
Modeling the impact of forecast-based regime switches
on macroeconomic time series

Koen Bel∗

Tinbergen Institute

Erasmus University Rotterdam

Richard Paap

Econometric Institute

Erasmus University Rotterdam

8th August 2013

Econometric Institute Report 2013-25

Abstract

Forecasts of key macroeconomic variables may lead to policy changes of gov-
ernments, central banks and other economic agents. Policy changes in turn lead
to structural changes in macroeconomic time series models. To describe this phe-
nomenon we introduce a logistic smooth transition autoregressive model where the
regime switches depend on the forecast of the time series of interest. This forecast
can either be an exogenous expert forecast or an endogenous forecast generated
by the model. Results of an application of the model to US inflation shows that
(i) forecasts lead to regime changes and have an impact on the level of inflation;
(ii) a relatively large forecast results in actions which in the end lower the inflation
rate; (iii) a counterfactual scenario where forecasts during the oil crises in the 1970s
are assumed to be correct leads to lower inflation than observed.
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1 Introduction

Lucas (1976) showed that constant parameter macroeconometric models cannot be used

for evaluating policy changes. Policy changes usually result in changes in the behavior of

economic agents which in turn leads to structural changes in the parameters of the macro-

econometric model. Since it is well known that governments, central banks and other

economic agents also react to macroeconomic forecasts, this suggests that not only policy

changes but also unexpected economic forecasts may lead to changes in the parameters of

econometric models. Governments, for example, may try to stimulate growth if growth

expectations are low and central banks may try to lower inflation if inflation forecasts are

too high. These reactions may imply that forecasts generated by an econometric model

in the end will be wrong.

There are several empirical and theoretical studies that indicate the effect of forecasts

on policy makers. Fellner (1976) explains that the public’s expectations are prone to self-

justifying skepticism about policy makers and policy makers react to that. Givoly and

Lakonishok (1979) find that serious upward revisions in financial earnings forecasts lead

to significant effects on stock prices. Apparently, the earnings forecasts have an impact

on the stock market. Steiner et al. (2009) find that macroeconomic announcements cause

an immediate reaction of returns in asset prices. Moreover, they find that reactions to

positive news are faster than reactions to negative news. Sinclair et al. (2012) show that

forecast errors have an impact on the target interest rate set by the Federal Reserve.

To deal with the impact of forecasts, we propose in this paper a nonlinear time

series model which allows for structural breaks in the parameters based on the relative

size of a forecast of the underlying time series. To describe the structural changes we

employ the Smooth Transition Autoregressive [STAR] model as introduced by Chan and

Tong (1986) and further extended by Teräsvirta and Anderson (1992). Although there

are many applications of regime switching models, none of these applications considers
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the impact of forecasts on regime changes as far as we know. In our representation,

regime switches occur on the basis of the value of the forecast of the time series under

consideration. The forecast may be exogenous in the sense that it is formed outside the

model or endogenous when the model generates the forecast itself. In the latter case, the

proposed model resembles the Contemporaneous STAR [C-STAR] model of Dueker et al.

(2007) and hence provides a motivation for this specification.

We illustrate our modeling approach using seasonally adjusted quarterly Gross Do-

mestic Product deflator inflation rate of the United States [US] over the period 1960.2

to 2011.1. The choice for this series is motivated by several studies which indicate the

importance and impact of inflation expectations and predictions in the economy. Lomax

(2005) states that forecasts nowadays play a key role in central bank decisions in inflation

targeting. Groen et al. (2013) point out that ”forecasts of inflation and output growth

are central to the practical operation of monetary policy by central banks”. Leduc et al.

(2007) show using a Vector Autoregressive model that before 1979, the effect of expected

inflation on the inflation rate is long-lasting. This is due to the expectations trap intro-

duced by Christiano and Gust (2000): the high level of the inflation rate in the 1970s can

be explained by the reactions to expected inflation. Since inflation targeting was intro-

duced in the 1980s and expectations do not vary that much anymore, this expectations

trap reduced. Nevertheless, this suggests that central banks still react to forecasts, but

more in a correctional manner. Hence, inflation seems to be a well-suited time series to

illustrate our new modeling approach.

The remainder of this paper is organized as follows. In Section 2, the model to describe

the impact of forecasts is introduced. Parameter estimation, statistical inference and a

nonlinearity test are discussed in Section 3. As the proposed type of non-linearity is

not standard, we adjust the nonlinearity test of Luukkonen et al. (1988) for the current

application. We perform several small Monte Carlo studies to justify the validity of the
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adjustment of the nonlinearity test. In Section 4 the new model is applied to the US

inflation series. Finally, Section 5 concludes.

2 Model Specification

As discussed in the introduction, we expect decision makers such as governments, central

banks and companies to react to macroeconomic forecasts by adjusting their behavior.

In turn, this adjustment in behavior may lead to structural changes in a model used to

describe the time series of interest. In this section we put forward a nonlinear time series

model which accounts for these structural changes. We include three different regimes in

our model depending on the value of the forecast of the underlying time series: a regime

when the forecast is relatively low; a regime when the forecast is relatively high; and

an intermediate regime. We expect that the size of structural changes depends on the

absolute size of the forecast. We therefore opt for smooth transition models which allow

for large or small changes in the parameters, see, for example, van Dijk et al. (2002) for

a survey.

Formally, let yt be the variable of interest at time t, where t = 1, . . . , T . Let pt|t−1

denote the forecast of yt based upon all information up to and including time t− 1. The

three-regime smooth transition time series model is given by

yt = φ′1xt + (φ0 − φ1)
′xtG0(pt|t−1; γ0, κ0) + (φ2 − φ1)

′xtG2(pt|t−1; γ2, κ2) + σtεt, (1)

with εt ∼ iid(0, 1), where xt is a k-dimensional vector containing explanatory variables

and lagged values of yt and where φi, i = 0, 1, 2, are (k×1) parameter vectors. The variable

σt describes the potentially time-varying variance of the disturbance. The functions G0(·)

and G2(·) take values between 0 and 1 depending on the level of the forecast pt|t−1 and

describe the regime changes.

There are several possibilities to define the transition functions. In this paper we opt
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for a logistic function

Gi(pt|t−1; γi, κi) = 1
1+exp(−γi(pt|t−1−κi))

, (2)

resulting in the logistic STAR [L-STAR] model (Teräsvirta, 1994). The parameter γi

determines the smoothness of the transition function and the threshold parameter κi

denotes the point of inflection of the logistic curve. The threshold parameter κi is assumed

to be fixed but can also be time-varying, which indicates that reactions to forecasts pt|t−1

can be relative. This extension will be discussed later. Under the restrictions γ0 < 0

and γ2 > 0, it is easy to see that for small forecasts pt|t−1, G0(·) approaches 1 and G2(·)

approaches 0 and hence the relevant parameter is φ0. For large forecasts pt|t−1, G2(·)

approaches 1 and G0(·) approaches 0 resulting in φ2 as the relevant parameter. The

parameter φ1 describes the intermediate regime.

In many time series applications of STAR models pt|t−1 is replaced by a lagged value

of yt to create the regular STAR model, see Teräsvirta (1994), among many others. To

serve the purpose of our model, we take a different approach. The classification into

regimes depends on the forecast pt|t−1 of the dependent variable yt. For pt|t−1, different

specifications can be used. The impact of the forecast pt|t−1 should be important enough

to result in a reaction of decision makers in the economy.

The simplest case is if we assume that the forecast pt|t−1 results from an expert opinion

or from another econometric model. In this case we obtain a regular L-STAR model. If no

exogenous forecast is available one can also use the model in (1) to provide the forecast.

As we expect that the economy reacts to the forecast, we need a forecast which does not

account for regime switches and hence we assume that the dependent variable at time t

remains in the same regime as at time t− 1. The relevant forecast for period t given the

information at time t− 1 is therefore given by

pt|t−1 = φ′1xt + (φ0 − φ1)
′xtG0(pt−1|t−2; γ0, κ0) + (φ2 − φ1)

′xtG2(pt−1|t−2; γ2, κ2), (3)
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where we use the previous realization of the transition functions Gi(·) in the forecast.

The model specification (1)-(2) together with (3) adopts and extends the ideas of

Dueker et al. (2007). They propose a STAR model with contemporaneous classification

called the C-STAR model. Our current representation of the C-STAR model, where

we relate the regime switches to forecasts, provides a justification and interpretation of

using a contemporaneous, not predetermined, classification into regimes. Furthermore,

we extend the model of Dueker et al. (2007) from two to three regimes.

In sum, the specification in (1) and (2), where G0(·) and G2(·) depend on the level

of the forecast pt|t−1, provides the framework for investigating the impact of forecasts

on decisions of agents. The model allows us to investigate the impact of forecasts on

macroeconomic variables of interest and even calculate the effects of an incorrect forecast.

If one opts for specification (3) the model provides two forecasts. The forecast pt|t−1 is the

forecast if there is no response of agents in the market and a forecast yt|t−1 which takes

account of possible structural changes. Note that the evaluation of the forecast pt|t−1 is

impossible unless the forecast does not imply regime changes.

In the next section we consider parameter estimation, model specification and a test

for our specific addition of nonlinearity.

3 Statistical Inference

In this section, we discuss inference of our smooth transition model specification. Sec-

tion 3.1 discusses parameter estimation, while Section 3.2 concerns testing for nonlinear-

ity.

3.1 Estimation procedure

To estimate the parameters in the model (1) and (2) we use Nonlinear Least Squares

[NLS], see, for example, Davidson and MacKinnon (2004, Chapter 6). It is however not
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possible to apply the regular NLS procedures that are used for STAR models. First of all,

the argument of the logistic functions in (2) depends on pt|t−1 and pt|t−1 may depend on

parameters as in (3). It is therefore not possible to use concentrated NLS. Furthermore,

many macroeconomic time series display a drop in volatility in the 1980s, see Kahn et al.

(2002); Summers (2005), among others. We may want to allow for these changes in the

variance σ2
t . This means that we have to use weighted NLS [WNLS] methods.

To facilitate notation, we define

f(xt; θ) = φ′1xt + (φ0 − φ1)
′xtG0(pt|t−1; γ0, κ0) + (φ2 − φ1)

′xtG2(pt|t−1; γ2, κ2), (4)

where θ = (φ0, φ1, φ2, γ0, γ2, κ0, κ2)
′ and hence (1) can be written as

yt = f(xt; θ) + σtεt (5)

To capture the Great Moderation we follow the approach of Sensier and van Dijk (2004)

and define

σ2
t = σ2

1 + (σ2
2 − σ2

1)Gσ(t; γσ, κσ) + ηt. (6)

In contrast to Sensier and van Dijk (2004), who allow for a sudden change in the variance,

we allow for the possibility of a smoother transition by using

Gσ(t; γσ, κσ) = 1
1+exp(−γσ(t−κσ)) , (7)

which is again the logistic function. Hence, for γσ > 0 the variance is σ2
1 for the first part

of the sample and σ2
2 for the second part. The transition is halfway at t = κσ and γσ

reflects the smoothness of the transition.

The WNLS procedure to estimate the model parameters θ can be summarized by the

following five steps1:

1Another possibility to estimate the model parameters is to use maximum likelihood. One can include
(6) without ηt directly in the likelihood function. Unreported results show that this approach leads to
similar results in our application below.
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1. minimize
∑T

t=1(yt − f(xt, θ))
2 with respect to θ resulting in θ̂0

2. compute the residuals ε̂t = yt − f(xt, θ̂0)

3. use NLS on (6) replacing σ2
t by ε̂2t

4. compute the fitted values of σ2
t using (6) resulting in σ̂2

t

5. minimize
∑T

t=1(
1
σ̂t

(yt − f(xt, θ)))
2 with respect to θ resulting in θ̂

The resulting WNLS estimator θ̂ is asymptotically normally distributed. The covari-

ance matrix of the estimator can be estimated using

σ̂2
ε

(∑T
t=1

1
σ̂2
t

(
∂f(xt;θ)
∂θ
|θ=θ̂
)(

∂f(xt;θ)
∂θ
|θ=θ̂
)′)−1

. (8)

Diagnostic tests on the residuals can be done in a similar manner as for linear time

series models. Tests for heteroskedasticity (Engle, 1982) and serial correlation (Breusch,

1978; Godfrey, 1978) can be computed using the Gauss-Newton regression approach of

Davidson and MacKinnon (2004, Chapter 6). The Ramsey (1969) RESET-test to test

for remaining nonlinearity in the model can also be practiced directly. Since there are

unidentified nuisance parameters under the null hypothesis of linearity, we cannot use

standard tests to compare our model to a linear specification. In the next section we

propose a nonlinearity test based on Luukkonen et al. (1988) to test for our nonlinear

specification.

3.2 Nonlinearity test

The first step in the modeling process is to test for the presence of our proposed type of

smooth transition. As comparing our model specification (1) with a linear model specific-

ation leads to the problem of unidentified parameters under the null hypothesis, standard

tests do not apply. Instead, we use a test by Luukkonen et al. (1988), which is based

on the first-order Taylor expansion around γi = 0 of the logistic function Gi(pt|t−1; γi, κi)
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in (2). To simplify discussion, we consider here a two regime switching model and impose

in (1) that φ2 = φ1. The discussion below can easily be extended to the three regime

case. A first-order Taylor expansion of the restricted model (1) results in

yt = φ′1xt + β̃0xt + β̃1xtpt|t−1 + σtεt, (9)

where

β̃0 = (0.5− 0.25γ0κ0)(φ0 − φ1),

β̃1 = 0.25γ0(φ0 − φ1)
′. (10)

It is easy to see that if γ0 = 0 or φ0 = φ1, the additional regime is not present in the

model. Hence, the nonlinearity test boils down to testing β̃1 = 0 using a standard Wald

or t-test with a standard distribution.

If regime switches in the model in (1) are based on an exogenous forecast pt|t−1 it fits

in the framework of Luukkonen et al. (1988). Hence, the standard properties of the test

apply. However, when the endogenous forecast in (3) is used, φi also emerges in pt|t−1

and it is not straightforward to implement the test. To perform the test, we replace pt|t−1

by its fitted value from the model in (1), p̂t|t−1. To justify whether this strategy leads to

proper inference, we perform several small Monte Carlo studies.

Under the null hypothesis we take a simple linear autoregressive model of order 1,

that is

yt = ρ0 + ρ1yt−1 + νt for t = 1, . . . , T, (11)

where ρ0 and ρ1 are parameters and νt ∼ NID(0, σ2
ν). To investigate the impact of

the autoregressive parameters on the test, we consider ρ1 equal to 0.2, 0.75 and 0.95.

Moreover, we choose ρ0 to be 0.8, 0.25 and 0.05, respectively, so that the unconditional

mean of the time series always equals 1. We compare the empirical size of the test for

β̃1 = 0 in the test regression (9) with the nominal size.
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Insert Table 1 about here

Table 1 displays the empirical size of the test based on 10000 replications. Even for

250 observations, we see that for autoregressive parameters which are not close to unit

root the size distortion is rather small. For ρ1 = 0.95 the size distortion is bigger but not

severe. For example, for T = 250 the empirical size belonging to the significance level of

10% is about 5%, while for ρ1 = 0.75 and ρ1 = 0.2, the empirical size is about 8% and

9%, respectively.

All values in Table 1 are smaller than the corresponding theoretical size. This implies

that the test is a bit too conservative. The size distortions are however so small that

there do not seem to be severe size problems in practice. Moreover, since for larger T the

size distortion gets smaller, the test seems to be valid asymptotically.

Unreported results show that similar results are found for the regular STAR model

and our model with the exogenous forecast. This indicates that the nonlinearity test

introduced by Luukkonen et al. (1988) is appropriate to use for the model in (1).

Insert Table 2 about here

To investigate whether the nonlinearity test has power against our smooth transition

specification, we consider again a small Monte Carlo study. The data generating process

[DGP] is given by

yt = ρ0 + ρ1yt−1 + ρ1,0yt−1G0(pt|t−1, κ, γ) + νt for t = 1, . . . , T, (12)

with ρ1,0 the adjustment of the autoregressive parameters when G0(pt|t−1, κ, γ) is equal

to 1. Hence, we now simulate under a specific alternative of nonlinearity. Table 2 displays

the power of the F-test for β̃1 = 0 in the test regression (9) for different parameter values

based on the nominal size of 5%. Results are again based on 10000 replications. We

compare large and small autoregressive terms ρ1, different distances from linearity with

respect to ρ1,0 and different parameter values for κ and γ.

Several conclusions can be drawn from the table. First of all, as expected, the power is
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higher for a larger sample size. Secondly, the power is larger when the alternative is further

away from the null hypothesis. These are familiar aspects of the power of a statistical test.

Thirdly, a larger autoregressive parameter ρ1 leads to larger power of the test. Higher

persistence in the time series leads to smaller standard errors and hence it becomes easier

to detect nonlinearities. Fourth, for large γ the breaks are more prominent and easier to

detect which results in higher statistical power. Finally, a threshold parameter κ which

is further from the unconditional mean in the largest regime results in more separated

regimes. It is therefore easier to detect the two regimes and hence the power increases.

Most importantly, the power properties of the test for our specification have a similar

pattern as for the standard STAR model. Since we include in the test regression an

estimate of pt|t−1 instead of its true value, the power is smaller than in regular STAR

models. Unreported simulation results however show that the loss in power is relatively

small.

Based on the results from the two simulation studies, we conclude that the adjusted

version of the nonlinearity test of Luukkonen et al. (1988) can be used for the type of

nonlinearity as given by the model in (1) to (3). In the next section, the model described

in Section 2 is applied to US inflation data.

4 Application

To illustrate the model discussed in Section 2, we consider modeling seasonally adjusted

quarterly Gross Domestic Product deflator US inflation rate over the period 1960.2 to

2011.1. For this macroeconomic time series many forecasts are available. A famous

example is the Michigan Consumer Survey, which is a forecast of the inflation series

created by a large number of experts (Curtin, 1982).

The choice for this time series for the illustration of our model is coherent, because

inflation targeting has become an important tool to regulate the economy since Paul
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Volcker became chairman at the Federal Reserve Bank in 1975, called the Volcker-regime

(Clarida et al., 2000). Furthermore, companies and consumers use the inflation forecasts

to decide upon future savings and expenditures. Therefore, forecasts of inflation are likely

to influence actions by agents at the macroeconomic market. Hence, one may expect

that regime switches can be based on inflation forecasts and that the model proposed in

Section 2 is in particular useful for describing inflation series.

Economic theory also provides support for the impact of inflation forecasts on decisions

of economic agents. It is mainly mentioned as the expectations trap (Christiano and

Gust, 2000) or self-fulfilling expectations. If private-agents expect higher inflation, they

demand higher wages. Since companies also expected higher prices and hence larger

revenues, they think they can afford spending more money on wages. The central bank

now has to choose between producing higher inflation or put the economy through a

recession. Hence, the inflation rate will increase in reaction to the public’s expectations.

Albanesi et al. (2003) state: ”expectations of high or low inflation lead the public to

take defensive actions, which then make accommodating those expectations the optimal

monetary policy”. Leduc et al. (2007) confirm this view and contributes by concluding

that this expectations trap occurred before 1979, but not later.

Insert Figure 1 about here

Both the expectations trap occurring before 1979 and the introduction of inflation

targeting in the 1980s suggest that inflation forecasts have played an important role in

the economy. Therefore, we apply our model on the whole sample period 1960.2 to

2011.1. Figure 1 displays a plot of the GDP deflator series. It is clear from the figure

that inflation peaked in the 1970s and 1980s because of the oil crises (Byrne and Davis,

2004) and became less volatile in the second half of the 1980s. The latter is known as

the Great Moderation, a phenomenon widely described in the literature, see Summers

(2005) and especially Rossi and Sekhposyan (2010) about the performance of forecasts
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of inflation before and after the Great Moderation. The inflation rate is almost never

negative: deflation is only found during the latest financial crisis in 2008.4 and 2009.4.

Although there are many potential predictors for inflation (Stock and Watson, 2007;

Groen et al., 2013), we opt in the current paper for an autoregressive structure. This

allows us to focus completely on regime changes in the inflation series itself. Furthermore,

we also include the Michigan Consumer Survey as an additional predictor in the model.

This variable is used to forecast the inflation series as well as exogenous forecast to

indicate regime changes in inflation.

4.1 Model Specification

To model the inflation series, we first consider a simple linear AR model where we also

include an intercept and the lagged value of the Michigan Survey series as explanatory

variables. According to the Schwarz criterion the appropriate lag order is 4. LM-tests

for serial correlation indicate no serial correlation in the residuals. This linear ARX(4)-

model will be the starting point of our modeling process to specify our nonlinear time

series model described in Section 2.

It is clear from Figure 1 that a constant threshold parameter κi in (2) will result in a

model where the two oil crises in the late 1970s and early 1980s will be in regime 2 where

inflation and hence forecasts of inflation are high. However, a ’large’ forecast in this high

inflation period is different from a ’large’ forecast in the 1990s. Therefore, it seems for

our purpose better to consider the relative level of the forecast in (2), thus comparing

it to the level of the inflation series in the near past. For this purpose, we introduce a

time varying threshold parameter κi,t which replaces the constant κi in (2). We make κi,t

relative to the level of the dependent variable yt.

We will consider two different specifications of κi,t and two different implementations

of the forecast pt|t−1 in (2). Hence we consider in total 4 different models. With respect
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to the forecasts, we either use an exogenous forecast for pt|t−1 or we opt for an endogenous

forecast as described in (3). For the exogenous forecast we take the Michigan Consumer

Survey series as this series is available over the whole sample period.

With respect to the threshold parameter, we take κi,t = κi + ȳt−1|t−d, where ȳt−1|t−d is

the average value of the dependent variable over the previous d periods.2 A grid search

over d has shown that d = 8 yields in general the best fit. This suggests that agents

compare the level of the forecast to the level of inflation in the previous two years. The

larger ȳt−1|t−d, the larger pt|t−1 has to be for agents to react, but a higher value of ȳt−1|t−d

also implies that it is more likely that regime 0 will occur. In the second specification we

impose that κi,t = σ̂tκi + ȳt−1|t−d, where σ̂2
t is the estimated variance of the residuals as

explained in Section 3.1. Hence, we now also account for the local level of the variance in

the inflation innovations. The smaller the variance, the sooner a large or small forecast

is surprising and will lead to reactions of agents in the market.

Finally, it turns out that the fourth quarter of 2008 experiences a large jump down-

wards in inflation. This observation shows up as an outlier in many of our specifications

and we have added a dummy variable to account for it. If we opt for an endogenous

forecast specification (3), this dummy variable is not added to the forecast pt|t−1 as we

may expect that forecasters cannot predict outliers.

Insert Table 3 about here

Before we can adopt the model specification in (1) to (3), we test for our specific form

of nonlinearity. The first two rows of Table 3 display the results for the nonlinearity test

described in Section 3.2 for the 4 model specifications under consideration. The starting

point for these tests is the ARX(4) specification discussed before. The test results clearly

indicate the presence of a second regime in favor of the linear specification. Furthermore,

2Another possibility is to use the mean of the last d one-step ahead forecasts. It is however unrealistic
to assume that agents remember the forecasts of inflation and hence it is more likely that agents compare
the forecast to the current level of inflation.
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also the presence of a third regime cannot be rejected. Hence, the test results are in favor

of our model specification.

Insert Table 4 about here

Next, we consider our proposed nonlinear model specification (1) to (3). Table 4

displays the parameter estimates for the four different specifications. The second panel

of Table 3 shows that there is no indication for severe misspecification in the nonlinear

models. Ramsey Reset tests indicate that there is no neglected nonlinearity in the series

after adding the two regimes. Also LM-tests for first and first-to-fourth order serial

correlation in the residuals do not indicate misspecification. Tests for first and first-

to-fourth order ARCH effects do not indicate ARCH effects in the residuals except for

ARCH(1) effects in the second specification with endogenous forecasts if we test at a 10%

level. In sum, these test results give a justification for using the model as explained in

Section 2.

Insert Table 5 about here

4.2 Model Selection

In the final step, we compare the fit of the four different model specifications. Because

the four specifications are non-nested, standard likelihood ratio tests cannot be used.

Therefore, we opt for the Vuong (1989) test, based on the assumption of normality for

the disturbances. Furthermore, we use a nonparametric sign test on the absolute value

of the residuals to compare the different specifications (Dixon and Mood, 1946). Table 5

displays the results of both the Vuong and the sign test. Furthermore, the normalized

sum of squared residuals [SSR] is displayed, where the SSR of ARX(4) is normalized to 1.

Several conclusions can be drawn from the table. First of all, the fit of the nonlinear

models is better than the linear ARX(4) specification. Secondly, the model specifications

with the endogenous forecasts in (3) perform better than the models using the Michigan
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Survey. Thirdly, the Vuong test is not in favor of the nonlinear models compared to

the linear ARX(4) model. Using the specific nonlinearity test we nonetheless found that

adding nonlinearity leads to improvements of the model. The nonparametric sign tests

show more evidence for this claim concerning the ARX(4) specification. Finally, the

Vuong and nonparametric tests do not indicate any significant differences among the

nonlinear specifications. Since we want to choose one specification, we opt for the model

with the lowest SSR. In sum, based on the test results and model fit, we opt for the

non-linear specification with κt = σ̂tκt + ȳt−1|t−d and an endogenous forecast.

4.3 Parameter Interpretation

The final two columns of Table 4 display the parameter estimates of the preferred model

specification. Based on the sign of the estimated values of γ0 and γ2 it can be seen

that regime 0 corresponds to the low forecast regime and regime 2 to the high forecast

regime. The estimates of γi are relative small indicating a smooth transition from regime

to regime.

Insert Figure 2 about here

Direct interpretation of individual parameter estimates is difficult and we therefore

also consider several graphs displaying the features of the model. We first consider the

regime transitions. Figure 2 plots the values of the transition functions over time. The

graphs show many changes in regimes. In the first part of the sample regime 1 is more

dominant. The spikes in the transition function for regime 2 during the oil crises show

that the model can distinguish high from moderate forecasts during the oil crises. After

the oil crises in 1973 and the 1980s, the low forecast regime 0 is dominating, since ȳt−1|t−d

is relatively large. In the first years of the 1990s we notice mostly moderate and low

forecasting regimes, while after 2000 we observe more periods with a high forecast regime.

The final rows of Table 4 show the parameters of the time-varying variance function. The
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parameters imply that a decrease in variance took place in the first quarter of 1981. This

date is somewhat earlier than reported in other studies (Kahn et al., 2002).

If we consider the parameter estimates, we see that both the intercept and the effect

of INFLt−2 in regime 0 are significantly different from the intermediate regime. For

regime 2, this holds for INFLt−1, INFLt−2 and INFLt−3. Since our model is highly

nonlinear and parameters occur in (1) as well as in (3), direct conclusions from the

parameter estimates in Table 4 cannot be drawn. To investigate what changes occur over

the regimes, we consider marginal effects, defined as the change in y caused by 1 standard

deviation increase of x, where x denotes lagged values of inflation and the Michigan Survey

series. These marginal effects differ over time and are plotted in Figure 3.

Insert Figure 3 about here

To see regime-specific effects of explanatory variables we have to combine the marginal

effects in Figure 3 with the plot of the transition functions in Figure 2. This combination

shows that both first and second lag of inflation have a larger absolute impact on the

inflation rate in the outer regimes. This indicates that agents do rely more on the near past

in economically more uncertain periods with relatively high or low forecasts. Furthermore,

the influence of the Michigan Consumer Survey is smaller in both outer regimes, indicating

that agents facing a relatively high or low forecast rely less on expert forecasts.

Finally, in the last panel of Figure 3 we show the marginal effect of a positive change in

pt|t−1. For regime 1 and 2, this effect is on average negative. Some positive effects occur for

large values of the transition function G0(·). Thus, an increase in the forecast in regime

1 or 2 makes that agents adjust the inflation rate downward. Only for small relative

forecasts, the adjustments are upward. One could say that agents behave such that the

inflation rate is mean reverting: an increase in the forecast leads to reactions which lower

the inflation rate if the forecast was relatively large, but increase the inflation rate if

the forecast was still relatively low. This contradicts the expectations trap literature
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(Christiano and Gust, 2000), where an upward change in inflation is expected when

forecasts are large.

4.3.1 Impulse Response Analysis

The marginal effects discussed above describe the immediate effect of a partial change in

one of the explanatory variables. To interpret the dynamic properties of the model we

focus on impulse response analysis.

For this purpose, we use generalized impulse response functions [GIRF] (Koop et al.,

1996) and examine the impact of a shock δ for different information sets Ωt in a similar

way as in van Dijk (1999). The GIRF is defined as

GIRFy(h, δ, ωτ ) = E[yτ+h|ετ = ετ + δ,Ωτ ]− E[yτ+h|Ωτ ], (13)

where τ denotes the timing of the shock, h is the horizon and Ωτ the information set at

time τ . Hence, the impulse response function denotes the dynamic effect of a shock δ at

time τ on the future values of yt. The GIRF depends on the information set Ωτ . In our

results we average over all possible information sets in the data set and we also split up

the results depending on the regime at time τ . Moreover, following van Dijk et al. (2007)

we define the π-absorption time of the shock as the amount of time periods it takes before

π% of the shock is absorbed, that is

Ay(π, δ, ωt) =
∑∞

m=0 (1−
∏∞

h=m Iy(π, h, δ, ωt)) , (14)

where

Iy(π, h, δ, ωt) = I [|GIRFy(h, δ, ωt)| ≤ πδ] , (15)

with I[A] an indicator function which is 1 if the argument is true and 0 elsewhere.

Insert Figure 4 about here

Figure 4 displays the impulse response function for positive and negative shocks and

for different regimes, where we average over all possible values for τ . The differences
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across the regimes are relatively small. In all cases, more than 50% of the shock is

already absorbed within one quarter. This is a short absorption time. Nevertheless, it

takes for all shocks more than 20 quarters until 90 per cent of the shock is absorbed.

Hence, an innovative shock has a small but long-lasting effect on the inflation rate in the

future.

Insert Figure 5 about here

Given the structure of the model it is perhaps more interesting to examine the effect

of a shock to the forecast pt|t−1

GIRFp(h, δ, ωτ ) = E[yτ+h|Ωτ , pτ |τ−1 = pτ |τ−1 + δ]− E[yτ+h|Ωτ ]. (16)

Note that this is a theoretical exercise as the model does not explicitly allow for a random

shock to the forecast. Figure 5 shows the effect of a shock in the forecast pt|t−1 for shocks

of various magnitudes and for different regimes at time τ . The first graph shows that a

negative shock has a small positive impact on the future inflation rate, while a positive

shock has a long-lasting negative effect. For example, it takes on average 7 quarters before

a positive shock of magnitude σ̂τ is absorbed for more than 90 per cent. This effect is

negative, that is, an increase in the forecast pt|t−1 leads to a decrease in the inflation rate

for approximately two years. Moreover, the effect of a positive shock in pt|t−1 is opposite

if regime 0 occurs. Thus, where a positive shock in regime 1 and 2 causes the future

inflation rate to decline, the inflation rate increases in regime 0. Hence, agents try to

correct for a predicted increase when inflation is already relatively high, but do not act if

inflation is relatively low. In sum, only positive shocks have an effect on future inflation

rates. Further, the reaction to shocks in pt|t−1 is opposite in the lower regime compared

to the other regimes.

Insert Figure 6 about here

Finally, we consider the hypothetical situation where we impose a shock to the forecast

which makes the forecast equal to the future realization. Figure 6 displays impulse
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response functions for five data points where the forecast pt|t−1 was inaccurate. These

plots show the effect of an exactly accurate forecast, compared to the inaccurate forecast

from the model. For example, the oil crisis was at its peak in the third quarter of 1974

and the forecast has not been capable of capturing this peak in inflation. As can be seen

from the figure, if the forecast had been correct, the inflation rate would have been lower

for approximately two years, except for 2 data points. Further, the second quarter of 1979

showed an increase in inflation not captured by the forecast. As the impulse response

analysis shows, actions by agents would have lowered the inflation rate for several quarters

if the forecast had been more accurate. Hence, the high peak of inflation during the oil

crisis would have been flattened if the forecast had been more accurate. Finally, if the

inflation rate in the latest financial crisis had been predicted correctly, the deflation in

the fourth quarter of 2008 would have been even larger. Agents thus would have reacted

in a defensive way if the financial crisis was foreseen.

In sum, we find that our model proposed in Section 2 is capable of capturing the

familiar aspects of the US inflation rate. Hence, the inclusion of the endogenous forecast

in (3) is realistic and we can conclude that, by looking at the marginal effects and impulse

response analysis, agents take the forecast of the dependent variable into account when

they take actions at the economic market. The model shows that especially relatively

large forecasts result in structural reactions of agents, which causes the inflation rate to

be lower than the original forecast.

5 Concluding Remarks

In this paper we have introduced a STAR type time series model where regime switches

are based on the relative size of the forecast of the underlying time series. The forecast

determining regime switches can either be exogenous to the model or based on a forecast

from the model itself. The model can be used to analyze the impact of forecasts of
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macroeconomic time series based on whether the forecast is relatively high or low. The

time series model can be used to describe macroeconomic time series where it is likely

that forecasts have an impact on the time series. Note that the evaluation of the forecast

is impossible since this forecast implies regime changes.

The model is used to describe forecast-based regime switches in the US inflation

rate. Since the level of inflation changes over time, we include a time-varying threshold

parameter in the L-STAR specification such that the relative size of the forecast (with

respect to the level of inflation) determines regime changes. Empirical results show that

(i) forecasts lead to regime changes and have an impact on the level of inflation; (ii) a

relatively large forecast results in actions which in the end lower the inflation rate; (iii) the

absorption time of positive shocks in the forecast of inflation is large and the effect of these

positive shocks is negative in the long-run; (iv) a counterfactual scenario where forecasts

during the oil crises in the 1970s were assumed to be correct, would have resulted in a

lower level of inflation.

The model and analysis in this paper can be extended in several directions. For

example, we now assume that the reaction to one-step ahead forecast already takes place

in the next quarter. Nevertheless, the effect of reactions of agents may be slow and hence

the forecast of today may lead to regime changes in later quarters. Another extension

may be to consider a Philips curve type of model and allow the effect of predictors to

change according to the relative size of the forecast.
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A Tables

Table 1: Empirical size of the F -test

for β̃1 = 0 in test regression (9) (10000
replications)a

Parameters Nominal size
T ρ0 ρ1 0.10 0.05 0.01

250 0.80 0.2 0.093 0.045 0.010
250 0.25 0.75 0.081 0.037 0.006
250 0.05 0.95 0.047 0.018 0.002

1000 0.80 0.2 0.096 0.046 0.006
1000 0.25 0.75 0.096 0.047 0.009
1000 0.05 0.95 0.070 0.029 0.003

a The DGP is yt = ρ0 + ρ1yt−1 + νt with νt ∼
NID(0, 1) for t = 1, . . . , T .
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Table 2: Power of the nonlinearity test for a theoretical size of 5% (10000
replications)a

T = 250 T = 1000

γA
b γB γA γB

ρ1 ρ1,0 κA
c κB κA κB κA κB κA κB

-0.05 0.048 0.050 0.047 0.048 0.050 0.053 0.052 0.049
-0.10 0.045 0.050 0.047 0.048 0.051 0.067 0.050 0.050

0.3 -0.15 0.049 0.053 0.047 0.048 0.057 0.077 0.050 0.061
-0.20 0.048 0.062 0.047 0.051 0.062 0.105 0.048 0.064
-0.25 0.052 0.062 0.048 0.053 0.069 0.131 0.047 0.075

-0.05 0.042 0.049 0.043 0.058 0.061 0.084 0.066 0.114
-0.10 0.053 0.066 0.057 0.093 0.113 0.177 0.123 0.301

0.6 -0.15 0.066 0.098 0.077 0.157 0.189 0.305 0.212 0.548
-0.20 0.087 0.131 0.108 0.257 0.278 0.460 0.345 0.779
-0.25 0.117 0.176 0.145 0.381 0.369 0.582 0.492 0.923

-0.05 0.043 0.047 0.053 0.050 0.176 0.171 0.204 0.197
-0.10 0.089 0.095 0.107 0.114 0.441 0.458 0.550 0.542

0.9 -0.15 0.146 0.159 0.197 0.209 0.671 0.716 0.799 0.812
-0.20 0.209 0.234 0.292 0.312 0.818 0.857 0.922 0.939
-0.25 0.273 0.306 0.404 0.424 0.902 0.937 0.970 0.981

a The DGP is given in (11).
b Slow transition is obtained by putting γA = 2.3. The transition function covers

approximately 50% of the range of the data. With γB = 11.5 the transition
function covers 10% of the data range indicating a fast transition.

c Parameter κA equals the unconditional mean of (the largest) regime 1 plus 1
standard deviation (transition function is larger than 0.5 for about 15.9% of the
data). Parameter κB equals the unconditional mean of regime 1 plus 1.5 standard
deviation (transition function is larger than 0.5 for about 6.7% of the data).
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Table 3: Misspecification and Nonlinearity tests (p-values) for the 4 model specifications for US
inflationa

κt = κ+ ȳt−1|t−d κt = κσ̂t + ȳt−1|t−d

exogenous endogenous exogenous endogenous

Nonlinearity second regime 0.000 0.000 0.001 0.000
third regime 0.006 0.000 0.013 0.000

RESET-test 0.703 0.291 0.840 0.369

Serial Correlation first-order 0.855 0.092 0.735 0.104
first-to-fourth order 0.833 0.157 0.949 0.127

ARCH-effects first-order 0.285 0.274 0.353 0.051
first-to-fourth order 0.699 0.823 0.765 0.193

a The applied test are the adjusted nonlinearity test by Luukkonen et al. (1988), the Ramsey (1969) RESET
test, the ARCH LM-test for heteroskedasticity by Engle (1982) and the serial correlation test by (Breusch,
1978; Godfrey, 1978).
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Table 4: WNLS Parameter estimates of the 4 model specifications for US inflation with
standard errors in parentheses

κt = κ+ ȳt−1|t−d κt = κσ̂t + ȳt−1|t−d

exogenous endogenous exogenous endogenous

(intermediate) regime 1
c -0.035 (0.058) -0.170 (0.072) -0.030 (0.058) -0.158 (0.047)
INFLt−1 0.365 (0.084) 0.222 (0.134) 0.374 (0.087) 0.188 (0.102)
INFLt−2 0.154 (0.093) 0.347 (0.122) 0.132 (0.095) 0.360 (0.090)
INFLt−3 0.245 (0.083) 0.752 (0.161) 0.206 (0.086) 0.575 (0.108)
INFLt−4 0.129 (0.071) -0.264 (0.154) 0.128 (0.074) -0.066 (0.119)
MSt−1 0.135 (0.104) 0.331 (0.115) 0.162 (0.106) 0.267 (0.084)
d2008.4 -1.122 (0.197) -1.387 (0.206) -1.154 (0.196) -1.364 (0.206)

(low) regime 0 in difference with regime 1
κ -0.337 (0.205) -0.347 (0.059) -0.273 (0.090) -0.365 (0.052)
γ × 10 -12.295 – -0.936 – -17.771 – -2.669 –
c -0.046 (0.162) 0.649 (0.213) -0.003 (0.142) 0.525 (0.128)
INFLt−1 -0.410 (0.230) 0.283 (0.242) -0.333 (0.185) 0.250 (0.162)
INFLt−2 0.058 (0.154) -0.543 (0.225) 0.058 (0.148) -0.637 (0.161)
INFLt−3 -0.329 (0.194) -0.587 (0.234) -0.258 (0.174) -0.164 (0.164)
INFLt−4 0.386 (0.190) 0.420 (0.240) 0.320 (0.158) 0.080 (0.155)
MSt−1 0.020 (0.236) -0.496 (0.298) -0.043 (0.217) -0.302 (0.172)

(high) regime 2 in difference with regime 1
κ 0.548 (0.070) 0.185 (0.099) 0.487 (0.096) 0.147 (0.060)
γ × 10 2.258 – 0.813 – 2.301 – 1.544 –
c 1.273 (0.802) -0.204 (0.176) 0.858 (0.871) -0.010 (0.092)
INFLt−1 0.516 (0.445) 1.051 (0.237) 0.546 (0.524) 1.003 (0.182)
INFLt−2 -0.483 (0.370) -0.794 (0.216) -0.529 (0.466) -0.614 (0.158)
INFLt−3 -0.603 (0.728) -0.850 (0.322) -0.435 (0.624) -0.420 (0.200)
INFLt−4 0.676 (0.488) 0.065 (0.304) 0.578 (0.522) -0.306 (0.226)
MSt−1 -0.544 (0.556) 0.033 (0.192) -0.417 (0.630) -0.175 (0.104)

Variance break parameters
κ 84.000 (2.052) 84.002 (20.897) 84.000 (1.998) 84.000 (1.743)
γ 4.432 – 0.142 – 4.432 – 4.433 –
σ2
1 0.067 (0.008) 0.063 (0.011) 0.069 (0.008) 0.074 (0.008)
σ2
2 − σ2

1 -0.033 (0.011) -0.030 (0.013) -0.035 (0.011) -0.039 (0.011)



Table 5: Vuong and sign tests results for comparing the 4 different model
specifications for US inflation (p-values in parentheses)a

ARX(4) κt = κ+ ȳt−1|t−d κt = κσ̂t + ȳt−1|t−d

Exob Endo Exo Endo

SSR 1c 0.774 0.728 0.790 0.693

ARX(4) -3.567 -3.913 -3.909 -3.882
(0.000) (0.000) (0.000) (0.000)

κt = κ− ȳt Exo 0.559 -0.563 0.005 -1.009
(0.040) (0.573) (0.996) (0.313)

Endo 0.544 0.461 0.567 -0.734
(0.092) (0.147) (0.571) (0.463)

κt = κσ̂t + ȳt Exo 0.539 0.495 0.495 -1.012
(0.117) (0.472) (0.472) (0.312)

Endo 0.559 0.515 0.529 0.529
(0.040) (0.312) (0.181) (0.181)

a The upper-triangular matrix in the table shows the results for the Vuong test. A
negative test value indicates that the model presented in the row is better than
the model in the column. The lower-triangular matrix displays the sign-test. A
test value larger than 0.5 indicates that the model presented in the row is better.

b ’Exo’ stands for the model with the exogenous forecast, ’Endo’ stands for the
model with the endogenous forecast pt|t−1.

c Sum of squared residuals (SSR) for ARX(4) specification is normalized to 1.
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B Figures

Figure 1: Quarterly time series of the US inflation rate (1960.2 to 2011.1)
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Figure 2: Transition functions for the model with an endogenous forecast pt|t−1 and a
time-varying threshold parameters κi,t = σ̂tκi + ȳt−1|t−d
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Figure 3: Marginal effect of an increase in the explanatory variables and pt|t−1 for the
model with an endogenous forecast pt|t−1 and a time-varying threshold parameters, κi,t =
σ̂tκi + ȳt−1|t−d

(a) marginal effect of INFLt−1 (b) marginal effect of INFLt−2

(c) marginal effect of INFLt−3 (d) marginal effect of INFLt−4

(e) marginal effect of MSt−1 (f) marginal effect of pt|t−1
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Figure 4: Impulse response analysis of a shock ετ of size 1, 2, −1 and −2 times σ̂τ ,
respectively.

(a) average across regimes (b) pτ |τ−1 is in regime 0

(c) pτ |τ−1 in regime 1 (d) pτ |τ−1 is in regime 2
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Figure 5: Impulse response analysis of a shock to pτ |τ−1 of size 1, 2, −1 and −2 times σ̂τ ,
respectively.

(a) average across regimes (b) pτ |τ−1 is in regime 0

(c) pτ |τ−1 is in regime 1 (d) pτ |τ−1 is in regime 2
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Figure 6: Impulse response analysis of a shock in pτ |τ−1 which makes the forecast exactly
equal to the dependent variable in 5 different quarters.
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