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Abstract

Multidimensional scaling is a statistical technique to visualize dissimi-
larity data. In multidimensional scaling, objects are represented as points
in a usually two dimensional space, such that the distances between the
points match the observed dissimilarities as closely as possible. Here, we
discuss what kind of data can be used for multidimensional scaling, what
the essence of the technique is, how to choose the dimensionality, trans-
formations of the dissimilarities, and some pitfalls to watch out for when
using multidimensional scaling.

1 Introduction

Multidimensional scaling is a statistical technique originating in psychometrics.
The data used for multidimensional scaling (MDS) are dissimilarities between
pairs of objects. The main objective of MDS is to represent these dissimilarities
as distances between points in a low dimensional space such that the distances
correspond as closely as possible to the dissimilarities.

Let us introduce the method by means of a small example. Ekman (1954)
collected data to study the perception of 14 different colors. Every pair of colors
was judged by a respondent from having ‘no similarity’ to being ‘identical’. The
obtained scores can be scaled in such a way that identical colors are denoted by
0, and completely different colors by 1. The averages of these dissimilarity scores
over the 31 respondents are presented in Table 1. Starting from wavelength 434,
the colors range from bluish-purple, blue, green, yellow, to red. Note that the
dissimilarities are symmetric: the extent to which colors with wavelengths 490
and 584 are the same is equal to that of colors 584 and 490. Therefore, it
suffices to only present the lower triangular part of the data in Table 1. Also,
the diagonal is not of interest in MDS because the distance of an object with
itself is necessarily zero.
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Table 1: Dissimilarities of colors with wavelengths from 434 to 674 nm (Ekman,
1954).

nm 434 445 465 472 490 504 537 555 584 600 610 628 651 674
434 –
445 .14 –
465 .58 .50 –
472 .58 .56 .19 –
490 .82 .78 .53 .46 –
504 .94 .91 .83 .75 .39 –
537 .93 .93 .90 .90 .69 .38 –
555 .96 .93 .92 .91 .74 .55 .27 –
584 .98 .98 .98 .98 .93 .86 .78 .67 –
600 .93 .96 .99 .99 .98 .92 .86 .81 .42 –
610 .91 .93 .98 1.00 .98 .98 .95 .96 .63 .26 –
628 .88 .89 .99 .99 .99 .98 .98 .97 .73 .50 .24 –
651 .87 .87 .95 .98 .98 .98 .98 .98 .80 .59 .38 .15 –
674 .84 .86 .97 .96 1.00 .99 1.00 .98 .77 .72 .45 .32 .24 –

MDS tries to represent the dissimilarities in Table 1 in a map. Figure 1
presents such an MDS map in 2 dimensions. We see that the colors, denoted by
their wavelengths, are represented in the shape of a circle. The interpretation
of this map should be done in terms of the depicted inter-point distances. Note
that, as distances do not change under rotation, a rotation of the plot does not
affect the interpretation. Similarly, a translation of the solution (that is, a shift
of all coordinates by a fixed value per dimension) does not change the distances
either, nor does a reflection of one or both of the axes.

Figure 1 should be interpreted as follows. Colors that are located close
to each other are perceived as being similar. For example, the colors with
wavelengths 434 (violet) and 445 (indigo) or 628 and 651 (both red). In contrast,
colors that are positioned far away from each other, such as 490 (green) and 610
(orange) indicate a large difference in perception. The circular form obtained
in this example is in accordance with theory on the perception of colors.

Summarizing, MDS is a technique that translates a table of dissimilarities
between pairs of objects into a map where distances between the points match
the dissimilarities as well as possible. The use of MDS is not limited to psy-
chology but has applications in a wide area of disciplines, such as sociology,
economics, biology, chemistry, and archaeology. Often, it is used as a technique
for exploring the data. In addition, it can be used as a technique for dimen-
sion reduction. Sometimes, as in chemistry, the objective is to reconstruct a
3D model for large DNA-molecules for which only partial information of the
distances between atoms is available.
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Figure 1: MDS solution in 2 dimensions of the color data in Table 1.

2 Data for MDS

In the previous section, we introduced MDS as a method to describe relation-
ships between objects on the basis of observed dissimilarities. However, instead
of dissimilarities we often observe similarities between objects. Correlations, for
example, can be interpreted as similarities. By converting the similarities into
dissimilarities MDS can easily be applied to similarity data. There are several
ways of transforming similarities into dissimilarities. For example, we may take
one divided by the similarity or we can apply any monotone decreasing function
that yields nonnegative values (dissimilarities cannot be negative). However, in
Section 4, we shall see that by applying transformations in MDS, there is no
need to transform similarities into dissimilarities. To indicate both similarity
and dissimilarity data, we use the generic term proximities.

Data in MDS can be obtained in a variety of ways. We distinguish between
the direct collection of proximities versus derived proximities. The color data
of the previous section is an example of direct proximities. That is, the data
arrives in the format of proximities. Often, this is not the case and our data
does not consist of proximities between variables. However, by considering an
appropriate measure, proximities can be derived from the original data. For
example, consider the case where objects are rated on several variables. If
the interest lies in representing the variables, we can calculate the correlation
matrix as measure of similarity between the variables. MDS can be applied
to describe the relationship between the variables on the basis of the derived
proximities. Alternatively, if interest lies in the objects, Euclidean distances
can be computed between the objects using the variables as dimensions. In this
case, we use high dimensional Euclidean distances as dissimilarities and we can
use MDS to reconstruct these distances in a low dimensional space.
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Co-occurrence data are another source for obtaining dissimilarities. For such
data, a respondent groups the objects into partitions and an n × n incidence
matrix is derived where a one indicates that a pair of objects is in the same
group and a zero indicates that they are in different groups. By considering
the frequencies of objects being in the same or different groups and by applying
special measures (such as the so-called Jaccard similarity measure), we obtain
proximities. For a detailed discussion of various (dis)similarity measures, we
refer to Gower and Legendre (1986).

3 Formalizing Multidimensional Scaling

To formalize MDS, we need some notation. Let n be the number of different
objects and let the dissimilarity for objects i and j be given by δij . The coor-
dinates are gathered in an n× p matrix X, where p is the dimensionality of the
solution to be specified in advance by the user. Thus, row i from X gives the
coordinates for object i. Let dij(X) be the Euclidean distance between rows i
and j of X defined as

dij(X) =

(
p∑

s=1

(xis − xjs)2
)1/2

, (1)

that is, the length of the shortest line connecting points i and j. The objective of
MDS is to find a matrix X such that dij(X) matches δij as closely as possible.
This objective can be formulated in a variety of ways but here we use the
definition of raw-Stress σ2(X), that is,

σ2(X) =
n∑

i=2

i−1∑

j=1

wij(δij − dij(X))2 (2)

by Kruskal (Kruskal, 1964a, 1964b) who was the first one to propose a formal
measure for doing MDS. This measure is also referred to as the least-squares
MDS model. Note that due to the symmetry of the dissimilarities and the
distances, the summation only involves the pairs ij where i > j. Here, wij

is a user defined weight that must be nonnegative. For example, many MDS
programs implicitly choose wij = 0 for dissimilarities that are missing.

The minimization of σ2(X) is a rather complex problem that cannot be
solved in closed-form. Therefore, MDS programs use iterative numerical algo-
rithms to find a matrix X for which σ2(X) is a minimum. One of the best algo-
rithms available is the SMACOF algorithm (De Leeuw, 1977, 1988; De Leeuw
& Heiser, 1980; Borg & Groenen, 1997) based on iterative majorization. The
SMACOF algorithm has been implemented in the SPSS procedure Proxscal
(Meulman, Heiser, & SPSS, 1999). In Section 7, we give a brief illustration of
the SMACOF algorithm.

Because Euclidean distances do not change under rotation, translation, and
reflection, these operations may be freely applied to MDS solution without af-
fecting the raw-Stress. Many MDS programs use this indeterminacy to center
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the coordinates so that they sum to zero dimension wise. The freedom of rota-
tion is often exploited to put the solution in so-called principal axis orientation.
That is, the axis are rotated in such a way that the variance of X is maximal
along the first dimension, the second dimension is uncorrelated to the first and
has again maximal variance, and so on.

Here, we have discussed the Stress measure for MDS. However, there are
several other measures for doing MDS. In Section 8, we briefly discuss other
popular definitions of Stress.

4 Transformations of the Data

So far, we have assumed that the dissimilarities are known. However, this is
often not the case. Consider for example the situation in which the objects have
been ranked. That is, the dissimilarities between the objects are not known, but
their order is known. In such a case, we would like to assign numerical values
to the proximities in such a way that these values exhibit the same rank order
as the data. These numerical values are usually called disparities, d-hats, or
pseudo distances, and they are denoted by d̂. The task of MDS now becomes
to simultaneously obtain disparities and coordinates in such a way that the
coordinates represent the disparities (and thus the original rank order of the
data) as well as possible. This objective can be captured in minimizing a slight
adaptation of raw Stress, that is,

σ2(d̂,X) =
n∑

i=2

i−1∑

j=1

wij(d̂ij − dij(X))2, (3)

over both the d̂ and X, where d̂ is the vector containing d̂ij for all pairs.
The process of finding the disparities is called optimal scaling and was first
introduced by Kruskal (Kruskal, 1964a, 1964b). Optimal scaling aims to find a
transformation of the data that fits as well as possible the distances in the MDS
solution. To avoid the trivial optimal scaling solution X = 0 and d̂ij = 0 for all
ij, we impose a length constraint on the disparities in such a way that the sum
of squared d-hat’s equals a fixed constant. For example,

∑n
i=2

∑i−1
j=1 wij d̂

2
ij =

n(n− 1)/2 (De Leeuw, 1977).
Transformations of the data are often used in MDS. Figure 2 shows a few

examples of transformation plots for the color example. Let us look at some
special cases.

Suppose that we choose d̂ij = δij for all ij. Then, minimizing (3) without
the length constraint is exactly the same as minimizing (2). Minimizing (3) with
the length constraint only changes d̂ij = aδij , where a is a scalar chosen in such
a way that the length constraint is satisfied. This transformation is called a
ratio transformation (Figure 2a). Note that, in this case, the relative differences
of aδij are the same as those for δij . Hence, the relative differences of the dij(X)
in (2) and (3) are also the same. Ratio MDS can be seen as the most restrictive
transformation in MDS.
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Figure 2: Four transformations often used in MDS.

An obvious extension to the ratio transformation is obtained by allowing
the d̂ij to be a linear transformation of the δij . That is, d̂ij = a + bδij , for
some unknown values of a and b. Figure 2b depicts an interval transformation.
This transformation may be chosen if there is reason to believe that δij = 0
does not have any particular interpretation. An interval transformation that
is almost horizontal reveals little about the data as different dissimilarities are
transformed to similar disparities. In such a case, the constant term will domi-
nate the d̂ij ’s. On the other hand, a good interval transformation is obtained if
the line is not horizontal and the constant term is reasonably small with respect
to the rest.

For ordinal MDS, the d̂ij are only required to have the same rank order
as δij . That is, if for two pairs of objects ij and kl we have δij ≤ δkl then
the corresponding disparities must satisfy d̂ij ≤ d̂kl. An example of an ordinal
transformation in MDS is given in Figure 2c. Typically, an ordinal transforma-
tion shows a step function. Similar to the case for interval transformations, it
is not a good sign if the transformation plot shows a horizontal line. Moreover,
if the transformation plot only exhibits a few steps, ordinal MDS does not use
finer information available in the data. Ordinal MDS is particularly suited if the
original data are rank orders. To compute an ordinal transformation a method
called monotone regression can be used.

A monotone spline transformation offers more freedom than an interval
transformation, but never more than an ordinal transformation. The advan-
tage of a spline transformation over an ordinal transformation is that it will
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yield a smooth transformation. Figure 2d shows an example of a spline trans-
formation. A spline transformation is built on two ideas. First, the range of the
δij ’s can be subdivided into connected intervals. Then, for each interval, the
data are transformed using a polynomial of a specified degree. For example, a
second-degree polynomial imposes that d̂ij = aδ2

ij +bδij +c. The special feature
of a spline is that at the connections of the intervals, the so-called interior knots,
the two polynomials connect smoothly. The spline transformation in Figure 2d
was obtained by choosing one interior knot at .90 and by using second-degree
polynomials. For MDS it is important that the transformation is monotone
increasing. This requirement is automatically satisfied for monotone splines or
I-Splines (see, Ramsay, 1988; Borg & Groenen, 1997). For choosing a transfor-
mation in MDS it suffices to know that a spline transformation is smooth and
nonlinear. The amount of nonlinearity is governed by the number of interior
knots specified. Unless the number of dissimilarities is very large, a few interior
knots for a second-degree spline usually works well.

There are several reasons to use transformations in MDS. One reason con-
cerns the fit of the data in low dimensionality. By choosing a transformation
that is less restrictive than the ratio transformation a better fit may be obtained.
Alternatively, there may exist theoretical reasons why a transformation of the
dissimilarities is desired. Ordered from most to least restrictive transformation,
we start with ratio, then interval, spline, and ordinal.

If the data are dissimilarities, then it is necessary that a transformation is
monotone increasing (as in Figure 2) so that pairs with higher dissimilarities
are indeed modelled by larger distances. Conversely, if the data are similarities,
then the transformation should be monotone decreasing so that more similar
pairs are modelled by smaller distances. A ratio transformation is not possible
for similarities. The reason is that the d̂ij ’s must be nonnegative. This implies
that the transformation must include an intercept.

In the MDS literature, one often encounters the terms metric and nonmetric
MDS. Metric MDS refers to the ratio and interval transformations, whereas all
other transformations such as ordinal and spline transformations are covered by
the term nonmetric MDS. We believe, however, that it is better to refer directly
to the type of transformation that is used.

There exist other a-priori transformations of the data that are not optimal
in the sense described above. That is transformations that are not obtained
by minimizing (3). The advantage of optimal transformations is that the exact
form of the transformation is unknown and determined optimally together with
the MDS configuration.

5 Diagnostics

In order to assess the quality of the MDS solution we can study the differences
between the MDS solution and the data. One convenient way to do this is by
inspecting the so-called Shepard diagram.

A Shepard diagram shows both the transformation and the error. Let
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Figure 3: Shepard diagram for ordinal MDS of the color data, where the prox-
imities are dissimilarities.

pij denotes the proximity between objects i and j. Then, a Shepard dia-
gram plots simultaneously the pairs (pij , dij(X)) and (pij , d̂ij). In Figure 3,
solid points denote the pairs (pij , dij(X)) and open circles represent the pairs
(pij , d̂ij). By connecting the open circles a line is obtained representing the
relationship between the proximities and the disparities which is equivalent to
the transformation plots in Figure 2. The vertical distances between the open
and closed circles are equal to d̂ij − dij(X), that is, they give the errors of rep-
resentation for each pair of objects. Hence, the Shepard diagram can be used
to inspect both the residuals of the MDS solution and the transformation. Out-
liers can be detected as well as possible systematic deviations. Figure 3 gives
the Shepard diagram for the ratio MDS solution of Figure 1 using the color
data. We see that all the errors corresponding to low proximities are positive
whereas the errors for the higher proximities are all negative. This kind of het-
eroscedasticity suggests the use of a more liberal transformation. Figure 4 gives
the Shepard diagram for an ordinal transformation. As the solid points are
closer to the line connecting the open circles, we may indeed conclude that the
heteroscedasticity has gone and that the fit has become better.

6 Choosing the Dimensionality

Several methods have been proposed to choose the dimensionality of the MDS
solution. However, no definite strategy is present. Unidimensional scaling,
that is, p = 1 (with ratio transformation) has to be treated with special care
because the usual MDS algorithms will end up in local minima that can be far
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Figure 4: Shepard diagram for ordinal MDS of the color data, where the prox-
imities are dissimilarities.

from global minima.
One approach to determine the dimensionality is to compute MDS solutions

for a range of dimensions, say from 2 to 6 dimensions, and plot the Stress against
the dimension. Similar to common practice in principal component analysis, we
then use the elbow criterion to determine the dimensionality. That is, we choose
the number of dimensions where a bend in the curve occurs.

Another approach (for ordinal MDS), proposed by Spence and Ogilvie (1973),
compares the Stress values against the Stress of generated data. However, per-
haps the most important criterion for choosing the dimensionality is simply
based on the interpretability of the map. Therefore, the vast majority of re-
ported MDS solutions are done in two dimensions and occasionally in three
dimensions. The interpretability criterion is a valid one especially when MDS
is used for exploration of the data.

7 The SMACOF Algorithm

In Section 3, we mentioned that a popular algorithm for minimizing Stress is
the SMACOF Algorithm. Its major feature is that it guarantees lower Stress
values in each iteration. Here we briefly sketch how this algorithm works.

Nowadays, the acronym SMACOF stands for Scaling by Majorizing a Com-
plex Function. To understand how it works consider Figure 5a. Suppose that
we have dissimilarity data on 13 stock markets and that the two dimensional
MDS solution is given by the points in the horizontal plane of Figure 5a and 5b.
Now, suppose that the position of the ‘nikkei’ index was unknown. Then we
can calculate the value of Stress as a function of the two coordinates for ‘nikkei’.
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a. First majorizing function b. Final majorizing function

Figure 5: The Stress function and the majorizing function for the supporting
(0,0) in Panel a., and the majorizing function at convergence in Panel b. Re-
produced by permission of Vrieseborch Publishers

The surface in Figure 5a shows these values of Stress for every potential posi-
tion of ‘nikkei’. To minimize Stress we must find the coordinates that yield the
lowest Stress. Hence, the final point must be located in the horizontal plane
under the lowest value of the surface. To find this point, we use an iterative
procedure that is based on majorization. First, as an initial point for ‘nikkei’ we
choose the origin in Figure 5a. Then, a so-called majorization function is chosen
in such a way that, for this initial point, its value is equal to the Stress-value,
and elsewhere it lies above the Stress surface. Here, the majorizing function is
chosen to be quadratic and is visualized in Figure 5a as the bowl-shaped surface
above the Stress function surface. Now, as the Stress surface is always below
the majorization function, the value of Stress evaluated at the point correspond-
ing to the minimum of the majorization function, will be lower than the initial
Stress value. Hence, the initial point can be updated by calculating the mini-
mum of the majorization function which is easy because the majorizing function
is quadratic. Using the updated point we repeat this process until the coordi-
nates remain practically constant. Figure 5b shows the subsequent coordinates
for ‘nikkei’ obtained by majorization as a line with connected dots marking the
path to its final position.

10



8 Alternative measures for doing Multidimen-
sional Scaling

In addition to the raw Stress measure introduced in Section 3, there exist other
measures for doing Stress. Here we give a short overview of some of the most
popular alternatives. First, we discuss normalized raw Stress,

σ2
n(d̂,X) =

∑n
i=2

∑i−1
j=1 wij(d̂ij − dij(X))2

∑n
i=2

∑i−1
j=1 wij d̂2

ij

, (4)

which is simply raw Stress divided by the sum of squared dissimilarities. The
advantage of this measure over raw Stress is that its value is independent of the
scale and the number of dissimilarities. Thus, multiplying the dissimilarities by
a positive factor will not change (4) at a local minimum, whereas the coordinates
will be the same up to the same factor.

The second measure is Kruskal’s Stress-1 formula

σ1(d̂,X) =

(∑n
i=2

∑i−1
j=1 wij(d̂ij − dij(X))2

∑n
i=2

∑i−1
j=1 wijd2

ij(X)

)1/2

, (5)

which is equal to the square root of raw Stress divided by the sum of squared
distances. This measure is of importance because many MDS programs and
publications report this value. It can be proved that at a local minimum of
σ2

n(d̂,X), σ1(d̂,X) also has a local minimum with the same configuration up to
a multiplicative constant. In addition, the square root of normalized raw Stress
is equal to Stress-1 (Borg & Groenen, 1997).

A third measure is Kruskal’s Stress-2, which is similar to Stress-1 except
that the denominator is based on the variance of the distances instead of the
sum of squares. Stress-2 can be used to avoid the situation where all distances
are almost equal.

A final measure that seems reasonably popular is called S-Stress (imple-
mented in the program ALSCAL) and it measures the sum of squared er-
ror between squared distances and squared dissimilarities (Takane, Young, &
De Leeuw, 1977). The disadvantage of this measure is that it tends to give
solutions in which large dissimilarities are overemphasized and the small dis-
similarities are not well represented.

9 Pitfalls

If missing dissimilarities are present, a special problem may occur for certain
patterns of missing dissimilarities. For example, if it is possible to split the
objects in two or more sets such that the between-set weights wij are all zero,
we are dealing with independent MDS problems, one for each set. If this situa-
tion is not recognized, you may inadvertently interpret the missing between set
distances. With only a few missing values, this situation is unlikely to happen.
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Figure 6: Solutions for constant dissimilarities with n = 30. The left plot shows
the unidimensional solution and the right plot a 2D solution.

However, when dealing with many missing values, one should verify that the
problem does not occur.

Another important issue is to understand what MDS will do if there is no
information in the data, that is, when all dissimilarities are equal. Such a case
can be seen as maximally uninformative and therefore as a null model. Solutions
of empirical data should deviate from this null model. This situation was studied
in great detail by Buja, Logan, Reeds, and Shepp (1994). It turned out that for
constant dissimilarities, MDS will find in one dimension points equally spread
on a line (see Figure 6). In two dimensions, the points lie on concentric circles
(De Leeuw & Stoop, 1984) and in three dimensions (or higher), the points lie
equally spaced on the surface of a sphere. Because all dissimilarities are equal,
any permutation of these points yield an equally good fit.

This type of degeneracy can be easily recognized by checking the Shepard
diagram. For example, if all disparities (or dissimilarities in ratio MDS) fall into
a small interval considerably different from zero, we are dealing with the case of
(almost) constant dissimilarities. For such a case, we advise redoing the MDS
analysis with a more restrictive transformation, for example, using monotone
splines, an interval transformation or even ratio MDS.

A final pitfall for MDS are local minima. A local minimum for Stress implies
that small changes in the configuration always have a worse Stress than the lo-
cal minimum solution. However, larger changes in the configuration may yield
a lower Stress. A configuration with the overall lowest Stress value is called
a global minimum. In general, MDS algorithms that minimize Stress cannot
guarantee the retrieval of a global minimum. However, if the dimensionality
is exactly n − 1, it is known that ratio MDS only has one minimum that is
consequently global. Moreover, when p = n − 1 is specified, MDS often yields
a solution that fits in a dimensionality lower than n − 1. If so, then this MDS
solution is also a global minimum. A different case is that of unidimensional
scaling. For unidimensional scaling with a ratio transformation, it is well
known that it has many local minima and can better be solved using combi-
natorial methods. For low dimensionality, like p = 2 or p = 3, experiments
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indicated that the number of different local minima ranges from a few to several
thousands. For an overview of issues concerning local minima in ratio MDS, we
refer to Groenen and Heiser (1996) and Groenen, Heiser, and Meulman (1999).

When transformations are used, there are fewer local minima and the proba-
bility of finding a global minimum increases. As a general strategy, we advice to
use multiple random starts (say 100 random starts) and retain the solution with
the lowest Stress. If most random starts end in the same candidate minimum,
then there probably only exist few local minima. However, if the random starts
end in many different local minima, the data exhibit a serious local minimum
problem. In that case, it is advisable to increase the number of random starts
and retain the best solution.
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