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Abstract

In this paper, we discuss the dynamic vehicle and crew scheduling prob-
lem and we propose a solution approach consisting of solving a sequence
of optimization problems. Furthermore, we explain why it is useful to con-
sider such a dynamic approach and compare it with a static one. Moreover,
we perform a sensitivity analysis on our main assumption that the travel
times of the trips are known exactly a certain amount of time before actual
operation.

We provide extensive computational results on some real-world data
instances of a large public transport company in the Netherlands. Due to
the complexity of the vehicle and crew scheduling problem, we solve only
small and medium-sized instances with such a dynamic approach. We
show that the results are good in the case of a single depot. However, in
the multiple-depot case, the dynamic approach does not perform so well.
We investigate why this is the case and conclude that the fact that the
instance has to be split in several smaller ones, has a negative effect on
the performance.

Keywords: transportation, large-scale optimization, dynamic planning,
vehicle and crew scheduling

1 Introduction

Due to privatization and the growing competition in the public transport market,
it has become much more important for public transport companies to provide
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an adequate service level to their customers. For instance, in the Netherlands,
public transport companies (will) sign a contract with the government to provide
transport in a certain area that is only valid for a limited period. The contract
specifies minimum service levels. In case these are not met, a penalty is due and
the contract may not be renewed. For example, this can be the case if there are
too many delays. So it is very important for public transport companies to build
robust schedules that limit the number of possible delays.

Connexxion, the largest bus company in the Netherlands, provides services for
suburban and interregional transport, especially in highly populated areas with a
lot of traffic jams. The company experiences a significant number of trips starting
late. Therefore, it is studying the possibility of using a dynamic planning process
for vehicle and crew scheduling. This has motivated us to develop algorithms to
support these processes.

In Huisman et al. (2001) we have introduced a new approach to vehicle
scheduling. Vehicle scheduling is the process of assigning trips to vehicles. These
trips result from the timetable and are given. In the paper, we looked at a
dynamic method instead of the traditional static one. That is, a vehicle schedule
is not constructed for a whole period, but is generated online. For example, it
can be generated every hour for the next one. The results of that approach were
very promising. The number of trips starting late was reduced at the price of
using only a few vehicles more. Furthermore, we considered two different cases,
one with a single scenario representing the average travel time and one with
multiple scenarios for future travel times. The second case clearly outperformed
the first one. However, our method used the fact that the travel times are known
exactly a certain time before realization. It is obvious that this is only realistic if
this time is small, but even then our method clearly outperformed the static one.
Furthermore, the impact of small deviations from the estimated travel times on
the performance of our method was quite small. In such an online approach,
it is very important that the optimization problem in every iteration is solved
quite fast. Therefore, we did not use an exact approach, but a cluster-reschedule
heuristic, where we first cluster the trips and assign them to different depots
using the static vehicle scheduling problem, and then dynamically reschedule
the trips per depot. We showed that the gap between this cluster-reschedule
heuristic and a lower bound on the overall problem is less than four percent,
which is reasonably small.

In this paper, we will integrate the dynamic vehicle scheduling problem with
crew scheduling, i.e. assigning trips to crews, such that the whole process can be
done dynamically, which is necessary if such a dynamic approach is used in prac-
tice. Furthermore, we compare this with the approach of static vehicle and crew
scheduling with buffer times, which is the approach currently used in practice.
The static as well as the integrated problem can be solved either sequentially, i.e.
first vehicle scheduling and then crew scheduling, or in an integrated way. No-
tice that solving the integrated vehicle and crew scheduling problem asks much
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more computational power than the vehicle scheduling problem. Therefore, for
the integrated problem, dynamic approaches can only be used if the underlying
problems are solved heuristically, which is likely to have a negative effect on the
quality. However, such a negative effect may be compensated by the positive
effect of using a dynamic approach.

Of course, delays are not only an important issue in bus transport. In the
airline world, a related problem, disruption management, is one of the major
issues nowadays (see Horner (2002) about the success of Operations Research
after September 11). In the disruption management (or recovery) problem, all
aircrafts and crew need to be recovered to their actual schedule after a disrup-
tion. An interesting reference to this problem is Stojković & Soumis (2001). The
authors propose a method to recover the aircraft routing and crew schedules
simultaneously. Their method is based on a Dantzig-Wolfe decomposition com-
bined with a branch-and-bound method. Another related idea is to make more
robust crew schedules where the costs of disruptions are taken into account.
Schaefer et al. (2001) discuss some algorithms to take the expected crew costs
into account during the optimization and they show that their approach outper-
formed the traditional one. Finally, Yen & Birge (2000) have used stochastic
programming techniques to solve airline crew scheduling problems to get more
robust schedules.

The paper is organized as follows. In Section 2, we provide a model and
algorithm of the static vehicle and crew scheduling problem, which is used to
benchmark the dynamic methods introduced later on in this paper. Before we
introduce those approaches, we start the discussion about dynamic vehicle and
crew scheduling in Section 3 with some basic assumptions. The dynamic ap-
proaches itself are the topic of Section 4. Finally, we conclude this paper with
some computational experiments in Section 5.

2 Static Vehicle and Crew Scheduling

In this section we provide a summary of the static approach, which we will use
to validate our dynamic approach. We first give a formal problem description of
the multiple-depot vehicle and crew scheduling problem. Several approaches to
tackle the integrated variant of the vehicle and scheduling problem are recently
proposed in the literature (see e.g. Freling (1997), Haase & Friberg (1999),
Haase et al. (2001) and Freling et al. (2003) for the single-depot case, and Gaffi
& Nonato (1999) and Huisman et al. (2003) for the multiple-depot case). In
this paper, we will consider one of the formulations and algorithms proposed by
Huisman et al. (2003). For completeness, it is summarized in this section. In
fact, the formulation is presented slightly differently here, such that the step to
the dynamic problem is smaller.
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2.1 Problem Definition

The multiple-depot vehicle and crew scheduling problem combines the multiple-
depot vehicle scheduling problem and the crew scheduling problem. Since we will
consider dynamic variants of the first two problems later on, we will abbreviate
these static problems as S-MDVCSP, S-MDVSP and CSP, respectively.

Given a set of trips within a fixed planning horizon, the objective is to mini-
mize the total sum of vehicle and crew costs such that both the vehicle and the
crew schedule are feasible and mutually compatible. Each trip has fixed starting
and ending times and can be assigned to a vehicle and a crew member from
a certain set of depots. Furthermore, the travelling times between all pairs of
locations are known. A vehicle schedule is feasible if (1) all trips are assigned to
exactly one vehicle, and (2) each trip is assigned to a vehicle from a depot that is
allowed to drive this trip. From a vehicle schedule it follows which trips have to
be performed by the same vehicle and this defines so-called vehicle blocks. The
blocks are subdivided at relief points, defined by location and time, where and
when a change of driver may occur and drivers can enjoy their break. A task is
defined by two consecutive relief points and represents the minimum portion of
work that can be assigned to a crew. These tasks have to be assigned to crew
members. The tasks that are assigned to the same crew member define a crew
duty. Together the duties constitute a crew schedule. Such a schedule is feasible
if (1) each task is assigned to one duty, and (2) each duty is a sequence of tasks
that can be performed by a single crew, both from a physical and a legal point
of view. In particular, each duty must satisfy several complicating constraints
corresponding to work load regulations for crews. Typical examples of such con-
straints are maximum working time without a break, minimum break duration,
maximum total working time, and maximum duration. Finally, a piece (of work)
is defined as a sequence of tasks on one vehicle block without a break that can
be performed by a single crew member without interruption.

We distinguish between two types of tasks, viz., trip tasks corresponding to
trips, and dh-tasks corresponding to deadheading. A deadhead is a period that
a vehicle is moving to or from the depot, or a period between two trips that a
vehicle is outside of the depot (possibly moving without passengers).

2.2 Mathematical Formulation

Let N = {1, 2, ..., n} be the set of trips, numbered according to increasing starting
time. Define D as the set of depots and let rd and td both represent depot d.
Furthermore, define sti and eti as respectively the start and ending time of trip
i, trav(rd, i), trav(i, j) and trav(i, td) as the deadhead travel time from depot d
to the start location of trip i, the deadhead travel time from the end location of
trip i to the start location of trip j, and from the end location of trip i to depot
d, respectively. Moreover, define E = {(i, j) | i < j, stj ≥ eti + trav(i, j)} as the
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set of deadheads between trips.
We define the vehicle scheduling network Gd = (V d, Ad), which is an acyclic

directed network with nodes V d = Nd ∪{rd, td}, and arcs Ad = Ed ∪ (rd×Nd)∪
(Nd×td). Note that Nd and Ed are the parts of N and E corresponding to depot
d, since it is not necessary that all trips can be served from every depot. Let cd

ij

be the variable vehicle cost of arc (i, j) ∈ Ad, which is usually some function of
travel and idle time. Furthermore, let c be the fixed cost for using a vehicle.

To reduce the number of constraints, we assume that a vehicle returns to the
depot if it has an idle time between two consecutive trips which is long enough
to let it return. In that case the arc between the trips is called a long arc; the
other arcs between trips are called short arcs. Denote Ad∗ ⊂ Ad as the set of arc
without long arcs.

Let tpdh, h = 1, 2, ...,m be the time points at which a vehicle may leave depot
d to drive to the start location of a trip, i.e., the start time of the trip minus the
driving time from the depot to the start location. Moreover, define Hd as the
corresponding set of timepoints with tpd1 < tpd2 < ... < tpdm. Let parameter bdh

i

be equal to 1 if sti ≤ tpdh < eti, and 0 otherwise. Similarly, let parameters

adh
ij =

{
1, if eti ≤ tpdh < stj,
0 otherwise,

for each arc (i, j) with i, j ∈ Nd,

adh
rdj =

{
1, if stj − trav(rd, j) ≤ tpdh < stj,
0 otherwise,

for each arc (rd, j) with j ∈ Nd, and

adh
itd

=

{
1, if eti ≤ tpdh < eti + trav(i, td),
0 otherwise.

for each arc (i, td) with i ∈ Nd.
Furthermore, Kd denotes the set of duties corresponding to depot d and fd

k

denote the crew cost of duty k ∈ Kd, respectively. The subset of duties covering
the trip task corresponding to trip i ∈ Nd is denoted by Kd(i), where we assume
that a trip corresponds to exactly one task. Kd(i, j) denotes the set of duties
covering dh-tasks corresponding to deadhead (i, j) ∈ Ad∗. Decision variable yd

ij

indicates whether an arc (i, j) is used and assigned to depot d or not, while xd
k

indicates whether duty k corresponding to depot d is selected in the solution or
not. Finally, Bd denotes the number of vehicles used from depot d ∈ D. The
S-MDVCSP can then be formulated as follows.

min c
∑
d∈D

Bd +
∑
d∈D

∑
(i,j)∈Ad

cd
ijy

d
ij +

∑
d∈D

∑
k∈Kd

fd
k xd

k (1)
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∑
d∈D

∑
{j:(i,j)∈Ad}

yd
ij = 1 ∀i ∈ N, (2)

∑
d∈D

∑
{i:(i,j)∈Ad}

yd
ij = 1 ∀j ∈ N, (3)

∑
{i:(i,j)∈Ad}

yd
ij −

∑
{i:(j,i)∈Ad}

yd
ji = 0 ∀d ∈ D, ∀j ∈ Nd, (4)

∑
i∈N

bdh
i

∑
{j:(i,j)∈Ad}

yd
ij +

∑
(i,j)∈Ad∗

adh
ij yd

ij ≤ Bd ∀d ∈ D, ∀h ∈ Hd, (5)

∑
k∈Kd(i)

xd
k −

∑
{j:(i,j)∈Ad}

yd
ij = 0 ∀d ∈ D, ∀i ∈ Nd, (6)

∑
k∈Kd(i,j)

xd
k − yd

ij = 0 ∀d ∈ D, ∀(i, j) ∈ Ad∗, (7)

xd
k ∈ {0, 1} ∀d ∈ D, ∀k ∈ Kd, (8)

yd
ij ∈ {0, 1} ∀d ∈ D, ∀(i, j) ∈ Ad. (9)

The objective is to minimize the sum of total vehicle and crew costs. The first
four sets of constraints, (2)-(5), correspond to the formulation for the S-MDVSP
(see e.g. Huisman et al. (2001)). Constraints (6) assure that each trip task
will be covered by a duty from a depot if and only if the corresponding trip is
assigned to this depot. Furthermore, constraints (7) guarantee the link between
dh-tasks and deadheads in the solution. That is, a vehicle performs deadhead
(i, j) if and only if dh-task (i, j) is assigned to a driver from the same depot.

2.3 Algorithm

An outline of the algorithm is shown in Figure 1.
First, we compute a feasible solution by using the sequential approach, which

means we compute the optimal solution of the S-MDVSP and afterwards, we
solve for each depot a CSP given the vehicle schedule for that depot. To solve
the S-MDVSP, we use the model described in Huisman et al. (2001) and the
all-purpose solver CPLEX. The approach we used to solve the CSP, is described
in Freling et al. (2003).

The main part of the algorithm is used to compute a lower bound and we
use therefore a column generation algorithm. The master problem is solved with
Lagrangian Relaxation. Furthermore, we generate the duties in the column gen-
eration subproblem (pricing problem). For details about the master and pricing
problem, we refer to Huisman et al. (2003). Since we do not want to get a very
large master problem, columns with high positive reduced costs will be removed.
This only happens if there are more columns than a certain minimum number.
Finally, in Step 4 we compute feasible solutions.

In this paper we use the following parameter settings to run the algorithm.

1. The objective is to minimize the total sum of vehicles and drivers. For
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Step 0: Initialization
Solve MDVSP and CSP for every depot and
take as initial set of columns the duties in the CSP-solution.
Step 1: Computation of dual multipliers
Solve a Lagrangian dual problem with the current set of columns.
This gives a lower bound for the current set of columns.
Step 2: Deletion of columns
If there are more columns than a certain minimum amount, then delete
columns with positive reduced cost greater than a certain treshold value.
Step 3: Generation of columns
Generate columns with negative reduced cost.
Compute an estimate of a lower bound for the overall problem.
If the gap between this estimate and the lower bound found in Step 1 is
small enough (or another termination criterion is satisfied), go to Step 4;
otherwise, return to Step 1.
Step 4: Construction of feasible solution
Solve a second Lagrangian dual problem with the set of columns
generated in Step 3, where the optimal solution of the subproblem gives
feasible vehicle schedules. Solve for each depot the crew scheduling
problem corresponding to the feasible vehicle schedules.

Figure 1: Solution method for S-MDVCSP

solving the S-MDVSP in the sequential approach and in the initial step for
the integrated approach we use an additional fictitious cost in the variable
vehicle costs, viz., for every minute a vehicle is empty outside the depot a
cost equal to 1 is incurred.

2. The pricing problems are solved independently for each depot and each type
of duty. Moreover, we generate at most 1500 duties for each combination
of a depot and type of duty.

3. The maximum number of iterations in the subgradient algorithm to solve
the master problem (Step 1) is 500+3k in the k-th iteration of the column
generation algorithm. However, for constructing the feasible solutions in
Step 4, the number of iterations is only 10, since in that case the subproblem
is NP-hard. Such a small number of iterations is sufficient, since we already
start with good multipliers, namely the best ones of the last iteration in
the previous step. We construct 10 feasible solutions from which the best
one will be selected.

4. The column generation algorithm is stopped if the difference between the
current and estimated lower bound is smaller than 0.1% or if the compu-
tation time of the lower bound phase is more than 3 hours. Notice that in
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the latter case we do not have a proven lower bound.

3 Assumptions

Before we consider dynamic approaches, we need to realize which aspects play a
role in this problem. Several assumptions about these aspects should be made.

Let’s consider the following example with two trips, one trip ending at A at
10:00 and another starting from A at 10:15. Furthermore, there should be a
break of at least 15 minutes in the duty. Moreover, suppose that both trips are
in one duty and the break is between these two trips. However, if the first trip
arrives late, we do not have a feasible duty anymore or the second trip starts late.
Thus we have the possibility of choosing between violating crew rules and trips
starting late. Therefore, we need to make an assumption about the decisions
made in such occasions. Throughout the paper, we will assume that passengers
have a higher priority than drivers, which means that if there is a possibility
to choose between a violation of one or more restrictions of a duty and a trip
starting late, the first option is always chosen.

Furthermore, we assume that a trip can only start late due to a delay of the
vehicle and thus not due to the driver. That is whenever a changeover occurs this
cannot lead to an extra delay on the new vehicle. Since changeovers only occur
during the break, we assume that the delays are not larger than the minimum
break length. Later on we will see that in our test problems such a delay never
occurs and therefore such an assumption is reasonable.

Moreover, we assume that the number of vehicles and crews is unlimited.
However, the models and solution approaches can be modified to relax this as-
sumption. As a consequence of this assumption, the number of duties per type
are not known beforehand. However, if a duty of a certain specified type has
started, the type will not be changed anymore. Therefore, the driver has an
indication at which time he will finish his duty, although, he does not know it
exactly.

Finally, for evaluation of the schedules we assume that the start time of the
two pieces is fixed. Since if a driver reliefs another one at the start of a piece and
the bus has a delay, the driver is already there at the scheduled time and does
not have the advantage that he could actually start later. Therefore, the total
length of pieces, work time and so on, can only increase and not decrease.
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4 Different Approaches to Solve the Dynamic

Variant

In the case of multiple-depots, all algorithms use the cluster-reschedule heuristic
shown in Figure 2. This algorithm has an important advantage in practice, since
drivers should only be educated about a subset of the trips.

Step 1: Assign the trips to depots by solving (S-MDVSP).
Step 2: For each depot, apply a dynamic approach for the single-depot case.

Figure 2: Solution method for D-MDVCSP

Since multiple-depot problems are solved as several single-depot problems, we
only focus on the single-depot case in the remainder of this section. We developed
two algorithms to solve the dynamic vehicle and crew scheduling problem with
a single depot.

These algorithms use both the following idea: at certain moments in time,
we construct a schedule for the next l time units, where we take into account
those decisions already made earlier that cannot be changed anymore, and we
also take into account in some way the future after the next l time units.

Our crucial assumption is that the travel times in the period [T, T + l) are
known with complete certainty. For the travel times after this period, we assume
that we have information in the form of a number of possible scenarios, each
with a certain probability of occurrence. These scenarios and the associated
probabilities could be based on historical data, on subjective expert opinions or
a combination of both. Note that one may choose to aggregate the scenarios into
a single average scenario. Also note that in case no scenarios are available at
all, one can still apply this approach in which the travel times after the next l
periods are simply taken equal to the standard times that one also uses in the
static problem.

In our current implementation these scenarios are based on historical data,
which means that every scenario corresponds to a day in the past. Therefore, the
scenarios and the probabilities of these scenarios will not vary over the day. Of
course, in principle, it is possible that the planners modify these probabilities or
the scenarios themselves during the day. For instance, on a rainy day, they can
give higher probabilities to scenarios corresponding to rainy days in the past.

After the k ≤ l time units have passed, we repeat the above procedure,
which means we construct a schedule for the period [T + k, T + k + l). In our
implementation the length of the different periods are all equal except for the
first one. However, for the approach itself the length of the periods can also vary
over the day.
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A schematic overview of the first algorithm is provided in Figure 3. This
algorithm (called D-VSP-CSP) uses the sequential approach, i.e. first vehicle
scheduling and then crew scheduling. The other one (called D-VCSP), which is
discussed in Subsection 4.2, uses the integrated approach.

Step 0: Choose initial parameters T , k and l (≥ k).
Step 1: Solve problem (D-SDVSP-T) for period [T, T + l).

Solve the corresponding CSP for the main scenario.
Update T : T := T + k.
Repeat step 1 until the end of the day.

Figure 3: Solution method for D-VSP-CSP

Notice that in algorithm D-VSP-CSP we solve problem (D-SDVSP-T), which
will be discussed in Subsection 4.1. Afterwards, we solve the corresponding crew
schedule for the main scenario, i.e. the scenario with the highest probability (in
case there is more than one such scenario, we choose one of them arbitrary). This
means that we just have to solve a standard crew scheduling problem. However,
we need to take into account that decisions made before time point T cannot be
changed anymore. This can be handled in the construction of the set of duties K.
In fact the requirement that there should be no contradiction with decision made
earlier, is just an extra feasibility check when we construct this set. Therefore,
this does not have any impact on the structure of the underlying set partitioning
problem.

4.1 Mathematical Formulation (D-SDVSP-T)

We will formulate the problem that we want to solve at time point T , where we
schedule for the period [T, T + l) and we use scenarios for the period after T + l.
Let S denote the set of scenarios (where possibly |S| = 1, i.e., we also consider
the case with a single scenario). We again denote by N the set of trips and we
define for every scenario s ∈ S a network Gs = (N ∪ r ∪ t, A) where r and t
are the source and the sink corresponding to the depot, respectively, and A is
the set of arcs between two trips, from r to every trip and from every trip to t.
Recall that sti, trav(r, i) and trav(i, t) are defined as the start time of trip i, the
deadhead travel time from the depot to the start location of trip i and from the
end location of trip i to the depot, respectively. For the end time of trip i, we
have to make a distinction between trips that end in the period [T, T + l) and
after T +l for every scenario s. Define these end times as et0i and etsi , respectively.
Let trav(i, j) be the deadhead travel time from the end location of trip i to the
start location of trip j. Furthermore, denote by A∗ the set of arcs without long
arcs, by A1 the subset of A∗ that corresponds to the period [T, T + l), which is
the following set:
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• (r, j), if stj − trav(r, j) ∈ [T, T + l);

• (i, j), if stj − trav(i, j) ∈ [T, T + l);

• (i, t), if et0i ∈ [T, T + l).

In the same way, we can define A2 as the subset of arcs corresponding to the
period after T + l. Furthermore, we define ps as the probability of scenario s
occurring and c′ij and cs

ij as the cost of arc (i, j) in respectively period [T, T + l)
and the period after T + l in scenario s. Here, the costs associated with an
arc is a function of travel and idle time if the time between the trips i and j is
nonnegative; otherwise it is a function of the delay or a sufficiently large number
if delays are not allowed. Notice that by defining the cost in this way, we can use
the same set of arcs for all scenarios. As before, we define c as the fixed vehicle
cost.

Similar as in Section 2.2, let tpsh be the time points at which a vehicle may
leave the depot to drive to the start location of a trip in scenario s and define
Hs as the corresponding set. Let

ash
ij =


1, if etsi ≤ tpsh < stj,
−1, if stj ≤ tpsh < etsi ,
0 otherwise,

for each arc (i, j) with i, j ∈ N ,

ash
rj =

{
1, if stj − trav(r, j) ≤ tpsh < stj,
0 otherwise,

for each arc (r, j) with j ∈ N , and

ash
it =

{
1, if etsi ≤ tpsh < etsi + trav(i, t),
0 otherwise,

for each arc (i, t) with i ∈ N .
For arcs (i, j) ∈ A1 similar definitions hold, but then with et0i instead of etsi .

Furthermore, let bsh be the number of trips carried out at tpsh, i.e., we count all
trips for which sti ≤ tpsh < et0i for trips ending in [T, T + l) and sti ≤ tpsh < etsi
otherwise . Note that if a trip starts late the corresponding vehicle is counted
twice in bsh. The problem of double counting is solved by the definition of the
ash

ij parameters, since these are −1 in that case.
We use decision variables zij and ys

ij, where zij = 1, if arc (i, j) is chosen in
period [T, T + l), zij = 0 otherwise and ys

ij = 1, if arc (i, j) is chosen after T + l
in scenario s, ys

ij = 0 otherwise. Furthermore, we also use Bs as decision variable
for the number of buses in scenario s. Then we get the following 0-1 program,
where we minimize the expected vehicle and delay costs.
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(D-SDVSP-T):

min c
∑
s∈S

psBs +
∑

(i,j)∈A1

c′ijzij +
∑
s∈S

ps
∑

(i,j)∈A2

cs
ijy

s
ij (10)

∑
{i:(i,j)∈A1}

zij +
∑

{i:(i,j)∈A2}
ys

ij = 1 ∀s ∈ S,∀j ∈ N, (11)

∑
{j:(i,j)∈A1}

zij +
∑

{j:(i,j)∈A2}
ys

ij = 1 ∀s ∈ S,∀i ∈ N, (12)

bsh +
∑

(i,j)∈A1

ash
ij zij +

∑
(i,j)∈A2

ash
ij ys

ij ≤ Bs ∀s ∈ S,∀h ∈ Hs, (13)

zij ∈ {0, 1} ∀(i, j) ∈ A1, (14)

ys
ij ∈ {0, 1} ∀s ∈ S,∀(i, j) ∈ A2. (15)

Constraints (11) and (12) assure that every trip has exactly one predecessor
and one successor in every scenario. Furthermore, constraint (11) guarantees
that if a trip i has a successor j and (i, j) is in set A1, this holds for all scenarios.
A similar remark holds for constraint (12) and the predecessor of a trip. Finally,
constraint (13) and the fact that c > 0 guarantee that Bs is the number of
vehicles in scenario s.

4.2 Algorithm D-VCSP

An overview of algorithm D-VCSP is given in Figure 4.

Step 0: Choose initial parameters T , k and l (≥ k).
Step 1: Solve problem (D-SDVCSP-T) for period [T, T + l).

Update T : T := T + k.
Repeat step 1 until the end of the day.

Figure 4: Solution method for D-VCSP

The algorithm solves a sequence of integrated vehicle and crew scheduling
problems. In this subsection we provide a mathematical formulation for this
problem. Hereby, we assume again that one of the scenarios (s∗) is the main
scenario and that the variables related to the crew scheduling part of the problem
are defined on this scenario. We only consider the general case with a single
depot.

4.2.1 Mathematical Formulation (D-SDVCSP-T)

Before providing the mathematical formulation we need to recall some notation.
For the notation with respect to the vehicle scheduling part of the formulation
we refer to Subsection 4.1, since it is completely similar.
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Furthermore, similar as in Section 2.2, K denotes the set of duties, fk denotes
the crew cost of duty k ∈ K and K(i, j) denotes the set of duties covering dh-
tasks corresponding to deadhead (i, j) ∈ A∗. Finally, binary decision variables
xk are defined as 1 if duty k is selected in the solution and 0 otherwise.

The problem can be formulated as follows.

(D-SDVCSP-T):

min c
∑
s∈S

psBs +
∑

(i,j)∈A1

c′ijzij +
∑
s∈S

ps
∑

(i,j)∈A2

cs
ijy

s
ij +

∑
k∈K

fkxk (16)

∑
{i:(i,j)∈A1}

zij +
∑

{i:(i,j)∈A2}
ys

ij = 1 ∀s ∈ S,∀j ∈ N, (17)

∑
{j:(i,j)∈A1}

zij +
∑

{j:(i,j)∈A2}
ys

ij = 1 ∀s ∈ S,∀i ∈ N, (18)

bsh +
∑

(i,j)∈A1

ash
ij zij +

∑
(i,j)∈A2

ash
ij ys

ij ≤ Bs ∀s ∈ S,∀h ∈ Hs, (19)

∑
k∈K(i)

xk = 1 ∀i ∈ N, (20)

∑
k∈K(i,j)

xk − zij = 0 ∀(i, j) ∈ A1, (21)

∑
k∈K(i,j)

xk − ys∗

ij = 0 ∀(i, j) ∈ A2, (22)

xk, zij ∈ {0, 1} ∀k ∈ K, ∀(i, j) ∈ A1, (23)

ys
ij ∈ {0, 1} ∀(i, j) ∈ A2,∀s ∈ S. (24)

The objective function (16) minimizes the total sum of vehicle, crew and delay
costs. The first three sets of constraints, (17) - (19), correspond to the formula-
tion of the dynamic vehicle scheduling problem (see Subsection 4.1). Constraints
(20) assure that each trip task is in a duty. Finally, the constraints (21) and (22)
guarantee the link between dh-tasks and deadheads in the solution. Notice that
it is not necessary here to distinguish between short and long arcs since the fixed
vehicle costs are dealt with separately.

4.2.2 Algorithm (D-SDVCSP-T)

The algorithm for D-SDVCSP-T is shown in Figure 5.
The differences between this algorithm and the one for VCSP1 are in the

steps 0, 1 and 3. Step 2 is exactly similar, since it only deals with generation
of columns and another vehicle scheduling problem does not influence this. The
main difference is found in Step 1, where constraints (20)-(22) are first replaced
by set covering constraints, which are subsequently relaxed in a Lagrangian way.
That is, we associate non-negative Lagrangian multipliers λp, µij and νs

ij with
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Step 0: Initialization
Solve D-SDVSP-T and CSP for the main scenario and
take as initial set of columns the duties in the CSP-solution.
Step 1: Computation of dual multipliers
Solve a Lagrangian dual problem with the current set of columns.
This gives a lower bound for the current set of columns.
Step 2: Generation of columns
Generate columns (duties) with negative reduced cost.
Compute an estimate of a lower bound for the overall problem.
If the gap between this estimate and the lower bound found in Step 1 is
small enough (or another termination criterion is satisfied), go to Step 3;
otherwise, return to Step 1.
Step 3: Construction of feasible solution
Based on feasible vehicle solution(s) for scenario s∗ from Step 1,
construct corresponding feasible crew solution(s).

Figure 5: Solution method for D-SDVCSP-T

constraints (20), (21) and (22), respectively. Then the remaining Lagrangian
subproblem can be solved by pricing out the x variables and the following problem
for the y and z variables:

min c
∑
s∈S

psBs +
∑

(i,j)∈A1

(c′ij − µij)zij +
∑
s∈S

∑
(i,j)∈A2

cs
ijy

s
ij (25)

∑
{i:(i,j)∈A1}

zij +
∑

{i:(i,j)∈A2}
ys

ij = 1 ∀s ∈ S,∀j ∈ N, (26)

∑
{j:(i,j)∈A1}

zij +
∑

{j:(i,j)∈A2}
ys

ij = 1 ∀s ∈ S,∀i ∈ N, (27)

bsh +
∑

(i,j)∈A1

ash
ij zij +

∑
(i,j)∈A2

ash
ij ys

ij ≤ Bs ∀s ∈ S,∀h ∈ Hs, (28)

zij ∈ {0, 1} ∀(i, j) ∈ A1, (29)

ys
ij ∈ {0, 1} ∀s ∈ S,∀(i, j) ∈ A2, (30)

where

cs
ij =

{
pscs

ij − νs
ij if (i, j) ∈ A2,s = s∗,

pscs
ij if (i, j) ∈ A2,s 6= s∗.

Notice that this problem is equivalent to problem (D-SDVSP-T). Moreover,
we will again use the CPLEX MIP solver to compute an optimal solution for this
problem.

At the end we compute a feasible crew schedule given the (feasible) vehicle
schedule for scenario s∗ which resulted from solving the last Lagrangian subprob-
lem. Of course, it is possible to compute more feasible solutions by solving the
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CSP not only for the vehicle solution from the last iteration, but also for vehicle
solutions which were encountered earlier on.

5 Computational Experience

We have evaluated our approach by using a small single-depot and a medium-
sized multiple-depot data set from Connexxion. The problems, denoted as
prob A and prob B, consist of 164 and 304 trips, respectively. The restrictions
w.r.t. the feasibility of a duty that have to be taken into account are described in
Subsection 5.1. Furthermore, we discuss there the assumptions about the realiza-
tions of the travel times. Finally, notice that all tests reported in this subsection
are executed on a Pentium III 450MHz personal computer (128MB RAM).

We consider in this section six measurements to evaluate a solution: the total
number of vehicles and drivers used, the percentage of trips starting late, the
“virtual” delay costs, the percentage of duties violating at least one of the crew
rules and a “virtual” costs measure for those violations.

5.1 Data Description

In this subsection, we discuss some important characteristics of the data sets.
The set consists of trips and depots in the area between Rotterdam, Utrecht and
Dordrecht, three large cities in the Netherlands. On a typical workday, there are
a lot of traffic jams in this area, especially during rush hours (in the morning
towards Rotterdam and Utrecht and in the afternoon in the opposite direction).
Furthermore, we have historical data concerning the travel times for a period of
10 days (2 weeks from Monday to Friday). These are only the travel times for
trips and not for deadheads. Therefore, we implicitly consider the travel times
for deadheads as fixed. Notice, however, that a similar approach can also be used
if this is not the case. Furthermore, we assume that the actual travel time of a
trip can never be less than the travel time in the timetable. This means that
delays are always nonnegative and a bus is never too early at the end location.
In practice, this will never happen if a driver just waits at each stop until it is
time to depart.

We assume that a bus will leave exactly at the start time of a trip if this is
possible. Furthermore, we assume that the delay of a trip is independent of the
actual starting time of this trip. This is realistic, because the frequencies at the
different lines are quite low (e.g. every half hour or hour), which means that the
number of passengers does not increase significantly if the trip starts late. This
is in contrast with urban transport, where the frequencies are typically much
higher, e.g., every 10 minutes. Then, if a trip starts more than 5 minutes late,
it gets an additional delay that depends on the actual starting time, since there
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are more passengers at the different bus stops taking this trip who would have
taken the next one if this trip had no delay.

The restrictions w.r.t. the duties that we have taken into account, are as
follows. A driver can only be relieved by another driver at the start or end of a
trip at certain specified locations or at the depot. There are 8 of these locations,
which are all major bus stations. If a driver starts/ends his duty at the depot,
there is a sign-on/sign-off time of 10 and 5 minutes, respectively. If a driver
starts/ends his duty at another relief location, an extra time of 15 minutes plus
the deadhead time between this location and the depot is added to the length of
the duty. There are five different types of duties, one tripper type consisting of
one piece with a length between 30 minutes and 5 hours, and four normal types
consisting of two pieces with the properties described in Table 1.

type 1 (early) 2 (day) 3 (late) 4 (split)

min max min max min max min max

start time 8:00 13:15

end time 16:30 18:14 19:30

piece length 0:30 5:00 0:30 5:00 0:30 5:00 0:30 5:00

break length 0:45 0:45 0:45 1:30

duty length 9:45 9:45 9:45 12:00

work time 9:00 9:00 9:00 9:00

Table 1: Properties of the different duty types

Moreover, the maximum delay that occurs in these data is less than 45 min-
utes, the minimum break length. Therefore, the second assumption made in
Section 3, i.e. the one that a trip can only start late due to a delay of the vehicle,
holds.

5.2 Results Static Approach

We use 1,000 as fixed costs per vehicle and variable vehicle costs of 1 per minute
time that a vehicle is without passengers. Furthermore, we use 1,000 as fixed
costs for each duty. To solve the static problem, we can choose between the
sequential and the integrated approach. In the sequential approach we solve the
static vehicle scheduling problem and afterwards the crew scheduling problem,
while in the integrated approach we solve the whole problem at once. We will
use the same parameter settings as described in Subsection 2.3.
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Furthermore, we calculate, for the 10 days of which we have data of the
realizations of the travel times, the percentage of trips that start late and the
cost of these delays for which we use as cost function 10x2, where x is the time
in minutes that the trip starts late. Finally, we check, for these 10 days, the
percentage of duties that violate one or more of the restrictions and the cost of
these violations. Here, we use for each duty the cost function 10y2

1 + 2y2
2 + 2y2

3 +
y2

4 + y2
5 + y2

6, where y1 is the number of minutes that the break in the duty is
shorter than the minimum break length, y2 (y3) is the number of minutes that
the maximum duty length (working time) is exceeded, y4 (y5) is the number of
minutes that the maximum length of the first (second) piece is exceeded and y6

is the number of minutes that the latest end time is exceeded. We calculate the
total violation costs as the sum of these costs of each duty.

In Tables 2 and 3, the best feasible solutions for prob A and prob B of the
static as well as the integrated approach are denoted, respectively. Furthermore,
we give the following averages, which are explained above, over the 10 days: the
percentage of trips starting late, the delay costs, the percentage of duties violated
and the violation costs. We give these results without buffer times (standard
problem) and with buffer times of 2, 5, 7 and 10 minutes, respectively. In this
table #V and #D denote the number of vehicles and drivers used, respectively,
%L the percentage of trips starting late, DC the cost of these delays, %DV the
percentage of duties violated and VC the total cost of these violations.

buffer no 2 min. 5 min. 7 min. 10 min.

seq. int. seq. int. seq. int. seq. int. seq. int.

#V 17 17 20 20 24 24 24 24 25 25

#D 32 31 35 32 40 37 41 39 42 41

%L 16.2 15.1 8.8 7.6 3.9 3.8 2.4 3.0 2.0 2.2

DC 17,272 17,812 7,765 7,360 2,925 3,927 2,612 3,264 2,681 2,178

%DV 7.8 11.6 7.4 10.0 3.8 4.9 4.1 4.6 6.2 5.6

VC 825 569 538 1,224 934 69 97 164 322 191

Table 2: Average results of the S-VCSP - prob A

It is obvious that the number of vehicles and drivers increases when we in-
troduce buffer times, while the percentage of trips starting late (and its costs)
decreases. Furthermore, it is noteworthy to mention that the effect of buffer
times is much higher in prob A than in prob B. The numbers of vehicles and
drivers increase with about 50% and 30%, respectively, by introducing a buffer
time of 10 minutes in prob A, while this is only about 10% in prob B. This effect
is caused by several differences in the data. First of all, prob B has more trips
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buffer no 2 min. 5 min. 7 min. 10 min.

seq. int. seq. int. seq. int. seq. int. seq. int.

#V 40 40 41 41 43 43 44 44 44 44

#D 74 65 76 66 81 71 82 71 82 71

%L 9.9 9.2 5.6 4.9 2.9 2.3 2.1 1.9 1.8 1.5

DC 19,897 15,691 8,742 7,206 3,906 4,830 2,741 2,721 1,963 1,994

%DV 8.9 15.7 5.8 10.7 7.6 10.3 4.2 9.4 8.5 8.4

VC 1,499 6,935 1,153 6,865 3,612 2,211 1,621 5,320 4,495 5,080

Table 3: Average results of the S-VCSP - prob B

and therefore, there are more options to combine trips. Secondly, the duration
of the trips in prob A is slightly smaller, which means that the same buffer time
is relatively larger for prob A.

5.3 Results Dynamic Approach

We show the results of our approach to the dynamic vehicle and crew scheduling
problem and compare them with the results of the static case. We have used the
following parameter settings.

• The first period starts when the first vehicle leaves the depot and ends at
7 am. The length of the other periods are equal to l. We only consider the
case where l is equal to 120 and 60 minutes.

• Rescheduling only takes place at the start of a period (k = l).

• With respect to the vehicle and crew costs, the cost structure is the same
as in the previous subsection.

• A cost of 500 is incurred for every trip starting late (independent of the size
of the delay). For evaluation purposes, we still use the cost function defined
in the previous subsection, but our first goal is to minimize the number of
delays. There are no costs taken into account for violating duties during
the optimization. However, we still use the cost function from the previous
subsection to evaluate the solutions.

• We consider each of the 10 days for which we have historical data sepa-
rately. In the case of using multiple scenarios (referred to as I), we took the
realizations of the other 9 days as scenarios, where we gave one scenario
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(the same day but in the other week) a probability of 0.2 and the others
a probability of 0.1. So if we optimize day 1, we took as scenarios the
realizations of day 2 until day 10, where day 6 has a probability of 0.2 and
the others 0.1.

• In the case of a single average scenario (referred to as II), we computed this
average scenario by the weighted average of the 9 scenarios as described
above.

• Mostly, we solve the integrated problems (in case I as well as case II)
with the same parameter settings as in the static case (see Subsection 2.3).
However, sometimes we deviate from those settings. We will explicitly
mention those deviations.

We applied the four heuristics described in Section 4 to the dynamic vehi-
cle and crew scheduling. In Tables 4 and 5, the average results over all days
are shown for prob A and prob B, respectively, for the cases I and II using
the sequential algorithm (D-VSP-CSP) as well as the integrated one (D-VCSP).
Hereby, the lower bound phase of the integrated approach is stopped after 11
iterations such that the computation time is reasonable low, which is necessary
in a dynamic environment. Moreover, we use as period length, l, 120 minutes.
In this table #V, #D, %L, DC, %DV and VC have the same meaning as before.

I II

sequential integrated sequential integrated

#V 18.7 18.7 18.6 18.6

#D 43.9 37.8 40.2 37.2

%L 3.4 2.9 3.2 3.8

DC 2,986 1,798 2,814 3,351

%DV 6.1 5.6 4.5 5.4

VC 445 316 361 637

Table 4: Average results D-VCSP - prob A

If we compare the different approaches the most important criteria are, of
course, the actual costs, i.e. the number of vehicles and crews. If these results are
similar, we take the other criteria into account. Therefore, we can immediately
conclude that the integrated approach significantly outperforms the sequential
approach. This is also what we expected beforehand, since applying an integrated
approach leads in each iteration to an improvement of the sequential solution and
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I II

sequential integrated sequential integrated

#V 41 40.4 41.1 40.6

#D 85.6 76.5 84.9 76.4

%L 2.4 4.2 2.8 4.2

DC 3,509 6,586 4,173 7,633

%DV 3.9 4.8 5.2 5.3

VC 598 1,201 1,567 633

Table 5: Average results D-VCSP - prob B

therefore, the overall improvement is dramatic. Furthermore, we can see that
the difference between case I and II (in the sequential as well as the integrated
approach) is small. However, introducing more scenarios (case I) leads to a
slightly better solution. Finally, we have to conclude that for prob B even the
best dynamic approach performs worse than the static integrated approach with
fixed buffer times. Possible reasons for this are the stopping criteria in the
dynamic version of the integrated approach and the way the problem is split
up. We will investigate this question later on, but we will now focus on the
results of the integrated approach (case I) for prob A. In Table 6, we provide
some more results for other values of the period length, while we give the total
computation time (denoted by CPU), the number of iterations (it.) and the
maximum computation time of one iteration over all instances (max.) in Table
7.

l #V #D %L DC %DV VC

120 18.6 37.2 3.8 3,351 5.4 637

60 18.3 36.4 5.1 4,272 5.7 568

Table 6: Detailed results D-VCSP - case I integrated - prob A

l CPU it. max.

120 13,578 10 5,612

60 26,370 19 17,336

Table 7: Computation times D-VCSP - case I integrated - prob A
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We can see that the results are better than in the static case with buffer times.
Consider for example the case with 5 minutes buffer time, where we needed 24
vehicles and 37 drivers. In the dynamic approach, with l equal to 120, we can
save more than 5 vehicles, while the number of drivers only slightly increases,
the percentage of trips starting late is the same, and the percentage of violated
duties and its costs are only slightly higher. Moreover, the delay costs are even
slightly lower. Of course, we have assumed here that we know all travel times two
hours ahead, in fact two hours before we start the calculation which also takes
about 1,5 hour in the worst case. Therefore, the travel times are assumed to be
known 3,5 hours before their realization. Due to this large computation time we
cannot consider too small values of l. Furthermore, we can see that if the period
length is 60 minutes, the results only change slightly. A few less vehicles and
drivers are needed and there are slightly more delays. However, the maximum
computation of one iteration is much larger than l, which means that we cannot
use it anymore in practice. We can even see that this time is much larger than
in the case where l = 120. This is a coincidence since the average computation
of an iteration is almost equal in both cases (1,358 compared to 1,388 seconds).

To explain the bad performance of the dynamic approaches for prob B, we also
considered a variant of the D-VCSP without a maximum number of iterations
(or indirectly computation time) in the lower bound phase of the integrated
approach. That is the lower bound phase is only terminated when no duties
with negative reduced costs have been found or the difference between the lower
bound on the overall set of duties and the lower bound in a certain iteration is very
small (less than 0.1%). For this purpose we only considered case I. Furthermore,
we looked at the results for smaller values of l, the length of the period. The
average results over all days are denoted in Table 8. The computation times for
these cases are shown in Table 9. Notice hereby that the problem has been split
into one subproblem for each depot. The abbreviations in both tables have the
same meaning as before.

l #V #D %L DC %DV VC

120 40.5 75.4 4.4 7,101 6.4 1,761

60 40.5 76.5 5.0 8,809 5.1 1,692

Table 8: Improved results D-VCSP - case I integrated

We can see that the effect of allowing more computation time is quite small.
On average, one driver can be saved, but on the other criteria the performance is
slightly worse. The maximum computation time per iteration and per depot is
slightly less than one hour, which is only reasonable for large values of l. Finally,
we have to conclude that if we also consider crew scheduling aspects, the dynamic
approach is not as good as we expected beforehand. It does not perform well
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depot 1 depot 2 depot 3 depot 4

l CPU it. max. CPU it. max. CPU it. max. CPU it. max.

120 1,861 8 513 2,378 10 364 10,374 10 2,690 240 7 48

60 1,949 14 335 2,763 19 267 16,093 19 2,716 410 13 48

Table 9: Computation times D-VCSP - case I integrated

under all circumstances.

5.3.1 Lower Bound

Since the results of the dynamic approach are not completely satisfactory, we
consider the situation where we have perfect information and compare several
variants such that we can see where things go wrong. In the case with perfect
information, there are obviously no trips starting late and thus also no delay
costs and violated duties. Therefore, we just calculate the best feasible solution
for each day with as input the realization of the travel times of that particular
day. We do this again with the sequential and integrated approach. Notice that
for such large problems no lower bounds on the optimal (integrated) solution can
be found in a reasonable time. Therefore, we do not mention them here. The
average of the best feasible solutions over all days can be found in Tables 10 and
11 for prob A and prob B, respectively.

sequential integrated

#V 19.4 19.4

#D 33.4 32.3

Table 10: Results in the case of perfect information - prob A

sequential integrated

#V 40.8 40.8

#D 75.5 66.9

Table 11: Results in the case of perfect information - prob B

From these tables, we can conclude that the number of vehicles and drivers
is of course slightly higher than in the static case without buffer times. However,
the difference is very small. A remaining question is now whether the poor quality
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of the dynamic approach for prob B can be explained by the fact that we use
a cluster-reschedule heuristic, i.e. we first split the problem into several smaller
problems for each depot, or by the performance of the heuristics, which we used
to solve a single-depot problem. This question can be partly answered by looking
at the results in the case of perfect information by using the same splitting of
the problem into several subproblems. These average results over all days are
denoted in Table 12 for the sequential as well as the integrated approach. We
can see that especially the difference for the integrated approach is quite large,
namely a total cost saving of 7.8%. Therefore, we can conclude that the division
of the problem already leads to a significant loss in the quality of the solution.
An interesting question is thus how to divide large problem instances into several
smaller ones such that an overall good solution will be obtained. This question
has been discussed in Huisman (2004) and will be subject of further research.

sequential integrated

#V 43.3 43.3

#D 77.7 73.5

Table 12: Results in the case of perfect information by first splitting the problem

5.3.2 Sensitivity Analysis

The assumption that the travel times are known (can be estimated without
any error) at time point T for the period [T, T + l) may be unrealistic for the
considered values of l. Therefore, we have performed a sensitivity analysis by
considering small deviations of the actual travel times from the estimated ones.
We have only done this analysis for prob A, since the dynamic approach did not
perform well for prob B even if the travel times were exactly known. Notice
that by using slightly different simulated travel times than the estimated ones,
only the performance w.r.t the number of trips starting late, the delay costs, the
number of violated duties and the violation costs can change. The number of
vehicles and drivers do not change.

In the same way as in Huisman et al. (2001), we have simulated four times
100 runs of actual travel times, where the actual travel time is drawn from a
normal distribution with mean equal to the estimated travel time and variance
σ2. Furthermore, we still assume that the total delay is nonnegative. The results
can be found in Table 13.

As can be easily seen from the table, the effects of small deviations from the
estimated travel times are small. In fact, the effects of disturbances are much
smaller than in Huisman et al. (2001), where we only considered vehicles. This
means that a dynamic approach can be used to solve prob A.
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l σ %L DC %DV VC

120 2 11.1 4,534 6.4 687

120 1 6.9 3,652 5.7 652

120 0.5 5.0 3,467 5.5 646

120 0.25 4.0 3,394 5.4 644

60 2 10.7 5,434 6.7 609

60 1 7.7 4,740 6.4 582

60 0.5 6.6 4,475 6.3 580

60 0.25 6.6 4,417 6.2 591

Table 13: Average results with extra perturbation ε ∼ N(0, σ2) - prob A

5.4 Discussion and Conclusion

In this paper we considered the dynamic vehicle and crew scheduling. The ex-
tension of our approach for the dynamic vehicle scheduling problem to the sit-
uation where we also considered crews did not always give the results which we
expected beforehand. For the small instance with a single depot the dynamic
approach performs well. However, computation times may be too high to apply
such an approach in practice. On the other hand for the medium-sized instance
with multiple depots, the traditional static approach with buffer times performed
much better. We discussed several reasons why our dynamic approach does not
perform so well in this case. The first reason is that this approach used the
cluster-reschedule heuristic, i.e. all trips are assigned beforehand to a certain
depot. In other words, the overall result is dependent on the chosen assignment.
Another reason could be that the computation times allowed to solve the ap-
proach dynamically were set too small, although by extending these times the
results did not improve so much. The final mentioned reason is that the idea of
dynamically solving itself does not work so well. Since the dynamic approach
worked well for the small instance where the data set was not divided into several
smaller ones, and since extending the computation times did not lead to signif-
icant improvement, we can conclude that the way the problem is split up, is
the bottleneck. Therefore, we recommend to invest further research in speeding
up the suggested algorithms. With faster computers and better algorithms the
dynamic approach should outperform the static one with buffer times for larger
problem instances as well.

Finally, we would like to make several remarks about the practical appli-
cability of such a dynamic approach. First of all, it will be difficult to test the
assumptions we made in a practical environment. For instance, how can one mea-
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sure if the travel times of the trips are really independent of the actual chosen
schedule? Secondly, it is important how drivers (but also planners and managers)
react on such a way of working. It is very easy for them to frustrate such an
approach. Therefore, we conclude this discussion with the fact that there is still
a long way to go before such an approach can be used in practice!
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