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Identifying Unknown Response Styles: A Latent-Class
Bilinear Multinomial Logit Model

Abstract

Respondents can vary significantly in the way they use rating scales. Specifically,

respondents can exhibit varying degrees of response style, which threatens the validity

of the responses. The purpose of this article is to investigate to what extent rating

scale responses show response style and substantive content of the item. The authors

develop a novel model that accounts for possibly unknown kinds of response styles,

content of the items, and background characteristics of respondents. By imposing a

bilinear structure on the parameters of a multinomial logit model, the authors can

visually distinguish the effects on the response behavior of both the characteristics of a

respondent and the content of the item. This approach is combined with finite mixture

modeling, so that two separate segmentations of the respondents are obtained: one for

response style and one for item content. This latent-class bilinear multinomial logit

(LC-BML) model is applied to a cross-national data set. The results show that item

content is highly influential in explaining response behavior and reveal the presence

of several response styles, including the prominent response styles acquiescence and

extreme response style.

Keywords: response style, segmentation, visualization, multinomial logit model, cross-

cultural research.
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Introduction

Over the last years, the interest in response styles has grown in various disciplines (Baum-

gartner and Steenkamp 2001; Cheung and Rensvold 2000; De Jong et al. 2007; Van Herk

et al. 2004), and response styles are now considered a source of concern in domestic (Green-

leaf 1992a; Hui and Triandis 1989) and international research (Johnson et al. 2005). A main

reason for this is that response styles threaten the validity of responses given to substantive

questions. Furthermore, response styles may be considered real differences between countries

by marketing managers and may lead to adverse decisions (Usunier and Lee 2005). Therefore,

some researchers have suggested removing response styles from the data (Baumgartner and

Steenkamp 2001; Hofstede 2001). However, others state that correcting for response styles

might have the effect that content (that is, real differences in opinion among people) is also

removed (Fischer 2004); moreover, Smith (2004) even suggested that acquiescence, which

is one of the most prominent response styles (Paulhus 1991), is an aspect of the cultural

communication style, and that acquiescence as a source of error (bias) should be discounted.

Thus, it is important to know the extent to which answers to items reflect a real attitude

component or response style.

In addition to separating content from response style, there is the issue of determining the

kinds of response styles exhibited by respondents. The majority of articles on response styles

focuses on two response styles: acquiescence and/or extreme response style (for example,

De Jong et al. 2007; Johnson et al. 2005; Van Herk et al. 2004), but many more response

styles have been distinguished (see, for example, Broen and Wirt 1958). Moreover, in the

articles on response style, the common procedure for assessing response styles has been

the calculation of various response style indices (see Baumgartner and Steenkamp 2001,

for an overview). The way in which these response style indices are calculated usually

leads to correlated indices; correlations of .50 or higher are often found (see, for example,
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Baumgartner and Steenkamp 2001; Van Herk et al. 2004).

Furthermore, acquiescence and extreme response style are related to background char-

acteristics of respondents, such as age and education. In his review, Hamilton (1968) al-

ready reported accumulated evidence that children and elderly subjects gave more extreme

responses than subjects aged 20 to 59. Later studies (for example, Greenleaf 1992a,b) sup-

ported this finding. Just as extreme response style, acquiescence seems positively related

to age. It was found that older subjects tend to use the positive side of the rating scale

more often or display more acquiescence (Greenleaf 1992b); however, others (for example,

Johnson et al. 2005) found no relation between age and acquiescence. Education seems neg-

atively associated with acquiescence (Greenleaf 1992a; Krosnick and Alwin 1988; Narayan

and Krosnick 1996; Watson 1992) and with extreme response style (Greenleaf 1992a,b). In

addition, work in the last decades has shown that there are differences in response styles

between cultural populations such as ethnic groups (Bachman and O’Malley 1984; Hui and

Triandis 1989; Marin et al. 1992) and countries (Baumgartner and Steenkamp 2001; Chen

et al. 1995; De Jong et al. 2007; Van Herk et al. 2004).

The present study contributes to the literature in two ways. First, we provide insight

into (a) differences among respondents in reactions to item content (that is, their opinions of

the items), (b) differences among respondents in response style (that is, their use of rating

scale response categories), and (c) the effects of background characteristics of respondents.

Moreover, we visualize how item content affects response behavior, thereby facilitating insight

into the extent to which responses to specific items are more likely to get, for example,

extreme or acquiescent responses. Second, in contrast to traditional methods using response

style indices, we make no a priori assumptions on the kind of the response styles; instead,

through segmentation, we can infer what a priori unknown response styles are present in

the data. The latter also helps us distinguish between conceptually different response styles

(for example, acquiescence and extreme response style) that are often conflated when using
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response style indices. Although the rating scale categories typically have a natural ordering,

we do not impose this ordering on the model, as it could restrict how content and personal

characteristics affect response behavior. As Anderson (1984, p. 3) remarks: “There is no

merit in fitting an ordered relationship as a routine, simply because the response variable is

ordered.” Therefore, we treat the rating categories as unordered in the model.

The outline of this article is as follows. First, we describe the LC-BML model. In an

empirical study, we then show how content and response styles can be distinguished by the

LC-BML model. Finally, we discuss the implications of our findings, the study’s limitations,

and possible topics for further research.

The Latent-Class Bilinear Multinomial Logit Model

In this paper, we seek to model the entire response behavior, that is, the probability that

a single respondent ticks certain rating scale categories for the items used in the study,

given the content of the items and the respondent’s background characteristics. To do so,

we use the responses of all persons to all items in a single statistical model, which we

call the Latent-Class Bilinear Multinomial Logit model (LC-BML model). In this model,

we distinguish three sets of variables. The first set is a single variable called Rating that

indicates the category of the rating scale ticked by the respondent. The second set is the

single variable called Item that indicates the item being rated by the respondent. The

third set contains variables indicating the background characteristics of the respondents. A

nominal measurement level is assumed for all three sets of variables.

The basis of the LC-BML model is an unordered multinomial logit model with Item

and the background variables as categorical predictor variables to explain the dependent

categorical variable Rating. We adapt this multinomial logit model by incorporating ideas

from the models proposed by Anderson (1984), Anderson and Vermunt (2000), and Groenen
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and Koning (2006). To limit the number of parameters, we apply the bilinear parameter

structure used in these articles. In addition, we incorporate latent classes (see, for example,

Wedel and Kamakura 2000) to model (a) differences among respondents in reactions to con-

tent (that is, their opinions of the items) and (b) differences among respondents in response

tendencies (that is, their use of rating scale response categories). Our model extends the

stereotype model proposed by Anderson (1984) by using the bilinear parameter structure on

categorical predictor variables and by incorporating latent classes. Our approach allows to

determine how likely a given pattern of responses is for a single respondent, given the items

used in the study and certain characteristics of the respondent.

Before introducing the LC-BML model, we need to define some notation.

i Index to specify the respondent, with i = 1, . . . , n.

t Index to indicate the item being rated, with t = 1, . . . , T .

j Index to indicate the rating, with j = 1, . . . , J .

k Index to indicate the background variable, with k = 1, . . . , K.

Yit The random variable of the rating of person i on item t.

yit The realized rating given by person i on item t.

mk The number of categories of background variable k.

The multinomial logit model predicts the probability of person i choosing rating j on

item t as

Pr(Yit = j) =
exp(zijt)∑J

j′=1 exp(zij′t)
,

with zijt a linear combination of a constant aj (the attractiveness of rating category j), the

effects of the categories of the background variables, and the effect cjt of rating j on item t,
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that is,

zijt = aj +
K∑

k=1

b′jkxik + cjt. (1)

Each background variable k can be represented by a matrix Xk of dummy variables for each

category so that x′ik is row i of Xk, and b′jkxik selects the element from vector bjk belonging

to the category of respondent i on background variable k. As a result of Equation 1, separate

model parameters need to be estimated for each rating scale category. To see this, consider

a hypothetical example with J = 3 response categories of Rating, T = 4 items, and K = 1

background variable (that has m1 = 2 categories). For this case, Table 1 contains the zijts as

the linear combination of the specific parameters. There are J = 3 attractiveness parameters

aj, J ×m1 = 6 parameters for the effects of the two categories of the background variable,

and J × T = 12 parameters for the effect cjt of item t on rating j.

To fully model the effects of the explanatory variables on the dependent variable, a

parameter vector is required for each category of each explanatory variable. The number of

parameters J + J
∑K

k=1 mk + JT gets large if the total number of categories is large. The

resulting parameter vectors are generally not easy to represent or to interpret.

The problem of the large number of parameters occurs in a wide variety of models for

analyzing categorical data sets. For the case of log-linear analysis, Anderson and Vermunt

(2000) proposed several models that construct a parsimonious representation of the relation-

ships between categorical variables, based on a bilinear decomposition. Groenen and Koning

Table 1: The linear combination of the zijts for a hypothetical example with J = 3 response
categories of Rating, T = 4 items, and K = 1 background variable.

Rating j Item 1 Item 2 Item 3 Item 4
1 a1 + b′1xi1 + c11 a1 + b′1xi1 + c12 a1 + b′1xi1 + c13 a1 + b′1xi1 + c14

2 a2 + b′2xi1 + c21 a2 + b′2xi1 + c22 a2 + b′2xi1 + c23 a2 + b′2xi1 + c24

3 a3 + b′3xi1 + c31 a3 + b′3xi1 + c32 a3 + b′3xi1 + c33 a3 + b′3xi1 + c34



8

(2006) proposed a similar model in the context of analysis of variance, with the aim of ob-

taining a simple low-dimensional visual display of the estimated interaction effects. Based

on their interaction decomposition model, we adapt the multinomial logit model described

above to parsimoniously represent the effects of the explanatory variables. An important

objective of our approach is the graphical representation of the parameter estimates, to

facilitate a better understanding of the effects.

To illustrate this approach, consider the hypothetical example given in Figure 1a. In this

figure, there are again three response categories of Rating, four items, and one background

variable with two categories. Each rating category is represented by a vector reaching from

the origin outwards. Each category of each explanatory variable (Item or the background

variable) is represented by a dot. The effects of the explanatory variables are related to the

projections of the dots onto the vectors of Rating. For example, if one is interested in the

estimated effect of Item 4 on Rating 1, one may proceed as follows.

1. Project the point ‘Item 4’ onto the vector ‘Rating 1’.

2. Multiply the length of the projection with the length of the vector ‘Rating 1’.

3. The resulting length is the estimated effect, which also equals the inner product of the

point and the vector.

In Figure 1a, all points of Item and the background variable have been projected onto

Rating 1. In the model, the projected effects are multiplied by the length of the vector

Rating 1, and the result is shown in Figure 1b. Here, one can see that Item 4 has a relatively

high estimated effect on Rating 1, whereas the effects of Items 2 and 3 are clearly negative.

The estimated effects of the background variable are relatively small, as all its projections

are close to zero.

This representation has the following properties. Long vectors and points far away from

the origin tend to correspond to large effects. In addition, if the angle between the vector
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Figure 1: Hypothetical example of a graphical representation in the bilinear multinomial logit
model. Panel a shows the graphical representation with the ratings as vectors, the categories
of the predictor variables as points, and the projections of the points of the categories of the
predictor variables on Rating 1. Panel b shows the projections multiplied by the length of
Rating 1.

and the line segment between the point and the origin is smaller than 90 degrees, the corre-

sponding estimated effect is positive. If this angle is greater than 90 degrees, the estimated

effect is negative. This effect becomes stronger as the angle gets closer to either 0 or 180

degrees.

We now proceed with a more formal description of the bilinear decomposition part of

the model. Remember that bjk is the effect of background variable k on rating j. Let us

gather the b′jks for all ratings j underneath each other, that is, by Bk = [b1k|b2k| · · · |bJk]
′.

To ensure that the rating scale categories are represented by vectors and the categories of

the background variables and the items by points, we restrict each Bk and C (with elements

cjt) as

Bk = FG′
k and C = FH′. (2)
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Here, F is the J×P matrix of coordinates for the vectors of ratings in the visual representa-

tion, Gk the mk×P matrix of coordinates for background variable k, and the T×P matrix H

denotes the coordinates of the T items, where P is the dimensionality of the representation.

The model under the rank restrictions in Equation 2 can now be described as

zijt = aj +
K∑

k=1

P∑
p=1

fjpg
′
kpxik +

P∑
p=1

fjphtp,

where fjp and htp are elements of F and H respectively, and gkp is the p-th column of Gk.

Segmentation of Respondents

In marketing, response behavior cannot be considered homogeneous across respondents. Peo-

ple differ with respect to their opinions and preferences, and heterogeneity in response be-

havior is expected. So far, the model has no possibility to take heterogeneity in the response

behavior of respondents into account, and assumes that the T responses of every respondent

are independent. Depending on what method is used, modeling these effects may require a

large number of additional parameters. To account for dependent observations and unob-

served heterogeneity in the respondents, we use finite mixture modeling (see, for example,

Kamakura and Russell 1989). We extend our model to take two types of heterogeneity into

account. First, respondents may vary with respect to their response styles, so that they differ

in the probabilities with which they generally tick different response categories of Rating. We

account for these differences in response styles by allowing the constants aj to vary between

latent classes of respondents. Second, respondents can differ on their opinions of the relative

importance of the items. These differences are incorporated by allowing the parameters htp

to also vary between latent classes of respondents. We thus construct a joint segmentation

of the respondents in the model, in which response style and content function as bases for

the two types of segmentations. We assume that the prior probabilities of membership in



11

the two types of segments are independent of each other.

Let there be R segments for the response tendencies with mixing proportions ur, so that
∑R

r=1 ur = 1. Also, let S be the number of segments for representing the opinions of the

relative importance of the items with mixing proportions vs and restriction
∑S

s=1 vs = 1. We

refer to these types of segments as response style segments and item segments, respectively.

The probability that respondent i evaluates item t with rating j can be calculated as

Pr(Yit = j) =
R∑

r=1

S∑
s=1

urvsPr(Yit = j|r, s), (3)

with

Pr(Yit = j|r, s) =
exp(zijt|r,s)∑J

j′=1 exp(zij′t|r,s)
, (4)

zijt|r,s = aj|r +
K∑

k=1

P∑
p=1

fjpg
′
kpxik +

P∑
p=1

fjphtp|s.

The likelihood of observing responses yit, t = 1, . . . , T , conditional on respondent i be-

longing to response style segment r and item segment s is

Li(yi|r, s) =
T∏

t=1

J∏
j=1

Pr(Yit = j|r, s)I(yit=j),

where I() denotes the indicator function, and yi is the vector of length T with the observed

responses of respondent i. As the unconditional likelihood for respondent i is

L(yi) =
R∑

r=1

S∑
s=1

urvsLi(yi|r, s),
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the likelihood of the entire model, as a function of the model parameters, is given by

L(a.|1, . . . , a.|R,F,G1, . . . ,GK ,H1, . . . ,HS,u,v)

=
n∏

i=1

R∑
r=1

S∑
s=1

ursv

T∏
t=1

J∏
j=1

Pr(Yit = j|r, s)I(yit=j). (5)

A number of parameter constraints are required to ensure parameter identification of the

LC-BML model; these constraints are described in Appendix A. For given values of the

numbers of segments R and S and the dimensionality P , parameter estimates are obtained

by maximizing the likelihood function in Equation 5. A description of the optimization

algorithm can be found in Appendix B. Given the optimal parameter estimates, the posterior

probability that respondent i belongs to response style segment r and item segment s can

be calculated in a Bayesian way as

Pr(i ∈ Ξr,s) =
urvs

∏T
t=1

∏J
j=1 Pr(Yit = j|r, s)I(yit=j)

∑R
r′=1

∑S
s′=1 ur′vs′

∏T
t=1

∏J
j=1 Pr(Yit = j|r′, s′)I(yit=j)

, (6)

where Ξr,s denotes the set of respondents belonging to response style segment r and item

segment s.

The numbers of segments are typically determined using an information criterion, such

as AIC or BIC (see Andrews and Currim 2003, for an overview of the performance of these

criteria). In this paper, we will use the consistent Akaike information criterion (CAIC) to

help determine the numbers of segments R and S. This criterion performs well with very

large sample sizes (see Andrews and Currim 2003; Bozdogan 1987) and has a low risk of

overfitting.
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Data

The data used in this study are based on a commercial survey performed in 1996 (see also

Van Herk 2000). The sample used consisted of 3840 male respondents from five European

countries (France, Italy, Germany, the United Kingdom, and Spain). For each respondent,

the background variables Country, Age, and Education were measured. The numbers of

respondents were 823, 994, 764, 698, and 561 in France, Italy, Germany, the United Kingdom,

and Spain, respectively. Age was coded as a categorical variable with response categories

15−24 (13%), 25−34 (15%), 35−44 (16%) , 45−54 (21%), 55−64 (22%), and 65+ (13%).

Education had two levels: higher level of education (42%) and lower level of education

(58%). The items that were used in this study are on the List of Values (Kahle 1983),

which has been widely used in marketing (see, for example, Brunso et al. 2004; Kamakura

and Novak 1992; Madrigal and Kahle 1994). It comprises nine items, of which respondents

indicate the importance. The nine items are (a) sense of belonging, (b) excitement, (c) warm

relationships with others, (d) self-fulfillment, (e) being well-respected, (f) fun & enjoyment in

life, (g) security, (h) self-respect, and (i) a sense of accomplishment. Each item was measured

on a 9-point rating scale ranging from ‘1’ (‘very important’) to ‘9’ (‘very unimportant’).

The procedure used for assessing translation equivalence was parallel translation (Craig

and Douglas 2000). Bilinguals translated all questionnaire items from English into Italian,

French, Spanish, and German. Next, an independent group of researchers criticized the

translations. As a last step, a discussion between the project coordinators in the participating

countries was held to choose the version that most closely resembled the original English

version. The List of Values has been employed in single country studies (see, for example,

Brunso et al. 2004; Kamakura and Novak 1992) as well as in studies in multiple countries

(Grunert et al. 1989; Soutar et al. 1999; Wedel et al. 1998).
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Results

In this section, we apply the LC-BML model to the List of Values data set and interpret the

results. We seek to explain the observed rating values using the LOV item and the back-

ground characteristics Country, Age, and Education as predictor variables. In our analyses,

we use each respondent’s answers on how important each LOV item is in his daily life, so

that we have 3840×9 = 34560 responses in total. Before we can interpret the results, the di-

mensionality P , the number of response style segments R, and the number of item segments

S need to be chosen. We choose both R and S using the consistent Akaike information

criterion (CAIC). We set P = 2, as the results show that the first two dimensions of the

graphical representations can be interpreted in terms of known response styles. Solutions

with P = 3 show that a third dimension would not allow for such an interpretation. We

estimated the model parameters for every combination of R = 1, . . . , 13 response style seg-

ments and S = 1, . . . , 7 item segments. The resulting CAIC values are shown in Table 2.

The lowest CAIC value (110, 156) is attained with 11 response styles segments and 4 item

segments; the corresponding value of the log-likelihood is −53, 950. We use these numbers

of segments to interpret the model results for the LOV data set.

In the first part of our analysis, we show the values of the parameters that are used

for the bilinear decomposition part of the model (F, G1, . . . ,GK , and H1, . . . ,HS), using a

number of graphical representations similar to Figure 1a. Figure 2 shows the effects of the

background variables on Rating, which are the same for each item segment. In this figure, the

points of the background variables (which are contained in G1, . . . ,GK) are shown as dots

and the points belonging to Rating (which are contained in F) are shown as vectors. From

this figure, we can see that the structure of the categories of Rating resembles a U-shape. The

categories of Rating have retained their natural ordering of 1 through 9 with respect to the

first dimension.1 Therefore, respondents with background characteristics with a high score

1However, one should be careful in assigning interpretations to the dimensions, as the graphical represen-
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Table 2: CAIC values with P = 2 for R = 1, . . . , 13 response style segments and S = 1, . . . , 7
item segments in the LOV data set

Response style Item segments
segments 1 2 3 4 5 6 7
1 120,273 118,467 117,137 116,753 116,375 116,077 116,037
2 116,201 115,444 114,383 113,368 113,441 113,128 112,949
3 113,489 112,779 112,557 112,403 112,164 112,022 112,090
4 112,555 111,779 111,433 111,426 111,246 111,217 111,164
5 112,209 111,339 111,097 110,981 110,876 110,866 110,864
6 111,944 111,062 110,809 110,659 110,599 110,626 110,635
7 111,729 110,850 110,593 110,456 110,412 110,421 110,364
8 111,644 110,738 110,459 110,286 110,302 110,307 110,327
9 111,614 110,688 110,383 110,197 110,220 110,253 110,288
10 111,582 110,647 110,350 110,161 110,190 110,241 110,278
11 111,593 110,652 110,343 110,156 110,184 110,243 110,267
12 111,600 110,669 110,352 110,159 110,181 110,241 110,270
13 111,617 110,670 110,369 110,174 110,191 110,256 110,282

on the first dimension tend to tick the rating category ‘1’ (that is, ‘very important’) relatively

frequently. Moreover, the scores of the background characteristics on the first dimension are

positively related to the probability of ticking positive rating categories such as ‘1’ or ‘2’.

For example, respondents between 15 and 24 years of age tend to tick the ‘1’ and ‘2’ more

often than people in the other age categories. On the second dimension, the most extreme

rating categories ‘1’ and ‘9’ have the highest scores, whereas moderate responses such as

‘3’, ‘4’, and ‘5’ have low scores. Therefore, we can infer that the values of the background

characteristics on the second dimension are positively related to the probability of choosing

extreme response categories. It can be seen, for example, that elderly people and people

from Italy tend to use the extreme response categories more often than other people.

In short, Figure 2 confirms the expectation that respondents with a low education level

are more prone to ticking extreme response categories than respondents with a high level of

education. Further, age appears negatively related to the probability of ticking the positive

side of the rating scale and seems to have a curvilinear relationship with the probability

tations can, in principle, be rotated arbitrarily; here, they are rotated so that the greatest variation of the
coordinates occurs along the first dimension, see Appendix A.
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Figure 2: Graphical representation of background characteristics in LOV data set

of ticking extreme response categories. Moreover, the respondents in Southern European

countries show a higher tendency to tick extreme response categories than respondents in

the U.K. and Germany.

Item Segments

To show how content differs across the item segments, we provide a separate plot of the

effects of Item on Rating (using the parameters Hs), for each item segment s. In Figure

3, the points of the items are shown as dots with labels, the background variables as dots

without labels, and the rating categories are again shown using vectors. In every item

segment, the effects of Item on the response behavior tend to be larger than the effects of

the background variables, as the points belonging to Item are generally farther away from

the origin. In addition, the differences in content between the item segments tend to be quite

large. For example, 72.8% of the respondents in item segment 1 evaluated ‘belonging’ with

a rating of ‘1’, whereas this percentage was only 4.8 for the respondents in item segment 4.

In contrast, for the item ‘respected’, these percentages were 9.3 and 48.8, respectively.

To further clarify the magnitude of the differences between the item segments, Table
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3 shows the average rating value per item, for both the item segments and the response

style segments. These average rating values are calculated using the posterior segment

membership probabilities in Equation 6. In the item segments part of Table 2, it can be

seen that respondents in segments 1, 2, and 3 tend to distinguish more between the different

items than respondents in segment 4. For example, in segment 3, the average ratings range

from 1.83 (‘security’) to 5.78 (‘excitement’), whereas the range in segment 4 is from 2.74

(‘belonging’) to 3.54 (‘respected’). These results show that respondents in the different

segments differ with respect to the importance they attach to specific items (for example,

is ‘respected’ more or less important than ‘belonging’) as well as in the rating score they

attach to the item (that is, do they tick a rating score of about ‘3’ or use other rating scores

as well).

In the response style segments part of Table 2, it can be seen that respondents in response

style segment 1 have an average score of 4.01 for belonging. Response style segment 2 shows

averages of less that 2.00 for all items except ‘belonging’ and ‘excitement’, implying that

those people consider 7 out of 9 LOV items very important. In contrast, all averages in

response style segment 11 are above 5.70; this might imply that these respondents consider

all 9 LOV items quite unimportant.

Item Segments and Respondent Characteristics

Next, we show what types of respondents are present in each segment. Table 4 shows what

percentage of the respondents from each category of each background variable belongs to

a certain segment, for both the item segments and the response style segments. These

percentages are also calculated using the posterior probabilities that a respondent belongs

to a certain segment in Equation 6. The final row shows the segment sizes, which are

equal to the values of vs for the item segments and the values of ur for the response style

segments. As the parameters G1, . . . ,GK model the effects of the background variables
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on the response styles, the distribution of the respondents over the response style segments

should be approximately equal for all categories of the background variables. The right-hand

side of Table 4 shows that this requirement is met to a reasonable degree, as the differences

between the rows are fairly small. For the item segments, these differences are certainly not

small, nor do they need to be. The differences in content between countries appear to be

particularly large.

Using the information in both Figure 3 and Table 4, we can further interpret the item

segments. In the largest item segment 1 (39%), respondents attach high importance to the

LOV-items ‘fun & enjoyment’, ‘warm relationships with others’, and ‘being well respected’.

The values ‘sense of belonging’ and ‘excitement’ both are considered far less important. In

item segment 2 (26%), ‘self-respect’ and ‘being well respected’ are considered the most im-

portant. The values ‘fun & enjoyment’, ‘warm relationships’, and especially ‘belonging’ are

considered less important. This segment is mainly found in Italy, followed by the UK and

Spain. Respondents in item segment 3 (19%) consider ‘belonging’, ‘self-respect’, and ‘secu-

rity’ the most important values; ‘being well respected’, ‘self-fulfillment’, and ‘excitement’ are

considered less important. In the smallest item segment 4 (16%), no LOV item received low

scores. The most important values for this segment are ‘belonging’ and ‘fun & enjoyment’.

For both ‘self-respect’ and ‘fun & enjoyment’, relatively more extreme response categories

are ticked; ‘excitement’ is often considered of average importance.

The above description of the four item segments indeed shows that the segments include

respondents who have different opinions on the importance of the LOV items. Moreover, the

segments are quite similar to segments based on the LOV that are found in the literature. For

example, in item segment 1 there is a relatively high percentage of young (that is, younger

than 25 years of age) respondents. In a study by Kamakura and Novak (1992), it was also

found that value priorities as in item segment 1 (for example, considering ‘fun & enjoyment’

and ‘warm relationships’ important) apply to younger respondents. In addition, the ordering
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Figure 3: Graphical representation of item segments s = 1 through 4 in LOV data set. The
categories of the background variables are not labeled in these plots.
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of LOV-items in segment 3 is typical for German respondents (see, for example, Grunert and

Scherhorn 1990; Wedel et al. 1998), and our data also show an overrepresentation of German

respondents (64%) in this segment. Moreover, as found by Kamakura and Novak (1992),

the respondents who consider ‘belonging’ and ‘security’ relatively important (item segment

3) often are older.

Response Style Segments

Furthermore, we show what response styles are used by the respondents in each response

style segment. Table 5 shows the relative frequencies of the rating categories in percentages

for the response style segments. This table contains the response profile of each segment.

Instead of interpreting the parameters aj|r, we show the relative frequencies of ratings per

segment in Table 5, as these frequencies more directly show what rating categories have been

used by the respondents in every segment. The 11 response style segments identified by our

model fit into the possible response styles distinguished by Broen and Wirt (1958).

For instance, there is a segment in which respondents tend to spread ratings (segment 5);

there are segments in which respondents mostly tick positive rating categories (segments 2

and 3) and segments in which respondents tick negative rating categories (segments 10 and

11). Further, a segment is found in which respondents tend to go to extremes (segment 9),

and two segments are found in which there is a tendency to avoid extreme ratings (segments

6 and 11). Interestingly, respondents in response style segment 8, in addition to extreme

responding, also show a high degree of midpoint scoring. The respondents in response style

segment 10 seem to have an extremely high level of disacquiescence, as Table 5 shows that

over 80% of their responses are either ‘7’, ‘8’, or ‘9’. However, a closer inspection of Table 3

shows that values that are rated as relatively important by most respondents are considered

relatively unimportant by the respondents in segment 10, and vice versa. Therefore, we

conclude that the respondents in segment 10 typically must have misread the rating scale
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Table 5: Relative Frequencies of Rating Values in Percentages and Response Style Indices
for Each Response Style Segment in LOV Data Set

Response Style Segment r
Rating 1 2 3 4 5 6 7 8 9 10 11 Overall
1 34.7 51.3 70.2 13.2 16.2 4.2 13.0 45.7 48.1 .6 .6 36.8
2 17.8 28.8 4.9 39.8 13.8 12.3 51.3 1.8 4.1 .0 1.0 19.9
3 17.3 11.6 6.3 25.8 13.0 32.2 8.9 4.3 3.0 .9 2.9 14.4
4 9.8 4.2 4.8 12.1 9.4 23.7 3.7 3.1 2.8 1.3 7.3 8.2
5 9.7 2.1 6.3 4.9 11.8 16.4 11.6 31.0 2.1 6.0 24.8 8.3
6 3.2 .5 1.8 2.4 7.9 6.1 2.1 2.2 1.2 6.5 25.8 3.2
7 3.6 .5 1.3 1.2 9.8 3.3 1.9 .9 2.4 19.4 22.1 3.1
8 2.0 .3 1.1 .5 9.2 1.5 2.4 .0 1.9 21.8 10.6 2.2
9 1.8 .6 3.3 .0 8.9 .4 5.1 11.0 34.4 43.5 4.8 3.9
Acquiescence index 52.5 80.1 75.2 53.0 30.0 16.4 64.3 47.5 52.2 .6 1.6 56.7
ERS index 36.5 51.9 73.5 13.3 25.1 4.6 18.0 56.7 82.4 44.1 5.4 40.7

and incorrectly thought that ‘9’ was the most positive rating value. The percentage of

respondents who have done this ‘scale inversion’ is relatively small (the size of segment 10 is

1.6%), but due to the severity of the mistake, it can have major consequences for the results

of a study; this mistake could also have been made by some respondents in segment 11.

To gain insight into the validity of our model, the acquiescence index and the ERS index,

calculated as in Bachman and O’Malley (1984), are given in the last two rows of Table

5. The differences among the segments in these response style indices show that there are

large variations in both the level of acquiescence and the level of extreme response style.

In addition, a high level of acquiescence does not necessarily imply a high level of extreme

response style or vice versa. For example, the acquiescence index is approximately equal

for segments 1, 4, and 9, but the ERS index takes values of 36.5%, 13.3%, and 82.4% for

these segments, respectively. Although segments 1 and 9 have almost identical acquiescence

indices, Table 5 shows that the response style of segment 1 is clearly more acquiescent

than the response style of segment 9; therefore, the response style indices may not always

adequately capture the response style they are supposed to measure. These results show

that the LC-BML model can distinguish between response styles such as acquiescence and
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Figure 4: Graphical representation of item segment 3 with 95% confidence ellipses for all
points.

ERS, which are often conflated when using response style indices.

The response style segments reveal several response styles mentioned in the literature such

as acquiescence (most prominently in response style segments 2 and 3), extreme response

style (response style segment 9), and midpoint scoring (response style segment 8). However, a

tendency to tick rating categories that are moderately positive, but not extremely positive, is

found for most respondents in our data set (segments 1 and 4 through 7). Such a moderately

positive answering style is not considered a response style or response bias in the literature;

however, it seems an important way of ticking rating categories.

Reliability of Results

To show the statistical significance of our results, we have constructed confidence ellipses

for the points in our graphical representations. Figure 4 shows 95%-confidence ellipses for

all points shown in the graphical representation of item segment 3. An explanation of how

the confidence ellipses are constructed is given in Appendix C. The amount of uncertainty

in the graphical representation appears to be low in general. The confidence ellipses are
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larger for the items than they are for the ratings and the background variables, as only

the respondents in item segment 3 determine the locations of the points of the items in

this plot. The locations of all points are significantly different from the origin, so that the

effects of all predictor variables are statistically significant. The confidence ellipses of Rating

do not overlap with each other, which means that all rating categories are distinguishable

with respect to the predictor variables (see Anderson 1984, for more information on the

distinguishability of rating categories).

Conclusions and Discussion

In this article, we proposed a new model, called the LC-BML model, for explaining response

behavior and distinguishing between content and response styles in data sets with rating

scale responses. Unlike other methods to assess response style, that either need a scale es-

pecially developed to measure a specific response style (Greenleaf 1992a) or a large set of

heterogeneous items (see, for example, Baumgartner and Steenkamp 2001), the LC-BML

model can assess response style in a data set with a limited number of variables. Specifically,

we found that there are several different response styles as suggested earlier by Broen and

Wirt (1958). The most prominent response style is acquiescence (38.0% of respondents),

followed by spreading ratings evenly across all rating scale categories (7.3%), avoiding ex-

tremes (7.0%), using extremes (5.0%), and mainly ticking negative categories (3.2%). The

remaining respondents (39.3%) do show a response style in which they use several response

categories, but do not tick the extremely high or low values more often. These respondents

mainly tick moderately positive categories (‘2’ and ‘3’). These results suggest that, in studies

on values, acquiescence is the main threat to the validity of the findings.

The LC-BML model distinguishes between the effects of the content of an item, back-

ground characteristics, and the response style of a respondent, which contributes to our
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understanding of response behavior in the following ways. First, the model shows that item

content is highly influential in explaining differences in response behavior; there are large

differences among the effects of the items on response behavior within each item segment,

and the relative importance of the items also varies greatly between the item segments. Sec-

ond, the effects of the background characteristics (that is, country, age, and education) on

response behavior are much smaller than the effects of the content of the items. Third, the

LC-BML model reveals what response styles are used by the respondents. Unlike studies

using response style indices, which predefine specific response styles, the LC-BML model

does not impose specific response styles. This allowed us, for example, to infer that some re-

spondents reversed the scale; they considered ‘9’ instead of ‘1’ very important, so that their

answers were mostly negative. In a study in which response style indices are used, these

respondents would be classified as people showing disacquiescence. Our study shows that

this inference would have been incorrect and helps researchers decide on removal of these

inappropriate scores from the data. Fourth, the LC-BML model, unlike other models for

response style, in which response styles are often conflated, enables us to distinguish between

acquiescence and extreme response style. Our results show, for example, that respondents in

Southern European countries tend to give more extreme responses, but they do not appear

to acquiesce more often.

Because the LC-BML model accounts for differences in both response styles and opinions,

it can also be used to correct for the presence of response styles (that is, remove the response

styles from the data). For each observation, we can determine estimated posterior response

probabilities as

Pr(Yit = j|yi) =
R∑

r=1

S∑
s=1

Pr(i ∈ Ξr,s)Pr(Yit = j|r, s), (7)

where Pr(i ∈ Ξr,s) and Pr(Yit = j|r, s) are calculated using Equations 4 and 6, respectively.

These estimated posterior response probabilities can be corrected for the presence of response
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styles as follows. First, correct the conditional response probabilities Pr(Yit = j|r, s) by

setting aj|r = 0 for all j and r and by setting all elements of each estimated gkp equal to 0 in

Equation 4. Then, recalculate the posterior response probabilities using Equation 7. Note

that the original (uncorrected) parameter estimates should be used to compute the posterior

segment membership probabilities Pr(i ∈ Ξr,s). The corrected response probabilities may be

used to simulate a data set from which differences in response styles have been removed as

much as possible. Such a simulated data set may be used in subsequent analyses.

The present study has some limitations. First, the number of items and the number of

countries and the cultural diversity among them were limited. Second, the LC-BML model

uses an optimization algorithm that may be quite time-consuming. This is especially true if

the data set contains many observations and background variables, safeguards against local

maxima are taken, and the numbers of segments are determined by optimizing an information

criterion, so that the model parameters have to be optimized many times. Nevertheless, we

have already successfully estimated the model on the PVQ (Schwartz et al. 2001) in Israel

and 19 countries in Europe (Jowell et al. 2003), which comprises over 700,000 observations

and has more predictor variables than the LOV data set; the results were roughly comparable

to the results of the LOV data set. Third, the LC-BML model cannot be estimated using

conventional, commercially available statistics packages, so that specialized programs had

to be written. These programs have been written in the matrix programming language

MATLAB and are available from the authors upon request.

Future research can build on our findings. The LC-BML model has been designed for

data sets with substantive scales measured on rating scales as well as several background

characteristics measured on nominal scales. Many data sets in empirical research, including

marketing research, fit this format; future research could focus on applying the model to other

data sets and further interpreting the model results. As the LC-BML model does not assume

an ordering of the dependent variable Rating, it can, for example, also be used to analyze
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rating scale variables that include a ‘don’t know’ category or have missing observations. By

assigning a location to each rating category, our method may provide insight into the relative

position of such categories. If a ‘don’t know’ or ‘missing’ category is random, its location

should be close to the origin in the plot; such a hypothesis may be tested using the confidence

ellipses in the previous section. In short, we believe that the LC-BML model is a useful tool

to provide more insight into how rating scale responses are affected by response styles, the

content of the items, and background variables.
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Appendix A: Parameter Restrictions

Several parameter restrictions are required to ensure identification of the model parameters.

Here, we give an overview of the restrictions that we impose.

First, we consider location restrictions, that is, restrictions that are necessary because

adding a constant to a set of parameters would not change the estimated probabilities in

the model. Location restrictions are needed for the parameters aj|r, F, Gk, and Hs. We

impose sum-to-zero constraints for all these parameters per set, that is, we require that
∑J

j=1 aj|r = 0,
∑J

j=1 fjp = 0,
∑T

t=1 htp|s = 0, and that the elements of gkp sum to zero for

all values of k and p. As a consequence of these restrictions on F, Gk, and Hs, the centroid

of the points referring to a single variable (Rating, Item, or a background variable) is the

origin in the plot.

Scale and rotation constraints are required for the parameters F, Gk, and Hs. For

notational convenience, let B = [B1| . . . |BK ], C = [C1| . . . |CS], G = [G′
1| . . . |G′

K ]′, and

H = [H′
1| . . . |H′

S]′, where Cs contains the effects of the ratings on the items in item segment

s. Then, the rank restrictions in Equation 2 can be written as

[B|C] = F[G′|H′]. (8)

Without loss of generality, we can transform the parameter matrices as F = FT, G =

(T−1G′)′, and H = (T−1H′)′ for any nonsingular P × P matrix T, because

F[G′|H′] = FTT−1[G′|H′].

This freedom of scaling also occurs in principal components analysis and correspondence

analysis (Gifi 1990). We compute a constrained solution as follows. Let [B|C] be obtained

by some unconstrained F,G, and H. In addition, let PΦQ′ = [B|C] be a compact singular
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value decomposition with P and Q orthogonal rotation matrices with P columns (with

P′P = Q′Q = I) and Φ a P × P diagonal matrix with positive monotonically decreasing

values. As the rank of [B|C] is not greater than P , matrices P, Φ, and Q that meet the

requirements above must exist and typically are unique up to a reflection per dimension.

Here, we set F = ωPΦ1/2 and [G′|H′]′ = 1/ωQΦ1/2, where ω is a constant that determines

the relative scaling of the points of the ratings compared to the points of the items and

the background characteristics. The value of ω can be adapted without altering the general

results. For graphical reasons, we choose ω so that the average squared Euclidean distance

of the points to the origin is the same for both F and [G′|H′]′, so that

ω =

(
J

ST +
∑K

k=1 mk

) 1
4

.

For the LOV data set, this choice amounts to setting ω ≈ .65. Furthermore, we simul-

taneously reflect the columns of F, G, and H in such a way that the first row of F only

has positive values. The required identification constraints have now been obtained, while

maintaining the equality in Equation 8, as

F[G′|H′] = ωPΦ1/2

(
1

ω
QΦ1/2

)′
= PΦQ′ = [B|C].

Due to these parameter restrictions, the graphical representations in the Results section are

scaled and rotated in such a way that the spread of the points in F and [G′|H′]′ decreases

with the dimension, and that the dimensions are orthogonal with respect to F and [G′|H′]′.

The point belonging to Rating 1 must have positive values on all dimensions.

Finally, the segment sizes are required to be nonnegative and nondecreasing, so that

u1 ≥ u2 ≥ . . . ≥ uR ≥ 0 and v1 ≥ v2 ≥ . . . ≥ vS ≥ 0. In addition, they must sum to one,

which implies that
∑R

r=1 ur = 1 and
∑S

s=1 vs = 1.
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Table 6: Decomposition of the total number of degrees of freedom.

Source Description Degrees of freedom
aj|r Attractiveness of ratings (J − 1)R
F Coordinates of Rating (J − 1)P
Gk Coordinates of background variables

∑K
k=1(mk − 1)P

Hs Coordinates of items S(T − 1)P
u Response style segment sizes R− 1
v Item segment sizes S − 1
Fixing rotation and scale freedom −P 2

Now, the degrees of freedom of the model can be computed. Table 6 gives the number

of degrees of freedom associated with each parameter set. The total number of degrees of

freedom required by the LC-BML model equals

(J − 1)(R + P ) +
K∑

k=1

(mk − 1)P + S(T − 1)P + R + S − 2− P 2.

Appendix B: Optimization Algorithm

An Expectation-Maximization (EM) algorithm (Demster et al. 1977) is used to estimate the

model parameters by maximizing the likelihood function. The EM algorithm starts with

initial parameter estimates and then iteratively performs an E-step and a M-step, until con-

vergence has been achieved. In the E-step, the posterior segment membership probabilities

Pr(i ∈ Ξr,s) are computed using Equation 6, given the current parameter estimates. In the

M-step, the expected complete log-likelihood is maximized with respect to the parameter

estimates, given the segment membership probabilities computed in the E-step. In our im-

plementation, the M-step consists of 10 iterations of the BFGS quasi-Newton optimization

routine in the MATLAB Optimization Toolbox (version 3.0.4), with analytically computed

gradients. Convergence is considered to have been achieved if the change in log-likelihood

between two consecutive EM iterations is smaller than 10−5.
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It is possible that the EM algorithm converges to parameter estimates that are only

locally optimal. To solve this problem, the EM algorithm was rerun 10 times for every value

of r and s with randomly chosen starting values, and the solution with the best likelihood

value was retained.

Appendix C: Confidence Ellipses

The confidence ellipses in the Results section are based on maximum likelihood theory. Under

regularity conditions, a maximum likelihood parameter estimator is normally distributed

with covariance matrix equal to the information matrix. The information matrix can be

estimated as the negative inverse of the matrix of second order partial derivatives of the

likelihood function with respect to all model parameters, evaluated at the final parameter

estimates. However, as the model parameters are not identified without the parameter

constraints described in Appendix A, this matrix of second-order partial derivatives is not

invertible. To circumvent this problem, we created an alternative model parametrization that

does not require any parameter constraints for parameter identification and is equivalent to

our original model.

The confidence intervals are constructed using the following procedure. First, the final

parameter estimates of our original parametrization are transformed to the alternative one.

Using these transformed parameter estimates, the matrix of second-order partial derivatives

is calculated numerically. Then, 10, 000 simulated parameter vectors are drawn from a

multivariate normal distribution with covariance matrix equal to the negative inverse of the

matrix of second-order derivatives. For each simulated parameter vector, the associated

parameter vector in the original parametrization is computed. Analysis of the simulated

parameters in the original parametrization shows that the locations of the points in the

graphical representation have approximately a joint bivariate normal distribution. Finally,
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the simulated locations of the points are used to construct 95% normal theory confidence

ellipses.
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