
Inverse Correspondence Analysis

Patrick J.F. Groenen∗ Michel van de Velden†

September 10, 2002

Econometric Institute Report EI 2002-31

∗Econometric Institute, Erasmus University Rotterdam, The Netherlands, P.O. Box
1738, 3000 DR Rotterdam, The Netherlands (e-mail: groenen@few.eur.nl).

†Universitat Pompeu Fabra, Barcelona, Spain

1



Abstract

In correspondence analysis, rows and columns of a data matrix
are depicted as points in low-dimensional space. The row and column
profiles are approximated by minimizing the so-called weighted chi-
squared distance between the original profiles and their approxima-
tions, see or example, Greenacre (1984). In this paper, we will study
the inverse correspondence analysis problem, that is, the possibili-
ties of retrieving one or more data matrices from a low dimensional
correspondence analysis solution. We will show that there exists a
nonempty closed and bounded polyhedron of such matrices. We also
present an algorithm to find the vertices of the polyhedron. A proof
that the maximum of the Pearson chi-squared statistic is attained at
one of the vertices is given. In addition, it is discussed how extra
equality constraints on some elements of the data matrix can be im-
posed on the inverse correspondence analysis problem. As a special
case, we present a method for imposing integer restrictions on the data
matrix as well. The approach to inverse correspondence analysis fol-
lowed here is similar to the one employed by De Leeuw and Groenen
(1997) in their inverse multidimensional scaling problem.

Keywords: Correspondence Analysis, Inverse Problems, Maximum
Chi-Square.
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1 Introduction

In correspondence analysis (CA), the rows and columns of a data matrix F are
depicted as points in low-dimensional space. Most often, F is a contingency
matrix, but this need not be the case. The only restriction on F is that
its elements are nonnegative. A CA solution is obtained by simultaneously
approximating the row and column profiles through minimization of the so-
called chi-squared distance. It is well known that the CA solution for both
the rows and columns can be obtained immediately from the singular value
decomposition of the scaled data matrix.

Much is known about the properties of CA, see, for example, Greenacre
(1984), Gifi (1990), and Van de Velden (2000). In this paper, we concentrate
on a problem that has not been treated before. Given a low dimensional CA
solution, which matrices F would have produced the current solution as a CA
solution? We call this problem the inverse correspondence analysis problem.

There are several reasons to investigate the inverse CA problem. First
of all, the size of the set of matrices F may reveal information about the
uniqueness of the original solution. If this set is large, then there are many
nonnegative matrices F that yield the same CA solution. Thus, even though
the data have lead to a perfectly normal correspondence analysis solution, it
is good to realize that there are many other data sets that would have led to
exactly the same solution. On the other hand, if the set is small, there are
much less nonnegative matrices F yielding the solution of the original prob-
lem. In particular, if the set only consists of the original data, then we know
that there is a unique relation between the correspondence analysis solution
and the data. Second, when CA solutions are reported in the literature,
the original data are not always presented. The solution of the inverse CA
problem enables us to generate data that has the original CA solution as its
CA solution. These generated data can then be used in simulation studies.
Thirdly, we believe that the study of inverse CA deepens our understanding
of CA. Finally, through inverse CA, we are able to prove the upper bound of
the Pearson chi-square given marginal frequencies but unknown data.

To study the inverse CA problem, we will follow a similar approach to
the one proposed by De Leeuw and Groenen (1997), in their treatment of
the inverse multidimensional scaling problem (see also, Groenen, De Leeuw,
& Mathar, 1996).

This paper is organized as follows. First, we introduce notation for CA.
Then we formalize the inverse CA problem. Next, we present a computational
method for computing the inverse CA solution. Then, we discuss where the
upper bound of the Pearson chi-square statistic is attained. The next section
discusses how additional equality and integer constraints can be imposed.
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We illustrate our method by an example. This paper is ended with some
concluding remarks.

2 The Correspondence Analysis Problem

Before we start with the inverse CA problem, let us introduce notation needed
for CA. Let F denote an nr × nc matrix of nonnegative elements on which
CA is performed. Let r be the vector of row sums of F, that is, r = F1 and
c the vector of columns sums, c = F′1, where 1 denotes a vector of ones of
appropriate length. Furthermore, define n as the sum of all elements of F,
that is, n = 1′F1.

Define the scaled data matrix F̃ as F̃ = D−1/2
r FD−1/2

c , where Dr and Dc

are diagonal scaling matrices with, respectively, the elements of r and c on
their diagonal. The task of correspondence analysis is to find k-dimensional
coordinates matrices R and C for row and column points such that the loss
function

φ(Rk,Ck) = ‖F̃−D1/2
r RkC

′
kD

1/2
c ‖2 (1)

is minimized, where ‖A‖2 denotes the sum of squared elements of A. Con-
sider the (complete) singular value decomposition

F̃ = UΛV′, where U′U = Inr ,V
′V = Inc , (2)

where Ii denotes the i×i identity matrix. Then, by Eckart and Young (1936)
we can minimize φ(Rk,Ck) by

Rk = D−1/2
r UkΛ

α
k and Ck = D−1/2

c VkΛ
1−α
k ,

where Uk and Vk are respectively the nr × k and nc× k matrices of singular
vectors corresponding to the k largest singular values gathered in the k × k
diagonal matrix Λk, and α is a nonnegative scalar. Clearly,

R′
kDrRk = Λ2α

k and C′
kDcCk = Λ

2(1−α)
k .

For α = 1, we obtain row principal coordinates and for α = 0 column prin-
cipal coordinates.

Now, suppose that the marginals r and c and the coordinates Rk and Ck

are given. Then, the inverse correspondence analysis problem is concerned
with the question what matrix F could have produced Rk and Ck as its
CA solution. In other words, given a CA solution, can we find one or more
matrices F that have the given CA solution as its CA solution?
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In the next section, we shall investigate the properties of the set F satisfy-
ing the requirements for inverse CA. Necessarily, F must contain the original
data matrix F as an element. We assume, without loss of generality, that
nr ≥ nc, so that the rank of F equals nc or less. If k = nc, the inverse
CA problem is trivial and set F only contains F. For k < nc, however, the
problem is not trivial and is discussed below.

3 Formalizing the Inverse Correspondence Anal-

ysis Problem

Suppose that we have a correspondence analysis solution Rk and Ck in k
dimensions. In addition, we will assume throughout this paper that the row
and column sums of F are known, so that the scaling matrices Dr and Dc

are known. Note that these vectors of row and column totals are of great
importance in correspondence analysis. Not only do they provide the proper
scaling for the coordinates, they are also referred to as the so-called trivial so-
lution, see, e.g., Greenacre (1984). Typically, one ignores this trivial solution,
which can be done by simply discarding the solution, or by considering the
singular value decomposition of D−1/2

r (F− n−1rc′)D−1/2
c rather than that

of D−1/2
r FD−1/2

c . In the following, we will assume that the trivial solution
is contained in the coordinate matrices Rk and Ck. Hence, we will consider
the singular value decomposition of F̃ for 1 ≤ k ≤ nc.

In the inverse CA problem, we look for all F that have

1. column sum c and row sum r, that is, F1 = c and 1′F = r,

2. Rk and Ck in its CA solution, and

3. only nonnegative elements.

Note that condition 2 does not imply that CA on a particular F yields Rk and
Ck as the first k dimensions. Condition 2 only tells us that Rk and Ck will be
among the CA dimensions. In the strict inverse CA problem, the additional
condition imposed is that Rk and Ck must be the first k dimensions. In the
remainder of this section, we investigate properties of the (strict) inverse CA
problem.

Recall the complete singular value decomposition

F̃ = UΛV′, where U′U = Inr ,V
′V = Inc . (3)

Let

U = [Uk | Uc] , V = [Vk | Vc] and Λ =

[
Λk 0
0 Λc

]
,
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where Uc is nr× (nr−k), Vc is nc× (nc−k) and Λc is an (nr−k)× (nc−k)
matrix that can be partitioned as Λc = [Λ̃c 0]′ where Λ̃c is diagonal of order
(nc−k)×(nc−k) and, generically, 0 denotes a matrix of zeros of appropriate
order. Furthermore, as U′U = Inr and V′V = Inc it follows that

U′
kUc = 0 and V′

kVc = 0. (4)

Assuming for the moment that F is known, then the complete singular value
decomposition for the scaled matrix F̃ = D−1/2

r FD−1/2
c can be expressed in

the following way

F̃ = UΛV′ = UkΛkV
′
k + UcΛcV

′
c.

Now assume that F and thus F̃ are unknown, but Rk,Ck,Dr,Dc and thus
UkΛkV

′
k are known. From the orthogonality restrictions (4) we can obtain

matrices Ũc = UcT and Ṽc = VcQ, where T and Q are unknown orthog-
onal matrices of the appropriate orders. Then, F̃ is decomposed into two
orthogonal parts

F̃ = UkΛkV
′
k + ŨcGṼ′

c, (5)

where G = T′ΛcQ. From (5) it can easily be derived that F can be recon-
structed as

F = D1/2
r (UkΛkV

′
k + ŨcGṼ′

c)D
1/2
c . (6)

Therefore, in the inverse correspondence analysis problem, we search for
those matrices G for which F reconstructed by (6) satisfies the three earlier
mentioned conditions.

Lemma 1 For any G, the matrix F̃ reconstructed by (5) has singular values
Λk and corresponding matrices of singular vectors Uk and Vk.

Proof. The matrices of singular vectors Uk and Vk, are matrices of eigen-
vectors of F̃F̃′ and F̃′F̃ respectively. From (4) it follows immediately that for
any F̃ reconstructed using (5) we have F̃F̃′Uk = UkΛ

2
k and F̃′F̃Vk = VkΛ

2
k.

Lemma 2 For any G, the matrix F reconstructed by (6) has row sums equal
to r and column sums equal to c.

Proof. This follows immediately from Lemma 1 and the fact that the trivial
solution in correspondence analysis (that is, the first dimension) is equal to
λ1u1v

′
1 = n−1D1/2

r 11′D1/2
c . Pre multiplying by D1/2

r and post multiplying by
D1/2

r gives n−1Dr11
′Dc = n−1rc′, so that the row sums equal n−1rc′1 = r

and the column sums equal n−11′rc′ = c′.
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Lemma 1 tells us that any G inserted in (6) gives a CA decomposition
that includes the original Rk and Ck. However, without any additional
constraints on G some of the elements of F may become negative. Thus, we
have additional restrictions on G to make the elements of F nonnegative.
Note that if G is constrained so that all elements of F̃ are nonnegative, then
F must have nonnegative elements as well, since F = D−1/2

r F̃D−1/2
c and Dr

and Dc have nonnegative elements only. To meet these extra constraints
all elements of ŨcGṼ′

c must be larger than (or equal to) the elements of
−UkΛkV

′
k.

Let g = vec(G), where the vec operator stacks the columns of G below
each other. Using the relationship

vec(ABC) = (C′ ⊗A) vec(B) (7)

between the vec operator and the Kronecker product, we can express the
nonnegativity restrictions as

Cg ≥ −d (8)

where C = Ṽc ⊗ Ũc and d = vec(UkΛkV
′
k).

Lemma 3 The system of inequalities (8) is consistent.

Proof. Choosing G = T′ΛcQ reconstructs the original F. Therefore, the
set of matrices G or vectors g satisfying (8) is nonempty. Thus, the system
of inequalities (8) is consistent.

Theorem 4 The solution set F of the inverse correspondence analysis prob-
lem is a convex set.

Proof. Each inequality in (8) defines a convex half space. The intersection
of convex sets is convex, so that F is convex, too.

Theorem 5 The set F is a bounded closed polyhedron.

Proof. The fact that F is a closed polyhedron follows immediately since
it is an intersection of half spaces defined by the system of inequalities (8).
Boundedness can be established if it can be proved that F does not contain
a ray. If F contains a ray, then there exists a G1 in F such that βG1 ∈ F
for β > 0. Let Ft denote the trivial solution, that is, Ft = n−1D1/2

r 11′D1/2
c ,

and let Fc = ŨcGṼ′
c. From (4) it follows that F′tFc = 0(nc×nc) and FtF

′
c =

0(nr×nr). As Ft is strictly positive, that is, all its elements are greater than
zero, it follows immediately that each row and column of Fc must contain at
least one negative element. Multiplying Fc = UcGV′

c with a sufficiently large
β will make F contain one or more negative values so that F falls outside
the polyhedron. Therefore, F does not contain a ray and is consequently
bounded.
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Lemma 6 Each F at the hull of the polyhedron has at least (nr− k)(nc− k)
values equal to zero.

Proof. The system of inequalities (8) is derived from the nonnegativity
restrictions on the elements of F. Since G is an (nr − k)× (nc − k) matrix,
there are (nr − k)(nc − k) independent elements in g. Thus, any F at the
hull of the polyhedron corresponds to a g for which at least (nr − k)(nc− k)
of the inequalities are equalities. Since an equality in (8) corresponds to a
zero element in F, there are at least (nr − k)(nc − k) zero elements in F at
the hull of the polyhedron.

Theorem 7 The set Fstrict defined by strict inverse CA is a bounded convex
set.

Proof. Set Fstrict is an intersection between F and the set G of matrices G
with singular values smaller than or equal to λk. To prove that the latter set
is convex, we use a result of Magnus and Neudecker (1988, p. 205) stating
that the largest eigenvalue λ2

max of G′G defines a convex function. Therefore,
the set G of matrices G with λ2

max ≤ λ2
k is convex. This property also holds

for strict monotone functions of λ2
max such as the square root. Therefore, the

set G of G’s with λmax ≤ λk is convex as well. The intersection of two convex
sets is also convex, so that the intersection of F and G is convex. Since F is
bounded, Fstrict must also be bounded.

4 Computing the Inverse Map

In De Leeuw and Groenen (1997), a similar problem was investigated, the
so-called inverse multidimensional scaling problem. Here, we take a similar
computational approach.

The basic idea is to check all possible vertices of the system of inequalities
defined by Cg ≥ −d. Let m = (nr − k)(nc − k) be the length of vector g.

Then, check for all
(

nrnc

m

)
combinations of rows whether the combination

defines a valid vertex.

The Inverse Correspondence Analysis Algorithm:

1. Let the set of vertices V be empty.

2. Do for all
(

nrnc

m

)
combinations ψ:

3. Let Cψ and dψ be the m rows of C and d respectively defined by ψ.
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• Let gψ be the solution of the system Cψg = dψ.

• Check if Cgψ ≥ d. If so, then add gψ to the set of vertices V .

4. End do.

Note that if some Cψ is not of full rank, then ψ cannot be a vertex, so it
is simply discarded.

5 A strict upper bound for the Pearson chi-

squared statistic

Let χ2 denote the Pearson chi-squared statistic for testing independence.
That is, χ2(F) =

∑
i

∑
j(fij − eij)

2/eij with eij = ricj/n. Note that the
r and c are known in advance. Now we can make use of the results for
inverse CA to obtain the upper bound of the chi-squared statistic under
the independence model. However, we first consider the general case of the
maximum chi-squared statistic in inverse CA.

Theorem 8 The maximum χ2 over the inverse CA set F is attained at one
of the vertices.

Proof. Clearly, χ2(F) is quadratic in F so it is a convex function. Because
F is determined by G through (6) and G must be in the convex set F , F lies
in a convex set too. Rockafellar (1970, Theorem 32.3, p. 344) states that the
maximum of a convex function over a convex set is obtained at an extremal
point. An extremal point of a convex set is a point that cannot be expressed
as a convex combination of other points in the convex set (Rockafellar, 1970,
p. 162). The extremal points of a polyhedron are the vertices. Because F is
a polyhedron, the maximum χ2 is obtained at a vertex.

This theorem can also be used to obtain the maximum χ2 under the
independence model, where only the the marginal frequencies r and c are
given and no other CA dimension is known. In the independence case, too,
the value χ2 is bounded above and the maximum is attained at one of the
vertices. This situation arises in the inverse CA problem when only the
trivial dimension is given so that k = 1. To obtain the maximum value,
the algorithm from Section 4 can be used, although computationally (much)
faster methods may exist that make efficient use of the additional structure
in the restrictions.
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6 Additional Constraints in Inverse CA

We now consider the case where, in addition to the marginals, extra infor-
mation concerning elements of F is available. First we discuss the case where
one or more elements of F are known. Then we present an algorithm that can
be used to reduce the original set F under the restriction that the elements
of the original matrix need to be integers.

6.1 Equality Constraints

It may occur that one or more elements of F are known a priori. For example,
if a certain event cannot occur, the corresponding value in F must be zero.
Assume that p values of F, and hence, of F̃, are known. Let φ denote the row
indices of C for which the equality constraints are imposed, so that the rows
of the p×m matrix Cφ match the constrained rows of C. Furthermore, let

f̃φ denote the p × 1 vector of corresponding (known) values of F̃ and let dφ

denote the corresponding rows of d. The new constraints can be expressed
as

Cφg = f̃φ − dφ. (9)

Theorem 9 The solution of constrained inverse CA is a bounded convex
polyhedron that may be empty.

Proof. By Theorem 5, the solution of the inverse CA problem defines a
bounded convex polyhedron. The equality constraints defined by (9) are
linear and thus convex. The union of a bounded polyhedron and a linear
subspace is again a bounded polyhedron. Because the subspace may fall
outside the polyhedron, e.g., by imposing an invalid constraint such as con-
straining fij to be larger than either of the corresponding marginals ri or ci,
the union of the two sets may be empty.

We distinguish three cases that may occur with respect to the constraints
as expressed in (9):

(a) p < m: There are fewer constraints than free elements in g. We can
implement the restrictions in our algorithm in the following way.

The Constrained Inverse Correspondence Analysis Algorithm:

1. Let the set of vertices V be empty.
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2. Do for all
(

nrnc−p
m−p

)
combinations ψ∗, where each combination con-

tains φ, i.e. ψ∗ =

(
φ
ψ

)
:

3. Let Cψ∗ =

(
Cφ

Cψ

)
and dψ∗ =

(
f̃φ − dφ

−dψ

)
be the m rows of C

and d, defined by ψ∗ and the constrained values f̃φ.

• Let gψ∗ be the solution of the system Cψ∗g = dψ∗ .

• Check if Cgψ∗ ≥ d. If so, then add gψ∗ to the set of vertices
V .

4. End do.

(b) p = m: The number of constraints is equal to the number of unknown
elements. Therefore, if the corresponding matrix Cφ is nonsingular,
that is, if C−1

φ exists, we obtain a unique solution for g. Thus, if F
reconstructed using (6) is nonnegative, we have a valid unique solu-
tion. Else, if an element of the reconstructed matrix F is negative, the
solution set F is empty.

If Cφ is singular, that is, if some constraints are linearly dependent
and hence redundant, we cannot uniquely determine g. We thus have
a similar situation as in (a). We can obtain vertices satisfying the
equality and nonnegativity constraints in the following way: Let p∗

denote the rank of Cφ. Then, consider for all
(

nrnc−p
m−p∗

)
combinations of

rows of C that contain Cφ, the following system of equations:

Cφ∗g = f̃φ∗ − dφ∗

where Cφ∗ is a (2p − p∗) ×m matrix with as first p rows independent

rows of C corresponding to the equality constraints, f̃φ∗ is the vector

f̃φ supplemented with p− p∗ zeros and dφ∗ is the vector of appropriate
elements of d. Then, for each Cφ∗ that has rank m, we can calculate

g as g = (C′
φ∗Cφ∗)

−1C′
φ∗ (̃fφ∗ − dφ∗). Upon checking the nonnegativity

constraints Cg ≥ d, we add or discard the vertices to our solution set.
Note that, if Cφ∗ is not of full column rank then φ∗ cannot be a vertex
and we can simply discard it.

(c) p > m: There are more constraints than free elements, so that the
matrix Cφ has more rows than columns. Then, assuming that Cφ has

full column rank, g can be calculated as g = (C′
φCφ)

−1C′
φ(̃fφ−dφ). In

order for g to be a valid solution, F reconstructed using (6) must be
nonnegative. Else, the solution set F is empty.
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If the rank of Cφ is smaller than m, we have essentially the same
situation as described under (b) and we can apply the same procedure
to obtain vertices.

Note that, by imposing the additional constraints, we have decreased the
number of inequalities to be checked. Therefore, with a sufficient number of
constraints even large inverse CA problems become computationally feasible.

6.2 Integer constraints

Suppose we know that the elements of the original matrix F are integers.
For example, we may know F to be a contingency matrix. This information
can be used to reduce the solution set F in the following way.

Let Fh denote the reconstructed matrix for the h-th vertex gh, that is
Fh = D−1/2

r (UkΛkV
′
k + ŨcGhṼ

′
c)D

−1/2
c , where vec(Gh) = gh and let fh

ij

denote the ij-th element of Fh. Define int+(x) as the first integer larger
than x and int−(x) as the first integer smaller than x. Also, let Fmin be
the matrix with elements int+(minh(f

h
ij)) (that is, the smallest ij-th element

over all vertices) and Fmax have elements int−(maxh(f
h
ij)) (that is, the largest

ij-th element over all vertices).

Theorem 10 When F is restricted to have elements fij that are integer,
then elements of F are bounded below by Fmin and bounded above by Fmax.

Proof. This follows directly from the convexity of the solution set F in
Theorem 4 and the integer constraint for the elements of F.

Define F̃min = D−1/2
r FminD

−1/2
c , F̃max = D−1/2

r FmaxD
−1/2
c , f̃max = vec(F̃max),

and f̃min = vec(F̃min). Using (6), we must have

F̃min −UkΛkV
′
k ≤ ŨcGṼ′

c ≤ F̃max −UkΛkV
′
k,

or in vec notation

f̃min − d ≤ Cg ≤ f̃max − d.

These additional integer restrictions can be implemented as follows:

The Integer Constrained Inverse Correspondence Analysis Algorithm:

1. Find an initial set of vertices V by the Inverse Correspondence Analysis
Algorithm of Section 4.
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Table 1: Artificial smoking data of Greenacre (1984).The Pearson Chi-
squared statistic for indepence is χ2 = 16.44.

Smoking category Row
Staff group (1) None (2) Light (3) Medium (4) Heavy total r

(1) Senior managers 4 2 3 2 11
(2) Junior managers 4 3 7 4 18
(3) Senior employees 25 10 12 4 51
(4) Junior employees 18 24 33 13 88
(5) Secretaries 10 6 7 2 25

Column total c′ 61 45 62 25 193

2. Repeat until V does not change:

(a) Compute f̃min and f̃max as described above.

(b) Do for all
(

nrnc

m

)
combinations ψ:

(c) Let Cψ and dψ be the rows of C and d defined by ψ.

• Let gψ1 be the solution of the system Cψg =
(
f̃max − d

)
ψ

• Check if (f̃min − d) ≤ Cgψ1 ≤ (̃fmax − d). If so, then add gψ1

to the set of vertices V .

• Let gψ2 be the solution of the system Cψg = (̃fmin − d)ψ

• Check if (f̃min − d) ≤ Cgψ2 ≤ (̃fmax − d). If so, then add gψ2

to the set of vertices V .

(d) End do.

As this procedure imposes additional restrictions, the number of vertices
may increase. The solution space, however, becomes smaller. Moreover, the
matrices Fmin and Fmax provide us with lower and upper bounds for the
integer elements of F.

7 An Illustrative Example

To illustrate our method, consider the artificial smoking data of Greenacre
(1984), see Table 1.

Suppose that in addition to the marginals r and c, we have the 2-
dimensional CA solution for these data. That is, in our notation, k = 3
and Rk and Ck are 5 × 3 and 4 × 3 matrices with as their first column the

13



Table 2: Vertices and reconstructed F by (6) of inverse correspondence anal-
ysis of the smoking data using k = 3.

Vertex Reconstructed F χ2

g1 =
[ −.1821
−.2974

]
H1 =




4.11 .00 6.21 0.68
3.87 5.43 3.09 5.61

25.11 8.00 15.22 2.67
18.15 21.22 37.47 11.16
9.76 10.36 .00 4.88




χ2
1 = 39.83

g2 =
[ −.1821

.1993

]
H2 =




4.11 .00 6.21 0.68
3.96 3.74 5.80 4.49

24.83 13.14 6.95 6.08
17.94 25.13 31.18 13.75
10.17 2.98 11.86 .00




χ2
2 = 30.43

g3 =
[

.2084
−.2812

]
H3 =




3.90 3.87 0 3.24
4.02 2.66 7.55 3.77

25.22 6.00 18.44 1.35
18.10 22.13 36.01 11.76
9.76 10.36 0 4.88




χ2
3 = 40.00

g4 =
[

.2084

.2155

]
H4 =




3.90 3.87 .00 3.24
4.11 0.97 10.26 2.66

24.94 11.14 10.16 4.76
17.89 26.04 29.72 14.35
10.17 2.98 11.86 .00




χ2
4 = 33.71

trivial solutions. We can derive Ũc and Ṽc from R′
kŨc = 0 and C′

kṼc = 0.
Applying the Inverse Correspondence Analysis Algorithm described in Sec-
tion 4 with C = Ṽc ⊗ Ũc and d = vec(D1/2

r RkC
′
kD

1/2
c ), four valid solutions

for g are obtained. Tabel 2 contains the four vertices and the corresponding
reconstructed F matrices. Thus, any convex combination of these four ver-
tices yields a CA solution with Rk and Ck, the marginals are r and c, and the
elements of F are nonnegative. It may be verified that the convex combina-
tion .1962H1 + .2866H2 + .2134H3 + .3038H4 yields the original contingency
matrix in Table 1.

Because g only contains two elements, a visual representation of the in-
verse CA solution can easily be obtained (see Figure 1). The axes represent
the elements of g, that is, g1 and g2. The area inside the polyhedron is 0.194.
For a g of this size, the set with λmax < λk can be graphed as circle.

For the same data, suppose that we want to impose the additional re-
striction that element i = 1 and j = 4 is fixed to 2. Clearly, the problem
becomes the constrained inverse CA problem. The vertices of the constrained
inverse CA solution is presented in Table 3. Again it may be verified that
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Figure 1: Polyhedron defined by inverse CA on the smoking data using k = 3.
The vertices are indicated by crosses. The dimensions are g1 and g2. The
circle indicates those g that satisfy the strict inverse CA condition.

for every convex combination of the two vertices the marginals are r and c,
a CA solution contains Rk and Ck, the elements of F are nonnegative, and
element i = 1 and j = 4 equals 2.

Finally, suppose it is known that the original matrix is a contingency
matrix. Then, using Theorem 10 we can obtain matrices with lower and
upper (integer) bounds for the values of F. These matrices, based on the four
reconstructed F matrices from Table 2, are presented in Table 4. Applying
the algorithm described in Section 6.2 immediately yields one vertex g =
[.0199, .0043]′, with as corresponding F matrix the original contingency
table in Table 1.

8 Conclusion and Discussion

In this paper, we have specified the set of matrices that all yield a given low
dimensional configuration in its correspondence analysis solution. This set is
a nonempty bounded closed polyhedron. Computing the vertices of the poly-
hedron is a computationally very demanding task, even for relatively small
CA problems. This task is reduced if the number of additional constraints
on the elements is sufficiently large. We also specified a strict upper bound
for the Pearson chi-squared statistic, not limited to inverse correspondence
analysis, but also to the special case of the independence model where only
the margins of the data matrix are available. Furthermore, we showed that if
the data matrix is known to have integer values (as in a contingency table),
then lower and upper integer bounds for the elements of the origina unknown
contingency table can be obtained. In this case, the inverse CA solution set
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Table 3: Vertices and reconstructed F by (6) of constrained inverse corre-
spondence analysis of the smoking data using k = 3, where element i = 1
and j = 4 is fixed to 2.

Vertex Reconstructed F χ2

g1 =
[

.0199
−.2890

]
H1 =




4.00 2.00 3.00 2.00
3.95 4.00 5.40 4.66

25.17 6.96 16.88 1.99
18.13 21.69 36.72 11.47
9.76 10.36 .00 4.88




χ2
1 = 32.56

g2 =
[

.0199

.2077

]
H2 =




4.00 2.00 3.00 2.00
4.04 2.31 8.11 3.54

24.88 12.11 8.61 5.40
17.91 25.60 30.42 14.06
10.17 2.98 11.86 .00




χ2
2 = 24.76

Table 4: Lower and upper bounds for the smoking data.

Lower Bounds Upper Bounds
Staff group None Light Medium Heavy None Light Medium Heavy
Senior managers 4 0 0 1 4 3 6 3
Junior managers 4 1 4 3 4 5 10 5
Senior employees 25 6 7 2 25 13 18 6
Junior employees 18 22 30 12 18 26 37 14
Secretaries 10 3 0 0 10 10 11 4
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may be significantly reduced and can be unique.
Throughout this paper, we have assumed that the row and column marginals

were known in advance together with the low dimensional CA solution. This
choice can easily be justified by recognizing that the marginals can be di-
rectly derived from the trivial CA dimension. However, an extension of the
inverse CA problem to a situation where the marginals are unknown a priori,
would lead to a much more complicated situation with a set that does not
have the nice mathematical properties as in this paper.

The specification of the inverse set is available for some other multivariate
analysis techniques such as multidimensional scaling (De Leeuw & Groenen,
1997; Groenen et al., 1996) and principal components analysis (Ten Berge &
Kiers, 1999), or could be developed in the same spirit as the present paper.
We believe that investigation of the inverse set yields better understanding
of the original problem.
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