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Abstract. Generalized linear modelling (GLM) is a versatile statistical technique,
which may be viewed as a generalization of well-known techniques such as least
squares regression, analysis of variance, loglinear modelling, and logistic regression.
In many applications, low-order interaction (such as bivariate interaction) terms are
included in the model. However, as the number of categorical variables increases,
the total number of low-order interactions also increases dramatically. In this pa-
per, we propose to constrain bivariate interactions by a bi-additive model which
allows a simple graphical representation in which each category of every variable is
represented by a vector.

1 Introduction

Generalized linear modelling (GLM) is a versatile statistical technique, which
may be viewed as a generalization of well-known techniques such as least
squares regression, analysis of variance, loglinear modelling, logistic regression
(Nelder and Wedderburn (1972); McCullagh and Nelder(1989)). In this paper,
we limit ourselves to categorical predictor variables. Then, GLMs may consist
of main effects, bivariate, and higher-order interactions. Since higher order
interactions are generally difficult to interpret, we consider only bivariate
interactions here. Note that as the number of categorical variables increases,
the total number of bivariate interactions may also increase dramatically. In
addition, if there are many categories per variable, it becomes increasingly
difficult to interpret the estimated interaction parameters because there are
so many of them. Our aim here is to provide a simple graphical representation
to facilitate the interpretation of all bivariate interactions. To reach this goal,
we impose rank restrictions on the bivariate interactions, thus leading to a
bi-additive model.

For two categorical variables, van Eeuwijk (1995), De Falguerolles and
Francis (1992) and Gabriel (1996) have provided algorithms for a bi-additive
model within GLM. Here we propose a bi-additive model for more than two
categorical predictors. To some extent, the proposed model can be seen as a
generalization of multiple correspondence analysis to GLM.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Erasmus University Digital Repository

https://core.ac.uk/display/18517557?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 Groenen and Koning

2 Generalized Bi-Additive Modelling

Let us introduce some notation needed for generalized linear modelling (GLM).
Let y be the dependent vector of n objects that needs to be predicted by m
categorical variables. Also, let the categorical variable j be represented by the
indicator matrix Gj with a zero-one variable for each category with gijk = 1
if observation i falls in category k of variable j and gijk = 0 otherwise. Let
the number of categories of variable j be denoted by Kj and g′ij be row i of
Gj .

The central idea behind GLM is that the distribution of the dependent
variable belongs to a given family of distributions (popular choices are the
Normal, Poisson, binomial, gamma, and inverse Gaussian families). This
leaves some freedom, which allows the distribution to vary from object to
object. Especially, the expectation µi of the dependent variable may differ
from object to object, and is assumed to depend on the values taken by
the predictor variables through the linear predictor ηi (examples are given
below). Finally, the inverse of the link function g(µi) = ηi relates the lin-
ear predictor to µi. Some standard link functions are the logarithm, power,
logistic, identity, and probit (McCullagh and Nelder(1989)).

A simple linear predictor may be specified by ηi = c +
∑m

j=1 g′ijaj , where
c is an overall mean and aj is a vector of main effect for variable j. However,
we are interested in bivariate interactions as well, so that we need the linear
predictor

ηi = c +
m∑

j=1

g′ijaj +
m∑

j=1

m∑

l=j+1

g′ijBjlgil,

where Bjl is the Kj ×Kl matrix of bivariate interactions between variables
j and l. It is easily verified that g′ijBjlgil selects the appropriate row and
column element that corresponds to the categories of the variables j and l
of object i. Note that summation over j > l or j < l gives the same results,
because one can always choose Bjl = B′

lj so that g′ijBjlgil = g′ilBljgij .
We can obtain more insight and compact notation by joining the effects

of all variables. Let G be the super indicator matrix with all m variables next
to each other, that is, G = [G1,G2, . . . ,Gm], g′i be row i of G, and a be the
vector of all main effects. Finally, all bivariate interaction effects are joined
into the symmetric partitioned block matrix

B =




0 B′
12 . . . B′

1m

B12 0 . . . B′
2m

...
...

. . .
...

B1m B2m . . . 0


 .

The diagonal blocks are zero because j 6= l. Then, we may write

ηi = c +
m∑

j=1

g′ijaj +
m∑

j=1

m∑

l=j+1

g′ijBjlgil = c + g′ia + 1
2g
′
iBgi. (1)
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The basic idea of this paper is to impose constraints on the interaction
terms Bjl. The type of constraint that we consider is the one of common
rank-reduction, that is, to require that

Bjl = YjY′
l (2)

with Yj a Kj×p matrix and Yl a Kl×p matrix being of rank not higher than
p > 0. Such rank constraints are similar to the ones used in multiple corre-
spondence analysis, joint correspondence analysis, or homogeneity analysis.
This rank constrained bi-additive model can be expressed as

ηi = c +
m∑

j=1

g′ijaj +
m∑

j=1

m∑

l=j+1

g′ijYjY′
lgil. (3)

To avoid that Yj also estimates main effects, we impose the restriction that
Yj has column mean zero. This restriction also implies that Bjl = YjY′

l has
zero row and column mean, which is a restriction that is usually imposed on
bivariate interactions to ensure uniqueness. We shall refer to the matrix Y
as the interaction generating matrix, and to the kth column of Yj as the kth

dimension of interaction generators belonging to the categorical variable j.
To fit this model, we have developed a prototype in MatLab that optimizes
the likelihood by iterated weighted least squares and iterative majorization.

Note that standard likelihood theory applies to model (3), and hence we
may employ the likelihood ratio test to determine the rank p. From this
perspective, it is relevant to know the degrees of freedom associated to the
rank p model. Observe that the parameters in the rank p model are the
constant term c, the main effect vectors aj and the elements of the interaction
generating matrix Y. Hence, the number of parameters in this model equals

1 +
m∑

j=1

Kj + p

m∑

j=1

Kj .

However, we have also imposed several restrictions on these parameters. Each
of the m main effect vectors and each of the p dimensions of the m interaction
generators should add up to zero. Moreover, the interaction generating matrix
Y can be rotated by any orthonormal rotation matrix T (with T′T = TT′ =
I) without affecting Bjl since Bjl = YjY′

l = YjTT′Y′
l for all j and l.

Therefore, without loss of generality, we impose the restriction that
∑

j Yj

is orthogonal thereby making the Yj ’s unique. This restriction implies fixing
p(p − 1)/2 of the elements of the the Yj ’s. Summarizing, the number of
restrictions in the rank p model is equal to

m + mp +
p(p− 1)

2
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Table 1. Frequencies of occurrence of lung cancer for (non) smokers in eight Chi-
nese cities (taken from Liu (1992), see also Tabel 3.3 in Agresti (1996), p. 60).

City
Lung Bei- Shang- Shen- Nan- Har- Zeng- Tai- Nan-
cancer Smoker jing hai yang jing bin zhou yuan chang Total

yes yes 126 908 913 235 402 182 60 104 2930
yes no 35 497 336 58 121 72 11 21 1121

no yes 100 688 747 172 308 156 99 89 2359
no no 61 807 598 121 215 98 43 36 1979

Total 322 2900 2594 586 1046 508 213 250 8419

The difference in number of parameters and number of restrictions

dfmodel =


1 +

m∑

j=1

Kj + p

m∑

j=1

Kj


−

[
m + mp +

p(p− 1)
2

]

= 1 + (1 + p)
m∑

j=1

(Kj − 1)− p(p− 1)
2

.

is the degrees of freedom associated to the rank p model. The residual de-
grees of freedom dfres is obtained by subtracting dfmodel from the degrees
of freedom n (the number of objects) associated to the so-called saturated
model.

3 Application: lung cancer in China

Lung cancer is one of the leading causes of death in the People’s Republic of
China. It has been estimated that in the year 2025, the number of new cancer
cases in China will reach three million, of which two million are associated
with smoking, and the remaining one million attributable to other causes
(Peto (1994); Peto, Chen and Boreham (1996)).

A number of epidemiological studies have investigated the association
between lung cancer and smoking in China. In Liu (1992), a meta-analysis
is presented of eight case-control studies conducted in Beijing, Shanghai,
Shenyang, Nanjing, Harbin, Zhengzhou, Taiyuan, and Nanchang. Table 1
cross-classifies a total of 4081 lung cancer cases and 4338 controls according
to smoking behaviour and city. In this paragraph, we investigate the relation
between smoking and lung cancer in China by applying the generalized bi-
additive model introduced in the previous section to the data in Table 1. Note
that m = 3, K1 = 2− 1, K2 = 2− 1, and K3 − 1, and hence

∑m
j (Kj − 1) =

1 + 1 + 7 = 9.
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Table 2. Summary of fit for different models, using the Poisson family of distribu-
tions and the log link function on the data of Table 1.

Model Deviance dfres p

Main effects 457.1 22 .0000
Bi-additive interaction model, rank 1 35.7 13 .0007
Bi-additive interaction model, rank 2 5.4 5 .3690

Table 2 summarizes the fit of three models when using the Poisson family
of distributions and a log link function. The main effects model may be
regarded as a special case of model (3) with rank p = 0. Next, adding a first
dimension of bilinear interactions to each variable yields model (3) with rank
p = 1. Finally, adding a second dimension of bilinear interactions to each
variable yields model (3) with rank p = 2. Adding further dimensions would
lead to models with degrees of freedom exceeding 32, the degrees of freedom
of the saturated model; such models are unidentified, and have no statistical
use.

Note that the three models in Table 2 are nested, and thus may be com-
pared as usual by means of the likelihood ratio test (that is, by relating
differences in deviance to the chi-square distribution corresponding to the
difference in degrees of freedom). Obviously, the rank 2 model is to be pre-
ferred, as it is the only model that fits the data.

Table 3. Estimation results obtained by applying the rank 2 bi-additive decompo-
sition model to the Chinese lung cancer-smoking data.

Main Interaction generators
Variable Category effects Dim 1 Dim 2

Overall mean c 5.005

Lung cancer Yes 0.410 -0.494 -0.169
No -0.410 0.494 0.169

Smoking Yes -0.124 -0.055 -0.413
No 0.124 0.055 0.413

City Beijing -0.727 -0.015 -0.052
Shanghai 1.557 0.348 -0.133
Shenyang 1.406 0.124 -0.053
Nanjing -0.121 0.004 -0.057
Harbin 0.472 0.047 -0.071
Zengzhou -0.239 0.081 -0.080
Taiyuan -1.270 -0.342 0.421
Nanchang -1.078 -0.248 0.025
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a. Maineffects b. Plot of interaction effects

Fig. 1. Representation of the bi-additive decomposition model of the Chinese lung
cancer-smoking data. Panel (a) shows the main effects and Panel (b) the decompo-
sition of the interactions in two dimensions.

Applying the rank 2 bi-additive decomposition model to the Chinese lung
cancer-smoking data yields the estimation results listed in Table 3. These
results are visualized in Figure 1, where Panel (a) shows the main effects and
Panel (b) gives the vectors for the interaction generators Yj .

Figure 1 may be interpreted as follows. To see the size of the interac-
tion effect, project the vector of one category onto a category of a different
variable. For example, Taiyuan is characterized by having more nonsmokers
than smokers, when corrected for the main effects of smoking. The reason
is the nonsmoking vector projects highly on the vector of Taiyuan. Long
vectors lead to longer projections and thus to a stronger interaction effect.
Conversely, short vectors have short projections, indicating a small inter-
action effect. Therefore, the cities Beijing, Harbin, Nanjing, Zengzhou, and
Shenyang will only have small interaction effects with the other variables.

In Figure 1, three Chinese cities relatively stand out: Nanchang, Taiyuan
and Shanghai. Nanchang was badly battered after the Communist takeover,
but reinvented itself as a centre of modern steel and chemical industry (Leff-
man, Lewis and Atiyah (2000), p. 52). Taiyuan’s extensive coal mines were
constructed by the Japanese in 1940; serious industrialization began after the
Communist takeover and today it is the factories that dominate, relentlessly
processing the region’s coal and mineral deposits (Leffman, et al. (2000), p.
225). After forty years of stagnation, Shanghai seems certain to recapture
its position as East Asia’s leading business city, a status it last held before
World War II (Leffman, et al. (2000), p. 337).
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a. Plot of interaction effects b. Interaction effects conditioned 

    on having lungcancer 

Fig. 2. Interaction terms conditioned on category ‘yes’ of the variable ‘lung cancer’.
Panel (a) shows the projections of all other catgories on category ‘yes’ of the variable
‘lung cancer’ and Panel (b) the values of the interactions.

Recall that Table 1 was compiled by Liu (1992) from the results of eight
different case-control studies investigating lung cancer in China. In this re-
spect, the interactions between the variable Lung Cancer on one hand and
the variables Smoking and City on the other hand are of primary interest.
Thus, to gain insight into the causes of lung cancer in China, we should
project each category of the variables Smoking and City onto the category
Yes of the variable Lung Cancer, as indicated in Panel (a) of Figure 2. Panel
(b) visualizes the interaction values according to the bi-additive interaction
model for the categories of Smoking and City conditioned on having lung
cancer.

As to be expected, smoking is clearly a risk factor for obtaining lung
cancer. However, Panel (b) of Figure 2 seems to suggest that there is also an
environmental risk factor, as the interaction between the industrial cities of
Nanchang and Taiyuan on one hand and the presence of lung cancer on the
other hand is much higher than the interaction between the leading business
city Shanghai and the presence of lung cancer.

4 Conclusions

We have proposed a new model for representing two-way interactions for a
GLM with more than two categorical predictor variables, where we constrain
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the two-way interactions to have reduced rank. Each category is represented
by a vector in a plot. The interaction effect between two categories of differ-
ent predictor variables is obtained by projecting the vector of one category
onto the vector of another. Categories of the same variable should not be
compared within the plot, but only by looking at the main effects. The main
advantage of the bi-additive interaction model is that interactions between
several variables can be visualized in a relatively simple display, even when
the total number of categories is large.
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