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Abstract

In this paper, we propose a new model that combines the vector model
and the ideal point model of unfolding. An algorithm is developed, called
VIPSCAL, that minimizes the combined loss both for ordinal and interval
transformations. As such, mixed representations including both vectors
and ideal points can be obtained but the algorithm also allows for the
unmixed cases, giving either a complete ideal point analysis or a complete
vector analysis. On the basis of previous research, the mixed representa-
tions were expected to be nondegenerate. However, degenerate solutions
still occurred as the common belief that distant ideal points can be repre-
sented by vectors does not hold true. The occurrence of these distant ideal
points was solved by adding certain length and orthogonality restrictions
on the configuration. The restrictions can be used both for the mixed and
unmixed cases in several ways such that a number of different models can
be fitted by VIPSCAL.
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1 Introduction

To describe the relation between a group of judges and the items they ordered
according to their preference, models have been proposed that represent prefer-
ence data in low-dimensional space. Among these, two are of particular interest
here: the ideal point model of unfolding and the vector model. When one
model should be used and when the other, is not obvious. Furthermore, it is
plausible that, for a same data set, some judges would fit well an ideal point
representation and some a vector representation. Therefore, a mixed model is
of interest that combines both and where it is the model that determines which
judges to represent by vectors and which by ideal points. Also, in a recent
paper (Van Deun, Groenen, Heiser, Busing, & Delbeke, in press) it was shown
how some frequently occurring degenerate ideal point solutions could be inter-
preted by representing some judges in the obtained solution by vectors. Their
finding motivates the idea that at least some degeneracies can be avoided by a
mixed model. The objective of this paper is to construct such a hybrid model
and to provide an accompanying flexible algorithm. First, we discuss the ideal
point and vector model. Then, we present a loss function that combines both
models and we develop an alternating least squares and iterative majorization
algorithm, named VIPSCAL, to minimize this loss. In an application of this
algorithm, we show that the assertion that the vector model is an ideal point
model with the ideal points at infinity (see Carroll, 1972; Coombs, 1975; Borg
& Groenen, 1997) is not very useful: asymptotically, the assertion is true but in
practice very distant ideal points often reflect a different preference order then
a vector representation of the same point. As a result, the combined model still
gives degenerate solutions. We show how restrictions can be incorporated in
the algorithm easily to prevent the occurrence of distant points. The resulting
algorithm allows for analyses under a number of different models, including, for
example, a restricted ideal point model and the compensatory distance model.
Some possible ways of analyzing data with the algorithm are illustrated with
empirical data. Note that multidimensional unfolding is known to perform of-
ten well with simulated data while yielding degenerate solutions for empirical
data (see Kruskal & Carroll, 1969). Therefore, the results we report depend on
empirical data, not on simulated. As we believe that the algorithm is a very
flexible one and, therefore, useful for others, it is developed here in quite some
detail. The main merit of VIPSCAL is that it allows for a more thorough study
and understanding of the relation between the distance and vector model.

2 The vector and ideal point model

Both the ideal point or distance model and the vector model map the preference
data to a low-dimensional (often Euclidean) space: the judges and the items are
located in this space such that the preference order given by a certain judge
is reflected in the relation from the mapped judge to the mapped items. The
difference between the two models lies in the function that is used to relate the
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Figure 1: Ideal point and vector model representation of the relation between
judge ’S’ and the items ’A’, ’B’, ’C’, and ’D’.

judge to the different items. In the ideal point representation, this function
is the distance function while in the vector representation the scalar product
is used. A graphical illustration is given in Figure 1 for a judge ‘S’ and four
items ‘A’, ‘B’, ‘C’ and ‘D’ with the ideal point configuration depicted in the left
panel and the vector representation in the right panel. The interpretation of
the configuration in the left panel is based on the order of the distances between
‘S’ and the different items where the closest item represents the most preferred
one. According to the ideal point solution, the preference order for judge ‘S’
is ‘CBAD’. The circles around ‘S’ are called isopreference contours as objects
lying on the same circle are equally preferred. In the right panel, the same
coordinates are used as those of the left panel but now the judge is represented
by an oriented vector. In this case, the preference order is reflected in the scalar
product, or graphically, in the orthogonal projections of the items on the vector.
The higher the projection falls on the vector, the more it is preferred. Here,
the preference order is ‘CDBA’. Equal preference in this model occurs for items
that lie on the same line perpendicular to the vector.

This illustration shows that the reproduced rank orders, for the same set of
coordinates, are in general different. It also shows that the underlying prefer-
ence mechanisms are different: when we consider the underlying dimensions as
the quantity of a certain attribute, then there are optimal amounts in case of
the ideal point model with preference decreasing when one moves away from
the ideal point in whatever direction. In case of the vector model, there is an
optimal direction (called by Carroll, 1972, the relative importance) with prefer-
ence increasing monotonically when one moves further and further away: here,
a ‘the more, the better’ principle applies. The vector model has been described
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by Carroll (1972, pages 117-118) as an ideal point model with the ideal points
at infinity, see Figure 2. In that case, the isopreference contours become almost
equal to orthogonal projection lines (see also Section 4).

The ideal point model of unfolding has the advantage that its representations
are easier to interpret but it is known to result in degenerate solutions in the
majority of cases (Kruskal & Carroll, 1969; De Leeuw, 1983; Heiser, 1989; Kim,
Rangaswamy, & DeSarbo, 1999; Busing, Groenen, & Heiser, in press and Van
Deun et al., in press). Degenerate solutions fit well but are not interpretable,
for example, because the judges cluster together in the center of a circle formed
by the items. Van Deun et al. (in press) showed that often a part of the
degeneracy is the result of a few distant subjects in the configuration. Following
the results of De Leeuw (1983), they also showed how the configuration could be
made interpretable by representing these distant subjects by vectors. Therefore,
we propose to develop a model that combines the ideal point model and the
vector model, hoping that such a model will give non-degenerate solutions as
we expect the distant subjects to be represented by vectors. Note also that
such a mixed model can be of psychological relevance considering that those
judges that are represented by vectors follow another preference mechanism then
those that are represented by ideal points. Interest in such a combined model
has been expressed by DeSarbo and Carroll (1985). In case of known object
coordinates (external unfolding), the PREFMAP program (Meulman, Heiser,
& Carroll, 1986) already allows for mixed representations where some judges
are represented by vectors and others by ideal points. However, in PREFMAP
the user determines prior to the analysis how each subject should be represented.
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3 A Combined Loss Function

Consider n judges i = 1, ..., n who ordered m objects j = 1, ...,m according to
their preference. In the ideal point model, both are represented as points in
low dimensional space such that the order of the distances of a judge to the
different objects reflects the preference order in the nonmetric case or that the
differences between the distances reflect the differences between the preference
scores (metric case). Such a configuration can be obtained by minimizing the
following loss function,

K(X,Y,Γ) = n−1
n∑

i=1

Ki(xi,Y, γi) = n−1
n∑

i=1

[
1− r2(γi,di)

]
, (1)

with di the vector of distances for judge i and γi the transformed preference
scores. Here, we will use Euclidean distances with the distance between judge
i and object j given by dij = [(xi − yj)′(xi − yj)]1/2 where xi and yj are the
coordinate vectors for judge i and object j. As shown by Kruskal and Carroll
(1969) and by Van Deun et al. (in press), minimizing (1) or, equivalently, max-
imizing the squared correlation between the transformed data and the distances
is equivalent to minimizing Stress-2. Van Deun et al. (in press) showed that
under the condition γ′iJγi = 1, loss function (1) is equivalent to

K(X,Y,Γ,a) = n−1
n∑

i=1

Ki(xi,Y, γi, ai) = n−1
n∑

i=1

‖γi − aidi‖2J, (2)

where ai is a scale parameter and J = I − m−111′ a centering operator. A
similar proof is given below for the vector model. The ai have to be restricted
to be nonnegative in order to fit positive correlations between the distances and
the transformed data as we want the distance from a judge to a preference item
to increase when the item has a higher (rank) score.

In the vector model, the judges are represented as vectors and the preference
order is reflected in the order of the scalar products between a judge and the
different items. Let Y be the m × p matrix of coordinates of the items and xi

the p× 1 vector with the judges’ coordinates so that the scalar product vector
is given by Yxi. Then, loss for judge i can be measured as

Li(xi,Y,γi, bi) = ‖γi − biYxi‖2J
= γ′iJγi + b2

i x
′
iY

′JYxi − 2biγ
′
iJYxi. (3)

This loss function closely resembles the PRINCIPALS model of Young, Takane,
and De Leeuw (1978) with loss n−1

∑
i ‖γi−Yx′i‖2 and constraints γ′i1 = 0 and

γ′iγi = m, which were imposed using explicit normalization. For a historical
account of nonmetric principal components analysis, see Gifi (1990). Below we
show that (3) is equivalent to

Li(xi,Y,γi, bi) = 1− r2(γi,Yxi), (4)
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subject to γ′iJγi = 1. The optimal bi is found by setting

∂Li

∂bi
= 2bix′iY

′JYxi − 2γ′iJYxi = 0 (5)

thus

bi =
γ′iJYxi

x′iY′JYxi
. (6)

Inserting this optimal value in (3) gives

Li(xi,Y,γi) = γ′iJγi +
(

γ′iJYxi

x′iY′JYxi

)2

x′iY
′JYxi − 2

γ′iJYxi

x′iY′JYxi
γ′iJYxi

= 1 +
(γ′iJYxi)2

x′iY′JYxi
− 2

(γ′iJYxi)2

x′iY′JYxi

= 1− (γ′iJYxi)2

x′iY′JYxi
= 1− r2(γi,Yxi),

under the condition that γ′iJγi = 1. Note that bi should be restricted to be
nonpositive for interpretational convenience: the higher the object projects on
the vector representing the judge, the more the object is preferred (and thus a
lower score), since preference orders are assumed to be dissimilarities. A low
value indicates higher preference and a high value indicates a low preference.

We combine both models defined by (2) and (3) in a weighted sum,

L(X,Y,Γ,a,b) = n−1
n∑

i=1

[giKi + (1− gi)Li]

= n−1
n∑

i=1

[
gi‖γi − aidi‖2J + (1− gi)‖γi − biYxi‖2J

]
,

= n−1
n∑

i=1

[
1 + gia

2
i d
′
iJdi − 2giaid′iJγi + (1− gi)b2

i x
′
iY

′JYxi

−2(1− gi)bix′iY
′Jγi] , (7)

where the weights gi take values zero or one, ai ≥ 0, bi ≤ 0 and γ′iJγi = 1. Note
that the use of dummy weights gi implies that a subject is either represented
by a vector or an ideal point.

We will minimize (7) by alternating least squares using the algorithm pre-
sented here and named VIPSCAL.

1. Choose initial X(0), Y(0), a(0), b(0) and g(0).

2. l := 0.

3. l := l + 1.

4. Update the person coordinates X given Y(l−1), Γ(l−1), a(l−1), b(l−1)

and g(l−1).
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5. Update the object coordinates Y given X(l), Γ(l−1), a(l−1), b(l−1)

and g(l−1).
6. Compute the transformation update Γ given X(l), Y(l), Γ(l−1), a(l−1), b(l−1)

and g(l−1).
7. Update a and b based on X(l), Y(l), Γ(l) and g(l−1).
8. Update g based on X(l), Y(l), Γ(l), a(l) and b(l)

9. If L(l) − L(l−1) < ε or l = lmax stop. Else return to 3.

Suitable updates can be easily found for Steps 7 and 8. The more difficult parts
are the Steps 4, 5 and, due to the constraint γ′iJγi = 1, also 6. The update
of the coordinates (Steps 4 and 5) will be based on majorization procedures.
Note that this algorithm can be used to fit a full ideal point model by setting
g(0) = 1 and dropping Step 8. In a similar way, when setting g(0) = 0, a full
vector model will be fitted. Below we develop each update.

3.1 Updating the coordinates

In this section, we will derive expressions that update the coordinates X and Y.
As the loss function is complicated, we will replace it by majorizing functions
that are easy to minimize (see De Leeuw, 1994, Heiser, 1995, and Lange, Hunter,
& Yang, 2000 for a general introduction to iterative majorization). These func-
tions are never lower than the original function and touch the original function
at a supporting point. By taking the previous estimate as the supporting point
in the current iteration, it is guaranteed that the loss function is nonincreasing
with each new update. In practice, the values of the loss function converge to
a local minimum. When the original function has a bounded Hessian, it can
be majorized by a quadratic function. Kiers (2002) introduced one that can be
easily updated both in the constrained and unconstrained case. This function
is of the following form

g(Z) = k + trAZ +
∑

q

trBqZCqZ′, (8)

where k includes all terms that are constant in Z with Z denoting the matrix
we want to update (this is in our case, xi or Y). So, we will look for a function
that majorizes (7) and that is of the form (8).

As explained by Kiers (2002), when the Cq are positive semi-definite, the
minimization of (8) is itself based on the majorizing function

g(Z) ≤ k + trFZ +
∑

q

λqtrCqZ′Z, (9)

with λq the largest eigenvalue of
(
2−1Bq + 2−1B′

q

)
and with F = A +∑

q

(
CqZ′0(Bq + B′

q)− 2λqCqZ′0
)
. Without constraints, the optimal Z is given

by

Z+ = −1
2
F′

(∑
q

λqCq

)−1

. (10)

7



The function that we want to minimize is given by (7), that is,

L(X,Y) = n−1
n∑

i=1

[
1 + gia

2
i d
′
iJdi − 2giaid′iJγi + (1− gi)b2

i x
′
iY

′JYxi

−2(1− gi)bix′iY
′Jγi] . (11)

To minimize this function, we will construct a quadratic majorizing function of
the basic form (8). As majorization is closed under summation, we will majorize
each of the terms that are not a linear or quadratic function of the coordinates.
These are the two terms involving distances, namely the terms gia

2
i d
′
iJdi and

−2giaid′iJγi.
Note that we have to update two sets of coordinates X and Y where the

judges enter the loss function by summing over all n judges. This allows us to
update the coordinates xi for each of the judges separately (the sum is minimized
by minimizing each of its components). Next, we will show how each of the
terms can be expressed in the standard form (8), and this both for the object
coordinate matrix Y and the subject coordinate vector xi. For the sake of
clarity, we will use a notation that follows closely the notation in (8) with
numbered and lettered subscripts: we will use a subscript x and a subscript y
when the term is expressed in function of respectively xi and Y. The numbers
count the different terms that are in the same form. For example, k2x would be
the second term that is constant in xi.

First, we show how the terms that are already linear or quadratic in the
coordinates can be arranged in the desired form. Recall the following properties:
(1) a scalar and the trace of this scalar are equivalent, (2) trace functions are
invariant under transposition, and (3) trace functions are invariant under cyclic
permutations. Then, (11) in function of xi and with the two last terms expressed
in the form (8) gives,

L(xi) = k1x + gia
2
i d
′
iJdi − 2giaid′iJγi

+trB1xxiC1xx′i − 2trA1xxi, (12)

with k1x = γ′iJγi, B1x = (1−gi)b2
i Y

′JY, C1x = 1, and A1x = (1−gi)biγ
′
iJ
′Y.

In the same way we get in function of the object coordinates Y,

L(Y) = k1y +
n∑

i=1

[
gia

2
i d
′
iJdi − 2giaid′iJγi

]

+trB1yYC1yY′ − 2trA1yY, (13)

with k1y =
∑

i γ′iJγi, B1y = J, C1y =
∑

i(1 − gi)b2
i xix′i, and A1y =

∑
i(1 −

gi)bixiγ
′
iJ
′.

How the terms gia
2
i d
′
iJdi and −2giaid′iJγi can be majorized by functions

that are quadratic in the coordinates, is explained in appendix.

3.2 Updating X

We replace the second and third terms of equation (12) by their majorizing func-
tions consisting of the sum of (31), (35), (39), and (42) developed in appendix.
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The following majorizing function is then obtained for the xi

g(xi) = kx + trAxxi +
3∑

q=1

trBqxxiCqxx′i (14)

with kx = k1x+k2x+k3x+k4x+k5x and Ax = −2(A1x+A2x+A3x+A4x+A5x).
This majorizing function can in turn be majorized as done by Kiers (2002) (see
equation (9)),

g(xi) ≤ kx + trFxxi +
3∑

q=1

λqxtrCqxx′ixi, (15)

with λqx the highest eigenvalue of
(
2−1Bqx + 2−1B′

qx

)
and with Fx = Ax +∑

q

[
Cqxx′i0(Bqx + B′

qx)− 2λqxCqxx′i0
]
. As B2x and B3x are scalars, λ2x and

λ3x equal these and only λ1x has to be found by an eigenvalue decomposition.
Note that all Cqx are positive semi-definite such that we could use (9) as a
majorizing function. When there are no constraints, the optimal xi is given by

x+
i = −1

2
F′x

(∑
q

λqxCqx

)−1

. (16)

A relaxed update x++
i can be used to accelerate convergence (see De Leeuw &

Heiser, 1980 and Heiser, 1995),

x++
i = 2x+

i − xi. (17)

The relaxed update still guarantees a nonincreasing sequence of loss values. As
the formulas connected to the update of xi do not involve another judge i′, the
order in which the judges are updated does not influence the outcome.

3.3 Updating Y

The majorizing function for the Y coordinates is given by replacing the second
and third terms of equation (13) by the sum of (32), (36), (40), and (43) of the
appendix yielding

g(Y) = ky + trAyY +
3∑

q=1

trBqyYCqyY′, (18)

with ky = k1y+k2y+k3y+k4y+k5y and Ay = −2(A1y+A2y−A3y+A4y+A5y).
The update is then given by

Y+ =
1
2
Fy

(∑
q

λqyCqy

)−1

, (19)

with Fy = Ay +
∑

q

(
CqyY′

0(Bqy + B′
qy)− 2λqyCqyY′

0

)
and λqy the highest

eigenvalue of
(
2−1Bqy + 2−1B′

qy

)
. Given the special form of the Bqy matrices,
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the eigenvalues can be set equal to respectively 1,
∑

i c1i and the maximal
value on the diagonal of

∑
i c3iD−1

i0 . Here, too, the number of iterations can be
approximately halved using the relaxed update:

Y++ = 2Y+ −Y. (20)

3.4 Updating Γ

The loss for judge i can be written as,

Li(γi) = ‖γi − [giaidi + (1− gi)biYxi]‖2J. (21)

This function can be minimized by (monotone) regressing the γi’s on giaidi +
(1 − gi)biYxi and this under a nonnegativity constraint γij ≥ 0 and a length
constraint γ′iJγi = 1. Let δi be the rank scores for judge i, then fixed disparities
of the following form are obtained for data with an interval level of measurement
(see also Van Deun et al., in press):

γi = (δ′iJδi)−1/2δi. (22)

Equation (22) clearly shows that the update is independent from the coordinate
values. Therefore, the γi’s can be fixed right away. In the nonmetric case, as
shown by Gifi (1990), the length restriction can be imposed after the monotone
regression by dividing the updated disparities by γ′iJγ

1/2
i . In case all γij are

equal, Groenen, Os, and Meulman (2000) show how the optimal disparities are
given by γi = Sbopt with S = JLM where M is a matrix of ones on and below
the diagonal and zeroes above it, L is a matrix composed of rows with zeroes and
a one in the r-th column of row j where r is the rank value of dij . Let G = S′S,
then bopt is a vector of all zeroes except one which equals (g)−1

ii (see also Van
Deun et al., in press). The nonzero value is chosen such that d′d + 1− 2b′S′d
is minimal. An additive constant can be added without loss of generality and
this property can be used to make all disparities nonnegative (since S = JLM
is centered). Nonnegative γij ’s are important as the majorizing functions for X
and Y depend on the assumption of nonnegative γij ’s.

3.5 Updating a and b

The optimal value for ai can be found by setting the partial derivative of (7)
with respect to ai equal to zero:

∂Li

∂ai
= 2giaid′iJdi − 2gid′iJγi = 0. (23)

Under the constraint that ai ≥ 0, the following update is obtained,

ai =
{

d′iJγi(d′iJdi)−1 if ai ≥ 0 ,
0 if ai < 0 . (24)

In the same way, we find that the update for bi is given by

bi =
{

γ′iJYXi(x′iY
′JYxi)−1 if bi ≤ 0 ,

0 if bi > 0 . (25)
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3.6 Updating G

Each gi is evaluated by taking the difference L(gi = 1,xi,Y, γi, ai, bi)−L(gi =
0,xi,Y, γi, ai, bi). If the difference is positive or zero, gi is set equal to zero
and else to one. So, in case of equal fit by both models, priority is given to the
vector model.

3.7 A rational start

Good initial values X(0) and Y(0) can be found by a classical multidimensional
scaling of the augmented data matrix. The augmented data matrix is obtained
as described in Van Deun, Heiser, and Delbeke (2004) with the following steps,

1. Expand the n×m data with an m×m matrix that has ones on the diagonal
and 1 + 2−1m elsewhere.

2. Center each row.

3. Scale the additional m rows by multiplying them by 3−1/2(m + 1)1/2.

4. Derive the (n + m) × (n + m) matrix of dissimilarities by calculation of
the Euclidean distance between all rows.

5. Add a constant to the distances measured between the first n and last m
rows such that the mean resulting distance equals the mean off diagonal
distance measured among the first n rows.

As Γ(0) we take the one used with interval transformations given by (22). Then,
optimal values can be obtained for a(0), b(0) and g(0) by (24), (25) and as
explained in Section 3.6.

4 The difference between outlying ideal points
and vectors representation

We apply the combined vector ideal point or VIPSCAL model to the journal
data collected by Roskam (1968): he asked 39 staff members to rank ten psycho-
logical journals according to their preference for consultation. Here, we chose
an interval level of measurement. To account for the problem of local minima,
a multistart procedure was used: 50 solutions were computed based on random
initial configurations and we retained the solution with the lowest loss value.
For each of the 50 analyses, the iterative procedure was stopped either when the
difference in loss was less then 10−9 or when the number of iterations exceeded
1000. In Figure 3, the resulting combined vector ideal point configuration is
depicted where the right panel is a detail of the left panel. Contrary to our ex-
pectations, it seems that not all distant ideal points are representable by vectors
(see Figure 3a). As a result, we consider the solution as being degenerate. In
the right panel of Figure 3, a detail of the left panel is shown in which the out-
lying subjects are plotted by vectors. Here, an interpretation of the preference

11



Table 1: Labels used for the journal data.

Labels for the journals
JEXP Journal of Experimental Psychology
JAPP Journal of Applied Psychology
JPSP Journal of Personality and Social Psychology
MuBR Multivariate Behavioral Research
JCONS Journal of Consulting
JEDU Journal of Education
Pmet Psychometrika
HuRe Human Relations
PsBu Psychological Bulletin
HumDev Human Development

Labels for the judges
1 Social psychology
2 Educational and developmental psychology
3 Clinical psychology
4 Mathematical psychology and psychological statistics
5 Experimental psychology
6 Cultural psychology and psychology of religion
7 Industrial psychology
9 Physiological and animal psychology

for most of the judges is possible: judges represented by an ideal point prefer a
journal more the closer it is located to its ideal point, while judges represented
by the dotted vectors prefer a journal more the higher it projects on its vector.
No interpretation is possible on the basis of the configurations in Figure 3 for
the distant judges (represented by ideal points in the left panel and by vectors
in the right panel). Consider the projections for outlying judge ‘3’ which are
drawn in the right panel. Two pairs of projections fall close together: these are
the pair ‘JCONS’ and ‘HuRe’ and the pair ‘JEDU’ and ‘JAPP’. ‘JCONS’ lies
closer to the ideal point then ‘HuRe’ but it is ‘HuRe’ that projects higher on
the vector. Similarly, ‘JAPP’ is closer to the ideal point then ‘JEDU’ while it
is the latter that projects higher on the vector. In other words, the reproduced
preference orders under the vector and ideal point model are not the same for
this distant subject.

To understand what has happened, consider the situation with two points A
and B and a judge S depicted in Figure 4. The squared Euclidean distance from
S to A is given by d2(S, A) = x2+y2 and also d2(S,B) = (x+a)2 = x2+a2+2ax.
In the vector model, the distance from S to the projection is considered so
d2

v(S,A) = x2 and d2
v(S, B) = (x + a)2 = x2 + a2 + 2ax. The preference order

is inferred by comparing the distances, for the ideal point model:

d2(S,A)− d2(S, B) = y2 − a2 − 2ax (26)

and for the vector model

d2
v(S, A)− d2

v(S, B) = −a2 − 2ax. (27)

Then, if y2 > a2 + 2ax the preference orders are reversed when comparing both
models. The reversal can be accomplished with small y when x →∞ by taking
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Figure 3: VIPSCAL solution for the journal data (interval analysis). The right
panel is a detail of the left panel with the distant judges represented by the
full vectors and the judges fitting a vector representation by the dotted vectors.
The journals are labelled with the letter codes and the subjects with a number
(see Table 1).
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Figure 4: Judge ‘S’ and two objects ‘A’ and ‘B’.
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Figure 5: Distant ideal point for which the reproduced preference orders under
the distance model do not equal those reproduced under the vector model.

a small (a → 0) or the objects lie almost on a line orthogonal to the vector,

∀ x > 1 ∃ y, a > 0 : y2 > a2 + ax (28)

where the condition is fulfilled for example by taking a = x−1, y = 2 and this
even for very large x. Note that this is exactly what happens with the Roskam
data: in Figure 3b ‘HuRe’ and ‘JCONS’ lie almost on a line orthogonal to the
vector labelled with ‘3’ (or, a is very small). In practice, this observation means
that some ideal points might never be represented by vector points, no matter
how distant they are. This aspect is further illustrated in Figure 5, where the
projection lines and isopreference contours are drawn for a distant subject in a
situation where the projection lines fall close together for three objects though
these objects are separated from each other.

How can we understand the difference between a very distant ideal point
and a vector representation from a substantive point of view? Let us consider a
hypothetical example of two companies that select their employees on the basis
of their performance on two intelligence tests, one testing verbal intelligence and
the other performance intelligence (see Figure 6). Furthermore, both companies
occupy the same position in a preference space made up by a performance IQ
dimension and a verbal IQ dimension but company I uses the vector model
and company II the distance model to rank the candidates. The position these
companies occupy is characterized by a very high and equal value on both
dimensions with the consequence that both rank candidates with respect to their
overall intelligence: the higher the overall intelligence of a candidate, the more
he is preferred by both companies. Suppose now that there are six candidates
‘A’, ‘B’, ‘C’, ‘D’, ‘E’, and ‘F’ as depicted in Figure 6. Most candidates are
ranked the same by both companies, except for the two candidates with the
highest overall IQ: these are candidates ‘A’ and ‘B’ who differ little with respect
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Figure 6: Illustration of the substantive difference between a distant ideal point
and a vector representation for a hypothetical example.
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to their overall intelligence. Company I selects the candidate with the highest
overall IQ (this is, candidate ‘B’) while company II selects, among candidates
with an almost equal overall score, the candidate who scores more or less the
same on both dimensions (this is, candidate ‘A’) .

What the hypothetical example illustrates, is that the difference between
vectors and distant ideal points is connected with the relative importance of the
dimensions that make up the preference space: the relative amount in which
each of the dimensions contribute determines the preference scores more for
distant ideal points then for vectors. In the latter case, a low value on one
or more dimension can be compensated for by extremely high values on other
dimensions. Note that this difference between vectors and distant ideal points
is only important when the orthogonal projections fall close together. However,
given the number of objects and subjects that make up a preference data set
one will often encounter close projections.

5 Adding constraints

To avoid degenerate solutions in the VIPSCAL model, we will build in some
constraints. A first constraint is to set ‖xi‖2 ≤ 1 or, equivalently,

∑
p x2

ip ≤ 1.
In this way, the maximal distance from a subject to the center is one and this
should avoid that ideal points run away. However, the same type of solution can
still be obtained if the object points cluster together in the center. Therefore, we
add the constraint Y′Y = m(2p)−1I. The factor m(2p)−1 is chosen in order to
have the xi and yj points in the same range of values: the part mp−1 accounts
for the fact that on average, we want each yj point to have a length one. The
factor 2−1 was found by experience and accounts for the fact that not all xi

have a length one. In this way, the average distance of the item and subject
points to the origin should be approximately equal.

As explained by Kiers (2002), the equality constraint ‖xi‖2 = 1 can be
imposed by adapting Steps 4 and 5 (see section 3 on page 6) as follows. Equation
(15) can be rewritten as a linear function under the constraint x′ixi = 1 as
kx + trFxxi +

∑3
q=1 λqtrCqx. This function can be minimized by maximizing

tr−Fxxi so that the update is given by x+ = VxU′
x where Vx and Ux come

from the singular value decomposition of −Fx = UxΣxV′
x. To impose the

inequality constraint ‖xi‖2 ≤ 1, first calculate the unconstrained update. If the
resulting xi has a length greater then 1, compute the constrained update. In the
same way, the constrained update for Y is given by Y+ = m1/2(2p)−1/2VyU′

y.
In case of constraints, the relaxed update is no longer of use as convergence
cannot be guaranteed anymore. Note that a model with all judges on a circle
can be obtained by calculating the constrained update for all i. Such a model
has compensatory characteristics as the sum of squared coordinates is equal
to one, implying that large (absolute) values on one dimension result in small
values on the remaining dimensions. It is also possible to constrain the norm
of the xi to another length then one. Taking a small value will yield an object
points degeneracy which can be interpreted by using a signed compensatory
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Table 2: Models that can be analyzed with the algorithm proposed here. The
length constraints on xi are always combined with the orthogonality constraint
Y′Y = m(2p)−1I. VIP stands for a mixed vector ideal point configuration and
MDU for a full ideal point or multidimensional unfolding configuration.

Representation
of the judges Length Constraint Model

1 Mixed No Vector Ideal Point
2 Mixed ‖xi‖ ≤ 1 Constrained VIP
3 Mixed ‖xi‖ = 1 Circular VIP
4 Mixed ‖xi‖ ≤ 0.01 Compensatory VIP
5 All Ideal Points No Unfolding
6 All Ideal Points ‖xi‖ ≤ 1 Constrained MDU
7 All Ideal Points ‖xi‖ = 1 Circular MDU
8 All Ideal Points ‖xi‖ ≤ 0.01 Compensatory MDU
9 All Vectors Length is of minor importance Vector

distance model (see Van Deun et al., in press).
The resulting algorithm incorporates nine different models, determined by

two factors: the first factor pertains to the representation of the judges (mix-
ture of vectors and ideal points, all ideal points or all vectors), the second to the
length constraint (no constraint, a maximum length of one, an exact length of
one or a maximal small length). Note that the length factor is of no importance
for the interpretation of a full vector model. Constraining the length of the vec-
tors, however, has an influence on the estimation of the coordinates. Therefore,
with the same starting configuration, the constrained configurations slightly dif-
fer from the unconstrained configurations. Using different lengths in the fully
constrained model makes no difference as the loss function is not influenced by
linear transformations (a change in length is compensated for by a change in
the value of the regression parameter bi). The models with only ideal points
incorporate the classical unfolding model (no length constraint) that is known
to degenerate in the majority of cases, but also three different constrained un-
folding models. To our knowledge, VIPSCAL is the first unfolding algorithm
that allows for length restrictions on the configuration.

6 Applications of the constrained models

Some of the constrained analyses are illustrated here. As a first application, we
reconsider the mixed model for the journal data(Roskam, 1968) but now with
the inequality constraint ‖xi‖2 ≤ 1. Then, we consider several ways of modelling
the breakfast data (Green & Rao, 1972). In all cases, the same stopping criteria
as previously are used. Here, we will show two solutions for each model: one
based on a multistart procedure with 50 random starts and one based on rational
starting values. For each solution, the loss value and the average proportion of
recovered preference orders are reported. The latter measure is also known as
index C1 (see Kim et al., 1999) and is calculated in the following way: for each
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(a) Rational start. Loss = 0.2880,
C1 = 0.8450
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(b) Best of 50 random starts. Loss =
0.3171, C1 = 0.8251

Figure 7: Roskam data, constrained VIP model with interval transformations.
In the left panel, the rational based solution is given and in the right panel
the best of 50 random based solutions. For each solution, the average squared
correlation and the average proportion of recovered preference orders is reported.

subject, the number of pairs of objects for which the configuration preserves the
order relation is calculated and this number is divided by the total number of
pairs, this is m(m− 1)/2. Then, the average is taken over all subjects.

To have an illustration of metric analyses, the journal data were analysed us-
ing interval transformations (see also the end of this section). The solutions for
the constrained VIP analysis are given in Figure 7 where the solution in the left
panel is based on rational starting values while the solution in the right panel
is the best of those based on random values. Both solutions are very similar
with the rational one having a lower loss value and a better fit. In these con-
figurations, the preference of each judge can be easily derived: for example, the
group of people who consider the department of experimental psychology most
important for their work (labelled by ‘5’) often consult the Journal of Experi-
mental Psychology, Psychological Bulletin and Psychometrika while they least
consult the Journal of Consulting, Human Relations, and Human Development.
The judges labelled by ‘2’ (educational and developmental psychology), on the
other hand, often consult Human Development, the Journal of Education, and
the Journal of Consulting while they least consult Multivariate Behavioral Re-
search and Psychometrika. Note the central position of Psychological Bulletin.

In a second application, we illustrate some more of the possibilities the algo-
rithm offers. The data we use here, are the breakfast data on preference for 15
breakfast items expressed by 21 MBA students and their wives (Green & Rao,
1972). The different constrained models that we will consider are the mixed con-
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Table 3: Value of the loss function and proportion of recovered preference orders
for different models applied to the breakfast data.

Multistart Rational
Loss C1 Loss C1

Mixed, ‖xi‖ ≤ 1 0.2983 0.6927 0.1880 0.7612
All vectors, ‖xi‖ ≤ 1 0.2020 0.6884 0.2025 0.6839
All ideal points, ‖xi‖ ≤ 1 0.2610 0.6753 0.2314 0.7512
All ideal points, ‖xi‖ = 1 0.1876 0.6524 0.2311 0.7624

strained model, the constrained unfolding model, the constrained vector model
and the circular unfolding model.

An overview of the loss and fit values is given in Table 3, the graphical repre-
sentations for the random solutions can be found in Figure 8 and for the rational
solutions in Figure 9. A comparison of the random and rational configurations
shows that the latter are clearly more interpretable, except for the constrained
vector model. For example, most of the breakfast items are clustered together
in the mixed configuration of Figure 8a, while the rational solution in Figure 9a
clearly shows a cluster of the hard items (with the exception of toast pop-up,
‘TPU’), of the doughnuts and, of most of the soft items. Similarly, taking a
look at the configuration in Figure 8b, we see that a lot of breakfast items are
clustered. Note also that 14 subjects (the large dot in the configuration) are
clustered together in the center of most of the breakfast items. The solution for
the same model but based on the rational starting configuration is again clearly
interpretable (see Figure 9b). And finally, if we consider the circular ideal point
solutions (see Figures 8d and 9d), we see that the breakfast items and a lot of
judges (in fact, 15, this is the large dot at the right side of the configuration)
are clustered together in the center of almost all breakfast items while the ra-
tional solution is again interpretable. The vector model (see Figures 8c and
9c), however, holds very similar configurations that are both not interpretable:
most vectors lie in a direction orthogonal to the breakfast items such that the
projections of the items on the vectors fall close together. A comparison of
the columns labelled ‘Loss’ in Table 3, shows that the rational solutions have
lower values for the models with constraint xi ≤ 1 in two cases (mixed and
ideal points). For the circular ideal point model and for the vector model, the
solutions from the multistart procedure have a lower loss value. An indication
of the fit of the configurations to the data can be found in the columns labelled
C1 in Table 3: with the exception of the vector model, the rational solutions
clearly fit better.

We further evaluated the constrained models for several other empirical data
sets (being the data on preference for family structures of Delbeke, 1968, data
on rankings of persons tested on their English speech, and the MBA and as-
pirin data which are described in Kim et al., 1999). The breakfast (Green &
Rao, 1972) and journal data (Roskam, 1968) were included too, so in total we
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(c) Constrained vector model.
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Figure 8: Breakfast data, random start. The breakfast items are labelled by the
three letter codes and the 21 couples who ranked the items by the numbers.
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(c) Constrained vector model.
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Figure 9: Breakfast data, rational start. The breakfast items are labelled by the
three letter codes and the 21 couples who ranked the items by the numbers.
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Table 4: Table of the number of the six data sets analyzed, that yielded an
interpretable configuration. The columns refer to six different restricted models
and the rows to a combination of the measurement level and starting conditions.

mixed ideal points vectors
xi ≤ 1 xi = 1 xi ≤ 1 xi = 1 xi ≤ 1 xi = 1

Interval: Best 5 6 6 5 6 6
Interval: Rational 6 6 6 6 6 6
Ordinal: Best 2 2 4 2 0 0
Ordinal: Rational 5 4 6 4 0 0

considered six data sets. We are mainly interested in the interpretability of the
configurations. For this reason, the model with the ‖xi‖ restricted to a small
value is not included here.

Table 4 reports the number of data sets that yielded an interpretable con-
figuration for each of the six restricted models. The different rows of the table
refer to a combination of the measurement level and the starting conditions:
‘Best’ reports the results for the solution with the lowest loss of 51, with 50
solutions based on random starts and one on a rational start. A comparison
of the first two lines of numbers in Table 4 with the last two lines, shows that
almost all metric solutions are interpretable while this is clearly not the case for
the nonmetric solutions. To avoid the occurrence of degenerate solutions, the
restrictions used here are clearly not sufficient for ordinal analyses. This prob-
lem can be overcome in some cases by using a rational starting configuration.
With respect to the different models, two observations can be made: first, none
of the pure vector configurations analyzed at an ordinal level was interpretable
and second, the best results were obtained for the restricted ideal point model.
Concerning the fit of the solution to the data, as measured by index C1 (not
reported here), we observed mainly that higher values were found for the metric
analyses. There were also differences between the different models: the circular
and vector models fitted less well and this effect was somewhat more pronounced
for the metric case.

7 Discussion

We proposed a loss function that combines the ideal point model of unfolding
and the vector model. An alternating least squares and iterative majorization
algorithm was developed, named VIPSCAL, that can be used to minimize this
loss. Contrary to our initial expectations, degenerate solutions were obtained.
Inspection of these degeneracies showed that, contrary to what is usually be-
lieved, representing a (very) distant ideal point by a vector does not necessarily
hold the same preference ranking: for objects that have almost equal values on
the line connecting the point with the origin (the direction), the vector model
only takes the value on the direction into account while the distance model takes
the relative contributions of each of the dimensions into account.
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To further prevent the occurrence of distant ideal points, restrictions on the
configuration were added and it was shown how these could easily be incorpo-
rated in the algorithm. As a result, VIPSCAL envelopes nine different models
including the classical ideal point and vector model but also, for example, a
constrained ideal point model and an ideal point model with all ideal points on
a circle. A small study of the performance of the constrained VIPSCAL algo-
rithm on six empirical data sets, showed that it seems to perform satisfactorily
in the metric case: well fitting, nondegenerate solutions were obtained for all
data sets when using a rational start and for almost all cases when using a mul-
tistart procedure. In the nonmetric case, the restrictions proposed here are not
always enough to avoid degenerate solutions. Here, it seems important to use a
rational start, but even then a degenerate solution might appear. Only for the
ideal point model with the restriction ‖xi‖ ≤ 1 a nice solution was obtained for
all data sets. For the vector model, all nonmetric solutions were fitting badly
and not interpretable. Summarized, VIPSCAL seems to give nice solutions for
interval data and, with a rational start, in the majority of cases for ordinal
analyses and especially for the constrained ideal point model. Further evalu-
ation of the proposed algorithm is needed, with special attention to the issue
of rational starting configurations. The importance of good starting values in
order to avoid degeneracies in multidimensional unfolding, was already stressed
out by Roskam (1977) but little research into this topic has been done so far.
It is possible that better ways of obtaining a rational start exist then the one
proposed here.

Extensions of the proposed loss function are possible. For example, the
compensatory distance model could be included in the loss function and the tools
of alternating least squares and iterative majorization can be used to develop
an accompanying algorithm. We do not believe, however, that such a model
would solve the problem of degenerate solutions and it has the disadvantage of
complicating the interpretation of the configuration. More interesting is the use
of VIPSCAL to study the relation between the vector and ideal point models.
For example, with small adaptations of VIPSCAL an algorithm can be built
that allows for a latent class analysis of a combined vector ideal point model
that yields two different object configurations, one for the ideal points and one
for the vectors. In fact, the merits of VIPSCAL are to be sought more in
the possibilities it offers to get a better understanding of the relation between
the vector and ideal point model then in it’s capability of avoiding degenerate
solutions.
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Appendix: Majorizing the distance terms

A Majorizing gia
2
id

′
iJdi

Here, we show how the first term of (11) involving distances can be majorized
by a function of the coordinates that is of the form (8). A good reference for
finding majorizing inequalities is Groenen (2002). The centering operator J
equals I−m−111′, so that

gia
2
i d
′
iJdi = gia

2
i d
′
idi − gia

2
i

m
d′i11′di, (29)

The first term in the right hand side of (29) can be rewritten as

gia
2
i d
′
idi = gia

2
i tr(1x′i −Y)′(1x′i −Y)

= c1itrxi1′1x′i − 2c1itrxi1′Y + c1itrY′Y (30)

with c1i = gia
2
i . Rewriting (30) in function of xi gives,

gia
2
i d
′
idi = k2x + trB2xxiC2xx′i − 2trA2xxi, (31)

with k2x = c1itrY′Y, B2x = c1i, C2x = 1′1, and A2x = c1i1′Y. In function of
Y we get ∑

i

gia
2
i d
′
idi = k2y + trB2yYC2yY′ − 2trA2yY, (32)

with k2y =
∑

i c1itrxi1′1x′, B2y =
∑

i c1i, C2y = I, and A2y =
∑

i c1ixi1′.
Consider the second term in the right hand side of (29): −d′i11′di is minus
the squared sum of dij ’s which can be majorized using the inequality −cs2 ≤
cs2

0−2css0, with c a positive constant. Take c = m−1gia
2
i and s = d′i1, we then

obtain

−gia
2
i

m
d′i11′di ≤ gia

2
i

m
d′i011′di0 − 2gia

2
i

m
d′i11′di0

=
gia

2
i

m
d′i011′di0 − 2gia

2
i

m
(1′di0)d′i1. (33)

The last term of function (33) still contains distances that depend on xi and
Y. The Cauchy Schwarz inequality can be used to obtain a majorizing function
of the coordinates as −d = −‖x − y‖ ≤ −d−1

0 (x − y)′(x0 − y0). Set c2i =
m−1gia

2
i (1

′di0) so that

−2c2id′i1 ≤ −2c2itr(1x′i −Y)′D−1
i0 (1x′i0 −Y0)

= −2c2itrxi1′D
−1
i0 (1x′i0 −Y0) + 2c2itrY′D−1

i0 (1x′i0 −Y0),(34)

with D−1
i0 the inverse diagonal matrix of di0’s. When di0 = 0, we set the

corresponding majorizing term equal to zero. In function of the xi we obtain

−gia
2
i

m
d′i11′di ≤ k3x − 2trA3xxi, (35)
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with k3x = c2i[1′di0 + 2trY′D−1
i0 (1x′i0 −Y0)] and A3x = c2i1′D

−1
i0 (1x′i0 −Y0).

In function of Y

−
∑

i

gia
2
i

m
d′i11′di ≤ k3y + 2trA3yY, (36)

with k3y =
∑

i c2i[1′di0−2trxi1′D
−1
i0 (1x′i0−Y0)] and A3y =

∑
i c2iD−1

i0 (1x′i0−
Y0).

B Majorizing −2giaid
′
iJγi

First we replace J by it’s full expression,

−2giaid′iJγi = −2giaid′iγi +
2giai

m
d′i11′γi. (37)

Both terms in the right hand side can be majorized. For the first term, which
is again minus a linear function of the distances provided that the γij are non-
negative, we get by the Cauchy Schwarz inequality

−2giaid′iγi ≤ −2giaitr(1x′i −Y)′D−1
i0 Γi(1x′i0 −Y0)

= −2giaitrxi1′D
−1
i0 Γi(1x′i0 −Y0) +

2giaitrY′D−1
i0 Γi(1x′i0 −Y0), (38)

where Γi is a diagonal matrix of γi and all γij ≥ 0. In function of the xi this is

−2giaid′iγi ≤ k4x − 2trA4xxi, (39)

with k4x = 2giaitrY′D−1
i0 Γi(1x′i0 − Y0) and A4x = giai1′D

−1
i0 Γi(1x′i0 − Y0)

while in function of Y

−2
∑

i

giaid′iγi ≤ k4y + 2trA4yY. (40)

Here, k4y = −2
∑

i giaitrxi1′D
−1
i0 Γi(1x′i0−Y0) and A4y =

∑
i giaiD−1

i0 Γi(1x′i0−
Y0). The second term in 37, which contains positive sums of distances, can be
majorized by the inequality cs ≤ c(2so)−1s2 + c2−1|s0| with c a positive con-
stant. Take c3i = m−1aigi(1′γi)

c3id′i1 ≤ c3itr(1x′i −Y)′D−1
i0 (1x′i −Y) + c3idi0

= c3itrxi1′D
−1
i0 1x′i + c3itrY′D−1

i0 Y − 2c3itrxi1′D
−1
i0 Y + c3idi0.(41)

We rewrite the majorizing function (41) in function of the xi,

c3id′i1 ≤ k5x + trB3xxiC3xx′i − 2trA5xxi, (42)

with k5x = c3i(trY′D−1
i0 Y + di0), B3x = c3i, C3x = 1′D−1

i0 1, and A5x =
c3i1′D

−1
i0 Y. In function of Y,

∑

i

c3id′i1 ≤ k5y + trB3yYC3yY′ − 2trA5yY, (43)
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with k5y =
∑

i c3i(trxi1′D
−1
0 1x′i +di0), B3y =

∑
i c3iD−1

i0 , C3y = I, and A5y =∑
i c3ixi1′D

−1
i0 .
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