimization of an

approximation to the likelihood function (4). This approximation is based on the assump-

tion that the two classifications (that is, the classification of the rows and the classification

of the columns) are independent.

We solve the aforementioned problems by considering a Bayesian approach. This

approach has several advantages. First, we do not have to rely on asymptotic theory for

inference. We can use the posterior distribution to do inference on the model parameters.

In addition, it turns out that we do not need to evaluate the likelihood specification

(4) to obtain posterior results. Posterior results can easily be obtained using a Markov

Chain Monte Carlo [MCMC] sampler (Tierney, 1994) with data augmentation (Tanner &

Wong, 1987). Data augmentation implies that the latent variables k and l are simulated

alongside the model parameters θ, κ, and λ. This amounts to applying the Gibbs sampler

to the complete data likelihood in (5). As Tanner and Wong (1987) show, the posterior

results for the complete data likelihood function are equal to the posterior results for

the likelihood function. As we can rely on the complete data likelihood (5) and do not

have to consider (4), obtaining posterior results is computationally feasible. Furthermore,

unlike previous studies (see, for example, Govaert & Nadif, 2003, 2008), we can provide

statistical rules for choosing the numbers of segments as will be shown in Section 3.2.

Finally, our method does not suffer much from computational difficulties when searching

the global optimum of the likelihood function. The EM algorithm is known to get stuck

in local optima of the likelihood function, which often occurs in local optima with one

or more empty segments. Because we rely on MCMC methods, our approach has fewer

problems with local optima. Furthermore, by using proper priors, we can avoid solutions

with empty segments, see also Dias and Wedel (2004) for similar arguments.
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3 Posterior Simulator

As discussed previously, we rely on MCMC methods to estimate the posterior distributions

of the parameters of the two-mode mixture model. We propose a Gibbs sampler (Geman

& Geman, 1984) with data augmentation (Tanner & Wong, 1987), in which we sample

the vectors k and l alongside the model parameters. This approach allows us to sample

from the posterior distributions of the parameters without evaluating the full likelihood

function and therefore requires limited computation time. We assume independent priors

for the model parameters with density functions f(κ), f(λ), and f(θ). In Section 3.1, we

derive the Gibbs sampler. Methods for choosing the numbers of segments are discussed

in Section 3.2.

3.1 The Gibbs Sampler

In each iteration of the Gibbs sampler, we sample the parameters θ, κ, and λ together

with the latent variables k and l from their full conditional distributions. The MCMC

simulation scheme is as follows:

• Draw κ, λ|θ,k, l,Y

• Draw k|κ, λ, θ, l,Y

• Draw l|κ, λ, θ,k,Y

• Draw θ|κ, λ,k, l,Y

Below we derive the full conditional posteriors, which are needed for the Gibbs sampler.

After convergence of the sampler, we obtain a series of draws from the posterior distribu-

tions of the model parameters θ, κ, and λ. These draws can be used to compute posterior

means, posterior standard deviations, and highest posterior density regions. Because we

use data augmentation, we also obtain draws from the posterior distributions of k and

l. This enables us to compute the posterior distributions of each row of data and each

column of data over the segments. We can store the posterior distributions in matrices Q

and R, where Q is of size (N ×K), and R is of size (M ×L). Each row of Q contains the
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posterior distribution of a row of data over the K possible row segments, and each row

of R contains the posterior distribution of a column of data over the L possible column

segments.

Sampling of κ and λ

The full conditional density of κ is given by

f(κ|θ, λ,k, l,Y) ∝ l(Y;k, l|θ, κ, λ)f(κ)

∝
K∏

q=1

κ
∑N

i=1 I(ki=q)
q f(κ), (6)

where l(Y;k, l|θ, κ, λ) is the complete data likelihood function given in (5), where f(κ) is

the prior density of κ, and where I(.) is an indicator function that equals 1 if the argument

is true and 0 otherwise. The first part of (6) is the kernel of a Dirichlet distribution,

see, for example, Frühwirth-Schnatter (2006). If we specify a Dirichlet(d1, d2, . . . , dK)

prior distribution for κ, the full conditional posterior is also a Dirichlet distribution with

parameters
∑N

i=1 I(ki = 1) + d1,
∑N

i=1 I(ki = 2) + d2, . . .,
∑N

i=1 I(ki = K) + dK .

If we take a Dirichlet(d1, d2, . . . , dL) prior for λ, the λ parameters can be sampled in

exactly the same way. The full conditional posterior density is now given by

f(λ|θ, κ,k, l,Y) ∝
L∏

r=1

λ
∑M

j=1 I(lj=r)
r f(λ), (7)

where f(λ) denotes the prior density. Hence, we can sample λ from a Dirichlet distribution

with parameters
∑M

j=1 I(lj = 1) + d1,
∑M

j=1 I(lj = 2) + d2, . . . ,
∑M

j=1 I(lj = L) + dL.

Sampling of k and l

We sample each element of k and l separately. The full conditional density of ki is given

by

p(ki|θ, κ, λ,k−i, l,Y) ∝ κki

M∏
j=1

g(Yi,j|θki,lj) (8)

for ki = 1, . . . , K, where k−i denotes k without ki, and Yi denotes the ith row of Y.

Hence, ki can be sampled from a multinomial distribution. In a similar way, we can
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derive the full conditional density of lj, which equals

p(lj|θ, κ, λ,k, l−j,Y) ∝ λlj

N∏
i=1

g(Yi,j|θki,lj), (9)

where l−j denotes l without lj. We can thus sample lj from a multinomial distribution.

Sampling of θ

The sampling of the parameters θ depends on the specification of g(Yi,j|θq,r). With our

application in mind and for illustrative purposes, we discuss below the sampling of the

model parameters for the case where Yi,j follows a Bernoulli or a Normal distribution.

Example 1: Bernoulli Distribution

If Yi,j is a binary random variable with a Bernoulli distribution, with probability pq,r when

belonging to row segment q and column segment r, the density is given by

g(Yi,j|θq,r) = Y
pq,r

i,j (1− Yi,j)
1−pq,r . (10)

Let P denote the (K × L) matrix containing these probabilities for each combination of

a row segment and a column segment, so that θ = P.

To sample pq,r, we need to derive its full conditional density, which is given by

f(pq,r|P−q,r, κ, λ,k, l,Y)

∝
∏
i∈Q

∏
j∈R

pYi,j
q,r (1− pq,r)

1−Yi,jf(pq,r)

∝ p
∑N

i=1

∑M
j=1 I(ki=q)I(lj=r)Yi,j

q,r (1− pq,r)
∑N

i=1

∑M
j=1 I(ki=q)I(lj=r)(1−Yi,j)f(pq,r), (11)

where Q is the set containing all rows that belong to segment q, where R contains all

columns that belong to segment r, where P−q,r denotes P without pq,r, and where f(pq,r)

denotes the prior density of pq,r. The first part of (11) is the kernel of a Beta distribution.

If we specify a Beta(b1, b2) prior distribution, the full conditional posterior distribution

is also a Beta distribution with parameters
∑N

i=1

∑M
j=1 I(ki = q)I(lj = r)Yi,j + b1 and

∑N
i=1

∑M
j=1 I(ki = q)I(lj = r)(1− Yi,j) + b2.

9



Example 2: Normal Distribution

If Yi,j is a normally distributed variable,with mean µq,r and variance σ2
q,r in row segment

q and column segment r, we have

g(Yi,j|θq,r) =
1√

2πσ2
q,r

exp

{
−1

2

(Yi,j − µq,r)
2

σ2
q,r

}
. (12)

Let µµµ and Σ denote the (K × L) matrices containing the means and variances for each

combination of a row segment and a column segment, respectively; hence θ = {µµµ,Σ}.
To sample µq,r, we need to derive its full conditional distribution, which density is

given by

f(µq,r|µµµ−q,r,Σ, κ, λ,k, l,Y)

∝ exp

[
−

∑
i∈Q

∑
j∈R(Yi,j − µq,r)

2

2σ2
q,r

]
f(µq,r)

∝ exp

[
−(µq,r − 1/N q,r

k,l

∑
i∈Q

∑
j∈R Yi,j)

2

2σ2
q,r/N

q,r
k,l

]
f(µq,r), (13)

where µµµ−q,r denotes µµµ without µq,r, and where f(µq,r) denotes the prior density of µq,r. The

number of observations that are both in row segment q and column segment r according

to segmentations k and l is denoted by N q,r
k,l =

∑N
i=1

∑M
j=1 I(ki = q)I(lj = r). As some

segments may become empty in one of the iterations of the Gibbs sampler, we propose to

use a proper prior specification for the elements of µµµ and Σ. To facilitate sampling we opt

for conjugate priors and specify independent normal prior distributions for the elements

of µµµ with mean µ0 and variance σ2
0. This results in the following full conditional posterior

distribution

µq,r|µµµ−q,r,Σ, κ, λ,k, l,Y ∼ N
(

σ−2
0

σ−2
0 + s−2

µ0 +
s−2

σ−2
0 + s−2

µ̄, (σ−2
0 + s−2)−1

)
, (14)

where µ̄ =
∑

i∈Q
∑

j∈R Yi,j/N
q,r
k,l , the sample average within the cluster and s2 = σ2

q,r/N
q,r
k,l .

The full conditional density of σ2
q,r is given by

f(σ2
q,r|µµµ,Σ−q,r, κ, λ,k, l,Y) ∝ (σ2

q,r)
Nq,r

k,l /2 exp

[
−

∑
i∈Q

∑
j∈R(Yi,j − µq,r)

2

2σ2
q,r

]
f(σ2

q,r), (15)

where Σ−q,r denotes Σ without σ2
q,r, and where f(σ2

q,r) denotes the prior density of σ2
q,r.

The first part of (15) is the kernel of an inverted Gamma-2 distribution. To facilitate
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sampling we specify independent inverted Gamma-2 priors with parameters g1 and g2 for

the elements in Σ. The full conditional posterior of σ2
q,r is therefore an inverted Gamma-2

distribution with parameters N q,r
k,l + g1 and

∑
i∈Q

∑
j∈R(Yi,j − µq,r)

2 + g2.

3.2 Selecting the Numbers of Segments

The standard way to determine the numbers of clusters in a finite mixture model in a

frequentist framework is to use information criteria such as AIC, AIC-3, BIC, and CAIC

(see, for example, Fraley & Raftery, 1998; Andrews & Currim, 2003). The reason for

this is that standard tests for determining the optimal number of classes in latent-class

models are not valid due to the Davies (1977) problem. Within a Bayesian framework, we

can avoid this problem by computing Bayes factors (see, for example, Berger, 1985; Kass

& Raftery, 1995; Han & Carlin, 2001). Unlike the hypotheses testing approach, Bayes

factors can be used to compare several possibly nonnested models simultaneously; Bayes

factors naturally penalize complex models. The Bayes factor for comparing Model 1 with

Model 2 is defined as

B21 =
f(Y|M2)

f(Y|M1)
, (16)

where f(Y|Mi) denotes the marginal likelihood of model Mi. The marginal likelihood is

defined as the expected value of the likelihood function with respect to the prior, see, for

example, Gelman, Carlin, Stern, and Rubin (2003).

Computing the value of the marginal likelihood is not an easy task. Theoretically, its

value can be estimated by averaging the likelihood function over draws from the prior

distribution. If the support of the prior distribution does not completely match with

the support of the likelihood function, the resulting estimate will be very poor. Another

strategy is to use the harmonic mean estimator of Newton and Raftery (1994). However,

this estimator can be quite unstable. In this article, we estimate the marginal likelihood

using the fourth estimator proposed by Newton and Raftery (1994, p. 22), which is also

used by DeSarbo, Fong, Liechty, and Saxton (2004) in a similar model. This estimator

uses importance sampling to compute the marginal likelihood value. The importance

sampling function is a mixture of the prior and the posterior distribution with mixing

proportion δ. Using the fact that the marginal likelihood is the expected value of the
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likelihood function with respect to the prior, it can be shown that the marginal likelihood

f(Y) can be estimated using the iterative formula

f̂(Y) =
δm/(1− δ) +

∑m
i=1(f(Y|ϑ(i))/(δf̂(Y) + (1− δ)f(Y|ϑ(i))))

δm/(1− δ)f̂(Y) +
∑m

i=1(δf̂(Y) + (1− δ)f(Y|ϑ(i)))−1
, (17)

where f(Y|ϑ) denotes the likelihood function and m denotes the number of draws ϑ(i) from

the posterior distribution; for notational convenience, we drop the model indicator Mi. To

apply this formula, we need to choose the value δ; Newton and Raftery (1994) recommend

using a low value of δ, which we set to 0.001 in our application below. Another approach

to compute marginal likelihoods is to use the bridge sampling technique of Frühwirth-

Schnatter (2004).

Obtaining an accurate value of the marginal likelihood for any moderately sophisti-

cated model tends to be hard, as was noted by Han and Carlin (2001). Therefore, we

also propose a simpler alternative method to choose the numbers of segments, based on

information criteria. Simulations in Andrews and Currim (2003) suggest that the AIC-3

of Bozdogan (1994) performs well as a criterion for selecting numbers of segments. To

evaluate the AIC-3, we need the maximum likelihood value and the number of parameters.

To compute the maximum likelihood value, we take the highest value of the likelihood

function (5) across the sampled parameters.

Determining the appropriate number of parameters in our two-mode clustering model

is not straightforward. The parameters θ, κ, and λ contain wKL, K − 1, and L − 1

parameters, respectively, where w denotes the number of parameters in θ per combination

of a row segment and a column segment. Although k and l contain the same numbers

of parameters for all numbers of latent classes, the number of possible values for each

parameter increases. We can think of k as representing an (N × K) indicator matrix,

where each row indicates to which segment an object belongs. This means that k and l

represent N(K−1) and M(L−1) free parameters, respectively. Hence, the effective total

number of parameters is wKL + NK + ML + K + L−M −N − 2.
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4 Application 1: Supreme Court Voting Data

We apply the latent-class two-mode clustering model to two empirical data sets. The first

data set, which is discussed in this section, is the Supreme Court voting data of Doreian

et al. (2004). We use this data set to compare the results of our approach with the results

of previous authors, and we discuss this data set relatively briefly. The second data set

will be analyzed in greater detail in the next section. The Supreme Court voting data set

comprises the decisions of the nine Justices of the United States Supreme Court on 26

important issues. The data are displayed in Table 1. In this table, a 1 reflects that the

Justice voted with the majority, and a 0 means that the Justice voted with the minority.

To describe the votes, we use a Bernoulli distribution with a Beta(1, 1) prior for the

probability, which is equivalent to a uniform prior on (0,1). Furthermore, we use an

uninformative Dirichlet(1, 1, . . . , 1) prior for both κ and λ.

To determine the optimal numbers of segments, we compute the marginal likelihoods

for several values of K and L, based on an MCMC chain of 100,000 draws for each

combination of K and L. Table 2 displays the values of log marginal likelihoods ln f(Y)

for every combination of K = 1, . . . , 6 rows segments and L = 1, . . . , 6 column segments.

The highest marginal likelihood is achieved with K = 2 segments for the issues and L = 3

segments for the Justices. Note that we find fewer segments than Doreian et al. (2004),

who applied blockmodeling to this data set and found 7 clusters for the issues and 4

clusters for the Justices, and Brusco and Steinley (2006), who found 5 clusters for the

issues and 3 clusters for the Justices.

We experience label switching in our MCMC sampler. Two of the segments of Justices

switched places twice in the MCMC chain of 100,000 draws. However, we could easily

identify where these switchings occurred. As suggested by Geweke (2007), we solved the

label switching problem by sorting the draws in an appropriate way.

To analyze the posterior results, it is possible to weight the results with different

numbers of segments according to the posterior model probabilities that follow from the

marginal likelihoods. However, we find it more convenient to consider the results for only

one value of K and L. Therefore, we focus on the solution with the highest marginal

13
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Table 2: Log marginal likelihoods for the Supreme Court Voting

Data
Segments of Justices

Segments of issues 1 2 3 4 5 6
1 -155.56 -160.96 -164.17 -166.28 -168.13 -169.96
2 -172.98 -117.69 -109.98 -111.00 -112.27 -114.02
3 -183.29 -124.17 -112.17 -113.83 -114.63 -116.56
4 -189.60 -129.92 -115.57 -117.72 -119.27 -118.61
5 -194.88 -133.45 -118.78 -120.00 -121.50 -121.51
6 -199.67 -137.27 -122.29 -122.66 -125.84 -126.28

likelihood value, that is, K = 2 segments of issues and L = 3 segments of Justices. The

posterior means and standard deviations of P, κ, and λ are shown in Table 3. Tables 4

and 5 show the marginal posterior distributions of the issues and the Justices over the

segments. We find that Justices Ginsburg, Stevens, Breyer, and Souter constitute the

liberal wing (that is, the left wing) of the Supreme Court. The Court’s moderate wing

comprises Justices O’Connor and Kennedy, and the conservative wing (that is, the right

wing) consists of Justices Rehnquist, Scalia, and Thomas. The segments of the issues

consist of issues that resulted in liberal decisions (segment 1) and issues that resulted in

conservative decisions (segment 2). We find strong partisan tendencies in the Supreme

Court: liberal Justices support liberal decisions in 97% of the cases, and conservative

Justices also support conservative decisions with a 97% probability. The liberal Justices

sometimes (in 26% of the cases) vote for a conservative decision, whereas conservative

Justices seldom support a liberal decision. Because of their central position in the court,

the moderate Justices usually are in the majority. However, the moderate Justices are

slightly more likely to support conservative decisions than liberal decisions. In general,

the uncertainty in these classifications is low, especially given the relatively small size of

the data set. The Justices and almost all issues can be assigned to one segment with a

posterior probability close to 1.

The segmentation of the Justices, as displayed in Table 4, resembles the one found by

Doreian et al. (2004), who divide the Justices into four segments. The segmentation of

the issues deviates more from the solution of Doreian et al. (2004), who find 7 segments

for the issues. Brusco and Steinley (2006) also find more segments for the issues than the
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Table 3: Posterior means with posterior standard deviations in parentheses,

for K = 2 and L = 3 in the Supreme Court Data.

Segment of Justices
Segment of issues 1 2 3 Posterior segment size
Interpretation liberal moderate conservative
1 (liberal majority) 0.97 (0.03) 0.68 (0.10) 0.10 (0.07) 0.46 (0.10)
2 (conservative majority) 0.26 (0.07) 0.84 (0.07) 0.97 (0.03) 0.54 (0.10)
Posterior segment size 0.42 (0.14) 0.25 (0.12) 0.33 (0.13)

Table 4: Marginal posterior distribution of

the Justices over the segments.

Justice 1 2 3
Breyer 1.00 0.00 0.00
Ginsburg 1.00 0.00 0.00
Stevens 1.00 0.00 0.00
Souter 1.00 0.00 0.00
O’Connor 0.00 1.00 0.00
Kennedy 0.00 0.98 0.02
Rehnquist 0.00 0.00 1.00
Thomas 0.00 0.00 1.00
Scalia 0.00 0.00 1.00
Interpretation liberal moderate conservative

Table 5: Marginal posterior distribution of the issues over the segments.

Issue \ Segment 1 2 Issue \ Segment 1 2
2000 Presidential Election 0.00 1.00 Clean Air Act 0.20 0.80
Federalism 0.00 1.00 Illegal Search 3 0.57 0.43
Clean Water 0.00 1.00 PGA vs. Handicapped 1.00 0.00
Title VI Disabilities 0.00 1.00 Illegal Search 1 1.00 0.00
Tobacco Ads 0.00 1.00 Illegal Search 2 1.00 0.00
Labor Rights 0.00 1.00 Stay of Execution 1.00 0.00
Property Rights 0.00 1.00 Privacy 1.00 0.00
Citizenship 0.00 1.00 Immigration Jurisdiction 1.00 0.00
Free Speech 0.00 1.00 Detaining Criminal Aliens 1.00 0.00
Seat Belts 0.00 1.00 Legal Aid for the Poor 1.00 0.00
United Foods 0.00 1.00 Voting Rights 1.00 0.00
New York Times Copyright 0.00 1.00 Deporting Criminal Aliens 1.00 0.00
Cannabis for Health 0.01 0.99 Campaign Finance 1.00 0.00
Majority liberal conservative Majority liberal conservative
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numbers of segments found here. We believe that the methods used by these authors may

overestimate the numbers of segments in the data.

5 Application 2: Roll Call Voting Data

5.1 Data

To apply our method to a larger data set, we consider the voting behavior of the entire

United States House of Representatives. The details of each roll call vote of the United

States congress are published on the website http://www.GovTrack.us. We gathered

data on all roll call votes from the House of Representatives in 2007. We only use data

on votes that are related to a bill. We thus obtain data on 766 roll call votes from 427

members of the House of Representatives in 2007. There are four possible types of votes:

yea, nay, no vote, and present. A no vote means that the representative was absent at

the moment of voting; this is the case for 3.5% of the observations. A present vote means

that the representative is present, but votes neither yea nor nay, which happens only 143

times (0.00%). In contrast to the previous example, we now do not recode our data in

such a way that the majority vote is 1 or that the majority vote of the Democrats is 1 to

avoid any form of preclustering.

We collected some additional information on the representatives from GovTrack.us.

We have data on their party membership, gender, age on January 1st 2007, and state

from which they were elected. Table 6 shows the means for these variables for the entire

House of Representatives and for the Democrats and Republicans separately. In 2007,

the Democrats had a majority in the House of 53.9%, and there were no third-party or

independent representatives. There is a fairly large difference in the share of female repre-

sentatives between the Democrats (20.4%) and the Republicans (10.1%). The average age

is about the same for representatives from both parties. We divided the representatives’

home states into nine regions.

We also collected more information on the bills. Before a bill comes to a vote in the

House of Representatives, it is prepared by at least one of the 20 House Committees.

Table 7 shows the committees and how many bills they prepared. The committee that

17



Table 6: Sample means of the individual char-

acteristics for the whole House, Democrats, and

Republicans.

House Democrats Republicans
Size 1.00 0.54 0.46
Democrat 0.54 1.00 0.00
Female 0.16 0.20 0.10
Age 55.73 56.54 54.78
Region
Pacific 0.16 0.19 0.12
Mountain 0.07 0.05 0.09
West North Central 0.07 0.07 0.08
East North Central 0.15 0.14 0.17
Middle Atlantic 0.14 0.18 0.10
New England 0.05 0.09 0.01
West South Central 0.11 0.08 0.15
East south Central 0.06 0.05 0.08
South Atlantic 0.18 0.15 0.22

handles the largest number of bills is Appropriations, which controls the disbursement

of funds. The Rules committee influences what is discussed and voted upon; this com-

mittee is not primarily concerned with bills and only prepared nine of them. Most other

committees deal with specific topics. The committee(s) that prepared a bill provides an

indication for the subject of the bill. Having this information should allow us to inter-

pret the segments of bills. Identifying the segments of bills may help us understand the

segments of representatives in a better way, as we know what types of bills they support

and oppose.

Roll call votes have been analyzed before. Poole and Rosenthal (1991), Heckman and

Table 7: The numbers of bills prepared by each House Committee

Administration 14 Intelligence (Permanent Select) 15
Agriculture 18 Judiciary 51
Appropriations 291 Natural Resources 50
Armed Services 43 Oversight and Government Reform 57
Budget 14 Rules 9
Education and Labor 51 Science and Technology 43
Energy and Commerce 44 Small Business 26
Financial Services 98 Transportation and Infrastructure 69
Foreign Affairs 44 Veterans’ Affairs 15
Homeland Security 55 Ways and Means 42

18



Snyder Jr. (1997), and Nelson (2002) try to estimate latent preferences of representa-

tives, based on their voting behavior. De Leeuw (2006) plots the relative positions of

representatives into a two-dimensional space. The paper that most closely resembles our

analysis is Hartigan (2000), who clusters the members of the United States Senate, as

well as the bills on which they vote. However, Hartigan (2000) does not cluster the two

dimensions simultaneously, but alternates between clustering one dimension conditional

on the segmentation of the other dimension, until convergence.

5.2 Parameter Estimates

We apply the latent-class two-mode clustering model to the roll call voting data. We

assign a 1 to yea votes and a 0 to nay votes; we treat the response options no vote

and present as missing observations. Again, we describe the individual votes using a

Bernoulli distribution with a Beta(1, 1) prior for the probability. Furthermore, we use an

uninformative Dirichlet(1, 1, . . . , 1) prior for both κ and λ.

To determine the numbers of segments, we now opt for the AIC-3 criterion as described

in Section 3.2. We use the MCMC sampler to determine the optimal value of the complete

data log-likelihood function. To prevent the Gibbs sampler from getting stuck at a local

optimum of the likelihood function, we sample 10 sets of 10 MCMC chains, and each of

the 100 MCMC chains has length 200. For each set, the MCMC chain that attains the

highest likelihood value is chosen, and this MCMC chain is allowed to run for an additional

3,000 iterations. The highest likelihood value that is attained during these 3,000 iterations

over all sets of MCMC chains is then used as the final maximum likelihood value. This

likelihood value serves as input for the AIC-3 information criterion.

Table 8 displays the AIC-3 values. The lowest AIC-3 value is attained with K = 10

segments of bills and L = 6 segments of representatives; the corresponding log-likelihood

value is −66, 108.70. For these numbers of segments, we sample an additional 100,000

iterations from the chain that had the highest likelihood value. Due to the large size of

the data set, we have no problems with label switching. In the remainder of this section,

we present and interpret the results for this model specification.

Table 9 shows the posterior means and standard deviations for P, κ, and λ. The
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Figure 1: Graphical Representation of Voting Data Set Before (Upper Panel) and After

(Lower Panel) Reordering of Rows and Columns. A black box indicates a yea vote and a

white box indicates a nay vote.
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Table 8: AIC-3 values for K = 2, . . . , 12 segments of bills and L = 2, . . . , 10 segments

of representatives.

Segments Segments of representatives
of bills 2 3 4 5 6 7 8 9 10

2 251,889 245,490 242,752 242,630 243,333 244,062 245,130 246,267 247,433
3 206,373 197,752 193,995 193,132 193,360 193,966 194,899 195,951 197,020
4 191,907 181,359 177,459 176,081 176,193 176,556 177,376 178,328 179,349
5 186,493 175,547 170,848 169,409 169,370 169,698 170,476 171,396 172,353
6 181,998 170,774 165,959 164,315 164,261 164,480 165,229 166,115 167,061
7 179,889 168,300 163,112 161,363 161,263 161,449 162,178 163,044 163,920
8 179,620 167,790 162,484 160,722 160,516 160,698 161,421 162,244 163,136
9 179,565 167,459 162,080 160,182 160,015 160,056 160,745 161,567 162,449
10 179,531 167,209 161,744 159,715 159,530 159,553 160,194 161,011 161,837
11 180,904 168,414 162,822 160,696 160,443 160,346 160,986 161,810 162,621
12 182,500 169,944 164,292 162,167 161,802 161,671 162,248 163,065 163,854

first thing to note is that, except for segments (of bills) 9 and 10, the posterior means

of the yea voting probabilities are monotonously increasing or decreasing in each row.

For segments 9 and 10, there are only deviations from monotonicity in segment 6 of the

representatives. These results imply that the political preferences in the House are one-

dimensional. Bills from segment 2 are approved more or less unanimously, and bills from

segments 7 and 9 are also widely supported. Bills from other segments seem to be backed

by representatives from either segments 1-3 or segments 4-6. In the next subsection, we

show that these segments mainly contain Democrats and Republicans, respectively.

To show the effectiveness of our two-mode clustering method, we show graphical repre-

sentations of the roll call voting data set before and after reordering the rows and columns

according to their segment in Figure 1. For this reordering, we used the segmentation k

and l that yielded the highest likelihood value. Before reordering the rows and columns,

it is already apparent that some structure exists in the data; after reordering, the nature

of the block structure becomes clear.

5.3 Interpretation of Segments

For each row (bill) and for each column (representative), we compute the marginal poste-

rior distribution over the segments. This allow us to compute the means of the explanatory

variables within each segment. Table 10 shows the posterior means of the individual char-
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Table 9: Posterior means and posterior standard deviations in

parentheses of P, κ, and λ.

Segment of representatives
Segment of bills 1 2 3 4 5 6 κ

1 0.00 0.01 0.20 0.87 0.98 0.99 0.19
(0.00) (0.00) (0.01) (0.01) (0.00) (0.00) (0.01)

2 1.00 1.00 1.00 1.00 1.00 0.98 0.18
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.01)

3 0.01 0.03 0.17 0.45 0.83 0.93 0.13
(0.00) (0.00) (0.01) (0.01) (0.01) (0.00) (0.01)

4 0.01 0.01 0.07 0.13 0.30 0.79 0.12
(0.00) (0.00) (0.01) (0.01) (0.01) (0.01) (0.01)

5 0.99 0.97 0.84 0.14 0.02 0.02 0.09
(0.00) (0.00) (0.01) (0.01) (0.00) (0.00) (0.01)

6 1.00 0.99 0.95 0.65 0.25 0.10 0.08
(0.00) (0.00) (0.01) (0.01) (0.01) (0.01) (0.01)

7 1.00 1.00 0.99 0.95 0.83 0.48 0.08
(0.00) (0.00) (0.00) (0.00) (0.01) (0.01) (0.01)

8 0.11 0.41 0.78 0.93 0.97 0.98 0.05
(0.01) (0.01) (0.01) (0.01) (0.00) (0.00) (0.01)

9 0.71 0.91 0.95 0.97 0.98 0.97 0.05
(0.01) (0.01) (0.01) (0.00) (0.00) (0.00) (0.01)

10 0.74 0.49 0.34 0.25 0.09 0.15 0.04
(0.01) (0.02) (0.02) (0.01) (0.01) (0.01) (0.01)

λ 0.29 0.17 0.08 0.12 0.17 0.17
(0.02) (0.02) (0.01) (0.02) (0.02) (0.02)

acteristics of the representatives for each segment of representatives. The main result is

that the first three segments consist of Democrats, and the last three contain Repub-

licans. We know from Table 9 that voting behavior is monotonous; therefore, we can

interpret segments 1 and 6 as very partisan Democrats and Republicans, respectively.

Segments 2 and 5 seem to be typical Democrats and Republicans, respectively, and the

representatives in segments 3 and 4 are relatively moderate. Note that segments 3 and 4

are not completely homogenous, which means that there is a little overlap between these

moderate Democrats and Republicans.

Further, we can see that there are relatively more women in the left wing. Not only are

women more often Democrats than Republicans, but they also seem to be on the left side

within their parties. There appear to be no effects of age within the Republican party,

but within the Democratic party, the younger representatives seem to be more moderate
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Table 10: Posterior means of individual characteristics for each

segment of representatives.

Segment of representatives 1 2 3 4 5 6 Total
Democrat 1.00 1.00 0.97 0.02 0.00 0.00 0.54
Female 0.29 0.08 0.16 0.16 0.08 0.08 0.16
Age 59.30 57.44 50.79 57.68 55.19 55.06 55.73
Region 9
Pacific 0.27 0.12 0.03 0.10 0.14 0.12 0.16
Mountain 0.03 0.06 0.09 0.08 0.03 0.15 0.07
West North Central 0.03 0.12 0.09 0.08 0.07 0.08 0.07
East North Central 0.13 0.14 0.16 0.26 0.14 0.15 0.15
Middle Atlantic 0.22 0.12 0.13 0.27 0.06 0.03 0.14
New England 0.12 0.07 0.00 0.02 0.00 0.00 0.05
West South Central 0.04 0.12 0.15 0.00 0.21 0.19 0.11
East South Central 0.01 0.06 0.16 0.02 0.15 0.04 0.06
South Atlantic 0.14 0.18 0.19 0.18 0.20 0.25 0.18
Region 4
West 0.30 0.18 0.13 0.18 0.17 0.27 0.22
Mid West 0.17 0.26 0.25 0.34 0.21 0.23 0.23
North East 0.34 0.20 0.13 0.29 0.06 0.03 0.19
South 0.19 0.36 0.50 0.20 0.57 0.48 0.36
Segment size 0.29 0.17 0.08 0.12 0.17 0.17 1.00

than the older ones.

There are also some clear regional patterns. Representatives from states in the West

are more extreme in their voting behavior, as there are few representatives from these

states that are in the moderate clusters 3 and 4. The representatives from the Pacific are

responsible for the left wing, while the right-wing representatives seem to come mainly

from the Mountain states. Representatives from the Mid West seem to be more moderate

than the national average, though this effect is not very strong. In the North East, we

find that the Democrats are relatively liberal and that the Republicans are relatively

moderate. Finally, in the South, we find that the Democrats are moderate, whereas the

Republicans often belong to the most conservative segments.

Table 11 contains the posterior means of the committees for the segments of bills.

The results are less pronounced than for the representatives. For example, the posterior

means for segment 1 closely resemble the entire sample (that is, the final column in the

table), except for the Financial Services committee which is relatively higher.

Nevertheless, there are some striking results. Bills from the Veterans’ Affairs commit-
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Table 11: Posterior means of committees for each segment of bills.

Segment of bills 1 2 3 4 5 6 7 8 9 10 Total
Administration 0.01 0.03 0.00 0.00 0.04 0.02 0.00 0.00 0.09 0.03 0.02
Agriculture 0.01 0.01 0.03 0.00 0.03 0.00 0.02 0.02 0.00 0.28 0.02
Appropriations 0.36 0.05 0.66 0.92 0.27 0.24 0.07 0.58 0.37 0.38 0.38
Armed Services 0.06 0.05 0.02 0.00 0.12 0.00 0.05 0.02 0.14 0.27 0.06
Budget 0.03 0.00 0.00 0.00 0.07 0.05 0.02 0.02 0.00 0.00 0.02
Education and Labor 0.07 0.05 0.08 0.00 0.11 0.15 0.09 0.00 0.06 0.10 0.07
Energy and Commerce 0.07 0.11 0.01 0.00 0.07 0.08 0.05 0.00 0.03 0.10 0.06
Financial Services 0.24 0.09 0.15 0.03 0.03 0.24 0.14 0.12 0.03 0.07 0.13
Foreign Affairs 0.05 0.08 0.03 0.00 0.06 0.02 0.09 0.00 0.09 0.35 0.06
Homeland Security 0.08 0.05 0.02 0.02 0.19 0.05 0.05 0.12 0.14 0.13 0.07
Intelligence (Permanent Select) 0.04 0.00 0.00 0.00 0.07 0.02 0.02 0.05 0.03 0.00 0.02
Judiciary 0.04 0.14 0.00 0.00 0.07 0.03 0.16 0.02 0.23 0.07 0.07
Natural Resources 0.08 0.09 0.03 0.00 0.10 0.14 0.05 0.02 0.03 0.10 0.07
Oversight and Government Reform 0.03 0.17 0.02 0.00 0.10 0.07 0.14 0.05 0.09 0.10 0.07
Rules 0.01 0.00 0.00 0.00 0.04 0.03 0.00 0.00 0.06 0.03 0.01
Science and Technology 0.04 0.10 0.04 0.01 0.05 0.02 0.09 0.07 0.09 0.10 0.06
Small Business 0.05 0.05 0.01 0.00 0.01 0.02 0.11 0.00 0.00 0.10 0.03
Transportation and Infrastructure 0.06 0.09 0.05 0.03 0.17 0.18 0.15 0.07 0.06 0.10 0.09
Veterans’ Affairs 0.00 0.11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02
Ways and Means 0.06 0.04 0.00 0.01 0.18 0.11 0.05 0.02 0.11 0.00 0.05
Segment size 0.19 0.18 0.13 0.12 0.09 0.08 0.08 0.05 0.05 0.04 1.00

tee all belong to segment 2, which contains bills that receive nearly unanimous support.

Transportation and Infrastructure is relatively common in segments 5, 6, 7, and 10, which

are all primarily favored by Democrats. Bills from the Judiciary committee can primarily

be found in segments 2, 7, and 9. For these segments, the voting is almost unanimously

yea. Segment 4 almost solely contains bills from the Appropriations committee. Only

the hard-line Republicans from segment 6 vote in majority (79%) yea for these bills. To

a lesser extent, this is also true for bills from segment 3, though there is a little more

support for these bills, even from some of the moderate Democrats in segment 3.

6 Conclusions

We have developed a Bayesian approach to do inference in a latent-class two-mode cluster-

ing model, which has several advantages over frequentist parameter estimation methods.

First, our method allows for statistical inference on the model parameters, which is not

possible using a maximum likelihood approach. Furthermore, the Bayesian approach also
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allows us to do statistical inference on the number of segments using marginal likelihoods.

An alternative way to select the numbers of segments is to consider information criteria.

The third advantage of using Bayesian techniques is that fewer computational problems

occur during parameter estimation.

We have applied our model to the Supreme Court voting data set of Doreian et al.

(2004). The marginal likelihoods used to determine the optimal number of segments

indicate fewer segments than were found in these previous studies. In the second example,

we consider roll call votes from the United States House of Representatives in 2007. We

detect six segments of representatives and ten segments of bills. Three of the individual

segments contain Democrats and the other three segments contain Republicans, though

there is a little overlap. We also find clear regional effects on voting behavior.

Finally, our approach can easily be extended in several directions. First, it can easily

be adopted to use with data matrices with arbitrary distributions. Although we have

only derived posterior samplers for Bernoulli and normally distributed data, it is straight-

forward to derive posterior samplers for all kinds of distributions. Secondly, our method

can easily be extended to three-mode data, see Schepers, Van Mechelen, and Ceulemans

(2006). Thirdly, explanatory variables can be added, either with segment-dependent ef-

fects or as concomitant variables, that is, variables explaining why a row (or column)

belongs to a certain segment, see Dayton and MacReady (1988) and Wedel (2002) for a

discussion.
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