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Abstract

The question of delay management is whether trains should wait for delayed feeder
trains or should depart on time. Solutions to this problem strongly depend on the available
capacity of the railway infrastructure. While the limited capacity of the tracks has been
considered in delay management models, the limited capacity of the stations has been
neglected so far. In this paper, we develop a model for the delay management problem that
includes the stations’ capacities. This model allows to reschedule the platform assignment
dynamically. Furthermore, we propose an iterative algorithm in which we first solve the
delay management model with a fixed platform assignment and then improve this platform
assignment in each step. We show that the latter problem can be solved in polynomial
time by presenting a totally unimodular IP formulation. Finally, we present an extension
of the model that balances the delay of the passengers on the one hand and the number of
changes in the platform assignment on the other. All models are evaluated on real-world
instances from Netherlands Railways.

Keywords: Delay management, station capacities, platform assignment, integer pro-
gramming, graph coloring

1 Introduction and Motivation

Since the first integer programming formulation for delay management in 2001 (Schöbel,
2001), there has been a significant amount of research on extensions of the basic delay man-
agement problem. Delay management deals with the question whether a train should better
wait for a delayed feeder train or depart on time (wait-depart decisions). The goal is to
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Figure 1: Part of the railway network in the Netherlands.
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Figure 2: A schematic representation of the assignment of trains to platform tracks at Amers-
foort

minimize total (weighted) passenger delay. Because missing a connection is an enormous
frustration for railway passengers, delay management has also received much attention from
railway companies. Unfortunately, the models so far do not include station capacities, which
is a crucial aspect in practice, because station capacities are often limited. The topic of this
paper is delay management with station capacities.

In most European countries, railway transport plays an important role. Many people
travel by train for distances between 20 and 800 kilometers, especially during peak hours when
there are many traffic jams on the highways. Passengers prefer a direct connection, however
it is impossible that there is a direct connection between all possible origin-destination pairs.
The Dutch line plan is constructed in such a way that most passengers (about 75%) have
a direct connection. In addition, the most important transfers are cross-platform and have
a short connection time. A typical example is station Amersfoort, where trains from the
North and East arrive at the same time, and continue towards the directions of Utrecht and
Schiphol Airport. Passengers in the train from Zwolle towards Utrecht (see Figure 1) that
have Amsterdam Central Station as their final destination, can change on the same platform,
where their train to Amsterdam departs a few minutes later.

We use this example to illustrate why station capacities should be taken into account in
a delay management model. In the regular timetable the trains from Zwolle to Utrecht and
from Apeldoorn to Schiphol Airport depart and arrive on the left and right side of the same
platform in Amersfoort (see Figure 2) at minute .22 and .24, respectively. The train from
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Amersfoort Schothorst towards Amsterdam arrives on the left side of this platform at minute
.28 and leaves at .29. Now suppose that the train from Zwolle has a delay of 10 minutes and
that there are many transferring passengers towards Amsterdam.

• The optimal solution of a basic delay management model suggests that the train towards
Amsterdam waits for the transferring passengers from Zwolle. In addition, it assumes
that this train arrives on time in Amersfoort. However, if this train would arrive on
time and waits for the connecting train from Zwolle, this feeder train could never arrive,
because the platform track is blocked.

• A possible strategy to obtain a feasible solution is to use the delay management model
only to obtain the wait-depart decisions, but take the regular order of the trains. In
that case, the train from Zwolle arrives at .32 with 10 minutes delay and then departs
at .34. Then, after this train has departed, the train towards Amsterdam arrives at the
same platform track. As a minimum headway time of 3 minutes is required between
two trains using the same platform track, this means that this train will never arrive
before minute .37. As a consequence, the train to Amsterdam will depart with a large
delay.

• However, the right side of the platform is already empty for some time. If the train
towards Amsterdam is rescheduled to this platform track, it can wait for the transferring
passengers there. As the train from Zwolle arrives at .32 and two minutes of minimal
transfer time are required, the train towards Amsterdam can leave at .34. This solution
gives the minimum possible delay for the situation.

Of course, the real-time rescheduling of the platform assignment contains also some disad-
vantages. It requires additional work for dispatchers of the traffic control centers, and it is
annoying for the passengers, especially, if they have to move to another platform.

From this example, we can draw the following conclusions.

• The optimal solution value of basic delay management models provides a lower bound
on the optimal solution value of delay management with station capacities. However,
this solution can be infeasible in practice.

• Fixing the wait-depart decisions of an optimal delay management solution and fixing
the order of the trains leads to feasible solutions. These solutions are typically of low
quality: Passengers face very large delays in these solutions.

• When re-assigning platform tracks is allowed, this may result in less passenger delays.

In this paper, we incorporate station capacities in the delay management model. We
compare solutions with a fixed platform assignment to solutions in which we can re-assign a
platform track during the operations. The contributions of this paper are as follows. Firstly,
we present a new integer programming formulation for the delay management problem taking
into account station capacity constraints. Secondly, we develop an iterative approach to solve
this problem heuristically. Thirdly, we compare the optimal solution of the new model and the
solution of the iterative heuristic with methods based on the traditional delay management
model. Finally, we investigate the effect of flexibility in the platform assignment on the total
passenger delay in several real-world problem instances of Netherlands Railways. Based on
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our findings, railway companies can make a trade-off between changing platform tracks at the
last moment versus the total passenger delay.

The remainder of the paper is structured as follows. Section 2 reviews the relevant litera-
ture. In Section 3 we present an integer programming formulation for the delay management
model with station capacities. In Section 4 we discuss an iterative approach to solve this
model. Computational results are discussed in Section 5. In Section 6, we discuss the balance
between the passenger delay on the one hand and the number of platform track changes on
the other. Finally, we finish the paper with some concluding remarks and suggestions for
further research in Section 7.

2 Literature Review

There exist various models and solution approaches for delay management. The main ques-
tion, which has been treated in the literature so far, is to decide which trains should wait for
delayed feeder trains and which trains better depart on time. A first integer programming
formulation for this problem has been given in Schöbel (2001) and has been further devel-
oped by De Giovanni et al. (2008) and Schöbel (2007); see also Schöbel (2006) for an overview
about various models. The complexity of the problem has been investigated in Gatto et al.
(2005). An online version of the problem has been studied by Gatto et al. (2007), Gatto
(2007), Kliewer and Suhl (2011), and Krumke et al. (2011). Berger et al. (2011) show that it
is PSPACE-hard. All models mentioned so far assume that passengers have to wait a com-
plete cycle time in case they miss their connection. In order to compute the delay for the
passengers more accurately, Dollevoet et al. (2012b) reroute passengers that have missed a
connection. In order to solve large-case real-world instances, Dollevoet and Huisman (2011)
present several heuristics for this delay management model with passenger rerouting.
In railway transportation, an important issue concerns the limited capacity of the track sys-
tem. Schöbel (2009) presents a first model for delay management that includes capacity
constraints. Schachtebeck and Schöbel (2010) and Schachtebeck (2010) give an integer pro-
gramming formulation and propose heuristic methods for the capacitated delay management
problem. The idea is to add headway constraints, which make sure that there is enough dis-
tance between two train departures and hence prevent two trains from using the same piece
of track at the same time. Using machine scheduling models, it turns out that the model
with headway constraints is NP-hard even in the case that no wait-depart decisions have to
be made, see Conte and Schöbel (2007).
Another line of research dealing with railway operations is based on the alternative graph
formulation (Mascis and Pacciarelli, 2002), originally used to model job shop variants. A
branch-and-bound algorithm for finding a conflict-free train schedule, minimizing the largest
delay, is developed in D’Ariano et al. (2007) and Caimi et al. (2011). In Corman et al. (2010),
the authors suggest a tabu search to solve both the train sequencing and train routing prob-
lem, where a set of possible routes is given as input. The alternative graph formulation has
been used in Corman et al. (2012) in the context of delay management, in a bi-objective ap-
proach that optimizes the maximal delay and number of missed connection simultaneously. A
similar bi-objective approach is presented by Ginkel and Schöbel (2007) for the macroscopic
model. Here, the total train delay and the number of missed connections are minimized.
Dollevoet et al. (2012a) made a first step towards a complete integration of delay management
and train scheduling. They propose an optimization framework that iteratively solves first a
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Figure 3: An event-activity network with a transfer activity and headway activities

delay management model and then a train scheduling model. In a computational study, it
is shown that the approach converges quickly if the delays are small. For larger delays, the
behavior of this approach is very unstable.
The problem of taking station capacities into account is also relevant in timetabling. Here,
one has to check for a given timetable whether the capacity in every station is sufficient.
Instead of considering the number of platforms as the capacities of the stations, it is even
more realistic to look at the train routing problem, i.e., to find routes through the stations for
all the trains using the detailed track topology. This feasibility problem has been extensively
studied. In Kroon et al. (1997), a set of inbound and outbound routes is given for each train.
If a train chooses one of these routes, all track sections of it are reserved at once but released
section-wise. It is shown that deciding whether a feasible schedule exists is NP-complete
already for three possible routes per train. In Caprara et al. (2011), the problem is modeled
as an integer program using clique inequalities in a conflict graph. For a recent survey on
railway track allocation problems, see Lusby et al. (2011).

3 Integer Programming Formulations

In this section we present an integer programming formulation for the delay management
problem that takes the capacities within stations into account. As basis for this model we
use the integer programming formulation that includes capacities of the tracks as it was
introduced in Schachtebeck and Schöbel (2010). Note that other formulations of the DM
problem can analogously be extended to take the stations’ capacities into account. We now
first describe the integer programming formulation without station capacities and then show
how to incorporate the limited capacity of the station infrastructure.

3.1 Formulation without station capacities

For modeling delay management problems as integer programs, usually an event-activity net-
work N = (E ,A) is used as underlying directed graph. The set of nodes E corresponds to the
arrival and departure events of all trains at all stations. In Figure 3, an event-activity network
is depicted for two trains. The lower train is a long-distance train traveling from s1 to s4 via
s3. The upper train is a regional train that also travels from s1 to s3, but stops at station s2
also. After s3, it continues in the direction of s5. The events are represented as rectangles in
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the picture. The set A consists of the following activities. Between the arrival i and the de-
parture j of a train in the same station, there is a waiting activity a = (i, j) ∈ Await; between
a departure i of a train in a station and its arrival j in the next station there is a driving
activity a = (i, j) ∈ Adrive. The set A furthermore contains transfer activities Atransfer linking
an arrival of a train in a station to a departure of another train in the same station. In Figure
3, there is a transfer at s3 from the regional to the long-distance train, which is depicted by
a dashed arrow. Finally, headway activities are needed for any pair of trains competing for
the same infrastructure. These headway activities represent pairs of precedence relations of
which one must be selected. To illustrate this, let i and j be two departures that continue
over a common track. We denote the corresponding arrivals at the next station by i′ and
j′, respectively. If departure i takes place before departure j, then arrival i′ should also be
scheduled before arrival j′. This choice for the order of the trains is represented by a pair of
headway activities a1 = (i, j), a2 = (j, i) ∈ Ahead. For each pair of headway activities, we de-
fine both a pair of constraints for the departures of the trains and a pair for the arrival of the
trains. In our example, these two pairs of constraints corresponding to one pair of headway
activities are shown with dotted arcs. Each activity a ∈ A requires a minimal duration that
is denoted by La.

The most important decision in delay management is which connections need to be main-
tained. For each changing activity a ∈ Atransfer we thus introduce a binary decision variable
za, which is defined as follows.

za =

{

0 if connection a is maintained,
1 otherwise.

In order to take the capacity constraints on the tracks into account, one defines a binary
decision variable gij for each headway activity (i, j) ∈ Ahead, given as

gij =

{

0 if event i takes place before event j,
1 otherwise.

For each event i ∈ Earr ∪ Edep, we define xi ∈ N as the rescheduled time when event i takes
place. The set of variables x = (xi) defines the disposition timetable. If the wait-depart
decisions za and the priority decisions gij are fixed, the values of xi, i ∈ E can easily be
calculated by the critical path method (see Schöbel (2006)).

Given the original timetable πi, i ∈ E and a set of exogenous source delays di at events
and da at activities (being zero if there is no delay), the integer programming formulation
(DM) without station capacities reads as follows.

(DM) min f(x, z, g) =
∑

i∈Earr

ci(xi − πi) +
∑

a∈Achange

zacaT (1)
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such that

xi ≥ πi + di ∀i ∈ E , (2)

xj − xi ≥ La + da ∀a = (i, j) ∈ Await ∪ Adrive, (3)

Mza + xj − xi ≥ La ∀a = (i, j) ∈ Atransfer, (4)

Mgij + xj − xi ≥ La ∀a = (i, j) ∈ Ahead, (5)

Mgij + xj′ − xi′ ≥ La ∀a = (i, j) ∈ Ahead, (6)

gij + gji = 1 ∀(i, j) ∈ Ahead, (7)

xi ∈ N ∀i ∈ E , (8)

za ∈ {0, 1} ∀a ∈ Achange, (9)

gij ∈ {0, 1} ∀(i, j) ∈ Ahead. (10)

The objective function in this model counts the sum of delays of all events (weighted with the
number of passengers ci who arrive at their final destination at event i) and adds a penalty
of T for every passenger who misses a connection. In a periodic timetable, T is often chosen
as its cycle time. We weigh the transfer activity a with the number of passengers ca who
planned to use it. The objective is an approximation of the overall delay of all passengers and
is commonly used in delay management. It gives the exact value if the never-meet property
for headways holds (see Schachtebeck and Schöbel (2010)). A more realistic model taking
into account the real paths that passengers would use in case of delays has been developed in
Dollevoet et al. (2012b). It can also be used as basis for our extension, but it is technically
more difficult and computationally harder to solve.
The interpretation of the constraints is as follows. (2) makes sure that trains do not depart
earlier than planned and that source delays at events are taken into account. (3) propagates
the delay along waiting and driving activities while (4) propagates the delay along maintained
changing activities. For each pair of departure events competing for the same infrastructure,
(7) makes sure that exactly one of the two precedence relations is respected. (5) propagates
the delay along the corresponding headway activity between the departures of the trains.
Similarly, (6) propagates the delay between the arrivals of the trains. Here i′ and j′ are the
arrivals that follow the departures i and j, respectively.

3.2 Formulation with a dynamic platform assignment

To include the limited capacity within the stations, we now present a formulation for delay
management which allows a dynamic assignment of trains to platform tracks. Preliminary
computational results showed that this assignment-based formulation performs much better
than a packing-based formulation modeling the same problem (see Dollevoet et al. (2011)).
Our assignment-based integer programming formulation views a station as a set of platforms,
and introduces headway constraints for trains that make use of the same platform track. As a
consequence, this formulation determines an explicit allocation of the events to the available
platforms.

In order to allocate the trains to the platforms, we first define for each station s ∈ S the
set Ps of platforms at s and the set Es

arr of arrival events at s. Then, we introduce binary
decision variables yip for each event i ∈ Es

arr and p ∈ Ps, that are defined as

yip =

{

1 if arrival i and corresponding departure are assigned to platform track p,
0 otherwise.
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Figure 4: Illustration of the enter time, the leave time and the time during which the platform
track is occupied.
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Figure 5: When two trains use the same platform track, a pair of headway activities is
introduced from the departure of one train to the arrival of the other.

Of course, each arrival event must be assigned to exactly one platform track. This is enforced
by the following constraint.

∑

p∈Ps

yip = 1, ∀s ∈ S, i ∈ Es
arr. (11)

In order to model the limited capacity of the stations, we determine the order in which the
trains arrive at a certain platform track. Consider a pair of trains (t1, t2) that arrive at the
same station corresponding to two events i and j. If the two trains are assigned to the same
platform track, we must determine the order in which the events i and j take place. To this
end, we introduce a pair of binary variables ḡij and ḡji that are defined as follows

ḡij =

{

0 if arrival i takes place before arrival j on the same platform track,
1 otherwise.

If the trains are assigned to the same platform track, either t1 must have departed before
t2 arrives, or t2 must have departed before t1 arrives. It should be noted that a train starts
entering a station at a time hi before it stops there at time xi and passengers can board. The
time hi when the train starts to enter the station is called enter time. In the same way, the
departure time xi′ of a train is smaller than the leave time hi′ , which is the time when the
last car of the train leaves the platform track and hence the time when the next train can
start to enter. Thus [hi, hi′ ] denotes the interval during which a platform track is occupied
(see Figure 4).

We define li = xi − hi for arrival events and li′ = hi′ − xi′ for departure events. By
construction, li and li′ are non-negative. We define the headway time Lij = li + lj′ as the
time that is minimally needed between the departure i and the arrival j.
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In Figure 5 the event-activity network for the trains t1 and t2 is depicted. Let ai = (i, i′)
be the waiting activity of train t1 and let aj = (j, j′) be the waiting activity of train t2. We
define a pair of platform track activities a1 = (i′, j), a2 = (j′, i) ∈ Aplat and introduce the
following set of constraints.

Mḡij + xj − xi′ ≥ Lij = li′ + lj , (12)

Mḡji + xi − xj′ ≥ Lji = lj′ + li, (13)

ḡij + ḡji ≤ 3− yip − yjp ∀p. (14)

These constraints can be interpreted in the following way. Assume first that trains t1 and t2
are not assigned to the same platform track. Then 3 − yip − yjp ≥ 2 for all p. Hence, both
ḡij and ḡji can be set to 1 and (12) and (13) are satisfied. Otherwise, if trains t1 and t2 are
assigned to the same platform track p, then 3− yip − yjp = 1 for that p, forcing either ḡij or
ḡji to zero. In that case, one of the headway constraints enforces a minimal headway time
between the two trains.
The above constraints must be introduced for each pair of trains (t1, t2) that dwell at a
common station s ∈ S. Recall that the set of platform track activities is denoted by Aplat.
This formulation thus introduces one binary variable ḡij for each a = (i, j) ∈ Aplat and one
binary variable yip for each i ∈ Earr and p ∈ Ps, where s ∈ S is the station corresponding
to arrival i. Furthermore, it adds one constraint for each arrival event i ∈ Earr and 2 + |Ps|
constraints for each pair of trains (t1, t2) that dwell at a common station s ∈ S. Note that this
type of constraints are referred to as blocking constraints in the context of job-shop scheduling
(see Mascis and Pacciarelli (2002)).
Adding the constraints (11)-(14), yip ∈ {0, 1} for all s ∈ S, i ∈ Es

arr, p ∈ Ps and ḡij ∈ {0, 1} for
all (i, j) ∈ Aplat to the formulation (1)-(10) we obtain an integer programming formulation
(DM-Cap) for the delay management problem with a dynamic platform assignment.

3.3 Formulation with a static platform assignment

Note that the planned timetable provides us with a platform assignment. To avoid platform
track changes for the passengers and, at the same time, simplify our calculations, we could fix
this platform assignment, i.e., the variables yip. More generally, we call the delay management
problem for which a platform assignment is determined in advance delay management with
a static platform assignment. For delay management with a static platform assignment, the
above integer programming formulation reduces to a problem of type (DM).

Lemma 1. For fixed variables yip for all i ∈ Es
arr

, p ∈ Ps the formulation (DM-Cap) reduces
to an instance of (DM), i.e., can be solved as a delay management problem with headway
constraints.

Proof. If all yip variables are fixed we have two possibilities for (14): Either both yip variables
are 1, then ḡij + ḡji ≤ 1 and (12)-(13) reduce to a headway constraint of type (5)-(7), or at
least one of the yip variables is 0, then (12)-(14) becomes redundant.

According to this lemma, we can derive the following two bounds for delay management
with a dynamic platform assignment, which can easily be calculated using an algorithm
that solves problem (DM). First, it is clear that (DM) is a relaxation of (DM-Cap), hence
its objective value zDM is a lower bound. Second, if we fix the assignment y of trains
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to stations in (DM-Cap) and solve the delay management problem with a static platform
assignment, we obtain an upper bound z∗(y) which can also be calculated by any algorithm
for (DM) according to Lemma 1. Hence, we can compute an upper and a lower bound, i.e.,
zDM ≤ z∗ ≤ z∗(y).

4 An iterative approach

In the previous section we developed a model that simultaneously optimizes the platform
assignment and the priority decisions in the stations. It is well known in timetabling that
this problem is computationally challenging. As we consider a real-time setting, solutions to
the delay management problem should be available within a short computation time. For
large instances, optimizing the wait-depart decisions, the priority decisions and the platform
assignments simultaneously might be intractable. For these instances, we propose an iterative
approach: We first fix the assignment of trains to platforms as given in the original timetable.
This results in a problem of type (DM) which can be solved according to Schachtebeck and
Schöbel (2010). For the resulting solution we then try to improve the platform assignment
within the stations and iterate until no further improvement is found. Using formulation
(DM-Cap) we obtain:

1. Fix the station assignment yip in (DM-Cap) according to the planned timetable.

2. Solve the resulting problem (DM-Cap) with fixed yip and obtain a solution with dispo-
sition timetable xi, wait depart decisions za and priority decisions gij and ḡij

3. For every station, determine a more promising platform assignment yip and new priority
decisions ḡij within the station such that (x, z, y, g, ḡ) is feasible.

4. Go to Step 2. Stop if no further improvement has been found.

If for large delay management instances decomposing the problem into two steps still
results in long running times, we can use the approach of Schachtebeck (2010) to decompose
Step 2 of the algorithm further into two smaller subproblems making first the priority decisions
and then the wait-depart decisions.
In Step 3, a natural idea would be to adjust not only the platform assignment but also the
timetable locally. Unfortunately, this can lead to infeasible solutions. Therefore, in Step 3 of
the algorithm, we leave the timetable unchanged and adjust only the platform assignment in
a way that allows the subsequent delay management step to shift events forward in time, if
possible.

In the following we discuss Step 3, i.e., how to find an assignment of trains to platforms at
a given station s which is feasible for the given disposition timetable x and potentially yields a
better disposition timetable in Step 2 of the next iteration. Recall from (12) and (13) that the
headway times Lij between two trains are the sum of a headway time li′ that is needed for the
first train to leave the station after its departure event i′ and a headway time lj representing
the time that the second train needs to completely enter the station before its arrival event j
can take place, i.e., Lij = li′ + lj . Thus instead of scheduling the arrival and departure events
xi, we can instead schedule the enter time hi = xi − li for arrival events i and the leave time
hi′ = xi′ + li′ for departure events i′ in a way that the intervals (hi, hi′) and (hj , hj′) do not
overlap for two trains with arrival and departure events i, i′ and j, j′, respectively, that are
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Figure 6: Illustration for two trains occupying the same platform track.

assigned to the same platform track. We process each station separately as follows. In a first
step we identify for which arrivals i ∈ E in this station a new assignment might be beneficial.
These are arrivals of delayed trains that directly follow another delayed train. For these train
arrivals we determine their wish (enter) times wi. In a second step we find a new assignment
for all trains together with new enter times qi ≥ wi for these trains which should be as close
to the wish times as possible. We now first show how the wish times are identified.
Let Ps be the set of platforms and Es

arr be the set of arrival events in station s. Note that
every such event corresponds to one train. For every arrival event i, let i′ be the departure
event following i (i.e., (i, i′) ∈ Await describes the waiting activity of the train in the station).
From the timetable and the headway times we know that the train occupies the station during
the time interval (hi, hi′). If a train is delayed, we distinguish two cases (see Figure 6).

• There is another train which is in the station during the interval (hj , hj′) with hj′ = hi,
and is on the same platform track p, i.e., yip = yjp = 1. In this case, a new assignment
might help to reduce the delay of i. Assuming that a = (k, i) ∈ Adrive is the preceding
driving activity of the train we define the wish time of i as

wi := xk + La + da − li.

• If no other train is on the same platform track directly before xi, the delay of i is not
due to the station assignment, and hence wi := hi.

Also if the train is not delayed we set wi := hi. The platform assignment problem (PA) can
now be formulated as follows.

(PA) Given a set of platforms Ps = {1, . . . , P} and for every arrival event i ∈ Es
arr

an interval
[hi, hi′ ] and a wish time wi ≤ hi as well as a weight ci corresponding to the affected customers
on the train, find numbers qi ∈ [wi, hi] for all i ∈ Es

arr
and a new platform assignment yip for

all i ∈ Es
arr

and p ∈ Ps such that

qj ∈ (qi, hi′) =⇒ yip + yjp ≤ 1 (15)

holds for all i, j ∈ Es
arr

and p ∈ Ps and
∑

i∈Es
arr

ciqi is minimal.

Note that qj ∈ (qi, hi′) or qi ∈ (qj , hj′) ⇐⇒ (qi, hi′) ∩ (qj , hj′) 6= ∅, i.e., the two trains
belonging to i and j cannot be scheduled on the same platform track if and only if the arrival
of one train is scheduled at a time when the other train is occupying the platform track.
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This problem can be formulated as a mixed-integer program as it is but the formulation
does not seem to be promising due to condition (15). Instead we show that (PA) is poly-
nomially solvable by first identifying a finite dominating set C for the qi variables. This set
C contains a polynomial number of elements. We then notice that for every choice of the qi
variables, we can check feasibility by solving a coloring problem. Naively, in order to check
all possible q ∈ C|Es

arr|, we would have to solve an exponential number of coloring problems.
Instead, we use that the graph under consideration is an interval graph and code the solv-
ability of the coloring problem in the constraints of an IP formulation. This problem can be
solved easily, as the coefficient matrix is totally unimodular. We first identify a dominating
set C with a polynomial number of elements. In order to reduce the problem size, we also
show that for each qi, a smaller dominating set Ci can be defined.

Lemma 2. Let C :=
⋃

i∈Es
arr

{wi, hi, hi′} be the set of all given wish and planned arrival and
departure times. Then there exists an optimal solution (q, y) to (PA) with qi ∈ Ci := C∩[wi, hi]
for all i ∈ Es

arr
.

Proof. Let (q, y) be a feasible solution to (PA). Clearly, wi ≤ qi ≤ hi for all i. Furthermore,
with p the platform track for which yip = 1, qi ≥ max{hj′ : yjp = 1 and hj′ ≤ qi}. Now
assume that qi 6∈ C for some i ∈ Es

arr. Let p be the platform track with yip = 1. Define

q̃i := max
{

wi,max{hj′ : yjp = 1 and hj′ ≤ qi}
}

. (16)

Then q̃i ∈ [wi, hi] and for all j condition (15) is still satisfied. Hence, replacing qi by q̃i is
a feasible solution to (PA) with better objective value and with q̃i ∈ Ci. Doing this for all
values q shows the result.

Now assume that some values qi ∈ Ci, i ∈ Es
arr are given. How can we check whether q is

feasible? This means that we have to check whether there is a platform assignment y such that
(15) is satisfied. To this end we transform our problem into a coloring problem in the graph
G(q) = (Es

arr, E). For every i ∈ Es
arr there exists a node. We add an edge {i, j} between two

nodes if (qi, hi′)∩ (qj , hj′) 6= ∅, i.e., if the two corresponding trains cannot be assigned to the
same platform track. In order to find out whether there is a feasible platform assignment for
q we thus have to find out whether G(q) is P -colorable. Note that by construction this graph
is an interval graph and thus perfect (see e.g. Schrijver (2003)). Thus χ(G(q)) = ω(G(q))
with χ(G(q)) denoting the chromatic number of G(q) and ω(G(q)) the number of nodes in the
biggest clique of G(q). We hence have to check whether the number of nodes in the biggest
clique in G(q) is not greater than P .

Let us order the values in C = {q1, . . . , q|C|} in increasing order and let us define intervals
Il := (ql, ql+1) for l = 1, . . . |C| − 1. For a given q we define a matrix A(q) = (ali) with |C| − 1
rows and |Es

arr| columns and entries

ali =

{

1 if (qi, hi′) ∩ Il 6= ∅,
0 otherwise.

(17)

Then we can determine the chromatic number of G(q) as follows.

Lemma 3.

ω(G(q)) = max
l=1,...,|C|−1

∑

i∈Es
arr

ali.
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Proof. Due to Lemma 2 we can assume that all values of qi are in C, hence there is an edge
between i and j in G(q) if and only if there exists an interval Il such that ali = alj = 1. Now
let E ′ ⊆ Es

arr. As G(q) is an interval graph, E ′ is a clique in G(q) if and only if there exists
one interval Il such that ali = 1 for all i ∈ E ′.

Now we can finally rewrite (PA) as an integer program in which we look for a choice of
q-values from the set C checking feasibility by Lemma 3. Denote by qki the entries of the set

Ci = {q1i , q
2
i , . . . , q

|Ci|
i }. Then for every arrival event i and every candidate qki ∈ Ci we define

the variable

ηki =

{

1 if candidate qki ∈ Ci is chosen,
0 otherwise.

These are the variables of our integer program. In order to directly see properties of the
resulting constraint matrix, we order our variables such that all variables ηki having the same
index i are grouped together. We need to extend the matrix defined in (17) to all possible
choices of q. To this end, we define for every (i, k) a column with

ãlik =

{

1 if (qki , hi′) ∩ Il 6= ∅,
0 otherwise.

Doing this for all i = 1, . . . , |Es
arr| we obtain a matrix Ã = (ãlik) with |C| − 1 rows and

∑

i∈Es
arr

|Ci| columns. Note that qki = qk
′

j with qki ∈ Ci, q
k′
j ∈ Cj is possible but would lead to

two (maybe different) columns in Ã.
(PA) can hence be rewritten as

min
∑

i∈Es
arr

ci

|Ci|
∑

k=1

qki η
k
i (18)

such that

|Ci|
∑

k=1

ηki = 1 ∀i ∈ Es
arr, (19)

∑

i∈Es
arr

|Ci|
∑

k=1

ãlikη
k
i ≤ P l = 1, . . . , |C| − 1, (20)

ηki ∈ {0, 1} ∀i ∈ Es
arr, ∀k ∈ Ci. (21)

Lemma 4. The constraint matrix A′ defined by the inequalities (19)-(20) is totally unimod-
ular.

Proof. To avoid notational confusion, for the matrix A′ we use u as an index for the rows and
v as an index for the columns. We show that A′ is totally unimodular by showing that every
subset U of rows of A′ can be partitioned into two sets U1, U2 with U1 ∩U2 = ∅, U1 ∪U2 = U
and

∑

u∈U1
a′uv −

∑

u∈U2
a′uv ∈ {−1, 0, 1} for all columns v (see for example Schrijver (2003)).

The columns of A′ are associated with the variables of our integer program. For every
i = 1, . . . , |Es

arr| we denote by C(i) the indices v of the columns of A′ associated with a variable
ηki for some k.

13



The rows represent the constraints. The first rows u = 1, . . . , |Es
arr| contain the constraints

that for every i ∈ Es
arr, exactly one variable ηki is set to 1. We thus have

a′uv =

{

1 if the column v belongs to variable ηku for a k, i.e., if v ∈ C(u),
0 otherwise.

for u = 1, . . . , |Es
arr|, i.e., for u corresponding to a constraint for an i ∈ Es

arr.
Starting from row |Es

arr|+1, the matrix A′ consists of the matrix Ã. We notice that Ã has
the column-wise consecutive ones property. Furthermore, we note that every column v ∈ C(i)
of A′ has its last 1-entry in the row that represents the constraint for the interval with end
point hi.

Let U be an index set of rows of A′ and UA = U \ {1, . . . , |Es
arr|}, that is the part of the

chosen set of rows that is contained in Ã. We alternatingly assign the rows in UA to two sets
UA
1 and UA

2 . Then for every i ∈ Es
arr either







∑

u∈UA
1

a′uv −
∑

u∈UA
2

a′uv : v ∈ C(i)







⊆ {−1, 0} (22)

or







∑

u∈UA
1

a′uv −
∑

u∈UA
2

a′uv : v ∈ C(i)







⊆ {1, 0} (23)

because of the consecutive ones property and because for a given i, the last entry of column
v is in the same row for all v ∈ C(i).

We set U1 := UA
1 and U2 := UA

2 and add the indices of the first |Es
arr| rows in the following

way to these sets: If for row u (22) holds, we assign the u-th row to U1, if (23) holds we assign
it to U2. We obtain







∑

u∈U1

a′uv −
∑

u∈U2

a′uv : v ∈ C(i)







⊆ {1, 0} for all i ∈ {1, . . . , |Es
arr|} with (22)







∑

u∈U1

a′uv −
∑

u∈U2

a′uv : v ∈ C(i)







⊆ {−1, 0} for all i ∈ {1, . . . , |Es
arr|} with (23).

This proves total unimodularity.

Corollary 1. (PA) can be solved by linear programming.

We conclude that the problem in Step 3 of the iterative algorithm can be solved by linear
programming. This completes the description of the iterative algorithm.

5 Computational results

We have performed a computational study to test whether it is important to consider the
capacity within stations explicitly and to compare the different approaches presented in this
paper. We first describe the cases that were used in this study. Then we show that a dynamic
platform assignment significantly improves a static one. Finally, we evaluate the performance
of the iterative heuristic.
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5.1 Cases

In our numerical experiments we consider the railway system in the Randstad, which is the
mid-Western part of the Netherlands. Figure 1 gives a schematic representation of the railway
network in this region. The dots in this figure indicate a station where long-distance trains
stop. The stations where only regional trains stop are not depicted. A line indicates that
there is a direct link between two stations. For each link, there are two or four long-distance
trains and two regional trains per hour. It can be seen in the picture that the railway network
contains direct links between many of the stations. As a consequence, the infrastructure is
heavily utilized, especially in the stations.
We have generated four cases, that vary in the size of the network and the type of trains
that are included. The first case considers only the stations in the network that are indicated
by a black dot in Figure 1 and includes only the long-distance trains. Case B considers the
same network, but includes both long-distance and regional trains. The third and fourth case
include all stations that are indicated by a black or a white dot. Again, Case C considers only
the long-distance trains, while Case D includes the regional trains, too. These cases resemble
those that are used in Dollevoet et al. (2012b).
We obtained the timetable and detailed information on the passenger demand from Nether-
lands Railways. The passenger figures are not the real numbers, but have been scaled for
secrecy. For each pair of stations in the network, we were given the average number of
passengers who want to travel between these stations on a regular day. From these origin-
destination figures we obtained the average number of passengers wi who arrive at their
destination station with arrival event i ∈ Earr and the number of passengers wa who use
transfer a ∈ Atransfer.
In order to evaluate the performance of our delay management models, we have simulated
for each case 100 delay scenarios. These scenarios were constructed as follows. Each driving
and dwell activity has a probability of 10% to be delayed. If the activity is delayed, the size
of the delay is a uniformly distributed random variable between 1 and 10 minutes. Note that
delays on activities are additive: If two consecutive driving activities are delayed, the delay
of the train is at least the sum of the two delays. We did not include delays at events.
Table 1 gives an impression of the sizes of the instances. For each of the four cases we report
the number of stations and trains in the railway network. Besides, we report the number
of events |E| and headway activities |Ahead| in the resulting event-activity network. The
column |Aplat| gives the number of platform track activities. Recall that there is a pair of
platform track activities for each pair of trains (t1, t2) that dwell at a common station. |Aplat|
is therefore twice the number of times that Constraints (12)-(14) are added to formulation
(1)-(10). Cases B and D consider all trains in a large part of the network. Cases of these
sizes arise in practical applications. Comparing Cases A and B, one sees that the number
of trains is increased roughly by 50%. The number of nodes in the event-activity network
is about 4 times as large. The reason is that the regional trains stop at far more stations
than the long-distance trains. As priority decisions are only necessary at the larger stations,
where overtaking can take place, the number of headway activities is related to the number
of trains.
For each instance we have two different models to obtain a solution to the delay management
problem with station capacities. Our first model fixes the platform assignment as planned.
According to Lemma 1, this leads to a delay management problem with headway activities
only. According to Section 3.3, we refer to this model as the static model. In the second,
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Size of the program Static model Dynamic model
Case Stations Trains |E| |Ahead| |Aplat| Bin. Con. Bin. Con.

A 10 82 344 1508 6962 1998 5470 9597 33924
B 34 193 1374 3432 28830 8045 21568 37972 175614
C 16 119 576 2296 11688 3345 8895 15913 55301
D 82 275 2804 5848 35138 12877 36510 48841 231101

Table 1: Some characteristics of the cases and the resulting integer programs. Bin. and Con.
give the number of binary variables and constraints in the integer program, respectively.

Objective value Optimality gap
Case A B C D A B C D

Static model 192291 1007849 595904 3635493 0% 0% 0% 0.3%
Dynamic model 192046 982983 585987 3572731 0% 0.1% 0% 1.3%

Table 2: The objective value and the optimality gap for the static and dynamic delay man-
agement model

dynamic model, we allow the platform tracks to be rescheduled dynamically as introduced in
Section 3.2. In Table 1, we also list the number of binary variables and constraints in the
resulting integer programs. One sees immediately that the number of binary variables and
constraints is much larger for the dynamic model. As a consequence, the dynamic model is
expected to be computationally much harder to solve.

5.2 Static and dynamic platform assignments

We have used Cplex 12.2 on an Intel Core i5-2410M with 4 GB of RAM to solve the integer
programs from Section 3. The maximal computation time was set to 20 minutes for each
individual delay scenario. Such times are too long for practical purposes, but allow us to find
solutions that are close to optimal. The objective value for a case is computed as the average
total delay over all scenarios. For each case, we compare the solutions that are obtained with
a static and with a dynamic platform assignment.

In Table 2, the objective values are presented for both solution approaches. In Table 3, the
relative improvement of the dynamic model is given, as well as the number of platform track
changes in the solutions of the dynamic model. The results show clearly that rescheduling
the platform assignment dynamically reduces the delay for the passengers. For Case A, the
reduction is negligible, the average delay is reduced only by 0.1%. For Case B, the delay is

Case A B C D

Improvement 0.1% 2.5% 1.7% 1.7%
Platform track changes 167 342 269 380

Table 3: The improvement of the dynamic model with respect to the static model and the
number of platform track changes in the solution of the dynamic model
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Case A B C D

Static model 1.0 (1.6) 62.9 (1162) 2.0 (3.5) 765.6 (1204)
Dynamic model 3.1 (5.4) 608.7 (1353) 13.9 (112.7) 1408 (1478)

Table 4: The average running times and between brackets the maximal running times in
seconds

reduced by 2.5%. This is a significant improvement over the static model. In the Cases C
and D, the reduction is 1.7%. The optimality gap in the first three cases can be neglected. In
Case D, the optimality gap for the dynamic model is 1.3%. The improvement of the dynamic
model over the static model could therefore be larger than 1.7 %.
Besides the delay, platform track changes are also inconvenient for the passengers. The static
model does not allow to reschedule the platform assignment, so in the static solutions there are
no platform track changes. On the contrary, in the dynamic model a complete new platform
assignment is determined. As we do not penalize changes in the platform assignment, the
dynamic model introduced hundreds of platform track changes for every case.
As solutions to the delay management problem should be readily available, solution methods
should be able to solve the delay management problem within a short computation time.
In Table 4, the average and maximal running times are given for each case. Recall that we
have set the maximal running time to 20 minutes for each delay scenario. For Cases A and
C, which include only the long-distance trains, both models can be solved very fast. Both
the average and maximal running time are less than two minutes. Such running times are
acceptable in practice.
When the regional trains are included, the running times increase significantly. In order to
speed up the solution process for Cases B and D, we first computed a solution to the static
delay management model in which the order of trains in the stations and on the tracks is
fixed. This results in an integer program that is much easier and can be solved within seconds.
The solution to this model is also feasible for the dynamic model and can be used to decrease
the solution times. In a similar fashion, a solution from the static model can be used when
solving the dynamic model. When solving the dynamic model, we first ran the algorithm for
the static model for 5 minutes. This explains why the maximal running times for the dynamic
model are larger than 20 minutes.
For Case B, the static model can be solved within one minute on average. The dynamic
model needs 10 minutes on average. For both models, some delay scenarios need much more
computation time. For Case D, the static model can be solved within 12 minutes on average,
while the dynamic model takes the full computation time of 25 minutes. In a real-time setting,
such computation times are too long.

5.3 Performance of the iterative heuristic

In the previous section we have seen how a dynamic platform assignment can reduce the delay
for the passengers. However, for larger cases, solving the dynamic model takes too much time.
In these situations, the iterative heuristic from Section 4 can be applied to improve on the
static solutions while still keeping the computation times within limits.
In Table 5, the results for the iterative heuristic are given. For all cases, the iterative

heuristic finds solutions that are at most 1.0% worse than the dynamic model. For the cases
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Case A B C D

Absolute objective 192088 992757 587307 3594245
Relative objective 100.0 % 101.0 % 100.2 % 100.6 %

Number of platform track changes 0.32 17.5 3.2 21.0

Number of iterations 2.06 4.14 2.72 4.81
Total solution time 2.2 174.1 4.76 1198

Table 5: The absolute objective value, the relative objective values with respect to the dy-
namic model, the number of platform track changes in the solutions and some characteristics
of the iterative solution process

that consider only the long-distance trains, the iterative solutions are very close to the optimal
ones. It is interesting to see that the iterative algorithm changes the platform assignment
less often than the dynamic model. The iterative algorithm only schedules a train at a
different platform track if it looks promising to do so. The slight decrease in quality is thus
compensated by a platform assignment that looks much more like the original one.
Considering the computation times, the iterative approach solves the problem much faster
than the dynamic model. For Cases A and C, the iterative algorithm can be executed within
seconds. For Case B, the total running time of the iterative heuristic is on average less than
3 minutes. This is a reduction of 70% with respect to solving the dynamic model. A solution
time of 3 minutes is acceptable in practice. For Case D, solving the static model to optimality
already takes a longer time. We therefore allowed only 5 minutes of computation time per
iteration. As a consequence, the first solution in the iterative procedure is slightly worse than
the solution of the static model. The average total running time for Case D equals 20 minutes
and is thus smaller than that of the dynamic model. It is, however, still too long for practical
applications. We conclude that for cases with only long distance trains, both the performance
and the running time of the dynamic model and the iterative algorithm are comparable. For
Case B, solutions with slightly worse quality are obtained within much less computation time.
For this case, the iterative algorithm finds good solutions within computation times that are
acceptable in practice. Finally, for Case D, solutions are found that have a good quality, but
the iterative algorithm needs too much time to find these solutions.

In Figure 7, we have plotted the progress of the iterative method. On the horizontal axis
are the iterations, while the objective value is shown on the vertical axis. In order to show
the progress for all cases in one figure, we have normalized the objective value. The objective
value of the first iteration is equal to that of the static model. This value is indicated by the
upper line, labeled with 1. A lower bound on the objective value from the iterative approach
is given by the solutions of the dynamic model. This value is depicted by the lower line,
labeled with 0.
For Cases A and C, the iterative algorithm improves the solution from the static model only
in the first iteration. The solution that is then obtained is very close to the optimal solution.
For Cases B and D, the biggest improvement is found in the first iteration. The improvement
in the second iteration is much smaller. From then on, the solution does not change much.
This suggests that one could also run only one iteration of the iterative algorithm, in order
to improve over the static solution within a short computation time. For Case D, it takes on
average 10 minutes to perform one iteration. In practical applications, computation times of
10 minutes are acceptable.
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Figure 7: The progress of the iterative solution

5.4 Quality of the wait-depart decisions

The dynamic model optimizes the wait-depart decisions, the priority decisions and the plat-
form assignment simultaneously. The original aim of delay management is, however, to de-
cide on the wait-depart decisions only. In this section we will compare the quality of the
wait-depart decisions from the dynamic model to those that are obtained with other delay
management models from literature. If an optimization algorithm is available to determine
the priority decisions and the platform assignment, the results in this section prescribe which
delay management model should complement the train scheduling algorithm and optimize
the wait-depart decisions.
In order to compare the quality of the different delay management models, we first decide
on the wait-depart decisions with the various models. Then we fix the variables for the
wait-depart decisions in the dynamic model in order to obtain the priority decisions and the
platform assignment. We emphasize that we use the dynamic model only to compute the
priority decisions and the platform assignment; the wait-depart decisions have been fixed by
the model that we are interested in. We thus employ the dynamic model as a very basic train
scheduling algorithm.
The first model that we consider implements a no-wait policy. With a no-wait policy, trains
never wait for delayed trains. We use this policy as a benchmark for the other policies. The
second model is a delay management model without any capacity considerations. This model
is given by (1)-(4) and (8)-(9). The third model is a delay management model with priority
decisions for tracks only. This model is presented in Section 3.1. Finally, the fourth model is
the dynamic model that is introduced in Section 3.2.

In Table 6, the objective values are given for the four models. We have normalized the
objective value and set the objective value of the dynamic model to 100. We see in the table
that a no-wait policy performs very badly. The total delay is up to 40% higher than in the
dynamic model. A delay management model without capacity considerations performs better.
For Cases A and C, the delay is increased with 2%, while an increase of about 9% is observed
for Cases B and D. Finally, the model that incorporates capacity constraints for tracks only
performs very well. The maximal increase in delay is 0.3%. For the first three cases, the
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Case A B C D

No-wait policy 120.1 140.4 124.5 134.4
DM without capacity constraints 102.6 108.7 101.7 108.7
DM with tracks priorities only 100.0 100.0 100.0 100.3

Dynamic model 100.0 100.0 100.0 100.0

Table 6: Comparing the dynamic model to other delay management models

increase is even negligible.
We conclude that the model that includes headway constraints on the tracks only finds wait-
depart decisions that are very close to optimal. Furthermore, the model without station
capacities is much simpler and solving it requires less computation time. When deciding
on the wait-depart decisions, one thus need not consider the capacity within the stations
explicitly.

6 Analyzing the trade off between passenger delays and plat-

form track changes

In Section 5.2 we have seen that allowing a re-assignment of trains to platforms yields a sig-
nificant improvement with respect to the passengers’ delay, compared to the model where the
platform assignment is fixed. On the one hand, this certainly increases the passengers’ com-
fort. However, on the other hand, the improvement with respect to the delay is accompanied
by many platform track changes with respect to the announced timetable. These platform
track changes are certainly not convenient for the passengers. In that respect, the solutions
from the iterative algorithm, with a worse objective value but less platform track changes,
might be preferable in practice. Delay management with station capacities could hence be
considered a bi-objective problem with the two objectives of minimizing

1. the passengers’ delay, and

2. the number of changes in the platform assignment.

In Section 6.1 we discuss how this extension of our model can be integrated in the proposed
solution approaches. Computational results are presented in Section 6.2.

6.1 Theoretical Modification of the models

We first consider the exact model for delay management with station capacities which is
provided by the assignment-based integer programming formulation. We describe how a
restriction on the number of platform track changes can be easily included.

Since in this formulation the information about the platforms where an event i ∈ E takes
place is already coded in the variables yip, a restriction on the number of platform track
changes can be modeled easily by adding one additional constraint. To this end, let C denote
the maximal number of platform track changes and let P (i) denote the set of good platforms
for event i. If we want to count all platform track changes, P (i) consist only of the platform
track pi where event i was scheduled initially. However, P (i) could as well contain more
platforms that are easily reached from pi, e.g., the track on the opposite side of the platform.
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We add the following constraint to the integer program described in Section 3.2.
∑

i∈Edep

∑

p/∈P (i)

dipyip ≤ C. (24)

Here, dip is a weight that represents the importance of scheduling the departure event i on a
good platform track. For example, dip could represent the number of passengers that have to
move to another platform if the platform track is changed. Since yip takes the value 1 if event
i is scheduled on platform track p and 0 otherwise, this constraint determines the weighted
number of departure events which do not take place on a good platform track and restricts
this number to C. This method is an example of the ǫ-constraint approach. If dip = 1 for all
i ∈ Edep and p /∈ P (i) and 0 otherwise, the summation in the left hand side just counts the
number of departure events that are not scheduled at a good platform. This allows us to find
all non-dominated solutions, as the number of platform track changes is discrete.

It is also possible to take into account the number of platform track changes in the iterative
approach. When searching for a new platform assignment in the third step of the iterative
algorithm, instead of minimizing the potential departure times only, we could additionally
consider the number of platform track changes. However, since in the linear programming
formulation (18)-(21) for the third step of the iterative approach we do not explicitly define
an assignment to the platforms, for every candidate qki we replace the variable ηki by a set of
|Ps| variables

(ηki )p =

{

1 if candidate qki ∈ Ci is chosen and event i takes place at platform track p,
0 otherwise.

Then constraints (19-21) can be rewritten as

∑

p∈Ps

|Ci|
∑

k=1

(ηki )p = 1 ∀i ∈ Es
arr, (25)

∑

i∈Es
arr

|Ci|
∑

k=1

akil(η
k
i )p ≤ 1 ∀l ∈ {1, . . . , |C| − 1}, ∀p ∈ Ps (26)

(ηki )p ∈ {0, 1} ∀i ∈ Es
arr, ∀k ∈ Ci, ∀p ∈ Ps. (27)

Analogously to the proof of Lemma 4 we have the following lemma.

Lemma 5. The constraint matrix A′ defined by the inequalities (25)-(26) is totally unimod-
ular.

In order to incorporate our second objective of minimizing the number of platform track
changes, we could again add a constraint that restricts the number of platform track changes
at each station. However, this requires a distribution of the C allowed platform track changes
to the stations. Furthermore, the additional constraint in general destroys the property of
total unimodularity and thus makes the problem much harder to solve.

Hence we include the minimization of the number of platform track changes in the objec-
tive function (28), considering a weighted sum of both objectives:

min
∑

i∈Es
arr

ci
∑

p∈Ps

|Ci|
∑

k=1

qki (η
k
i )p + λ

∑

i∈Edep

|Ci|
∑

k=1

∑

p/∈P (i)

(dki )p(η
k
i )p (28)
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where (dki )p is set to 1 if we just want to penalize platform track changes but could also be
modified to represent passenger weights or to penalize only the platform track changes of
non-delayed trains.

The parameter λ can be used to control the influence of the different objective functions
on the new platform assignment.

6.2 Computational Results

We have used the cases from Section 5.1 to compare the solution approaches that balance the
delay on the one hand and the number of platform track changes on the other. For Cases A
and C, we considered all 100 delay scenarios. For Cases B and D, we restricted ourselves to
30 delay scenarios to reduce the amount of computation time needed. We first present the
results for the exact solution approach and then consider the iterative procedure.
In Figure 8, we have plotted the average delay for all passengers as a function of the maximal
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Figure 8: The average objective value as a function of the number of platform track changes
that are allowed in the dynamic model.

number of platform track changes. For Cases A and C, the optimal solution can be obtained
with at most 3 platform track changes for all delay scenarios. By allowing only 1 platform
track change, the solutions for Case A are optimal. For Case C, the optimal solution with
at most one platform track change are within 0.4% of optimality on average. For Case B,
9 platform track changes are needed to obtain the optimal solution. Again, more than half
of the delay reduction can be obtained with only one platform track change. For Case D,
the results look somewhat different. We again find the optimal solution with only 9 platform
track changes. However, for Case D, the delay reduction with only one platform track change
is relatively small. Furthermore, we observe that the solution with at most 10 platform track
changes has a worse objective value than the solution with at most 9 platform track changes.
Recall from Section 5.2 that the dynamic model cannot be solved to optimality for Case D.
When we limit the number of platform track changes, the average optimality gap equals 0.5%.
This explains the small increase in objective value when increasing the number of platform
track changes from 9 to 10. We think the aberrant progress for Case D is also caused by our
inability to solve the integer program to optimality.
In general, in order to find the optimal solution, much less platform track changes are needed
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than were found by the dynamic model. Furthermore, the graph shows that a large part of
the delay reduction can be obtained with only a small number of platform track changes.
In Figure 9, we have plotted the results for the iterative algorithm for Cases A and C. We have
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Figure 9: The average objective value and number of platform track changes for various values
for the parameter λ. The lower x-axis corresponds to Case A; the upper x-axis to Case C
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Figure 10: The average objective value and number of platform track changes for various
values for the parameter λ for Cases B and D

run the algorithm for each value of the parameter λ ∈ {0.5, 1.5, 2.5, 4.5, 9.5, 19.5, 39.5, 99.5}.
For each value of λ, we ran the iterative algorithm and computed both the total passenger
delay and the number of platform track changes for each delay scenario. The total delay is
normalized in the same way as in Figure 7. The averages of the total delay and platform
track changes are plotted in the figure. Similarly, in Figure 10, the results are depicted for
Cases B and D.
We see in these figures that the number of platform track changes can be reduced by incorpo-
rating them in our iterative algorithm. For low values of the parameter λ, we obtain the same
objective value as with the original iterative algorithm, but find less platform track changes.
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When the value of λ is increased, the number of platform track changes is reduced. However,
this comes at the cost of more passenger delay.
For Case A, we find three interesting classes of solutions. The first class, found with λ ≥ 4.5,
resembles the static solution. Solutions in the second class, obtained for λ ≤ 1.5, have an
objective value that is comparable to that of the dynamic model, but introduce only few
platform track changes. For λ = 2.5, a solution is found that balances the objective and the
number of platform track changes. Note that for all values of λ, the average number of plat-
form track changes is smaller than 1. This indicates that for most delay scenarios, there are
no platform track changes at all. For Case C, only two classes of solutions are distinguished.
For λ ≥ 9.5, solutions are found with the same objective as the static approach. For λ ≤ 4.5,
we find an objective value that is close to the optimal objective, but the number of platform
track changes is reduced significantly. For Cases B and D, the progress is more gradual. For
all intermediate values of λ, a solution is found with a unique balance between the objective
and the number of platform track changes.
Comparing both solution approaches for the bi-objective problem, we see that the exact algo-
rithm finds solutions with less platform track changes. In terms of quality, the exact approach
is thus preferable.
For Cases A and C, both the exact method and the iterative approach solve the instances
within one minute. For Case B, the running time for the exact algorithm is in the order of
10 minutes, while the iterative approach can solve the model within 3 minutes. For practi-
cal applications, when computational time is scarce, it is thus better to apply the iterative
algorithm. Finally, for Case D, both methods require 20 minutes of computation time. Such
running times are too long for practical applications.

7 Conclusion and Further Research

In this paper, we introduced a delay management model that incorporates the limited capacity
of railway stations. Two models are presented. The first model fixes the assignment of trains
to platforms and reduces to a delay management model with headway constraints. In the
second model it is allowed to reschedule the platform assignment. In a computational study,
we show that the delay for the passengers can be reduced when the platform assignment is
rescheduled dynamically.
As solutions to the delay management problem should be available within a very short com-
putation time, we also proposed an iterative solution method for the delay management
problem with station capacities. This heuristic iterates between solving a delay management
problem with a given platform assignment and optimizing the platform assignment given the
timetable and wait-depart decisions. We show that for each station separately, an optimal
platform assignment can be found in polynomial time. Computational tests show that the
iterative heuristic can be applied to improve on a solution that is obtained by the static delay
management model, especially for cases that include regional trains.
A drawback of the dynamic model is that it reschedules a lot of trains to other platforms in
order to reduce the total delay. Although delays are a source of frustration for the passengers,
many platform track changes are frustrating, too. Furthermore, these track changes put pres-
sure on the dispatching organization of the railway operator. In our view, delay management
with station capacities should therefore be viewed as a bi-objective optimization problem.
We show that much of the delay reduction can be obtained by allowing only a few platform
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track changes. To resolve the remaining delays, many platform track changes are required.
We therefore propose to limit the number of platform track changes that are allowed, in order
to balance the delay for the passengers on the one hand and the number of platform track
changes on the other.
We distinguish two directions for future research. The first direction searches for faster solu-
tion methods. Although our model can solve real-world instances within computation times
that are allowed in practice, solution methods for even larger instances might be required.
Furthermore, we approximate the delay for passengers who miss a connection by the cycle
time T . In reality, these passengers will probably select an alternative route. To cope with this
problem, our model can be used in an iterative solution approach as proposed by Dollevoet
and Huisman (2011), but then it should be solved several times. In such a setting, faster
solution methods are necessary. We think that further attempts to solve delay management
with station capacities heuristically could be developed that make use of relaxation-based
solution approaches.
The second direction applies our methods to the timetabling problem. Station capacities are
also an important issue in timetabling. Therefore it would be interesting to apply our exact
and heuristic solution methods to the timetabling problem with station capacities and to
compare them to existing solution approaches.
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