
SVM-Maj: A Majorization Approach to Linear

Support Vector Machines with Different Hinge

Errors

P.J.F. Groenen∗ G. Nalbantov† J.C. Bioch‡

November 1, 2007

Econometric Institute Report EI 2007-49

Abstract

Support vector machines (SVM) are becoming increasingly popular
for the prediction of a binary dependent variable. SVMs perform very
well with respect to competing techniques. Often, the solution of an
SVM is obtained by switching to the dual. In this paper, we stick to the
primal support vector machine (SVM) problem, study its effective aspects,
and propose varieties of convex loss functions such as the standard for
SVM with the absolute hinge error as well as the quadratic hinge and the
Huber hinge errors. We present an iterative majorization algorithm that
minimizes each of the adaptations. In addition, we show that many of the
features of an SVM are also obtained by an optimal scaling approach to
regression. We illustrate this with an example from the literature and do
a comparison of different methods on several empirical data sets.

Keywords: Support vector machines, Iterative majorization, I-Splines, Absolute
hinge error, Quadratic hinge error, Huber hinge error, Optimal scaling.

1 Introduction

In recent years, support vector machines (SVMs) have become a popular tech-
nique to predict two groups from a set of predictor variables (Vapnik, 2000).
This data analysis problem is not new and such data can also be analyzed

∗Econometric Institute, Erasmus University Rotterdam, P.O. Box 1738, 3000 DR Rotter-
dam, The Netherlands groenen@few.eur.nl

†ERIM and Econometric Institute, Erasmus University Rotterdam, P.O. Box 1738, 3000
DR Rotterdam, The Netherlands nalbantov@few.eur.nl

‡Econometric Institute, Erasmus University Rotterdam, P.O. Box 1738, 3000 DR Rotter-
dam, The Netherlands bioch@few.eur.nl

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Erasmus University Digital Repository

https://core.ac.uk/display/18517554?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

through alternative techniques such as linear and quadratic discriminant anal-
ysis, neural networks, and logistic regression. However, SVMs seem to compare
favorably in their prediction quality with respect to competing models. Also,
their optimization problem is well defined and can be solved through a quadratic
program. Furthermore, the classification rule derived from an SVM is relatively
simple and it can be readily applied to new, unseen samples. At the downside,
the interpretation in terms of the predictor variables in nonlinear SVM is not
always possible. In addition, the usual dual formulation of an SVM may not be
so easy to grasp.

In this paper, we offer a different way of looking at linear SVMs that makes
the interpretation easier. First of all, we stick to the primal problem and for-
mulate the SVM in terms of a loss function that is regularized by a penalty
term. From this formulation, it can be seen that SVMs use robustified errors.
Apart from the standard SVM loss function that uses the absolute hinge error,
we introduce two other hinge errors, the Huber and quadratic hinge errors, and
show the relation with ridge regression.

The second theme of this paper is to show the connection between optimal
scaling regression and SVMs. The idea of optimally transforming a variable so
that a criterion is being optimized has been around for more than 30 years (see,
for example, Young, 1981; Gifi, 1990). We show that optimal scaling regression
using an ordinal transformation with the primary approach to ties comes close
to the objective of SVMs. We discuss the similarities between both approaches
and give a formulation of SVM in terms of optimal scaling.

A third theme is to propose a new majorization algorithm that minimizes
the loss for any of the hinge errors. The advantage of majorization is that each
iteration is guaranteed to reduce the SVM loss function until convergence is
reached. Finally, we provide numerical experiments on a suite of 14 empirical
data sets to study the predictive performance of the different errors in SVMs and
compare it to optimal scaling regression. We also compare the computational
efficiency of the majorization approach for the SVM to several standard SVM
solvers.

Note that this paper is a significantly extended version of Groenen, Nalban-
tov, and Bioch (2007).

2 The SVM Loss Function

In many ways, an SVM resembles regression quite closely. Let us first introduce
some notation. Let X be the n ×m matrix of predictor variables of n objects
and m variables. The n × 1 vector y contains the grouping of the objects into
two classes, that is, yi = 1 if object i belongs to class 1 and yi = −1 if object
i belongs to class −1. Obviously, the labels −1 and 1 to distinguish the classes
are unimportant. Let w be the m× 1 vector with weights used to make a linear
combination of the predictor variables. Then, the predicted value qi for object
i is

qi = c + x′iw, (1)

2

0 1 2 3 4 5 6 7
-6

-5

-4

-3

-2

-1

0

1

Variable 1

V
ar

ia
bl

e
2

-4 -2 0 2 4
-1

0

1

2

3

4

5

6

q
i

f
-1

(q
i
): Class -1 Error

f
+1

(q
i
): Class +1 Error

b.a.

Figure 1: Panel a Projections of the observations in groups 1 (+) and −1 (o)
onto the line given by w1 and w2. Panel b shows the absolute hinge error
function f1(qi) for class 1 objects (solid line) and f−1(qi) for class −1 objects
(dashed line).

where x′i is row i of X and c is an intercept. Consider the example in Figure 1a
where for two predictor variables, each row i is represented by a point labelled
‘+’ for the class 1 and ‘o’ for class −1. Every combination of w1 and w2 defines a
direction in this scatter plot. Then, each point i can be projected onto this line.
The idea of the SVM is to choose this line in such a way that the projections
of the points of class 1 are well separated from those of class −1. The line
of separation is orthogonal to the line with projections and the intercept c
determines where exactly it occurs. Note that if w has length 1, that is, ‖w‖ =
(w′w)1/2 = 1, then Figure 1a explains fully the linear combination (1). If w
doesn not have length 1, then the scale values along the projection line should
be multiplied by ‖w‖. The dotted lines in Figure 1a show all those points that
project to the lines at qi = −1 and qi = 1. These dotted lines are called the
margin lines in SVMs. Note that if there are more than two variables the margin
lines become hyperplanes. Summarizing, the SVM has three sets of parameters
that determines its solution: (1) the weights normalized to have length 1, that
is, w/‖w‖, (2) the length of w, that is, ‖w‖, and (3) the intercept c.

SVMs count an error as follows. Every object i from class 1 that projects
such that qi ≥ 1 yields a zero error. However, if qi < 1, then the error is linear
with 1− qi. Similarly, objects in class −1 with qi ≤ −1 do not contribute to the
error, but those with qi > −1 contribute linearly with qi + 1. In other words,
objects that project on the wrong side of their margin contribute to the error,
whereas objects that project on the correct side of their margin yield zero error.
Figure 1b shows the error functions for the two classes. Because of its hinge
form, we call this error function the absolute hinge error.

3

As the length of w controls how close the margin lines are to each other, it
can be beneficial for the number of errors to choose the largest ‖w‖ possible, so
that fewer points contribute to the error. To control the ‖w‖, a penalty term
that is dependent on ‖w‖ is added to the loss function. The penalty term also
avoids overfitting of the data.

Let G1 and G−1 respectively denote the sets of class 1 and −1 objects. Then,
the SVM loss function can be written as

LSVM(c,w)
=

∑
i∈G1

max(0, 1− qi) +
∑

i∈G−1
max(0, qi + 1) + λw′w

=
∑

i∈G1
f1(qi) +

∑
i∈G−1

f−1(qi) + λw′w
= Class 1 errors + Class −1 errors + Penalty for nonzero w,

(2)

where λ > 0 determines the strength of the penalty term. For similar expres-
sions, see Hastie, Tibshirani, and Friedman (2001) and Vapnik (2000). Note
that (2) can also be expressed as

LSVM(c,w) =
n∑

i=1

max(0, 1− yiqi) + λw′w,

which is closer to the expressions used in the SVM literature.
Assume that we have found a c and w that minimizes (2). All the objects

i that project on the correct side of their margin, contribute with zero error to
the loss. As a consequence, these objects could be removed from the analysis
without changing the solution. Therefore, all the objects i that project at the
wrong side of their margin and thus induce error or if an object falls exactly on
the margin, then these objects determine the solution. Such objects are called
support vectors as they form the fundament of the SVM solution. Note that
these objects (the support vectors) are not known in advance and, therefore,
the analysis needs to be carried out with all n objects present in the analysis.

What can be seen from (2) is that any error is punished linearly, not quadrat-
ically. Thus, SVMs are more robust against outliers than a least-squares loss
function. The idea of introducing robustness by absolute errors is not new. For
more information on robust multivariate analysis, we refer to Huber (1981),
Vapnik (2000), and Rousseeuw and Leroy (2003). In the next section, we discus
two other error functions, one of which is robust.

The SVM literature usually presents the SVM loss function as follows (Burges,
1998):

LSVMClas(c,w, ξ) = C
∑

i∈G1

ξi + C
∑

i∈G2

ξi +
1
2
w′w, (3)

subject to 1 + (c + w′xi) ≤ ξi for i ∈ G−1 (4)
1− (c + w′xi) ≤ ξi for i ∈ G1 (5)
ξi ≥ 0, (6)

where C is a nonnegative parameter set by the user to weight the importance of
the errors represented by the so-called slack variables ξi. Suppose that object i

4

in G1 projects at the correct side of its margin, that is, qi = c + w′xi ≥ 1. As a
consequence, 1 − (c + w′xi) ≤ 0 so that the corresponding ξi can be chosen as
0. If i projects on the wrong side of its margin, then qi = c + w′xi < 1 so that
1− (c +w′xi) > 0. Choosing ξi = 1− (c +w′xi) gives the smallest ξi satisfying
the restrictions in (4), (5), and (6). As a consequence, ξi = max(0, 1−qi) and is
a measure of error. A similar derivation can be made for class −1 objects. Note
that in the SVM literature (3) and (6) are often expressed more compactly as

LSVMClas(c,w, ξ) = C

n∑

i=1

ξi +
1
2
w′w,

subject to yi(c + w′xi) ≤ 1− ξi for i = 1, . . . , n

ξi ≥ 0.

Choosing C = (2λ)−1 gives

LSVMClas(c,w, ξ)

= (2λ)−1

 ∑

i∈G1

ξi +
∑

i∈G−1

ξi + 2λ
1
2
w′w

= (2λ)−1

 ∑

i∈G1

max(0, 1− qi) +
∑

i∈G−1

max(0, qi + 1) + λw′w

= (2λ)−1LSVM(c,w).

showing that the two formulations (2) and (3) are exactly the same up to a
scaling factor (2λ)−1 and yield the same c and w. However, the advantage of
(2) is that it can be interpreted as a (robust) error function with a penalty.
The quadratic penalty term is used for regularization much in the same way as
in ridge regression, that is, to force the wj to be close to zero. The penalty is
particularly useful to avoid overfitting. Furthermore, it can be easily seen that
LSVM(c,w) is a convex function in c and w because all three terms are convex
in c and w. As the function is also bounded below by zero and it is convex, the
minimum of LSVM(c,w) is a global one. In fact, (3) allows the problem to be
treated as a quadratic program. However, in Section 5, we optimize (2) directly
by the method of iterative majorization.

3 Other Error Functions

An advantage of clearly separating error from penalty is that it is easy to apply
other error functions. Instead of the absolute hinge error in Figure 2a, we
can use different definitions for the errors f1(qi) and f−1(qi). A straightforward
alternative for the absolute hinge error is the quadratic hinge error, see Figure 2b.
This error simply squares the absolute hinge error, yielding the loss function

LQ−SVM(c,w) =
∑

i∈G1

max(0, 1− qi)2 +
∑

i∈G−1

max(0, qi + 1)2 + λw′w, (7)

5

-4 -2 0 2 4
-1

0

1

2

3

4

5

6

-4 -2 0 2 4
-1

0

1

2

3

4

5

6

-4 -2 0 2 4
-1

0

1

2

3

4

5

6

-4 -2 0 2 4
-1

0

1

2

3

4

5

6

a. Absolute hinge error.

c. Huber hinge error.

b. Quadratic hinge error.

d. Quadratic error.

Figure 2: Four error functions: a. the absolute hinge error, b. the quadratic
hinge error, c. the Huber hinge error, and d. the quadratic error.

see also,Vapnik (2000) and Cristianini and Shawe-Taylor (2000). It uses the
quadratic error for objects that have prediction error and zero error for correctly
predicted objects. An advantage of this loss function is that both error and
penalty terms are quadratic. In Section 5, we see that the majorizing algorithm
is very efficient because in each iteration a linear system is solved very efficiently.
A disadvantage of the quadratic hinge error is that outliers can have a large
influence on the solution.

Here, we propose a new smooth and robust alternative: the Huber hinge
error, see Figure 2c. Its definition is found in Table 1 and the corresponding
SVM problem is defined by

LH−SVM(c,w) =
∑

i∈G1

h+1(qi) +
∑

i∈G−1

h−1(qi) + λw′w. (8)

The Huber hinge error is characterized by a linearly increasing error if the error is
large, a smooth quadratic error for errors between 0 and the linear part, and zero
for objects that are correctly predicted. The smoothness is governed by a value

6

Table 1: Definition of error functions that can be used in the context of SVMs.

Error f−1(qi)
Absolute hinge max(0, qi + 1)
Quadratic hinge max(0, qi + 1)2

Huber hinge h−1(qi) = (1/2)(k + 1)−1 max(0, qi + 1)2 if qi ≤ k
h−1(qi) = qi + 1− (k + 1)/2 if qi > k

Quadratic (qi + 1)2

f+1(qi)
Absolute hinge max(0, 1− qi)
Quadratic hinge max(0, 1− qi)2

Huber hinge h+1(qi) = 1− qi − (k + 1)/2 if qi ≤ −k
h+1(qi) = (1/2)(k + 1)−1 max(0, 1− qi)2 if qi > −k

Quadratic (1− qi)2

k ≥ −1. The Huber hinge approaches the absolute hinge for k ↓ −1, so that the
Huber hinge SVM loss solution can approach the classical SVM solution. If k is
chosen too large, then the Huber hinge error essentially approaches the quadratic
hinge function. Thus, the Huber hinge error can be seen as a compromise
between the absolute and quadratic hinge errors. As we will see in Section 5, it
is advantageous to choose k sufficiently large, for example, k = 1, as is done in
Figure 2c. A similar computational efficiency as for the quadratic hinge error is
also available for the Huber hinge error.

In principle, any robust error can be used. To inherit as much of the nice
properties of the standard SVM it is advantageous that the error function has
two properties: (1) if the error function is convex in qi (and hence in w), then
the total loss function is also convex and hence has a global minimum that can
be reached, (2) the error function should be asymmetric and have the form of a
hinge so that objects that are predicted correctly induce zero error.

In Figure 2d the quadratic error is used, defined in Table 1. The quadratic
error alone simply equals a multiple regression problem with a dependent vari-
able yi = −1 if i ∈ G−1 and yi = 1 if i ∈ G1, that is,

LMReg(c,w) =
∑

i∈G1

(1− qi)2 +
∑

i∈G−1

(1 + qi)2 + λw′w

=
∑

i∈G1

(yi − qi)2 +
∑

i∈G−1

(yi − qi)2 + λw′w

=
∑

i

(yi − c− x′iw)2 + λw′w

= ‖y − c1−Xw‖2 + λw′w. (9)

Note that for i ∈ G−1 we have the equality (1 + qi)2 = ((−1)(1 + qi))2 =
(−1− qi)2 = (yi− qi)2. LMReg(c,w) has been extensively discussed in Suykens,

7

Van Gestel, De Brabanter, De Moor, and Vandewalle (2002). To show that
(9) is equivalent to ridge regression, we column center X and use JX with
J = I− n−111′ being the centering matrix. Then (9) is equivalent to

LMReg(c,w) = ‖y − c1− JXw‖2n−111′ + ‖y − c1− JXw‖2J + λw′w

= ‖y − c1‖2n−111′ + ‖Jy − JXw‖2 + λw′w, (10)

where the norm notation is defined as ‖Z‖2A = tr Z′AZ =∑n
i=1

∑n
j=1

∑K
k=1 aijzikzjk. Note that (10) a decomposition in three terms

with the intercept c appearing alone in the first term so that it can be estimated
independently of w. The optimal c in (10) equals n−11′y. The remaining
optimization of (10) in w simplifies into a standard ridge regression problem.
Hence, the SVM with quadratic errors is equivalent to ridge regression. As the
quadratic error has no hinge, even properly predicted objects with qi < −1
for i ∈ G−1 or qi > 1 for i ∈ G1 can receive high error. In addition, the
quadratic error is nonrobust, hence can be sensitive to outliers. Therefore,
ridge regression is more restrictive than the quadratic hinge error and expected
to give worse predictions in general.

4 Optimal Scaling and SVM

Several ideas that are used in SVMs are not entirely new. In this section, we
show that the application of optimal scaling known since the 1970s has almost
the same aim as the SVM. Optimal scaling in a regression context goes back
to the models MONANOVA (Kruskal, 1965), ADDALS (Young, De Leeuw, &
Takane, 1976a), MORALS (Young, De Leeuw, & Takane, 1976b), and, more
recently, CatREG (Van der Kooij, Meulman, & Heiser, 2006; Van der Kooij,
2007). The main idea of optimal scaling regression (OS-Reg) is that a variable y
is replaced by an optimally transformed variable ŷ. The regression loss function
is not only optimized over the usual weights, but also over the optimally scaled
variable ŷ. Many transformations are possible, see, for example, Gifi (1990).
However, to make OS-Reg suitable for the binary classification problem, we
use the so-called ordinal transformation with the primary approach to ties.
This transformation was proposed in the context of multidimensional scaling to
optimally scale the ordinal dissimilarities. As we are dealing with two groups
only, this means that the only requirement is to constrain all ŷi in G−1 to be
smaller than or equal to all ŷj in G1. An example of such a transformation is
given in Figure 3a.

OS-Reg can be formalized by minimizing

LOS−Reg(ŷ,w) =
n∑

i=1

(ŷi − x′iw)2 + λw′w = ‖ŷ −Xw‖2 + λw′w (11)

subject to ŷi ≤ ŷj for all combinations of i ∈ G−1 and j ∈ G1 and ŷ′ŷ = n.
The latter requirement is necessary to avoid the degenerate zero-loss solution of

8

-2 -1 0 1 2
-3

-2

-1

0

1

2

3

q
i

y
i

-2 -1 0 1 2
-3

-2

-1

0

1

2

3

q
i

ŷ
i

a. Optimal scaling transformation by primary

 approach to ties.

b. Optimal scaling transformation for SVMs.

^

Figure 3: Optimal scaling transformation ŷ of the dependent variable y. Panel
a shows an example transformation for the OS-Reg, Panel b for SVM.

ŷ = 0 and w = 0. In the usual formulation, no penalty term is present in (11),
but here we add it because of ease of comparison with SVMs.

The error part of an SVM can also be expressed in terms of an optimally
scaled variable ŷ. Then, the SVM loss becomes

LSVM−Abs(ŷ,w, c) =
n∑

i=1

|ŷi − x′iw − c|+ λw′w (12)

subject to ŷi ≤ −1 if i ∈ G−1 and ŷi ≥ 1 if i ∈ G1. Clearly, for i ∈ G−1 a zero
error is obtained if x′iw + c ≤ −1 by choosing ŷi = x′iw + c. If x′iw + c > −1,
then the restriction ŷi ≤ −1 becomes active so that ŷi must be chosen as −1.
Similar reasoning holds for i ∈ G1, where ŷi = x′iw + c if x′iw + c ≥ 1 (yielding
zero error) and ŷi = 1 if x′iw + c < 1.

Just as the SVM, OS-Reg also has a limited number of support vectors. All
objects i that are below or above the horizontal line yield zero error. All objects
i that are have a value ŷi that is on the horizontal line generally give error,
hence are support vectors.

The resemblances of SVM and OS-Reg is that both can be used for the
binary classification problem, both solutions only use the support vectors, and
both can be expressed in terms of an optimal scaled variable ŷ. Although,
the SVM estimates the intercept c, OS-Reg implicitly estimates c by leaving
the position free where the horizontal line occurs, whereas the SVM attains
this freedom by estimating c. One of the main differences is that OS-Reg uses
squared error whereas SVM uses the absolute error. Also, in its standard form
λ = 0 so that OS-Reg does not have a penalty term. A final difference is that
OS-Reg solves the degenerate zero loss solution of ŷ = 0 and w = 0 by imposing
the length constraint ŷ′ŷ = n whereas the SVM does this through setting having
a minimum difference of 2 between ŷi and ŷj if i and j are from different groups.

In some cases with λ = 0, we found occasionally OS-Reg solutions where one
of the groups collapsed at the horizontal line and the some objects of the other

9

group were split into two points: one also at the horizontal line, the other at a
distinctly different location. In this way, the length constraint is satisfied, but
it is hardly possible to distinguish the groups. Fortunately, these solutions do
not occur often and they never occurred with an active penalty term (λ > 0).

5 SVM-Maj: A Majorizing Algorithm for SVM
with Robust Hinge Errors

In the SVM literature, the dual of (3) is expressed as a quadratic program and
is solved by special quadratic program solvers. A disadvantage of these solvers
is that they may become computationally slow for large number of objects n
(although fast specialized solvers exist). Here we derive an iterative majorization
(IM) algorithm for the primal SVM problem. An advantage of IM algorithms
is that each iteration reduces the SVM loss function. Each of the three loss
functions discussed is convex. Because IM is a guaranteed descent algorithm,
the IM algorithm will stop when the estimates are sufficiently close to the global
minimum. The combination of these properties forms the main strength of the
majorization algorithm. In principle, a majorization algorithm can be derived
for any error function that has a bounded second derivative as most robust
errors have.

Let f(q) be the function to be minimized. Iterative majorization operates on
an auxiliary function, called the majorizing function g(q,q), that is dependent
on q and the previous (known) estimate q. The majorizing function g(q,q) has
to fulfill several requirements: (1) it should touch f at the supporting point y,
that is, f(q) = g(q,q), (2) it should never be below f , that is, f(q) ≤ g(q,q),
and (3) g(q,q) should be simple, preferably linear or quadratic in q. Let q∗ be
such that g(q∗,q) ≤ g(q,q), for example, by finding the minimum of g(q,q).
Because the majorizing function is never below the original function, we obtain
the so called sandwich inequality

f(q∗) ≤ g(q∗,q) ≤ g(q,q) = f(q)

showing that the update q∗ obtained by minimizing the majorizing function
never increases f and usually decreases it. This constitutes a single iteration.
By repeating these iterations, a monotonically nonincreasing (usually a decreas-
ing) series of loss function values f is obtained. For convex f and after a suffi-
cient number of iterations, the IM algorithm stops at a global minimum. More
information on iterative majorization can be found in De Leeuw (1994), Heiser
(1995), Lange, Hunter, and Yang (2000), Kiers (2002), and Hunter and Lange
(2004) and an introduction in Borg and Groenen (2005).

An additional property of IM is useful for developing the algorithm. Suppose
we have two functions, f1(q) and f2(q), and each of these functions can be
majorized, that is, f1(q) ≤ g1(q,q) and f2(q) ≤ g1(q,q). Then, the function
f(q = f1(q) + f2(q) can be majorized by g(q = g1(q,q) + g2(q,q)

f(q = f1(q) + f2(q) ≤ g1(q,q) + g2(q,q) = g(q,q)

10

For notational convenience, we refer in the sequel to the majorizing function as
g(q) without the implicit argument q.

To find an algorithm, we need to find a majorizing function for (2). For
the moment, we assume that a quadratic majorizing function exists for each
individual error term of the form

f−1(qi) ≤ a−1iq
2
i − 2b−1iqi + c−1i = g−1(qi) (13)

f1(qi) ≤ a1iq
2
i − 2b1iqi + ci = g1(qi). (14)

Then, we combine the results for all terms and come up with the total majorizing
function that is quadratic in c and w so that an update can be readily derived.
In the next subsection, we derive the SVM-Maj algorithm for general hinge
errors assuming that (13) and (14) are known for the specific hinge error. In the
appendix, we derive g−1(qi) and g1(qi) for the absolute, quadratic, and Huber
hinge error SVM.

5.1 SVM-Maj

We interpret (2) for use with f−1(q) and f1(q) any of the three hinge errors
discussed above. For deriving the SVM-Maj algorithm, we assume that (13)
and (14) are known for these hinge losses. Figure 4 shows that this is the case
indeed. Then, let

ai =
{

max(δ, a−1i) if i ∈ G−1,
max(δ, a1i) if i ∈ G1,

(15)

bi =
{

b−1i if i ∈ G−1,
b1i if i ∈ G1,

(16)

ci =
{

c−1i if i ∈ G−1,
c1i if i ∈ G1.

(17)

Summing all the individual terms leads to the majorization inequality

LSVM(c,w) ≤
n∑

i=1

aiq
2
i − 2

n∑

i=1

biqi +
n∑

i=1

ci + λ

m∑

j=1

w2
j . (18)

Because qi = c + x′iwi, it is useful to add an extra column of ones as the first
column of X so that X becomes n× (m + 1). Let v′ = [c w′] so that q = Xv.
Now, (2) can be majorized as

LSVM(v) ≤
n∑

i=1

ai(x′iv)2 − 2
n∑

i=1

bix′iv +
n∑

i=1

ci + λ

m+1∑

j=2

v2
j

= v′X′AXv − 2v′X′b + cm + λv′Pv

= v′(X′AX + λP)v − 2v′X′b + cm, (19)

where A is a diagonal matrix with elements ai on the diagonal, b is a vector
with elements bi, and cm =

∑n
i=1 ci, and P is the identity matrix except for

11

f
-1

(q
i
): Group -1 Error

g
-1

(q
i
): Group -1 Majorizing function

f
+1

(q
i
): Group +1 Error

g
+1

(q
i
): Group +1 Majorizing function

-4 -2 0 2 4
-1

0

1

2

3

4

5

6

q
i

q

a. Absolute hinge error

-4 -2 0 2 4
-1

0

1

2

3

4

5

6

q
i

q

b. Huber hinge error

-4 -2 0 2 4
-1

0

1

2

3

4

5

6

q
i

q

c. Quadratic hinge error

Figure 4: Quadratic majorization functions for (a) the absolute hinge error, (b)
the Huber hinge error, and (c) the quadratic hinge error. The supporting point
is q = 1.5 both for the Group −1 and 1 error so that the majorizing functions
touch at q = q = 1.5.

element p11 = 0. If P were I, then the last line of (19) would be of the same
form as a ridge regression. Differentiation the last line of (19) with respect to
v yields the system of equalities linear in v

(X′AX + λP)v = X′b. (20)

The update v+ solves this set of linear equalities, for example, by Gaussian
elimination, or, less efficiently, by

v+ = (X′AX + λP)−1X′b. (21)

Because of the substitution v′ = [c w′], the update of the intercept is c+ = v1

and w+
j = v+

j+1 for j = 1, . . . , m. The update v+ forms the heart of the
majorization algorithm for SVMs.

Extra computational efficiency can be obtained for the quadratic and Huber
hinge errors for which a−1i = a1i = a for all i and this a does not depend on q.

12

In these cases, (21) simplifies into

v+ = (aX′X + λP)−1X′b.

Thus, the m × n matrix S = (aX′X + λP)−1X′ can be computed once and
stored in memory, so that the update (21) simply amounts to setting v+ = Sb.

The majorizing algorithm for minimizing the standard SVM in (2) is summa-
rized in Algorithm 1. This algorithm has several advantages. First, it iteratively
approaches the global minimum closer in each iteration. In contrast, quadratic
programming of the dual problem needs to solve the dual problem completely
to have the global minimum of the original primal problem. Secondly, the
progress can be monitored, for example, in terms of the changes in the number
of misclassified objects. Thirdly, to reduce the computational time, smart ini-
tial estimates of c and w can be given if they are available, for example, from a
previous cross validation run. Note that in each majorization iteration a ridge
regression problem is solved so that the SVM-Maj algorithm can be seen as a
solution to the SVM problem via successive solutions of ridge regressions.

13

Algorithm:SVM-Maj
input : y,X, λ, ε, Hinge
output: ct,wt

t = 0;
Set ε to a small positive value;
Set w0 and c0 to random initial values;
if Hinge = Huber or Quadratic then

if Hinge = Quadratic then a = 1;
if Hinge = Huber then a = (1/2)(k + 1)−1;
S = (aX′X + λP)−1X′;

end
Compute LSVM(c0,w0) according to (2);
while t = 0 or (Lt−1 − LSVM(ct,wt))/LSVM(ct,wt) > ε do

t = t + 1;
Lt−1 = LSVM(ct−1,wt−1);
Comment:Compute A and b for different hinge errors
if Hinge = Absolute then

Compute ai by (22) if i ∈ G−1 and by (25) if i ∈ G1;
Compute bi by (23) if i ∈ G−1 and by (26) if i ∈ G1;

else if Hinge = Quadratic then
Compute bi by (29) if i ∈ G−1 and by (32) if i ∈ G1;

else if Hinge = Huber then
Compute bi by (35) if i ∈ G−1 and by (38) if i ∈ G1;

end
Make the diagonal matrix A with elements ai;
Comment:Compute update
if Hinge = Absolute then

Find v by that solves (20): (X′AX + λP)v = X′b;
else if Hinge = Huber or Quadratic then

v = Sb;
end
Set ct = v1 and wtj = vj+1 for j = 1, . . . , m;

end
Algorithm 1: The SVM majorization algorithm SVM-Maj.

An illustration of the iterative majorization algorithm is given in Figure 5
for the absolute hinge SVM. Here, c is fixed at its optimal value and the mini-
mization is only over w, that is, over w1 and w2. Each point in the horizontal
plane represents a combination of w1 and w2. The majorization function is in-
deed located above the original function and touches it at the dotted line. The
w1 and w2 where this majorization function finds its minimum, LSVM(c,w) is
lower than at the previous estimate, so LSVM(c,w) has decreased. Note that
the separation line and the margins corresponding to the current estimates of
w1 and w2 are given together with the class 1 points represented as open circles
and the class −1 points as closed circles.

14

Figure 5: Example of the iterative majorization algorithm for SVMs in action
where c is fixed and w1 and w2 are being optimized. The majorization function
touches LSVM(c,w) at the previous estimates of w (the dotted line) and a solid
line is lowered at the minimum of the majorizing function showing a decrease
in LSVM(c,w) as well.

6 Experiments

To investigate the performance of the various variants of SVM algorithms, we
report experiments on several data sets from the UCI repository (Newman,
Hettich, Blake, & Merz, 1998) and the homepage of LibSVM software (Chang &
Lin, 2006). These data sets cover a wide range of characteristics such as extent of
being unbalanced (one group is larger than the other), number of observations n,
ratio of observations to attributes m/n, and sparsity (the percentage of nonzero
attribute values xij). More information on the data sets are given in Table 2.

In the experiments, we applied the standard absolute hinge (ε-insensitive),
the Huber hinge and quadratic hinge SVM loss functions. All experiments have
been carried out in Matlab 7.2, on a 2.8Ghz Intel processor with 2GB of memory
under Windows XP. The performance of the majorization algorithms is com-

15

Table 2: Information on the 14 datasets used in the experiments. n1 and n−1

are the number of observations with yi = 1 and yi = −1, respectively. Spar-
sity equals the percentage of zeros in the dataset. The scaling for the scaled
attributes is between +1 and 1.

Dataset Source n n1 n−1 m Sparsity Notes
Australian UCI 690 307 383 14 20.04
Breast cancer w UCI 699 458 241 9 0.00
Heart statlog UCI 270 120 150 13 0.00 Standardized data
Hepatitis UCI 155 123 32 19 39.86
Sonar UCI 208 97 111 60 0.07
Voting UCI 434 167 267 16 45.32
Liver-disorders LibSVM 345 200 145 6 0.00
Liver-disorders2 LibSVM 345 200 145 6 0.92 Scaled attributes
Diabetes LibSVM 768 500 268 8 0.00
Diabetes2 LibSVM 768 500 268 8 0.15 Scaled attributes
Ionosphere LibSVM 351 225 126 34 11.59 Scaled attributes
German.number LibSVM 1000 300 700 24 0.00
German.number2 LibSVM 1000 300 700 24 4.16 Scaled attributes
Splice LibSVM 1000 517 483 60 0.00

pared to those of the off-the-shelf programs LibSVM, BSVM (Hsu & Lin, 2006),
SVM-Light (Joachims, 1999), and SVM-Perf (Joachims, 2006). Although these
programs can handle nonlinearity of the predictor variables by using special
kernels, we limit our experiments to the linear kernel. Note that not all of these
SVM-solvers are optimized for the linear kernel. In addition, no comparison
between majorization is possible for the Huber hinge loss function as it is not
supported by these solvers.

The numerical experiments address several issues. First, how well are the
different hinge losses capable of predicting the two groups? Second, we focus on
the performance of the majorization algorithm with respect to its competitors.
We would like to know how the time needed for the algorithm to converge scales
with the number of observations n, the strictness of the stopping criterion, and
with λ; what is a suitable level for the stopping criterion.

To answer these questions, we consider the following measures. First, we
define convergence between two steps as the relative decrease in loss between
two subsequent steps, that is, by Ldiff = (Lt−1 − Lt)/Lt. The error rate in the
training data set is defined as the number of misclassified cases. To measure
how well a solution predicts, we define the accuracy as the percentage correctly
predicted out-of-sample cases in 5-fold cross validation.

6.1 Predictive Performance for the Three Hinge Errors

It is interesting to compare the performance of the three hinge loss functions.
Consider Table 3, which compares the 5-fold cross-validation accuracy for the
three different loss function. For each data set, we tried a grid of λ values (λ = 2p

for p = −15,−14.5,−14, . . . , 7.5, 8 where 2−15 = 0.000030518 and 28 = 256).

16

Table 3: Optimal λ = 2p obtained by 5 fold cross validation, the CPU-time
to convergence for the optimal λ, and the prediction accuracy (in %) for 14
different test data sets and four loss functions.

Optimal p CPU time in sec. 5-fold CV accuracy
Data set Abs. Hub. Quad. OS Abs. Hub. Quad. OS Abs. Hub. Quad. OS
Australian -0.5 2.0 3.0 -15.0 0.20 0.12 0.14 0.14 85.4 86.7 86.7 18.1
Breast cancer w 7.5 6.0 8.0 -15.0 0.13 0.11 0.04 0.49 96.7 96.6 96.7 97.7
Heart statlog 0.0 5.5 7.0 5.5 0.03 0.01 0.01 0.04 84.4 84.4 84.4 9.3
Hepatitis 0.0 0.0 2.0 -8.5 0.04 0.02 0.01 0.41 85.8 87.1 86.5 69.0
Sonar 0.5 1.5 1.5 -2.0 0.06 0.02 0.02 0.15 77.4 76.9 78.4 13.5
Voting -5.5 -1.5 -0.5 -0.5 0.46 0.11 0.10 0.35 97.0 96.8 97.0 6.2
Liver-disorders 3.0 8.0 2.5 8.0 0.05 0.02 0.01 0.07 68.7 68.1 66.1 24.3
Liver-disorders2 -7.0 -3.0 1.0 -2.5 0.07 0.02 0.01 0.07 68.4 68.1 66.4 24.6
Diabetes 1.0 0.5 3.5 7.5 0.24 0.04 0.01 0.07 77.3 78.0 77.6 79.0
Diabetes2 -2.0 -2.5 4.0 8.0 0.13 0.04 0.01 0.03 77.6 78.3 77.9 80.1
Ionosphere -5.0 2.5 -0.5 -8.0 4.03 0.10 0.17 5.62 90.3 89.5 90.6 25.1
German.number -0.5 -4.0 3.5 3.5 1.71 0.17 0.03 0.18 77.2 77.0 77.3 26.2
German.number2 2.5 2.0 -0.5 1.5 0.81 0.16 0.03 0.37 77.2 77.0 77.2 33.0
Splice 5.0 7.0 -0.5 3.5 3.21 0.34 0.14 0.61 80.7 81.4 81.1 13.0

Alongside are given the values of the optimal λ’s and times to convergence (stop
whenever Ldiff < 3×10−7). From the accuracy, we see that there is no one best
loss function that is suitable for all data sets. The absolute hinge is best in six
of the cases, the Huber hinge is best in six of the cases, and the quadratic hinge
is best in eight of the cases. The total number is greater than 14 due to equal
accuracies. In terms of computational speed, the order invariably is: absolute
hinge is the slowest, Huber hinge is faster, and the quadratic hinge is the fastest.

The implementation of optimal scaling regression was also done in MatLab,
but the update in each iteration for ŷ by monotone regression using the primary
approach to ties was calculated by a compiled Fortran subroutine. Therefore,
the CPU time is not comparable to those of the other SVM methods that were
solely programmed in MatLab. Optimal scaling regression performs well on
three data sets (Breast cancer, Diabetes and Diabetes2) where the accuracy is
better than the three SVM methods. On the remaining data sets, the accuracy
is worse or much worse when compared to the SVM methods. It seems that
in some cases OS regression can predict well, but its poor performance for the
majority of the data sets makes it hard to use it as a standard method for the
binary classification problem. It seems that more study is needed to understand
why this is so and, if possible, provide adaptations that make it work better for
more data sets.

6.2 Computational Efficiency of SVM-Maj

To see how computationally efficient the majorization algorithms are, two types
of experiments were done. In the first experiment, the majorization algorithm

17

is studied and tuned. In the second, the majorization algorithm SVM-Maj for
the absolute hinge error is compared with several off-the-shelf programs that
minimize the same loss function.

As the majorization algorithm is guaranteed to improve the LSVM(c,w) in
each iteration by taking a step closer to the final solution, the computational
efficiency of SVM-Maj is determined by its stopping criterion. The iterations of
SVM-Maj stop whenever Ldiff < ε. It is also known that majorization algorithms
have a linear convergence rate (De Leeuw, 1994), which can be slow especially
for very small ε. Therefore, we study the relations between four measures as
they change during the iterations: (a) the difference between present and final
loss, Lt − Lfinal, (b) the convergence Ldiff , (c) CPU time spent sofar, and (d)
the difference between current and final within sample error rate.

Figure 6 shows the relationships between these measures for three exemplary
data sets: Liver disorders, Sonar and Australian. Note that Figures 6c and 6d
the direction of the horizontal axis is reversed so that in all four panels the right
side of the horizontal axis means more computational investment. Figure 6a
draws the relationship between CPU-time on the one hand and Lt−Lfinal, with
Lfinal the objective function values obtained at convergence with ε = 3× 10−7.
Notice that in most of the cases the first few iterations are responsible for the
bulk of the decreases in the objective function values and most of the CPU
time is spent to obtain small decreases in loss function values. Figure 6b shows
the relationship between Lt − Lfinal and the convergence Ldiff that is used as a
stopping criterion. The two lower panels show the development of the within
sample error rate and CPU time (Figure 6c) and convergence Ldiff (Figure 6d).
To evaluate whether it is worthwhile using a looser stopping criterion, it is in
instructive to observe the path of the error rate over the iterations (the lower
right panel). It seems that the error rate stabilizes for values of Ldiff below 10−6.
Nevertheless, late-time changes sometimes occur in other data sets. Therefore,
it does not seem recommendable to stop the algorithm much earlier, hence our
recommendation of using ε = 3× 10−7.

The analogues of Figures 6 and 7 were also produced for the Huber hinge
and quadratic hinge loss functions. Overall, the same patterns as for the abso-
lute hinge function can be distinguished, with several differences: the objective
function decreases much faster (relative to CPU time), and the error rate stabi-
lizes already at slightly greater values for the convergence criterion. In addition,
the number of iterations until convergence by and large decline (vis-a-vis the
absolute hinge function).

Figure 7 investigates how sensitive the speed of SVM-Maj is relative to
changes in the values of λ for four illustrative datasets (Splice, German-number
with scaled attributed, Ionosphere, and Sonar). As expected, the relationship
appears to be decreasing. Thus, for large λ the penalty term dominates LSV M

and the SVMMajAbs does not need too many iterations to converge. Note that
the same phenomenon is in general observed for the other SVM-solvers as well
so that, apparently, the case for large λ is an easier problem to solve.

18

10
-3

10
-2

10
-1

10
-8

10
-6

10
-4

10
-2

10
0

CPU time

L t-L
fin

al

10
-8

10
-6

10
-4

10
-2

10
0

10
2

10
-8

10
-6

10
-4

10
-2

10
0

Ldiff

L t-L
fin

al

10
-3

10
-2

10
-1

-0.01

-0.005

0

0.005

0.01

0.015

CPU time

E
rr

or
 R

at
e

-
E

rr
or

 R
at

e fin
al

10
-8

10
-6

10
-4

10
-2

10
0

10
2

-0.01

-0.005

0

0.005

0.01

0.015

Ldiff

E
rr

or
 R

at
e

-
E

rr
or

 R
at

e fin
al

liver disorders

sonar
australian

a. b.

c. d.

Figure 6: The evolution of several statistics (see text for details) of three
datasets: Australian (dotted lines), Sonar (dash-dot lines), and Liver Disorders
(scaled, solid lines). Values of λ’s are fixed at optimal levels for each dataset.
Loss function used: absolute hinge.

6.3 Comparing Efficiency of SVM-Maj with Absolute Hinge

The efficiency of SVM-Maj can be compared with off-the-shelf programs for the
absolute hinge error. As competitors of SVM-Maj, we use LibSVM, BSVM,
SVM-Light, and SVM-Perf. We use the same 14 data sets as before. As all
methods minimize exactly the same loss function LSVM they all should have the
same global minimum. In addition to LSVM, the methods are compared on speed
(CPU-time in seconds) at optimal levels of the λ = 2p (or equivalent) parameter.
Note that the optimal levels of λ could differ slightly between methods as the
off-the-shelf programs perform their own grid search for determining the optimal
λ, that could be slightly different from those reported in Table 3. We note that
the relationship between the λ parameter in SVM-Maj and the C parameter in
LibSVM and SVM-light is given by λ = 0.5/C. For SVM-Maj, we choose three
stopping criteria, that is, the algorithm is stopped whenever Ldiff is respectively
smaller than 10−4, 10−5, and 10−6.

For some data sets, it was not possible to run the off-the-shelf programs,
sometimes because the memory requirements were too large, sometimes be-
cause no convergence was obtained. Such problems occurred for three data sets

19

−15 −10 −5 0 5 10
−1.5

−1

−0.5

0

0.5

1

log2(Lambda)

lo
g1

0(
C

P
U

 ti
m

e)

Splice
German.number2
Ionosphere
Sonar

Figure 7: The effect of changing λ on CPU time taken to converge. Loss function
used: absolute hinge.

with SVM-Perf and two data sets with SVM-Light. Table 4 shows the results.
Especially for ε = 10−6, SVM-Maj gives solutions that are close to the best
minimum found. Generally, Lib-SVM and SVM-Light obtain the lowest LSVM.
SVM-Maj performs well with ε = 10−6, but even better values can be obtained
by a stronger convergence criterion. BSVM finds proper minima but is not able
to handle all data sets. In terms of speed SVM-Maj is faster than its com-
petitors in almost all cases. Of course, a smaller ε increases the CPU-time of
SVM-Maj. Nevertheless, even for ε = .0001 good solutions can be found in a
short CPU-time.

These results are also summarized in Figure 8, where SVM-Maj is used with
the default convergence criterion of ε = 3× 10−7. As far as speed is concerned
(see Figure 8a), SVM-Maj ranks consistently amongst the fastest method. The
quality of SVM-Maj is also consistently good as it has the same loss function
as the global minimum with differences occurring less then 0.01. Note that
BSVM and SVM-Perf find consistently much higher loss function values than
SVM-Maj, LibSVM and SVM-Light. Generally, the best quality solutions are
obtained by LibSVM and SVM-Light although they tend to use more CPU time
reaching it.

7 Conclusions and Discussion

We have discussed how linear SVM can be viewed as a the minimization of
a robust error function with a regularization penalty. The regularization is
needed to avoid overfitting in the case when the number of predictor variables
increases. We provided a new majorization algorithm for the minimization
of the primal SVM problem. This algorithm handles the standard absolute
hinge error, the quadratic hinge error, and the newly proposed Huber hinge

20

10
-2

10
0

10
2

10
4

Splice
German.number2
German.number

Ionosphere
Diabetes2
Diabetes

Liver-disorders2
Liver-disorders

Voting
Sonar

Hepatitis
Heart_statlog

Breast_cancer_w
Australian

CPU time in sec

10
-10

10
-5

10
0

10
5

Splice
German.number2
German.number

Ionosphere
Diabetes2
Diabetes

Liver-disorders2
Liver-disorders

Voting
Sonar

Hepatitis
Heart_statlog

Breast_cancer_w
Australian

L - Llowest

SVM-Maj

LibSVM

BSVM
SVM-Light

SVM-Perf

a.

b.

Figure 8: Difference in performance of SVM algorithms with absolute hinge and
SVM-Maj using ε = 3 × 10−7. Panel a shows the CPU time used in seconds
and Panel b shows the difference of L and the lowest L amongst the methods.

error. The latter hinge is smooth everywhere yet is linear for large errors. The
majorizing algorithm has the advantage that it operates on the primal, is easy
to program, and can easily be adapted for robust hinge errors. We also showed
that optimal scaling regression has several features in common with SVMs.
Numerical experiments on fourteen empirical data sets showed that there is
no clear difference between the three hinge errors in terms of cross validated
accuracy. The speed of SVM-Maj for the absolute hinge error is similar or
compares favorably to the off-the-shelf programs for solving linear SVMs.

There are several open issues and possible extensions. First, the SVM-Maj
algorithm is good for situations where the number of objects n is (much) larger
than the number of variables m. The reason is that each iteration solves an
(m + 1) × (m + 1) linear system. As m grows, each iteration becomes slower.
Other majorization inequalities can be used to solve this problem yielding fast
iterations at the cost of making (much) smaller steps in each iteration. A second
limitation is the size of n. Eventually, when n gets large, than iterations will be-
come slow. The good thing about SVM-Abs is that each iteration is guaranteed
to improve the SVM-Loss. The bad thing is that at most linear convergence
can be reached so that for large n one has to be satisfied with an approximate

21

solution only.
Second, this paper has focussed on linear SVMs. Nonlinearity can be brought

in in two ways. In (Groenen et al., 2007), we proposed to use optimal scaling
for the transformation of the predictor variables. Instead of using kernels, we
propose to use I-splines to accommodate nonlinearity in the predictor space.
The advantage of this approach is that it can be readily applied in any linear
SVM algorithm. The standard way of introducing nonlinearity in SVMs is by
using kernels. We believe that this is also possible for SVM-Maj and intend to
study this possibility in future publications.

SVMs can be extended to problems with more than two classes in several
ways. If the extension has error terms of the form f1(q) or f−1(q) then the
present majorization results can be readily applied for an algorithm. We be-
lieve that applying majorization to SVMs is a fruitful idea that opens new
applications and extensions to this area of research.

References

Borg, I., & Groenen, P. J. F. (2005). Modern multidimensional scaling: Theory
and applications (2nd edition). New York: Springer.

Burges, C. J. C. (1998). A tutorial on support vector machines for pattern
recognition. Knowledge Discovery and Data Mining, 2, 121–167.

Chang, C.-C., & Lin, C.-J. (2006). LIBSVM: a library for support vector
machines. (Software available at http://www.csie.ntu.edu.tw/~cjlin/
libsvm)

Cristianini, N., & Shawe-Taylor, J. (2000). An introduction to support vector
machines. Cambridge University Press.

De Leeuw, J. (1994). Block relaxation algorithms in statistics. In H.-H. Bock,
W. Lenski, & M. M. Richter (Eds.), Information systems and data analysis
(pp. 308–324). Berlin: Springer.

Gifi, A. (1990). Nonlinear multivariate analysis. Chichester: Wiley.

Groenen, P. J. F., Nalbantov, G., & Bioch, J. C. (2007). Nonlinear support
vector machines through iterative majorization. In R. Decker & H.-J. Lenz
(Eds.), Advances in data analysis (pp. 149–162). Berlin: Springer.

Hastie, T., Tibshirani, R., & Friedman, J. (2001). The elements of statistical
learning. New York: Springer.

Heiser, W. J. (1995). Convergent computation by iterative majorization: Theory
and applications in multidimensional data analysis. In W. J. Krzanowski
(Ed.), Recent advances in descriptive multivariate analysis (pp. 157–189).
Oxford: Oxford University Press.

22

Hsu, C.-W., & Lin, C.-J. (2006). BSVM: bound-constrained support vector
machines. (Software available at http://www.csie.ntu.edu.tw/~cjlin/
bsvm/index.html)

Huber, P. J. (1981). Robust statistics. New York: Wiley.

Hunter, D. R., & Lange, K. (2004). A tutorial on MM algorithms. The American
Statistician, 39, 30–37.

Joachims, T. (1999). Making large-scale SVM learning practical. In
B. Schölkopf, C. Burges, & A. Smola (Eds.), Advances in kernel methods -
support vector learning. MIT-Press. (http://www-ai.cs.uni-dortmund.
de/DOKUMENTE/joachims_99a.pdf)

Joachims, T. (2006). Training linear SVMs in linear time. In Proceedings of the
ACM conference on knowledge discovery and data mining (KDD). (http:
//www.cs.cornell.edu/People/tj/publications/joachims_06a.pdf)

Kiers, H. A. L. (2002). Setting up alternating least squares and iterative ma-
jorization algorithms for solving various matrix optimization problems.
Computational Statistics and Data Analysis, 41, 157–170.

Kruskal, J. B. (1965). The analysis of factorial experiments by estimating
monotone transformations of the data. Journal of the Royal Statistical
Society, Series B, 27, 251–263.

Lange, K., Hunter, D. R., & Yang, I. (2000). Optimization transfer using
surrogate objective functions. Journal of Computational and Graphical
Statistics, 9, 1–20.

Newman, D., Hettich, S., Blake, C., & Merz, C. (1998). UCI repository
of machine learning databases. (http://www.ics.uci.edu/~mlearn/
MLRepository.html University of California, Irvine, Dept. of Information
and Computer Sciences)

Rousseeuw, P. J., & Leroy, A. M. (2003). Robust regression and outlier detection.
New York: Wiley.

Suykens, J. A. K., Van Gestel, T., De Brabanter, J., De Moor, B., & Vandewalle,
J. (2002). Least squares support vector machines. Singapore: World
Scientific.

Van der Kooij, A. J. (2007). Prediction accuracy and stability of regression
with optimal scaling transformations. Unpublished doctoral dissertation,
Leiden University.

Van der Kooij, A. J., Meulman, J. J., & Heiser, W. J. (2006). Local minima
in Categorical Multiple Regression. Computational Statistics and Data
Analysis, 50, 446–462.

23

Vapnik, V. N. (2000). The nature of statistical learning theory. New York:
Springer.

Young, F. W. (1981). Quantitative analysis of qualitative data. Psychometrika,
46, 357–388.

Young, F. W., De Leeuw, J., & Takane, Y. (1976a). Additive structure in
qualitative data: An alternating least squares method with optimal scaling
features. Psychometrika, 41, 471–503.

Young, F. W., De Leeuw, J., & Takane, Y. (1976b). Regression with qualita-
tive and quantitative variables: An alternating least squares method with
optimal scaling features. Psychometrika, 41, 505–529.

A Majorizing the Hinge Errors

Here we derive the quadratic majorizing functions for the three hinge functions.

A.1 Majorizing the Absolute Hinge Error

Consider the term f−1(q) = max(0, q + 1). For notational convenience, we drop
the subscript i for the moment. The solid line in Figure 2a shows f−1(q). Be-
cause of its shape of a hinge, we have called this function the absolute hinge
function. Let q be the known error q of the previous iteration. Then, a majoriz-
ing function for f−1(q) is given by g−1(q, q) at the supporting point q = 2. We
want g−1(q) to be quadratic so that it is of the form g−1(q) = a−1q

2−2b−1q+c−1.
To find a−1, b−1, and c−1, we impose two supporting points, one at q and the
other at −2− q. These two supporting points are located symmetrically around
−1. Note that the hinge function is linear at both supporting points, albeit with
different gradients. Because g−1(q) is quadratic, the additional requirement that
f−1(q) ≤ g−1(q) is satisfied if a−1 > 0 and the derivatives at the two supporting
points of f−1(q) and g−1(q) are the same. More formally, the requirements are
that

f−1(q) = g−1(q),
f ′−1(q) = g′−1(q),

f−1(−2− q) = g−1(−2− q),
f ′−1(−2− q) = g′−1(−2− q),

f−1(q) ≤ g−1(q).

It can be verified that the choice of

a−1 = 1
4 |q + 1|−1, (22)

b−1 = −a−1 − 1
4 , (23)

c−1 = a−1 + 1
2 + 1

4 |q + 1|, (24)

satisfies all these requirements. Figure 4a shows the majorizing function g−1(q)
with supporting points q = 1.5 as the dotted line.

24

For Class 1, a similar majorizing function can be found for f1(q) = max(0, 1−
q). However, in this case, we require equal function values and first derivative
at q and at 2− q, that is, symmetric around 1. The requirements are

f1(q) = g1(q),
f ′1(q) = g′1(q),

f1(2− q) = g1(2− q),
f ′1(2− q) = g′1(2− q),

f1(q) ≤ g1(q).

Choosing

a1 = 1
4 |1− q|−1 (25)

b1 = a1 + 1
4 (26)

c1 = a1 + 1
2 + 1

4 |1− q| (27)

satisfies these requirements. The functions f1(q) and g1(q) with supporting
points q = 2 or q = 0 are plotted in Figure 4a.

Note that a−1 is not defined if q = −1. In that case, we choose a−1 as a small
positive constant δ that is smaller than the convergence criterion ε (introduced
below). Strictly speaking, the majorization requirements are violated. How-
ever, by choosing δ small enough, the monotone convergence of the sequence of
LSVM(w) will be no problem. The same holds for a1 if q = 1.

A.2 Majorizing the Quadratic Hinge Error

The majorizing algorithm for the SVM with the quadratic hinge function is
developed along the same lines as for the absolute hinge function. However,
because of its structure, each iteration boils down to a matrix multiplication of
an fixed m × n matrix with an n × 1 vector that changes over the iterations.
Therefore, the computation of the update is of order O(nm) which is more
efficient than the majorizing algorithm for the absolute hinge error.

To majorize the term f−1(q) = max(0, q +1)2 is relatively easy. For q > −1,
f−1(q) coincides with (q + 1)2. Therefore, if q > −1, (q + 1)2 can be used to
majorize max(0, q +1)2. Note that (q +1)2 ≥ 0 so that (q +1)2 also satisfies the
majorizing requirements for q < 1. For the case q ≤ −1, we want a majorizing
function that has the same curvature as (q + 1)2 but touches at q, which is
obtained by the majorizing function (q + 1 − (q + 1))2 = (q − q)2. Therefore,
the majorizing function g−1 = a−1q

2 − 2b−1q + c−1 has coefficients

a−1 = 1, (28)

b−1 =
{

q if q ≤ −1
−1 if q > −1 , (29)

c−1 =
{

1− 2(q + 1) + (q + 1)2 if q ≤ −1
1 if q > −1 . (30)

25

Similar reasoning can be held for f1(q) = max(0, 1 − q)2 which has majorizing
function g1 = a1q

2 − 2b1q + c1 and coefficients

a1 = 1, (31)

b1 =
{

1 if q ≤ 1
q if q > 1 , (32)

c1 =
{

1 if q ≤ 1
1− 2(1− q) + (1− q)2 if q > 1 . (33)

Again, ai, bi, and ci are defined as in (15), (16), and (17), except that δ in (15)
can be set to 0, so that ai = 1 = a for all i.

A.3 Majorizing the Huber Hinge Error

The majorizing algorithm of the Huber hinge error function shares a similar
efficiency as for the quadratic hinge: the coefficients a1 and a−1 are the same
for all i, so that again an update boils down to a matrix multiplication of a
matrix of order m× n with an n× 1 vector.

To majorize h−1(q) we use the fact that the second derivative of h−1(q)
is bounded. For q ≥ k, h−1(q) is linear with first derivative h′−1(q) = 1, so
that its second derivative h′′−1(q) = 0. For q ≤ −1, h−1(q) = 0, so that here
too h′′−1(q) = 0. Therefore, h′′−1(q) > 0 only exists for −1 < q < k, where
h′′−1(q) = 1. Therefore, for −1 < q < k, the quadratic majorizing function is
equal to h−1(q), for q ≤ −1 and q ≥ k, a quadratic majorizing function with
the same second derivative of (1/2)(k + 1)−1 is produced that touches at the
current estimate q. Let the majorizing function g−1 = a−1q

2 − 2b−1q + c−1 has
coefficients

a−1 = (1/2)(k + 1)−1, (34)

b−1 =

a−1q if q ≤ −1
−a−1 if − 1 < q < k
a−1q − 1/2 if q ≥ k

, (35)

c−1 =

a−1q
2 if q ≤ −1

a−1 if − 1 < q < k
1− (k + 1)/2 + a−1q

2 if q ≥ −k
. (36)

It may be verified for any q from the three intervals that h−1(q) = g−1(q) and
h′−1(q) = g′−1(q) hold. In addition, g′′−1(q) = (1/2)(k + 1)−1 ≥ h′′−1(q) for all
q (as long as k > −1) so that the second derivative d′′−1(q) of the difference
function d−1(q) = g−1(q) − h−1(q) equals g′′−1(q) − h′′−1(q) ≥ 0 indicating that
d−1(q) is convex. As g−1(q) touches h−1(q) at q, d−1(q) = 0, so that, combined
with convexity of d−1(q) the inequality d−1(q) ≥ 0 must hold implying the
majorizing inequality h−1(q) ≤ g−1(q) for all q with equality at q.

For h1(q) similar reasoning can be held. Let the majorizing function g1 =
a−1q

2 − 2b−1q + c−1 has coefficients

a1 = (1/2)(k + 1)−1, (37)

26

b1 =

1/2 + a1q if q ≤ −k
a1 if − k < q < 1
a1q if q ≥ 1

, (38)

c1 =

1− (k + 1)/2 + a−1q
2 if q ≤ −k

a1 if − k < q < 1
a1q

2 if q ≥ 1
. (39)

Note that a−1 and a1 are exactly the same and both independent of q.
Therefore, the curvature of the majorizing functions for all Huber hinge errors
is the same. This property is exploited in the simple update derived from (22).

27

Table 4: Comparisons between SVM solvers: time to convergence in CPU sec.
and objective values. The values of λ = 2p’s are fixed at levels close to the
optimal ones of Table 3.

T
im

e
to

co
n
v
er

g
e,

in
C

P
U

se
c.

L
S
V

M

S
V

M
M

a
j

L
ib

-
S
V

M
-

S
V

M
-

S
V

M
M

a
j

L
ib

-
S
V

M
-

S
V

M
-

D
a
ta

se
t

p
1
0
−

4
1
0
−

5
1
0
−

6
S
V

M
B

S
V

M
L
ig

h
t

P
er

f
1
0
−

4
1
0
−

5
1
0
−

6
S
V

M
B

S
V

M
L
ig

h
t

P
er

f
A

u
st

ra
li
a
n

0
0
.0

7
0
.0

8
0
.1

1
6
3
9
5
.2

7
0
.3

0
7
6
.8

0
–

2
0
2
.6

7
2
0
2
.6

9
2
0
2
.6

6
2
0
7
.3

2
2
2
0
.8

1
2
0
2
.2

0
–

B
re

a
st

ca
n
ce

r
w

6
0
.0

3
0
.0

6
0
.1

0
0
.0

6
0
.1

8
0
.0

9
0
.8

9
5
8
.2

1
5
8
.0

5
5
8
.0

2
5
8
.0

3
2
0
5
.0

3
5
8
.0

3
2
0
5
.0

2
H

ea
rt

st
a
tl

o
g

0
0
.0

2
0
.0

2
0
.0

2
0
.0

8
0
.1

4
0
.1

0
1
.4

3
9
1
.5

0
9
1
.4

9
9
1
.4

9
9
1
.4

8
9
1
.5

2
9
1
.4

8
9
1
.5

2
H

ep
a
ti

ti
s

0
0
.0

1
0
.0

2
0
.0

3
0
.0

5
0
.0

9
0
.0

6
6
2
.1

4
4
6
.3

1
4
6
.2

9
4
6
.2

8
4
6
.2

8
4
8
.4

3
4
6
.2

8
4
8
.4

3
S
o
n
a
r

0
0
.0

2
0
.0

4
0
.0

5
0
.1

3
0
.3

0
0
.1

5
3
1
.0

8
1
1
4
.5

4
1
1
4
.5

1
1
1
4
.5

1
1
1
4
.5

1
1
1
6
.8

3
1
1
4
.5

1
1
1
6
.8

3
V
o
ti

n
g

-5
0
.0

6
0
.1

1
0
.1

1
0
.0

9
0
.1

3
0
.1

2
5
.1

5
2
6
.4

6
2
5
.7

6
2
5
.7

6
2
5
.7

6
2
5
.7

6
2
5
.7

6
2
5
.7

6
L
iv

er
-d

is
o
rd

er
s

3
0
.0

4
0
.0

6
0
.0

6
0
.4

9
1
.2

5
–

–
2
4
8
.5

6
2
4
8
.4

3
2
4
8
.4

2
2
4
8
.4

2
2
5
3
.0

3
–

–
L
iv

er
-d

is
o
rd

er
s2

-6
0
.0

3
0
.0

4
0
.0

7
0
.1

1
0
.1

5
–

–
2
4
9
.6

7
2
4
9
.6

2
2
4
9
.5

9
2
4
9
.5

9
2
4
9
.6

3
–

–
D

ia
b
et

es
1

0
.0

6
0
.0

9
0
.1

5
3
3
.0

5
1
.8

8
1
0
.3

0
4
0
7
.8

1
3
9
6
.7

3
3
9
6
.6

0
3
9
6
.5

7
3
9
6
.8

1
4
4
4
.1

8
3
9
6
.5

7
4
4
4
.1

8
D

ia
b
et

es
2

-2
0
.0

5
0
.0

7
0
.1

2
0
.1

4
0
.2

3
0
.2

6
7
7
.3

5
3
9
9
.8

1
3
9
9
.6

9
3
9
9
.6

6
3
9
9
.6

6
3
9
9
.6

7
3
9
9
.6

6
3
9
9
.6

6
Io

n
o
sp

h
er

e
-5

0
.1

2
0
.1

5
0
.3

8
0
.2

4
0
.6

7
0
.8

8
2
3
3
.1

9
5
5
.6

3
5
5
.5

1
5
5
.3

3
5
5
.3

2
5
6
.5

6
5
5
.3

2
5
6
.5

6
G

er
m

a
n
.n

u
m

b
er

0
0
.1

3
0
.3

5
0
.5

5
1
5
.2

1
0
.5

4
1
.8

7
8
7
.7

3
5
2
2
.3

7
5
2
1
.9

4
5
2
1
.8

9
5
2
1
.8

8
5
2
4
.3

3
5
2
1
.8

8
5
2
4
.3

3
G

er
m

a
n
.n

u
m

b
er

2
3

0
.1

4
0
.2

2
0
.3

8
0
.2

7
0
.3

9
0
.2

3
8
2
.4

9
5
3
9
.5

1
5
3
9
.4

4
5
3
9
.4

0
5
3
9
.3

9
5
3
9
.6

3
5
3
9
.3

9
5
3
9
.6

3
S
p
li
ce

5
0
.5

5
1
.0

1
1
.5

5
0
.4

7
0
.8

7
0
.3

3
1
1
.5

0
4
2
7
.3

7
4
2
7
.2

1
4
2
7
.1

9
4
2
7
.1

8
4
3
3
.6

8
4
2
7
.1

8
4
3
3
.6

8

28

