
Multiple-Depot Integrated Vehicle and Crew
Scheduling

Dennis Huisman, Richard Freling∗and Albert P.M. Wagelmans
Erasmus Center for Optimization in Public Transport (ECOPT) &

Econometric Institute, Erasmus University Rotterdam,

P.O. Box 1738, NL-3000 DR Rotterdam, The Netherlands

E-mail: huisman@few.eur.nl

Econometric Institute Report EI2003-02

Abstract

This paper presents two different models and algorithms for inte-
grated vehicle and crew scheduling in the multiple-depot case. The
algorithms are both based on a combination of column generation and
Lagrangian relaxation.

Furthermore, we compare those integrated approaches with each
other and with the traditional sequential one on random generated
as well as real-world data instances for a suburban/extra-urban mass
transit system. To simulate such a transit system, we propose a new
way of generating randomly data instances such that their properties
are the same as for our real-world instances.

1 Introduction

Vehicle and crew scheduling are two main problems arising in public transport
scheduling. Mostly, these problems are considered separately, where first the
vehicle scheduling problem and afterwards the crew scheduling problem is
solved. In this paper we consider the suburban/extra-urban transit system
with multiple depots, where we investigate the savings of using an integrated
approach instead of a sequential one. It is generally expected that the savings
of using an integrated approach in a suburban/extra-urban transit system
are much more significant than in an urban mass transit system, since there
are much less opportunities to relief one driver for another one in such a
way that both drivers can enjoy their break or start/finish their duty. These

∗In Memoriam: Richard Freling passed away on January 29, 2002 at the age of 34.

1

reliefs are only allowed at depots and certain other specified locations, which
are much further away from each other than in the urban context. If first an
optimal vehicle schedule is constructed, there can be vehicles which do not
pass a relief location for hours. Therefore, it is very well possible that there
does not exist a feasible crew schedule at all, or more probably, that the crew
schedule will be very inefficient.

In this paper we extend the mathematical model and the solution ap-
proach which we developed for the single-depot case in Freling, Huisman and
Wagelmans (2003) to the multiple-depot setting. This solution approach is
based on Lagrangian relaxation in combination with column generation. The
column generation is used to generate a set of duties, while Lagrangian re-
laxation is used to solve the master problem. Finally, Lagrangian heuristics
are used to compute feasible solutions. Furthermore, we formulate another
model which is an extension of the model for the single-depot case proposed
by Haase, Desaulniers and Desrosiers (2001) and we show the relation be-
tween both models. We also develop an algorithm for this model, which is
based on the same ideas as the algorithm for the first model. However, an
important difference between the single-depot and multiple-depot case is that
in the latter one the underlying vehicle scheduling problem is NP-hard (see
Bertossi, Carraresi and Gallo (1987)), while in the former it can be solved
in polynomial time. Of course, the underlying crew scheduling problem is
NP-hard in both cases (see Fischetti, Martello and Toth (1989)).

Although a lot of attention has been paid to vehicle and crew scheduling
in the literature, only a few papers consider complete integration of vehicle
and crew scheduling. However, some papers deal with partial integration:
vehicle scheduling during a heuristic approach to crew scheduling or inclusion
of crew considerations in the vehicle scheduling process. For an overview on
these papers, we refer to Freling, Huisman and Wagelmans (2003). Only
very recently, complete integration of vehicle and crew scheduling has been
proposed. The first mathematical formulation (for the single-depot case) is
proposed by Patrikalakis and Xerocostas (1990), which is slightly changed
by Freling, Boender and Paixão (1995). This latter formulation (see also
Freling, Wagelmans and Paixão (1999)) is extended in this paper to the
multiple-depot case.

In Freling, Huisman and Wagelmans (2003), we have made a comparison
between sequential and integrated vehicle and crew scheduling for an urban
mass transit system with a single depot. These results are very promising
and show that drivers can be saved without using more vehicles. The benefits
are especially large in the case that drivers are not allowed to change a ve-
hicle. In the general case, when changeovers are allowed, only small savings
can be obtained. Furthermore, we showed that a Lagrangian heuristic based
on column generation can produce good solutions within reasonable compu-
tation times. In another paper (Freling, Huisman and Wagelmans (2001)),

2

we showed that this approach can also be applied to solve problems arising
from practice, where significantly more complicating constraints are present
than usually considered in the literature.

Haase and Friberg (1999) propose an exact algorithm for the single-depot
vehicle and crew scheduling problem. Both the vehicle and crew scheduling
aspects are modelled by using set partitioning type of constraints. A branch-
and-cut-and-price algorithm is proposed, that is, column generation and cut
generation are combined in a branch-and-bound algorithm. Computational
results indicate that only small problems (up to 20 trips) could be solved.

Haase, Desaulniers and Desrosiers (2001) propose an approach which
solves a crew scheduling problem that incorporates side constraints for the
vehicles. This is done in such a way that the solution of this problem guaran-
tees that an overall optimal solution is found after constructing a compatible
vehicle schedule. The solution approach is based on a multi-commodity net-
work flow formulation for the crew scheduling problem with side constraints,
which is solved by a branch-and-price algorithm. Computational experiments
with random data instances, simulating an urban mass transit environment,
show that instances with up to 150 trips can be solved in 82 minutes of CPU
time (on average on a SUN ULTRA-10/440 workstation) and with an op-
timality gap of 0.3% on average and always less than 1.2%. Furthermore,
out of these 10 instances, 6 instances could be solved to optimality within 3
hours of CPU time. For larger problem instances a heuristic version of the
algorithm is used. With this approach instances up to 350 trips can be solved
within 2 hours of CPU time on average. The average (maximum) integral-
ity gap for these instances is 0.3% (1.5%). Currently, they are working on
an extension of their approach to the multiple-depot case (see Desaulniers,
Cordeau and Desrosiers (2001)). In the airline world, a similar approach is
used to integrate aircraft routing and crew scheduling (see Cordeau et al.
(2001) and Klabjan et al. (2002)).

To the best of our knowledge, only one paper written by Gaffi and Nonato
(1999), deals with integration in the multiple-depot case. Their approach is
like ours based on Lagrangian relaxation with column generation. Their
mathematical formulation is similar to one of the formulations presented in
this paper and their approach is developed for the extra–urban mass tran-
sit setting, where crews are tightly dependent on the vehicle activities or
dead-heading of crew is highly constrained. Since they consider a particu-
lar application, they make some assumptions which are not valid in general.
These assumptions are that a driver is assigned to the same vehicle during the
whole duty, and that all pieces of work (part of the duty between two breaks)
start and end at a depot. Therefore, pieces of work and vehicle blocks coin-
cide, which makes the problem computationally much more attractive than
without these assumptions. The authors provide some computational results
for Italian public transit operators, which show some improvements over the

3

results of a sequential approach. CPU times (on a Power PC 604, 180 Mhz)
are over 24 hours for cases with up to 257 trips, and on average 2 to 6 hours.
However, they do not compute lower bounds, which makes it difficult to give
insight in the quality of their approach.

The main contribution of this paper is that the two proposed algorithms
are very general (compared to Gaffi and Nonato (1999)) and can thus be
used for different applications in the area of suburban and extra-urban mass
transit systems. It is even possible to use them for urban transit systems,
although there the benefits of using an integrated approach are much smaller
as explained earlier. To test the algorithms, we have generated some ran-
dom data instances for the suburban/extra-urban mass transit system, which
are based on our experience with real-world problems. These instances are
much more realistic for a suburban/extra-urban mass transit system than
randomly generated test instances that have been proposed in the literature
before. Furthermore, we compare the two algorithms and we also provide
lower bounds for small and medium-sized problem instances. Although we
were not able to compute lower bounds for large problem instances, the al-
gorithms can still be used to get feasible solutions, which can be compared
with the sequential approach.

The paper is organized as follows. In Section 2 we give a comprehensive
problem definition and discuss some of the basic assumptions we make. In
Sections 3 and 4, we discuss a mathematical model and an algorithm for the
integrated multiple-depot vehicle and crew scheduling problem, respectively.
The second formulation and algorithm is given in Section 5. Finally, we con-
clude the paper with some computational results on real-world and randomly
generated data instances in Section 6.

2 Problem Definition

The multiple-depot vehicle and crew scheduling problem (MD-VCSP) com-
bines the multiple-depot vehicle scheduling problem (MDVSP) and the crew
scheduling problem (CSP). Given a set of trips within a fixed planning hori-
zon, it minimizes the total sum of vehicle and crew costs such that both the
vehicle and the crew schedule are feasible and mutually compatible. Each
trip has fixed starting and ending times and can be assigned to a vehicle and
a crew member from a certain set of depots. Of course, if every trip can only
be assigned to a vehicle and a crew member from one depot, the problem de-
composes to a number of single-depot vehicle and crew scheduling problems.
Furthermore, the traveling times between all pairs of locations are known.

A vehicle schedule is feasible if:

• all trips are assigned to exactly one vehicle;

4

• each trip is assigned to a vehicle from a depot that is allowed to drive
this trip.

The vehicle costs consist of a fixed component for every vehicle and vari-
able costs for idle and travel time. It is allowed that a vehicle returns to a
depot between two trips if there is enough time to do this.

From a vehicle schedule it follows which trips have to be performed by
the same vehicle and this defines so-called vehicle blocks. The blocks are
subdivided at relief points, defined by location and time, where and when
a change of driver may occur and drivers can enjoy their break. A task is
defined by two consecutive relief points and represents the minimum portion
of work that can be assigned to a crew. These tasks have to be assigned
to crew members. The tasks that are assigned to the same crew member
define a crew duty. Together the duties constitute a crew schedule. Such a
schedule is feasible if (1) each task is assigned to one duty, and (2) each duty
is a sequence of tasks that can be performed by a single crew, both from
a physical and a legal point of view. In particular, each duty must satisfy
several complicating constraints corresponding to work load regulations for
crews. Typical examples of such constraints are maximum working time
without a break, minimum break duration, maximum total working time,
and maximum duration. These constraints can differ between different types
of duties, e.g., early, split and late duties. The cost of a duty is usually a
combination of fixed costs such as wages, and variable costs such as overtime
payment. Finally, a piece (of work) is defined as a sequence of tasks on one
vehicle block without a break that can be performed by a single crew member
without interruption.

We make five assumptions, which are discussed one by one below.

1. Each vehicle has its own depot, which means that a vehicle starts and
ends in the same depot. The number of vehicles used per depot is
unlimited.

2. All crew have their own depot, which means that a duty of a single
crew member has only tasks on vehicles from that depot. However, it
is not necessary that every duty starts and ends in this depot.

3. The feasibility of a piece only depends on its duration of this sequence,
which is limited by a minimum and maximum piece length.

4. There is continuous attendance, i.e., there is always a driver present if
the bus is outside the depot. However, vehicle attendance at the depot
is not necessary.

5. Changeovers, which is the change of vehicle of a driver during his break,
are allowed.

5

The last two assumptions imply that if a driver has no changeover, i.e.
before and after the break he drives the same vehicle, there should be another
driver on this vehicle during the break of the former driver.

We distinguish between two types of tasks, viz., trip tasks corresponding
to trips, and dh-tasks corresponding to deadheading. A deadhead is a period
that a vehicle is moving to or from the depot, or a period between two trips
that a vehicle is outside of the depot (possibly moving without passengers).
All trip tasks need to be covered by a crew member, while the covering of
dh-tasks depends on the vehicle schedules and determines the compatibility
between vehicle and crew schedules. In particular, each dh-task needs to be
assigned to a crew if and only if its corresponding deadhead is assigned to a
vehicle.

3 Mathematical Formulation

In this section, we propose a mathematical formulation for the MD-VCSP
under the assumptions stated in Section 2.

Let N = {1, 2, ..., n} be the set of trips, numbered according to increasing
starting time, and let E = {(i, j) | i < j, i, j compatible, i ∈ N, j ∈ N} be
the set of deadheads. Define D as the set of depots and let sd and td both
represent depot d. We define the vehicle scheduling network Gd = (V d, Ad),
which is an acyclic directed network with nodes V d = Nd∪{sd, td}, and arcs
Ad = Ed ∪ (sd ×Nd) ∪ (Nd × td). Note that Nd and Ed are the parts of N
and E corresponding to depot d, since it is not necessary that all trips can
be served from every depot. Let cd

ij be the vehicle cost of arc (i, j) ∈ Ad,
which is usually some function of travel and idle time. Furthermore, a fixed
cost for using a vehicle can be added to the cost of arcs (sd, i) or (j, td) for
all i, j ∈ Nd.

To reduce the number of constraints, we assume that a vehicle returns to
the depot if it has an idle time between two consecutive trips which is long
enough to let it return. In that case the arc between the trips is called a long
arc; the other arcs between trips are called short arcs. Denote Asd ⊂ Ad and
Ald ⊂ Ad as the sets of short and long arcs, respectively.

Furthermore, Kd denotes the set of duties corresponding to depot d and
fd

k denote the crew cost of duty k ∈ Kd, respectively. We assume that
deadheads to and from the depot correspond to one dh-task each. Suppose
(i, j) ∈ Ald and let eli and blj denote the ending and starting location of
trips i and j, respectively. Then we let Kd(i, td) and Kd(sd, j) denote the
set of duties covering dh-task from eli to depot d and from depot d to blj,
respectively. Furthermore, Kd(i) denotes the set of duties covering the trip
task corresponding to trip i ∈ Nd, which means that we assume that a trip
corresponds to exactly one task. Kd(i, j) denotes the set of duties covering

6

dh-tasks corresponding to deadhead (i, j) ∈ Asd. Decision variable yd
ij indi-

cates whether an arc (i, j) is used and assigned to depot d or not, while xd
k

indicates whether duty k corresponding to depot d is selected in the solution
or not. The MD-VCSP can be formulated as follows.

(MD-VCSP1):

min
∑
d∈D

∑
(i,j)∈Ad

cd
ijy

d
ij +

∑
d∈D

∑
k∈Kd

fd
k xd

k (1)

∑
d∈D

∑
{j:(i,j)∈Ad}

yd
ij = 1 ∀i ∈ N, (2)

∑
d∈D

∑
{i:(i,j)∈Ad}

yd
ij = 1 ∀j ∈ N, (3)

∑
{i:(i,j)∈Ad}

yd
ij −

∑
{i:(j,i)∈Ad}

yd
ji = 0 ∀d ∈ D, ∀j ∈ Nd, (4)

∑
k∈Kd(i)

xd
k −

∑
{j:(i,j)∈Ad}

yd
ij = 0 ∀d ∈ D, ∀i ∈ Nd, (5)

∑
k∈Kd(i,j)

xd
k − yd

ij = 0 ∀d ∈ D, ∀(i, j) ∈ Asd, (6)

∑
k∈Kd(i,td)

xd
k − yd

itd −
∑

{j:(i,j)∈Ald}
yd

ij = 0 ∀d ∈ D, ∀i ∈ Nd, (7)

∑
k∈Kd(sd,j)

xd
k − yd

sdj −
∑

{i:(i,j)∈Ald}
yd

ij = 0 ∀d ∈ D, ∀j ∈ Nd, (8)

xd
k, y

d
ij ∈ {0, 1} ∀d ∈ D, ∀k ∈ Kd,∀(i, j) ∈ Ad.(9)

The objective is to minimize the sum of total vehicle and crew costs.
The first three sets of constraints, (2)-(4), correspond to the formulation for
the MDVSP. In fact, it is not necessary to have both constraints (2) and
constraints (3). However, it is useful to have both sets of constraints when
we relax constraints (4), as will be done in the next section. Constraints
(5) assure that each trip task will be covered by a duty from a depot if and
only if the corresponding trip is assigned to this depot. Furthermore, con-
straints (6), (7) and (8) guarantee the link between dh-tasks and deadheads
in the solution, where deadheads corresponding to short and long arcs in Ad

are considered separately. In particular, constraints (6) guarantee that each
deadhead from i to j is covered by a duty in the set Kd(i, j) if and only if the
corresponding short arc is in the vehicle solution. The other two constraint
sets, (7) and (8), ensure that the dh-tasks from eli to td and from sd to blj,
possibly corresponding to long arc (i, j) ∈ Ad, are both covered by one duty
if and only if the corresponding deadheads are in the solution. Note that the
structure of these last three sets of constraints is such that each constraint
corresponds to the possible selection of one duty from a large set of duties,

7

where the fact whether or not a duty has to be selected depends on the val-
ues of the corresponding y variables. We will refer to these constraints as
partitioning type of constraints.

4 Algorithm

The algorithm we propose to solve model MD-VCSP1, is a combination of
column generation and Lagrangian relaxation and is an extension of the
algorithm proposed by us for the single-depot case (see Freling, Huisman
and Wagelmans). An outline of the algorithm is shown in Figure 1.

Step 0: Initialization
Solve MDVSP and CSP for every depot and
take as initial set of columns the duties in the CSP-solution.
Step 1: Computation of dual multipliers
Solve a Lagrangian dual problem with the current set of columns.
This gives a lower bound for the current set of columns.
Step 2: Deletion of columns
If there are more columns than a certain minimum amount, then delete
columns with positive reduced cost greater than a certain treshold value.
Step 3: Generation of columns
Generate columns with negative reduced cost.
Compute an estimate of a lower bound for the overall problem.
If the gap between this estimate and the lower bound found in Step 1 is
small enough (or another termination criterion is satisfied), go to Step 4;
otherwise, return to Step 1.
Step 4: Construction of feasible solution
Solve a second Lagrangian dual problem with the set of columns
generated in Step 3, where the optimal solution of the subproblem gives
feasible vehicle schedules. Solve for each depot the crew scheduling
problem corresponding to the feasible vehicle schedules.

Figure 1: Solution method for MD-VCSP1

First, we compute a feasible solution by using the sequential approach,
which means we compute the optimal solution of the MDVSP and afterwards,
we solve for each depot a CSP given the vehicle schedule for that depot.
To solve the MDVSP, we use the model described in Huisman, Freling and
Wagelmans (2001) and the all-purpose solver CPLEX. The approach we used
to solve the CSP, is described in Freling, Huisman and Wagelmans (2003).

The main part of the algorithm is used to compute a lower bound and we
use therefore a column generation algorithm. Traditionally, the master prob-
lem in a column generation algorithm is solved with LP-relaxation. However,

8

we found in Freling, Huisman and Wagelmans (2003) very promising results
of solving the master problem with Lagrangian Relaxation. Therefore, we
use this approach again. The details will be discussed in Subsection 4.1.

Furthermore, we generate the duties in the column generation subproblem
(pricing problem), which is the topic of Subsection 4.2. Since we do not want
to get a very large master problem, columns with high positive reduced costs
will be removed. This only happens if there are more columns than a certain
minimum number. The deletion of columns is an important difference with
the algorithm for the single-depot case, where it was not necessary to delete
columns, since the resulting Lagrangian subproblem could be solved faster
and the number of generated columns was lower.

Finally, in Step 4 we compute feasible solutions, which will be discussed
in detail in Subsection 4.3.

4.1 The Master Problem

To solve the master problem, we use the relaxation of model MD-VCSP1,
where the equality signs in the constraints (4)-(8) are first replaced by “greater-
than-or-equal” signs, which are subsequently relaxed in a Lagrangian way.
That is, we associate non-negative Lagrangian multipliers κd

j , λd
i , µd

ij, νd
i and

ξd
j with constraints (4), (5), (6), (7) and (8), respectively. Then the remain-

ing Lagrangian subproblem can be solved by pricing out the x variables and
solving a large single-depot vehicle scheduling problem (SDVSP) for the y
variables.

Furthermore, we need an additional procedure to update the Lagrangian
multipliers after solving the Lagrangian relaxation. This is necessary to as-
sure that all duties in the current master problem have non-negative reduced
costs so that these duties will not be generated again in the pricing problem.
For more details on this procedure, we refer to Freling (1997) and Carraresi,
Girardi and Nonato (1995).

An alternative and slightly different approach is to relax constraints (2)
instead of (4). Constraints (3) are redundant in this approach. Then the
remaining Lagrangian subproblem for the y variables corresponds with solv-
ing |D| small SDVSP’s instead of a large one. We have compared both
approaches and concluded that the initial approach gives slightly better com-
putation times to get the same lower bound (viz., the value of the LP lower
bound). Therefore, in the remaining of the paper, we do not consider the
alternative again.

4.2 The Column Generation Subproblem

For the MD-VCSP, vehicle blocks are not known and a huge number of fea-
sible pieces of work may exist. Therefore, we propose a two phase procedure

9

for the column generation pricing problem: in the first phase, a piece genera-
tion network is used to generate a set of pieces of work which serves as input
for the second phase where duties are generated. Since there is no interaction
between the different depots in the column generation subproblem, we can
solve them separately for every depot.

In every iteration i we compute an estimate LBTi of the lower bound
for the overall problem. Let LBSi denote the value of the Lagrangian lower
bound in iteration i, then the estimate is computed as

LBTi = LBSi +
∑
d∈D

∑
k∈Kd

i

f
d

k, (10)

where Kd
i is the set of duties added in iteration i and f

d

k is the reduced
cost of duty k ∈ Kd, which is defined below.

f
d

k = fd
k −

∑
i∈N(k,d)

λd
i −

∑
(i,j)∈As(k,d)

µd
ij −

∑
i∈Nt(k,d)

νd
i −

∑
j∈Ns(k,d)

ξd
j , (11)

where
N(k, d): set of trips in duty k from depot d,
As(k, d): set of short arcs As in duty k from depot d,
N t(k, d): set of trips that have a corresponding task in duty k from depot d
with the end of this trip as starting location and the depot as ending location,
N s(k, d): set of trips that have a corresponding task in duty k from depot
d with the depot as starting location and the start of this trip as ending
location.

LBTi is a lower bound for the overall problem if all duties with negative
reduced cost are added to the master problem. We terminate Step 3 if
the relative difference between LBTi and LBSi is small or if a maximum
computation time is reached.

4.2.1 Generation of Pieces of Work

Recall that we have defined a piece of work as a continuous sequence of trip
tasks and dh-tasks corresponding to (a part of) one vehicle block, and that
this sequence of tasks is only restricted by its duration. The network for
piece generation is an extension of the network Gd for vehicle scheduling
(see Section 3). Let a start point (end point) be defined as the relief point
corresponding to the start (end) of a vehicle trip. We define the network
Gd′ = (V d′, Ad′), where nodes correspond to the relief points on each trip
that can be assigned to a vehicle from depot d, and the source sd and the
sink td represent the depot. Arcs in Ad′ correspond to dh-tasks and trip
tasks. Notice that Gd′ is acyclic.

Let bd
mn be the cost associated with each arc (m, n) ∈ Ad′. Recall from

Section 4.1 that we associate Lagrangian multipliers λd
i , µd

ij, νd
i and ξd

j with

10

constraints (5), (6), (7) and (8), respectively. The reduced cost is then defined
as

b
d

mn =

bd
mn − λd

i ,
for each arc (m, n) with m the start point
and n the end point of trip i,

bd
mn − µd

ij,
for each arc (m, n) with m the end point
of trip i and n the start point of trip j,

bd
mn − ξd

j ,
for each arc (m, n) with m = sd

and n the start point of trip j,

bd
mn − νd

i ,
for each arc (m, n) with n = td

and m the end point of trip i.

Thus, the reduced costs on the arcs are defined such that the reduced
cost of a path is equal to the reduced cost of the corresponding piece of
work. Each path between two nodes u and v in network Gd′ corresponds to a
feasible piece of work if its duration is between the minimum and maximum
allowed duration of a piece of work. However, it is not necessary to generate
all pieces, since we only have to satisfy the column generation optimality
condition, that is, there are no duties left with negative reduced costs. The
sufficient subset is generated by solving a shortest path problem between
each pair of nodes in network Gd′ that satisfy the constraint on the piece
duration. For all feasible paths from u to v, three additional paths are
considered, namely sd, u, ..., v, u, ..., v, td and sd, u, ..., v, td. It is easy to see
that by generating only this subset of pieces, we assure that the column
generation optimality condition is satisfied.

4.2.2 Generation of Duties

Duties have to satisfy certain feasibility conditions. In particular, they consist
of a maximum number of pieces. In our case this maximum is equal to 2. This
is the reason why we simply enumerate all possible combinations of pieces
and check if such a combination is feasible, until we find a specified number of
duties with negative reduced costs (or all combinations have been checked).
The reduced cost of a duty can be easily computed when the reduced cost
of a piece is already known: the reduced cost of a duty is equal to the sum
of the reduced cost of the pieces it is built from under the assumption of
continuous attendance (as described in Section 2).

4.3 Feasible Solutions

At the end, in Step 4, we only relax constraints (5)-(8), which is again done in
a Lagrangian way. Therefore, the solution of the remaining subproblem gives

11

a feasible vehicle schedule. Notice, that this subproblem is a MDVSP, which
is an NP-hard problem. However, we need to solve only a few iterations of
the subgradient algorithm to get good solutions, since we start with already
good multipliers (the best one from the last iteration in Step 1). After that,
for every depot, we compute feasible crew schedules given these (feasible)
vehicle schedules. We do this by solving the CSP in the same way as in the
initial step. Of course, it is also possible to compute more feasible solutions
by solving the CSP not only for the vehicle solution from the last iteration,
but also for vehicle solutions which were encountered earlier on. A reason to
actually do this could be that the gap between the lower and upper bound is
quite large, which is an indication that the upper bound could be improved
upon.

5 Alternative Approach

In this section we propose another mathematical formulation for the MD-
VCSP which has only variables related to crew duties. The vehicle schedule
can be obtained implicitly from the crew schedule. This formulation can be
derived from the one previously presented in this paper, but is also equivalent
to the formulation of Haase, Desaulniers and Desrosiers (2001) in the case of
a single depot. An alternative algorithm based on this model is suggested in
Subsection 5.2.

5.1 Mathematical Formulation

The alternative mathematical formulation for the MD-VCSP can be obtained
from model (MD-VCSP1) by substituting for the y variables using constraints
(6), (7) and (8). The problem can then be formulated as follows.

(MD-VCSP2):

min
∑
d∈D

∑
k∈Kd

gd
kx

d
k (12)

∑
d∈D

∑
{j:(i,j)∈Ad}

∑
k∈Kd(i,j)

xd
k = 1 ∀i ∈ N, (13)

∑
{i:(i,j)∈Ad}

∑
k∈Kd(i,j)

xd
k −

∑
{i:(j,i)∈Ad}

∑
k∈Kd(j,i)

xd
k = 0 ∀d ∈ D,∀j ∈ Nd, (14)

∑
k∈Kd(i)

xd
k −

∑
{j:(i,j)∈Ad}

∑
k∈Kd(i,j)

xd
k = 0 ∀d ∈ D,∀i ∈ Nd, (15)

xd
k ∈ {0, 1} ∀d ∈ D,∀k ∈ Kd. (16)

In this formulation gd
k is the sum of the costs of duty k ∈ Kd and the

variable vehicle costs corresponding to the arcs in this duty. However, in the

12

proposed formulation we cannot deal with fixed vehicle costs. We can only
introduce them by adding an extra decision variable B to count the number
of vehicles and by adding the following set of constraints:

∑
d∈D

∑
k∈Kd(h)

xd
k ≤ B ∀h ∈ H, (17)

where Kd(h) is the set of duties corresponding to depot d where time
point h is between the start and end time of one of the tasks of this duty. H
is defined as the set of time points at which a vehicle may leave a depot to
drive to the start location of a trip, i.e., the start time of the trip minus the
driving time from the depot to the start location. It suffices to consider only
these time points, since only at these time points the number of vehicles can
increase, i.e., a departure may occur. Moreover, if there are two consecutive
time points in H between which no arrival at a depot can occur, then the
number of vehicles at the latest time point is at least the number of vehicles
at the earlier one. This means that the constraint for the earlier time point
can be left out.

The main advantage of the formulation above compared to the one in
Section 3 is that the number of constraints is much less. In the case that
|Nd| = N and |Asd| = As,∀d ∈ D, the number of constraints reduces from
(4|D| + 2)|N | + |D||As| to (2|D| + 1)|N | + |H|. However, we do not have
the vehicle schedules explicitly in the model anymore, which means it is less
straightforward how to construct feasible solutions by using a Lagrangian
heuristic. Therefore, we propose an algorithm that consists of two phases, in
which we use both formulations presented in this paper.

5.2 Algorithm

In this subsection we discuss a second algorithm to solve the MD-VCSP which
consists of two phases. In the first phase, we compute a lower bound using
model MD-VCSP2 by again combining column generation and Lagrangian
relaxation. We use the columns generated during the first phase in the second
one to find a feasible vehicle schedule and a corresponding crew schedule.
The second phase is similar to Step 4 of the previous algorithm described in
Section 4. The important differences are thus in computing the lower bound,
where we use model MD-VCSP2 instead of MD-VCSP1. These differences
are described below.

To compute a lower bound, we relax the constraints (13)-(15) in a La-
grangian way and we do not take the constraints (17) into account, which
means we do not consider fixed vehicle costs explicitly. However, we can eas-
ily get a lower bound on these costs, since an optimal solution of the MDVSP
with only fixed costs, is a lower bound on the fixed vehicle costs. A lower
bound for the total problem is thus given by the sum of the Lagrangian lower

13

bound and the optimal solution of the MDVSP with only fixed costs. Fur-
thermore, we compute given a set of multipliers a new lower bound where
we include one of the constraints (17). If we find an improvement, then
we use the subgradient algorithm to get a better lower bound. Otherwise,
we include the next constraint. In this way, we can subsequently improve
the lower bound, since most of the constraints (17) are not binding at all.
However, we cannot guarantee that we find the best lower bound in this way.

Notice that we include only one of the constraints (17) at a time, since
the Lagrangian subproblem can still be solved in polynomial time. In the
case we do not include any of these constraints, the subproblem can even be
solved by only pricing out the x variables.

Another important difference compared to the first algorithm is in the
definition of the reduced costs of the arcs in the piece generation network.
Let µi, υd

j and λd
i be the Lagrangian multiplier corresponding to constraints

(13), (14) and (15) in model MD-VCSP2, respectively. The reduced cost of
the arcs are then defined as follows:

b
d

mn =

bd
mn − λd

i ,
for each arc (m, n) with m the start point
and n the endpoint of trip i,

bd
mn − µi − υd

i + υd
j ,

for each arc (m, n) with m the end point
of trip i and n the start point of trip j,

bd
mn + υd

j ,
for each arc (m, n) with m = sd

and n the start point of trip j,

bd
mn − µi − υd

i ,
for each arc (m, n) with n = td

and m the end point of trip i.

However, notice that we can still use the all-pairs shortest path algorithm
for the generation of the pieces as described in Subsection 4.2.1.

6 Computational Results

In this section we test our algorithms on some real-life datasets from Con-
nexxion and on some random data instances. All tests are executed on a
Pentium III 450MHz personal computer (128MB RAM) with the following
parameter settings.

1. The objective is to minimize the total sum of vehicles and drivers. For
solving the MDVSP in the sequential approach and in the initial step
for the integrated approach we use an additional fictitious cost in the
variable vehicle costs, viz., for every minute a vehicle is empty outside

14

the depot a cost equal to 1 is incurred. This is necessary to make a fair
comparison between a sequential and an integrated approach.

2. The pricing problems are solved independently for each depot and each
type of duty. Moreover, we generate at most 1500 duties for each
combination of a depot and type of duty.

3. The maximum number of iterations in the subgradient algorithm to
solve the master problem (Step 1) is 500 + 3k in the k-th iteration
of the column generation algorithm. However, for constructing the
feasible solutions in Step 4, the number of iterations is only 10, since in
that case the subproblem is NP-hard. Such a small number of iterations
is sufficient, since we already start with good multipliers, namely the
best ones of the last iteration in the previous step. We construct 10
feasible solutions from which the best one will be selected.

4. The column generation algorithm is stopped if the difference between
the current and estimated lower bound is smaller than 0.1% or if the
computation time of the lower bound phase is more than 3 hours. No-
tice that in the latter case we do not have a proven lower bound.

In Subsection 6.1 we describe some properties of the real-world data in-
stances. The results can be found in Subsection 6.2. Furthermore, we pro-
pose a new way of generating random data instances to simulate problem
instances for an extra-urban bus network in Subsection 6.3. We choose for a
different way of generating these random instances, since generators defined
in the literature before (see e.g. Dell’Amico, Fischetti and Toth (1993), Frel-
ing (1997) and Haase, Desaulniers and Desrosiers (2001)) do not take into
account specific properties of an extra-urban bus network. First of all, they
choose to take the start times of the trips completely random, which means
that the intervals between two trips can vary a lot, e.g., between the first two
trips it may be five minutes, while it can be two hours between the second
and the third trip. However, in the real world these frequencies are fixed
to some extent, e.g., during the peak hours it is 20 minutes and outside the
peak hours 30 minutes. Secondly, they have very long travel times such that
vehicles can only drive a few trips, while in our real-world instances a vehicle
drives about 10 trips on average.

6.1 Properties of the real-world data instances

We test our algorithms on some subsets of a large dataset from Connexxion,
which is the largest bus company in the Netherlands. The total set consists
of 1104 trips and 4 depots in the area between Rotterdam, Utrecht and
Dordrecht, three large cities in the Netherlands. However, it is important to

15

note that not all trips are allowed to be driven by a vehicle from every depot.
In fact, almost half of the trips can only be assigned to one depot and only
a very small number can be assigned to all depots. On average, a trip can
be assigned to 1.71 depots.

The restrictions that we have taken into account, are as follows. A driver
can only be relieved by another driver at the start or end of a trip at certain
specified locations or at the depot. There are 8 of these locations, which
are all major bus stations. If a driver starts/ends his duty at the depot,
there is a sign-on/sign-off time of 10 and 5 minutes, respectively. If a driver
starts/ends his duty at another relief location, an extra time of 15 minutes
plus the deadhead time between this location and the depot is added to the
length of the duty. There are five different types of duties, one tripper type
consisting of one piece with a length between 30 minutes and 5 hours, and
four normal types consisting of two pieces with the properties described in
Table 1.

type 1 (early) 2 (day) 3 (late) 4 (split)
min max min max min max min max

start time 8:00 13:15
end time 15:30 18:14 19:30

piece length 0:30 5:00 0:30 5:00 0:30 5:00 0:30 5:00
break length 0:45 0:45 0:45 1:30
duty length 9:45 9:45 9:45 12:00

work time 9:00 9:00 9:00 9:00

Table 1: Properties of the different duty types

6.2 Results real-world data instances

We consider 8 different problem instances for which the number of trips
varies between 194 and 653 trips, which have been derived from the large set
described in the previous subsection. In Table 2 an overview of the results
of the different algorithms is provided for these test problems. For each
instance, we give the number of trips and the average number of depots to
which a trip may be assigned. Furthermore, we give the number of vehicles,
drivers and the total sum of these two for the sequential approach and the
two integrated approaches presented earlier in this paper (Section 4 and 5,
respectively). Finally, we report the best lower bound given by the two
algorithms.

As can be seen from Table 2 both integrated approaches give much better
solutions than the sequential one. The number of vehicles does not change,
while the number of drivers is reduced significantly. The largest relative
improvement is obtained for instance 3, where both algorithms save 10 out

16

instance 1 2 3 4 5 6 7 8
trips 194 210 220 237 304 386 451 653

depots/trip 1.60 2.47 1.52 2.38 2.48 1.27 1.67 1.74
vehicles 19 33 27 34 40 32 47 67

seq. drivers 33 54 51 62 74 59 86 123
total 52 87 78 96 114 91 133 190

vehicles 19 33 27 34 40 32 47 67
int. 1 drivers 30 50 41 55 65 58 77 117

total 49 83 68 89 105 90 124 184
vehicles 19 33 27 34 40 32 47 67

int. 2 drivers 28 50 41 54 67 58 77 117
total 47 83 68 88 107 90 124 184
lower 44* 77 64* 81 95* - - -

Table 2: Results Connexxion data instances

of 51 drivers. Furthermore, we can see that it is difficult to conclude which
of the algorithms for the integrated approach is better. Sometimes the first
one gives a better solution and sometimes the second one.

We were only able to compute a lower bound for two of these instances
given the maximum computation time of 3 hours for the lower bound phase,
namely for instances 2 and 4. For instances 1, 3 and 5 the lower bound has
been computed without taking a maximum computation time as stop crite-
rion into consideration. For all instances, the best lower bound is obtained by
the first algorithm. The computation times to compute these lower bounds
vary a lot, e.g., for instance 1 it takes almost 6 hours while for instance 2 it
takes only 45 minutes (both for the first algorithm), although instance 2 has
more trips and the average of number depots per trip is significantly higher.
This difference can be explained by the completely different structure of these
instances, namely that the average length of the trips in instance 2 is much
higher than in instance 1. This can also be seen from the table, since the
number of vehicles and drivers is much lower for instance 1 than for instance
2.

6.3 Generation of random data instances

In this subsection, we give a detailed description of the way the random data
instances have been generated. These instances are available at the web page
http://www.few.eur.nl/few/people/huisman/instances.htm.

The coordinates of the different locations, either depots or start/end
points of the lines, are integers generated from a uniform distribution in
a 50 by 50 kilometers square. However, there is a minimum distance be-
tween each pair of depots and between each pair of start/end points of 10

17

kilometers.
We consider two different types of instances, which vary in the travel

speed. If the travel speed is lower, trips are longer and therefore, less trips
will be assigned to one vehicle as well as to one driver. For each of the two
types, we have six cases, three in which we have four lines (from A to B, C and
D and from B to C) and again three with five lines (the same lines as in the
first case plus a line from C to E). All lines are driven in both directions and
have the same frequency. Furthermore, we define four different intervals with
respect to frequency and travel speed. In Table 3, we denote these frequencies
(in the case of 10, 20 and 40 trips per line/direction, respectively) and travel
speeds (for type A as well as B) for the different intervals.

interval frequency (min.) speed (kms/hour)
10-trips 20-trips 40-trips type A type B

06:00 - 08:59 80 40 20 28 20
09:00 - 12:59 120 60 30 32 24
13:00 - 18:59 80 40 20 30 23
19:00 - 23:59 240 120 60 35 26

Table 3: Frequencies and travel speeds per interval

The start time of the first trip for each line/direction is uniformly drawn
between 06:00 and 07:19, between 06:00 and 06:39 and between 06:00 and
06:19, respectively. The end times are computed as the start time plus the
travel time between the locations rounded up to the nearest integer. The
travel speed for deadhead trips is 50 kms/hour. We choose this significantly
higher than the operational travel times since the bus does not have to stop
for passengers entering or leaving, which means the shortest route can be
taken.

Finally, we have to choose the relief locations, where a driver can take a
break and one driver can be replaced by another one. These locations need
some relief facilities like a canteen to take a meal break. It is most likely
that these facilities are at the start and end points of the lines. Therefore,
we choose A, B, C and D as relief locations in the cases with four lines and
these locations plus E in the other ones. We use the same restrictions with
respect to the feasibility of the duties as before (see Subsection 6.1).

Notice that in contrary to the real-world instances we assume that vehicles
from each depot can carry out all trips.

6.4 Results random data

We have tested our algorithms by generating 10 random instances for the six
different cases described in Subsection 6.3 (10, 20 and 40 trips per line/direction
with 4 and 5 lines). As a consequence, the total number of trips varies from

18

80 to 400. These tests are executed with 2 as well as 4 depots. However,
with 4 depots we do not consider the two largest cases (with 320 and 400
trips, respectively).

In Tables 4 and 5 we give an overview of the results for instances of type
A with 2 and 4 depots, respectively. We give the solution of the traditional
sequential approach and of the two integrated approaches described in the
Sections 4 and 5, respectively.

trips 80 100 160 200 320 400
vehicles 9.2 11.0 14.8 18.4 26.7 32.9

seq. drivers 23.8 29.0 35.9 44.5 60.8 74.9
total 33.0 40.0 50.7 62.9 87.5 107.8

vehicles 9.2 11.0 14.8 18.4 26.7 32.9
int. 1 drivers 20.6 24.8 33.5 40.7 60.1 73.2

total 29.8 35.8 48.3 59.1 86.8 106.1
vehicles 9.2 11.0 14.8 18.4 26.7 32.9

int. 2 drivers 20.6 24.6 33.5 41.0 60.0 74.2
total 29.8 35.6 48.3 59.4 86.7 107.1

Table 4: Average results random data instances - 2 depots - type A

trips 80 100 160 200
vehicles 9.2 11.0 14.8 18.4

seq. drivers 25.8 29.9 38.8 47.1
total 35.0 40.9 53.6 65.5

vehicles 9.2 11.0 14.8 18.4
int. 1 drivers 20.5 25.3 34.1 41.6

total 29.7 36.3 48.9 60.0
vehicles 9.2 11.0 14.8 18.4

int. 2 drivers 20.4 25.2 34.7 42.0
total 29.6 36.2 49.5 60.4

Table 5: Average results random data instances - 4 depots - type A

As can been seen from Tables 4 and 5, the total sum of vehicles and
drivers can be reduced significantly by using an integrated approach. Fur-
thermore, the difference between the two algorithms is quite small on average
for problem instances up to 320 trips. Only in the case of 400 trips (2 depots)
and 160 and 200 trips (4 depots), the first algorithm performs significantly
better than the second one. Since the maximum computation time for the
lower bound phase is fixed, we conclude that only the first algorithm finds
good feasible solutions after a few column generation iterations. Finally, no-
tice that the number of drivers in most cases with 4 depots is more than in

19

the corresponding case with 2 depots. This is conspicuous since all data are
the same except the fact that there are two extra depots, which means that
the solution in the 2 depot case is also a feasible one in the 4 depot case.
Therefore, we can conclude that our algorithms perform worse if there are
more depots.

In Tables 6 and 7 we present detailed results for both algorithms for 2 and
4 depots, respectively. In the upper part of the tables we give some statistics
with respect to the first algorithm. We denote the average number of itera-
tions of the column generation algorithm and the average computation times
for the master problem and the pricing problem, respectively. Furthermore,
we give the total average computation time for computing the lower bound
and the average computation time for solving the last subgradient algorithm
in Step 4. These averages are computed over the instances for which a lower
bound is found. Therefore, we also denote the number of instances (out of
10) for which we actually found a lower bound. In the second part of the
tables we give the same statistics for the second algorithm. Although, we
use a crew scheduling algorithm several times to compute feasible solutions
in the final step of the algorithm, we do not mention these cpu times here,
since each crew scheduling algorithm can be used and it is not necessary to
use the one we suggested.

In the third part, we compare the upper bounds (best feasible solutions)
of both algorithms with the best lower bound of the two algorithms, which
results in ”gap 1” and ”gap 2”. Notice that sometimes the first algorithm
gives the better lower bound and sometimes the second one. Finally, we
denote in the bottom part the number of instances (out of 10) that the
first algorithm gives a better lower and upper bound, respectively. Behind
brackets, we also indicate the number of instances, where these bounds for
the two algorithms are equal. By definition, the second algorithm gives the
best bound in the remaining cases.

From Tables 6 and 7, we can conclude that only for small instances a
lower bound is computed within 3 hours computation time. Furthermore,
it is more difficult to find a lower bound in the case of 4 depots. The first
algorithm finds the lower bounds more often than the second one. In all cases
except two, namely 160 trips for 2 as well as 4 depots, the first algorithm
gives the best lower bound of the two or both algorithms give the same lower
bound.

If we look at the quality of the solutions found, the first algorithm some-
times performs better, while other times the second one performs better. For
instance, in the case of 160 trips and 2 depots the first and the second algo-
rithm give both three times the best solution. However, in the cases with a
large number of trips the first algorithm performs significantly better, e.g.,
in the case of 400 trips and 2 depots the first algorithm gives 5 out of 10
times the best solution, while the second algorithm gives only once the best

20

trips 80 100 160 200 320 400
iter. 17.4 25.2 36.8 39.5 - -
cpu m. 154.7 403.9 982.8 1641.5 - -

int. 1 cpu p. 148.7 510.7 3529.8 4769.5 - -
cpu t. 317.5 942.3 4721.3 6675.0 - -
cpu f. 3.6 5.0 15.3 40.0 - -

found 10 10 4 2 0 0
iter. 24.2 22.8 55.5 67.5 - -
cpu m. 212.7 224.0 832.3 1251.0 - -

int. 2 cpu p. 133.7 201.8 4159.5 6128.0 - -
cpu t. 354.0 439.3 5140.8 7562.5 - -
cpu f. 13.3 20.3 42.0 237.0 - -

found 10 9 4 2 0 0
upper 1 29.8 35.8 52.2 69.0 - -
upper 2 29.8 35.6 52.4 68.5 - -

best lower 28.2 33.9 49.2 64.5 - -
gap 1 (%) 5.37 5.31 5.75 6.52 - -
gap 2 (%) 5.37 4.78 6.11 5.84 - -
lower 1 0 (10) 2 (8) 3 (6) 1 (9) 0 (10) 0 (10)
upper 1 1 (8) 1 (6) 3 (4) 4 (3) 3 (4) 5 (4)

Table 6: Detailed results random data instances - 2 depots - type A

solution of the two.
The average gaps between the feasible solutions and the best known lower

bound varies between 4 and 9% for the first as well as the second algorithm.
These gaps are slightly higher in the cases with 4 depots than in the corre-
sponding case with 2 depots, which confirms our earlier suggestion that the
algorithms perform better in the 2 depot case. Furthermore, these gaps do
not vary significantly between the two algorithms. Although, the savings of
using an integrated approach are quite high, the gaps suggest that there may
be some room for further improvement. However, in our opinion the main
reason of these gaps is in the fact that the lower bounds are not very strong.

For instances of type B we obtain similar results (see Tables 8, 9, 10 and
11). The main conclusions discussed above about the effectiveness of using
an integrated approach and the differences between the two algorithm still
hold. The difference between the two types is that the instances of type B
are easier to solve than those of type A, since the number of instances for
which we found a lower bound is higher, the computation times are lower and
the gaps are smaller. Notice that this is also what we expected beforehand.

21

trips 80 100 160 200
iter. 27.8 34.0 37.3 -
cpu m. 316.9 363.2 1278.3 -

int. 1 cpu p. 532.3 853.4 7063.0 -
cpu t. 875.7 1272.4 8574.7 -
cpu f. 30.4 172.2 341.7 -

found 10 9 2 0
iter. 28.6 34.0 52.0 -
cpu m. 366.4 379.3 1077.0 -

int. 2 cpu p. 285.9 566.4 6276.0 -
cpu t. 667.0 973.3 7562.5 -
cpu f. 120.9 392.3 1021.5 -

found 7 8 2 0
upper 1 29.7 37.0 56.7 -
upper 2 29.6 36.8 57.7 -

best lower 27.8 34.0 52.7 -
gap 1 (%) 6.40 8.11 7.06 -
gap 2 (%) 6.08 7.55 8.67 -
lower 1 3 (7) 2 (8) 2 (7) 0 (10)
upper 1 1 (7) 4 (2) 5 (5) 4 (4)

Table 7: Detailed results random data instances - 4 depots - type A

7 Conclusion

The results reported in the previous section indicates that medium-sized
problem instances with multiple depots can be solved by using an inte-
grated approach for the vehicle and crew scheduling problem. Furthermore,
there are significant savings compared to the traditional sequential approach,
where first the vehicle scheduling and afterwards the crew scheduling prob-
lem is solved. We have suggested two different algorithms which are both
Lagrangian heuristics based on column generation. The major difference be-
tween these two algorithms is that in the second one the computation of
the lower bound is based on a model with only variables related to the crew
schedules. However, the lower bounds obtained by this algorithm are rarely
stronger than the bounds obtained by the first one and regularly weaker.
If the solutions of both algorithms are compared, it is difficult to conclude
which algorithm is better, since sometimes the first one gives the best solu-
tion and sometimes the second one. However, for the larger random problem
instances of both types, the first algorithms performs better.

Finally, we have introduced a new and better way to generate random
problem instances to simulate an extra-urban bus network. We hope that
also other researchers will use these instances in future experiments.

22

trips 80 100 160 200 320 400
vehicles 11.3 13.8 19.3 24.4 35.8 44.2

seq. drivers 26.9 32.9 44.4 54.7 79.0 96.8
total 38.2 46.7 63.7 79.1 114.8 141.0

vehicles 11.3 13.8 19.3 24.4 35.8 44.2
int. 1 drivers 24.9 29.1 42.3 51.4 77.8 95.0

total 36.2 42.9 61.6 75.8 113.6 139.2
vehicles 11.3 13.8 19.3 24.4 35.8 44.2

int. 2 drivers 24.7 29.1 42.6 52.2 78.0 95.6
total 36.0 42.9 61.9 76.6 113.8 139.8

Table 8: Average results random data instances - 2 depots - type B

trips 80 100 160 200
vehicles 11.3 13.8 19.3 24.4

seq. drivers 28.3 34.1 45.9 56.8
total 39.6 47.9 65.2 81.2

vehicles 11.3 13.8 19.3 24.4
int. 1 drivers 25.1 30.3 42.9 52.1

total 36.4 44.1 62.2 76.5
vehicles 11.3 13.8 19.3 24.4

int. 2 drivers 24.8 30.0 44.0 53.6
total 36.1 43.8 63.3 78.0

Table 9: Average results random data instances - 4 depots - type B

Acknowledgments The authors are very grateful to Connexxion for pro-
viding the data and supporting this research.

References

[1] A.A. Bertossi, P. Carraresi, and G. Gallo. On some matching problems
arising in vehicle scheduling models. Networks, 17:271–281, 1987.

[2] P. Carraresi, L. Girardi, and M. Nonato. Network models, Lagrangean
relaxation and subgradients bundle approach in crew scheduling prob-
lems. In J.R. Daduna, I. Branco, and J.M. Pinto Paixão, editors,
Computer-Aided Transit Scheduling, Proceedings of the Sixth Interna-
tional Workshop, pages 188–212. Springer Verlag, Berlin, 1995.

[3] J-F. Cordeau, G. Stojković, F. Soumis, and J. Desrosiers. Benders
decomposition for simultaneous aircraft routing and crew scheduling.
Transportation Science, 35:375–388, 2001.

23

trips 80 100 160 200 320 400
iter. 15.9 194 40.0 42.3 - -
cpu m. 136.2 243.8 1196.4 1753.0 - -

int. 1 cpu p. 121.0 266.5 4106.3 4489.0 - -
cpu t. 267.6 530.9 5487.3 6321.0 - -
cpu f. 4.1 4.3 14.7 20.3 - -

found 10 10 7 3 0 0
iter. 19.9 19.1 55.9 55.5 - -
cpu m. 162.2 165.1 1044.1 779.5 - -

int. 2 cpu p. 90.8 116.3 3641.5 1962.5 - -
cpu t. 258.8 290.8 4823.3 2809.5 - -
cpu f. 12.2 16.6 54.8 86.5 - -

found 10 9 8 2 0 0
upper 1 36.2 42.9 64.3 86.7 - -
upper 2 36.0 42.9 64.6 87.7 - -

best lower 34.1 40.9 60.6 82.3 - -
gap 1 (%) 5.80 4.66 5.61 5.00 - -
gap 2 (%) 5.28 4.66 6.24 6.08 - -
lower 1 0 (10) 1 (8) 3 (6) 2 (8) 0 (10) 0 (10)
upper 1 2 (4) 2 (6) 3 (5) 7 (2) 3 (4) 6 (3)

Table 10: Detailed results random data instances - 2 depots - type B

[4] M. Dell’Amico, M. Fischetti, and P. Toth. Heuristic algorithms for
the multiple depot vehicle scheduling problem. Management Science,
39:115–125, 1993.

[5] G. Desaulniers, J-F. Cordeau, and J. Desrosiers. Simultaneous multi-
depot bus and driver scheduling. TRISTAN IV preprints, 2001.

[6] M. Fischetti, S. Martello, and P. Toth. The fixed job schedule problem
with working-time constraints. Operations Research, 37:395–403, 1989.

[7] R. Freling. Models and Techniques for Integrating Vehicle and Crew
Scheduling. PhD thesis, Tinbergen Institute, Erasmus University Rot-
terdam, 1997.

[8] R. Freling, C.G.E Boender, and J.M. Pinto Paixão. An integrated ap-
proach to vehicle and crew scheduling. Technical Report 9503/A, Econo-
metric Institute, Erasmus University Rotterdam, Rotterdam, 1995.

[9] R. Freling, D. Huisman, and A.P.M. Wagelmans. Applying an integrated
approach to vehicle and crew scheduling in practice. In S. Voß and J.R.
Daduna, editors, Computer-Aided Scheduling of Public Transport, pages
73–90. Springer, Berlin, 2001.

24

trips 80 100 160 200
iter. 24.3 27.6 43.0 -
cpu m. 287.9 606.1 1548.0 -

int. 1 cpu p. 403.9 1103.7 6538.8 -
cpu t. 709.9 1753.4 8236.5 -
cpu f. 36.5 84.2 310.3 -

found 10 10 3 0
iter. 22.1 43.6 40.0 39.0
cpu m. 240.1 835.7 1034.8 970.0

int. 2 cpu p. 171.4 534.8 3557.3 4376.0
cpu t. 421.6 1388.1 4750.8 5583.0
cpu f. 62.2 217.9 1673.5 3622.0

found 9 9 4 1
upper 1 36.4 44.1 71.5 102.0
upper 2 36.1 43.8 73.3 103.0

best lower 33.9 40.6 66.5 92.0
gap 1 (%) 6.87 7.94 6.99 9.80
gap 2 (%) 6.09 7.31 9.22 10.68
lower 1 2 (7) 2 (8) 3 (6) 0 (9)
upper 1 2 (4) 3 (4) 8 (1) 9 (0)

Table 11: Detailed results random data instances - 4 depots - type B

[10] R. Freling, D. Huisman, and A.P.M. Wagelmans. Models and algorithms
for integration of vehicle and crew scheduling. Journal of Scheduling,
6:59–81, 2003.

[11] R. Freling, A.P.M. Wagelmans, and J.M. Pinto Paixão. An overview
of models and techniques for integrating vehicle and crew scheduling.
In N.H.M. Wilson, editor, Computer-Aided Transit Scheduling, pages
441–460. Springer Verlag, Berlin, 1999.

[12] A. Gaffi and M. Nonato. An integrated approach to extra-urban crew
and vehicle scheduling. In N.H.M. Wilson, editor, Computer-Aided Tran-
sit Scheduling, pages 103–128. Springer Verlag, Berlin, 1999.

[13] K. Haase, G. Desaulniers, and J. Desrosiers. Simultaneous vehicle and
crew scheduling in urban mass transit systems. Transportation Science,
35:286–303, 2001.

[14] K. Haase and C. Friberg. An exact branch and cut algorithm for the ve-
hicle and crew scheduling problem. In N.H.M. Wilson, editor, Computer-
Aided Transit Scheduling, pages 63–80. Springer Verlag, Berlin, 1999.

25

[15] D. Huisman, R. Freling, and A.P.M. Wagelmans. A dynamic approach
to vehicle scheduling. Technical Report EI2001-17, Econometric Insti-
tute, Erasmus University Rotterdam, Rotterdam, 2001. To appear in
Transporation Science under the title ”A Robust Solution Approach to
the Dynamic Vehicle Scheduling Problem”.

[16] D. Klabjan, E.L. Johnson, G.L. Nemhauser, E. Gelman, and S. Ra-
maswamy. Airline crew scheduling with time windows and plane-count
constraints. Transportation Science, 36:337–348, 2002.

[17] I. Patrikalakis and D. Xerocostas. A new decomposition scheme of
the urban public transport scheduling problem. In M. Desrochers and
J.M. Rousseau, editors, Computer-Aided Transit Scheduling: Proceed-
ings of the Fifth International Workshop, pages 407–425. Springer Ver-
lag, Berlin, 1992.

26

