
Vehicle and Crew Scheduling: Solving Large
Real-World Instances with an Integrated Approach

Sebastiaan W. de Groot1 and Dennis Huisman2

1 ORTEC bv, Gouda, the Netherlands sgroot@ortec.nl
2 Erasmus Center for Optimization in Public Transport (ECOPT) & Econometric Institute,

Erasmus University Rotterdam, P.O. Box 1738, NL-3000 DR Rotterdam, the Netherlands
huisman@few.eur.nl

Summary. In this paper we discuss several methods to solve large real-world instances of the
vehicle and crew scheduling problem. Although there has been an increased attention to inte-
grated approaches for solving such problems in the literature, currently only small or medium-
sized instances can be solved by such approaches. Therefore, large instances should be split
into several smaller ones, which can be solved by an integrated approach, or the sequential
approach, i.e., first vehicle scheduling and afterwards crew scheduling, is applied.

In this paper we compare both approaches, where we consider different ways of splitting
an instance varying from very simple rules to more sophisticated ones. Those ways are exten-
sively tested by computational experiments on real-world data provided by the largest Dutch
bus company.

1 Introduction

In the literature on vehicle and crew scheduling, not much attention has been paid to
the problem of splitting up large instances into several smaller ones such that a good
overall solution is obtained. Algorithms are developed to solve a certain problem,
either optimally or heuristically, and they are tested on self made problem instances,
or on (small) instances from practice which the algorithm can still solve. If a real-
world instance has to be solved and it seems to be too large for the algorithm to solve
it, the problem is just split up into several smaller instances, the algorithm is used
to solve those smaller instances and the results are combined such that there is an
overall solution. This solution is then feasible, but of course, even if the algorithm
itself provides an optimal solution, optimality for the overall problem is likely to be
lost. The way the instance has been divided up is almost never an issue in the litera-
ture. However, different divisions can result in completely different final outcomes;
one splitting can result in a much better solution than another one. Therefore, the
instances are mostly divided according to some logical rules.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Erasmus University Digital Repository

https://core.ac.uk/display/18517484?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


44 Sebastiaan W. de Groot and Dennis Huisman

For example, in the field of crew scheduling, Fores et al. (2001) describe this
problem. In 1998, they subdivided a large instance of ScotRail into two smaller in-
stances according to a geographic division. Since this resulted in some strange out-
comes, several tasks were exchanged between the different divisions. After several
days of trial and error, they found a reasonable splitting of the instance such that the
optimal solutions of both smaller instances seemed to give a reasonable overall solu-
tion. In 2000, they were able to solve the large instance optimally. They checked the
performance of the splitting and indeed the optimal solution of the complete instance
was the same as the solution which they obtained by splitting up the instance several
years before.

Haghani et al. (2003) describe a comparative analysis of different approaches
to solve large-scale vehicle scheduling problems with route time constraints. This
can be seen as a special case of the integrated vehicle and crew scheduling prob-
lem, namely where a duty exactly coincides with a vehicle and the only constraint
is a maximum duty length. They compared several approaches on a large real-world
instance in Baltimore which consists of multiple depots. Since they could not solve
this problem exactly, they considered three approaches. The first approach (see also
Haghani and Banihashemi (2002)) used CPLEX to solve a reduced problem instance,
i.e., several variables in the large IP were just omitted. In the second and third ap-
proach, they solved several smaller, single-depot instances with an exact algorithm.
The difference between both approaches is the way in which the problem is split up.
One is based on the current solution of the public transport company, the other on
the outcome of the first approach. They showed that this last approach outperformed
the first one.

For the integrated vehicle and crew scheduling problem only small and medium-
sized instances have been solved (see, e.g., Huisman et al. (2005)). Therefore, we try
to answer the following questions in this paper.

1. How can large instances be split up into several smaller ones such that applying
an integrated approach on those instances can be done in a reasonable computa-
tion time?

2. Does such a splitting approach outperform the sequential approach when the
latter is used to solve the large instance at once?

3. Does it outperform the integrated approach when this is terminated after a certain
computation time?

Furthermore, we compare different ways of splitting the problem and we give
some results on several real-world instances from Connexxion. Finally, we use these
ideas to find a solution for large problem instances which we could not solve before
with an integrated approach.

The paper is organized as follows. In Section 2, we describe the integrated ve-
hicle and crew scheduling problem and summarize a mathematical formulation and
algorithm for this problem, which we introduced in an earlier paper (Huisman et al.
(2005)). We discuss several splitting approaches in Section 3. Finally, a computa-
tional study is provided in Section 4.



Solving Large Real-World Instances 45

2 Multiple-Depot Integrated Vehicle and Crew Scheduling

Several approaches to tackle the integrated variant of the vehicle and crew schedul-
ing problem are recently proposed in the literature (see, e.g., Freling (1997), Haase
and Friberg (1999), Haase et al. (2001) and Freling et al. (2003) for the single-depot
case, and Gaffi and Nonato (1999), Huisman et al. (2005) and Huisman (2004) for
the multiple-depot case). In Huisman et al. (2005), two different algorithms are pro-
posed. Both are based on different mathematical formulations, which are themselves
extensions of the single-depot case formulations proposed by Freling et al. (2003)
and Haase et al. (2001), respectively. Because the first algorithm performed slightly
better, we will only consider this one in the remainder of the paper. Before we discuss
that algorithm, we will first provide a formal problem definition and a mathematical
formulation.

2.1 Problem Definition

The multiple-depot vehicle and crew scheduling problem (MD-VCSP) combines the
multiple-depot vehicle scheduling problem (MDVSP) and the crew scheduling prob-
lem (CSP). Given a set of trips within a fixed planning horizon, it minimizes the
total sum of vehicle and crew costs such that both the vehicle and the crew schedule
are feasible and mutually compatible. Each trip has fixed starting and ending times,
and can be assigned to a vehicle and a crew member from a certain set of depots.
Furthermore, the travelling times between all pairs of locations are known. A vehicle
schedule is feasible if (1) all trips are assigned to exactly one vehicle, and (2) each
trip is assigned to a vehicle from a depot that is allowed to drive this trip. From a vehi-
cle schedule it follows which trips have to be performed by the same vehicle and this
defines so-called vehicle blocks. The blocks are subdivided at relief points, defined
by location and time, where and when a change of driver may occur and drivers can
enjoy their break. A task is defined by two consecutive relief points and represents
the minimum portion of work that can be assigned to a crew. These tasks have to
be assigned to crew members. The tasks that are assigned to the same crew member
define a crew duty. Together the duties constitute a crew schedule. Such a schedule
is feasible if (1) each task is assigned to one duty, and (2) each duty is a sequence of
tasks that can be performed by a single crew, both from a physical and a legal point
of view. In particular, each duty must satisfy several complicating constraints corre-
sponding to work load regulations for crews. Typical examples of such constraints
are maximum working time without a break, minimum break duration, maximum
total working time, and maximum duration. Finally, a piece (of work) is defined as a
sequence of tasks on one vehicle block without a break that can be performed by a
single crew member without interruption.

We distinguish between two types of tasks, viz., trip tasks corresponding to trips,
and dh-tasks corresponding to deadheading. A deadhead is a period that a vehicle is
moving to or from the depot, or a period between two trips that a vehicle is outside
of the depot (possibly moving without passengers).



46 Sebastiaan W. de Groot and Dennis Huisman

2.2 Mathematical Formulation

Let N = {1, 2, ..., n} be the set of trips, numbered according to increasing starting
time. Define D as the set of depots and let sd and td both represent depot d. Moreover,
define E as the set of compatible trips, where two trips i and j are compatible if
a vehicle can perform trip j directly after trip i. We define the vehicle scheduling
network Gd = (V d, Ad), which is an acyclic directed network with nodes V d =
Nd ∪ {sd, td}, and arcs Ad = Ed ∪ (sd ×Nd) ∪ (Nd × td). Note that Nd and Ed

are the parts of N and E corresponding to depot d, since it is not necessary that all
trips can be served from every depot. Let cd

ij be the vehicle cost of arc (i, j) ∈ Ad.
To reduce the number of constraints, we assume that a vehicle returns to the

depot if it has an idle time between two consecutive trips which is long enough to
let it return. In that case the arc between the trips is called a long arc; the other arcs
between trips are called short arcs. Denote Asd (Ald) as the set of short (long) arcs.

Furthermore, Kd denotes the set of duties corresponding to depot d and fd
k de-

note the crew cost of duty k ∈ Kd, respectively. The subset of duties covering the trip
task corresponding to trip i ∈ Nd is denoted by Kd(i), where we assume that a trip
corresponds to exactly one task. Kd(i, j), Kd(sd, j) and Kd(i, td) denote the set of
duties covering dh-tasks corresponding to deadhead (i, j), (sd, j) and (i, td) ∈ Ad,
respectively. Decision variables yd

ij indicate whether an arc (i, j) is used and as-
signed to depot d or not, while xd

k indicates whether duty k corresponding to depot d
is selected in the solution or not. The MD-VCSP can then be formulated as follows.

min
∑

d∈D

∑

(i,j)∈Ad

cd
ijy

d
ij +

∑

d∈D

∑

k∈Kd

fd
k xd

k (1)

∑

d∈D

∑

j:(i,j)∈Ad

yd
ij = 1 ∀i ∈ N (2)

∑

d∈D

∑

i:(i,j)∈Ad

yd
ij = 1 ∀j ∈ N (3)

∑

i:(i,j)∈Ad

yd
ij −

∑

i:(j,i)∈Ad

yd
ji = 0 ∀d ∈ D,∀j ∈ Nd (4)

∑

k∈Kd(i)

xd
k −

∑

j:(i,j)∈Ad

yd
ij = 0 ∀d ∈ D,∀i ∈ Nd (5)

∑

k∈Kd(i,j)

xd
k − yd

ij = 0 ∀d ∈ D,∀(i, j) ∈ Asd (6)

∑

k∈Kd(i,td)

xd
k − yd

itd −
∑

j:(i,j)∈Ald

yd
ij = 0 ∀d ∈ D,∀i ∈ Nd (7)

∑

k∈Kd(sd,j)

xd
k − yd

sdj −
∑

i:(i,j)∈Ald

yd
ij = 0 ∀d ∈ D,∀j ∈ Nd (8)

xd
k, yd

ij ∈ {0, 1} ∀d ∈ D,∀k ∈ Kd,∀(i, j) ∈ Ad (9)



Solving Large Real-World Instances 47

The objective is to minimize the sum of total vehicle and crew costs. The first
three sets of constraints, (2)-(4), correspond to the formulation of the MDVSP. Con-
straints (5) assure that each trip task will be covered by a duty from a depot if and
only if the corresponding trip is assigned to this depot. Furthermore, constraints (6),
(7) and (8) guarantee the link between dh-tasks and deadheads in the solution, where
deadheads corresponding to short and long arcs in Ad are considered separately.

2.3 Algorithm

An outline of the algorithm is shown in Fig. 1.

Step 0: Initialization
Solve MDVSP and CSP for every depot and take as initial set of columns the duties in the
CSP-solution.
Step 1: Computation of dual multipliers
Solve a Lagrangian dual problem with the current set of columns. This gives a lower bound
for the current set of columns.
Step 2: Deletion of columns
If there are more columns than a certain minimum amount, then delete columns with positive
reduced cost greater than a certain threshold value.
Step 3: Generation of columns
Generate columns with negative reduced cost.
Compute an estimate of a lower bound for the overall problem. If the gap between this
estimate and the lower bound found in Step 1 is small enough (or another termination criterion
is satisfied), go to Step 4;
otherwise, return to Step 1.
Step 4: Construction of feasible solution
Solve a second Lagrangian dual problem with the set of columns generated in Step 3, where
the optimal solution of the subproblem gives feasible vehicle schedules. Solve for each depot
the crew scheduling problem corresponding to the feasible vehicle schedules.

Fig. 1. Solution Method for MD-VCSP

First, we compute a feasible solution by using the sequential approach, which
means we compute the optimal solution of the MDVSP and afterwards, we solve for
each depot a CSP given the vehicle schedule for that depot. To solve the MDVSP, we
use the model described in Huisman et al. (2004) and the all-purpose solver CPLEX.
The approach we used to solve the CSP is described in Freling et al. (2003).

The main part of the algorithm is used to compute a lower bound and we use
therefore a column generation algorithm. The master problem is solved with La-
grangian Relaxation. Furthermore, we generate the duties in the column generation
subproblem (pricing problem). For details about the master and pricing problem, we
refer to Huisman et al. (2005). Since we do not want to get a very large master prob-
lem, columns with high positive reduced costs will be removed. This only happens
if there are more columns than a certain minimum number. Finally, in Step 4 we
compute feasible solutions.



48 Sebastiaan W. de Groot and Dennis Huisman

3 Different Ways of Splitting

In this section we describe several approaches of splitting a large instance of the
MD-VCSP into several smaller ones. The different approaches can be divided into
two categories:

1. splitting the problem into several single-depot vehicle and crew scheduling prob-
lems (SD-VCSPs), i.e., assign each trip to a depot;

2. splitting an instance into a predetermined number of smaller ones.

We will start the discussion with the first category. The most simple way is a
random assignment of the trips to the depots. Although this is not interesting in itself,
a more sophisticated rule should always beat this trivial one. The more interesting
assignments of trips to depots are the following:

• assign each trip to the depot closest to its start location;
• assign each trip to the depot closest to its end location;
• assign each trip to the depot closest to a combination of its start and end location;
• solve the MDVSP and assign each trip to the depot where it is assigned to in the

MDVSP.

The first three rules are based on the geographical structure of the problem and
can be based on distances or travel times. However, the last rule requires solving
of another, much simpler, optimization problem, namely the multiple-depot vehicle
scheduling problem, and uses that solution. Note that even the MDVSP is aNP-hard
problem. Moreover, recall that the solution approach on the MD-VCSP starts with
solving the MDVSP to obtain an initial feasible solution. Therefore, the extra effort
is very low. Of course, it is possible to recombine certain smaller SD-VCSPs again
to larger MD-VCSPs. This is especially attractive if certain subproblems are so small
that recombining does not result in a too large problem again. Another possibility is
to use this assignment only as a splitting of the instance and to consider more depots
again during the optimization.

The second category is dividing the trips instead of the depot(s) into several small
subproblems. We assume here that we have given a maximum number of trips per
subproblem. This leads to a certain minimum number of subproblems. Below, we
give an overview of such divisions.

• Assign each trip arbitrarily to a subproblem such that the maximum number of
trips in a subproblem is not exceeded.

• Solve the MDVSP and assign all trips executed by the same vehicle to the same
subproblem. However, the vehicles themselves are assigned arbitrarily to a sub-
problem.

• Solve the MDVSP and assign all trips executed by the same vehicle to the same
subproblem. Moreover, assign the vehicles in consecutive order to the subprob-
lems.



Solving Large Real-World Instances 49

• Solve the MDVSP and assign all trips executed by the same vehicle to the same
subproblem. Moreover, assign the vehicles with the highest correlation to the
same subproblem.

The first three ways of dividing speak for themselves. The fourth one needs some
further explanation. We calculate the correlation wij between two vehicle blocks
with the algorithm suggested in Fig. 2.

wij := 0.
For each different line number l in vehicle block i:

δi := number of trips in block i with line number l;
δj := number of trips in block j with line number l;
if δj > 0, then wij := wij + δi + δj − 1;
otherwise, wij := wij .

Fig. 2. Algorithm to Compute wij

It can be easily seen that the weight is only positive if both vehicle blocks have
at least one trip in common of the same bus line.

We define a weighted graph G = (V,E) with V as the set of nodes, where a
node corresponds to a vehicle block and E as the set of edges. There is an edge
(i, j) between each pair of nodes with its weight equal to wij . The assignment of
the vehicle blocks to different subproblems corresponds now to the partitioning of
the graph in certain subgraphs such that the total weight of the cuts is minimal and
the different parts have an (almost) equal size, where the size of a part is defined as
the sum of the number of trips executed by each vehicle block in that part. A well-
known algorithm for bipartition is the one of Kernighan and Lin (1970). Hendrickson
and Leland (1993) have generalized this algorithm for partitioning in more than two
parts. We use this algorithm to partition our graph.

After the problem has been divided into several subproblems and they have been
solved with an integrated approach, we can still recombine some parts of the problem
such that the solution can be improved. Since the last step of the algorithm consists
of solving a CSP for a certain vehicle schedule, we can recombine all vehicle sched-
ules for each depot and solve one large CSP. Notice that this is possible, since the
bottleneck of solving an integrated approach is not the CSP. We will see in the next
section that this recombining significantly improves the solutions.

4 Computational Results

In this section we test our algorithms on two large data sets from Connexxion, which
is the largest bus company in the Netherlands. The first set consists of 1104 trips and
four depots in the area between Rotterdam, Utrecht and Dordrecht, three large cities
in the Netherlands. The second set contains 1372 trips and six depots in the triangle



50 Sebastiaan W. de Groot and Dennis Huisman

Rotterdam, Hoek van Holland, Leiden. We use eight subsets of the first set to test
the splitting methods described in the previous section. Then, we choose the best
one and perform that approach on the total set. This approach is also used to tackle
the second set. The eight subsets are called instance 1 until 8, the complete set 1 is
called instance 9 and set 2 is instance 10. In Subsection 4.1 we describe some other
properties of these data instances.

All tests in this subsection are executed on a Pentium IV 1.8GHz personal com-
puter (512MB RAM) with the following parameter settings. Notice that all compu-
tation times are denoted in minutes.

1. The objective is to minimize the total sum of vehicles and duties, i.e., we only
consider fixed costs and the cost of a vehicle is equal to the cost of a duty. For
solving the MDVSP in the sequential approach and in the initial step for the
integrated approach we use an additional fictitious cost in the variable vehicle
costs, viz., for every minute a vehicle is empty outside the depot a cost equal to
1 is incurred.

2. The pricing problems are solved independently for each depot and each type of
duty. Moreover, we generate at most 1500 duties for each combination of a depot
and type of duty.

3. The maximum number of iterations in the subgradient algorithm to solve the
master problem (Step 1) is 500 + 3k in the k-th iteration of the column gener-
ation algorithm. However, for constructing the feasible solutions in Step 4, the
number of iterations is only 10, since in that case the subproblem is NP-hard.
Such a small number of iterations is sufficient, since we already start with good
multipliers, namely the best ones of the last iteration in the previous step. We
construct 10 feasible solutions from which the best one will be selected.

4. The column generation algorithm is stopped if the difference between the current
and estimated lower bound is smaller than 0.1% or if the computation time of the
lower bound phase is more than 4 hours (2 hours for cases where the problem is
divided). Notice that in the latter case we do not have a proven lower bound.

4.1 Properties of the Real-World Data Instances

The restrictions that we have taken into account are as follows. A driver can only be
relieved by another driver at the start or end of a trip at certain specified locations or
at the depot. If a driver starts/ends his duty at the depot, there is a sign-on/sign-off
time of 10 and 5 minutes, respectively. If a driver starts/ends his duty at another relief
location, an extra time of 15 minutes plus the deadhead time between this location
and the depot is added to the length of the duty. There are five different types of
duties, one tripper type consisting of one piece with a length between 30 minutes and
5 hours, and four normal types consisting of two pieces with the properties described
in Table 1.



Solving Large Real-World Instances 51

Table 1. Properties of the Different Duty Types

type 1 (early) 2 (day) 3 (late) 4 (split)
min max min max min max min max

start time 8:00 13:15
end time 16:30 18:14 19:30

piece length 0:30 5:00 0:30 5:00 0:30 5:00 0:30 5:00
break length 0:45 0:45 0:45 1:30
duty length 9:45 9:45 9:45 12:00
work time 9:00 9:00 9:00 9:00

4.2 Sequential and Integrated Approach

In Table 2, an overview of the results of the sequential and the integrated approach is
provided. For each instance, we give the number of trips and the average number of
depots to which a trip may be assigned. Furthermore, we give the number of vehicles,
duties and the sum of these two as well as the computation time for the sequential
and the integrated approach. Finally, we report the best lower bound given by the
integrated approach. As can be seen from this table the integrated approach gives
much better results than the sequential one. We were only able to compute lower
bounds for five of the eight instances, given the maximum computation time of 4
hours for the lower bound phase.

Table 2. Results Without Splitting

instance 1 2 3 4 5 6 7 8
number of trips 194 210 220 237 304 386 451 653

av. depots/trip 1.60 2.47 1.52 2.38 2.48 1.27 1.67 1.74
vehicles 19 33 27 34 40 32 47 67

seq. duties 35 56 49 62 75 61 86 125
V+D 54 89 76 96 115 93 133 192

cpu (min.) 1 0 0 0 1 2 2 3
vehicles 19 33 27 34 40 32 47 67

int. duties 29 52 40 55 66 59 75 117
V+D 48 85 67 89 106 91 122 184

cpu (min.) 155 32 94 43 244 260 254 275
lower 44 77 64 81 95 - - -

4.3 Assigning Trips to Depots

In Section 3 we suggested four different methods to assign a trip to a depot. These
approaches have been tested to split real-world Instance 2 (see Subsection 4.1), con-
taining four depots, into two subproblems. Notice that this can be done in seven
different ways (four with a single-depot and a 3-depot instance and three with two



52 Sebastiaan W. de Groot and Dennis Huisman

2-depot instances). Table 3 provides the results of these divisions where the trips are
assigned to a depot at random (average results over three runs), or using one of the
four methods, i.e., closest to the start location, closest to the end location, closest to
a combination of start and end location or according to the solution of the MDVSP.
Notice that, e.g., 12-34 means that Depots 1 and 2 are in one subdivision, while 3
and 4 are in the other one.

Table 3. Sum of Vehicles and Crew Duties with Splitting Depots – Instance 2

123-4 124-3 134-2 234-1 12-34 13-24 14-23 av.
random 95 99 93.7 93 91.7 101.7 95.3 95.6

start 104 104 89 88 89 110 102 98.0
end 96 101 90 86 91 101 97 94.6

start-end 94 98 90 83 88 99 92 92.0
MDVSP 86 87 85 83 84 87 86 85.4

From Table 3 we can immediately conclude that dividing based on the MDVSP
is much better than on one of the geographical rules. Some of these do not even
outperform a random assignment. We refer to De Groot (2003) for similar results
on other instances. Therefore, we will only consider these types of divisions of the
depots in the remainder of this section.

4.4 Splitting of the Trips

The different methods for the second category introduced in Section 3 have been
tested on the eight real-world problem instances discussed in Subsection 4.1. We
refer to De Groot (2003) for a detailed overview of the results of these tests. Here,
we only provide an overview of those methods that performed well. These are the
following methods.

• Solve the MDVSP and assign each trip to the depot where it is assigned to in the
MDVSP. Afterwards divide the trips into two sets: one set with the trips assigned
to the largest depot, i.e., the one with most trips assigned to it, and the other set
with the remainder of trips. Divide those sets again into sets of at most 200 trips
such that the trips executed by the same vehicle (resulting from the earlier solved
MDVSP) should be in the same subproblem and the vehicles are assigned to the
different subproblems in consecutive order (Method A).

• Same as Method A. However, the vehicles are now divided such that the ones
with high correlation are as much as possible in the same subproblem (Method
B).

• Same as Method A. However, the depots are not split first (Method C).
• Same as Method B. However, the depots are not split first (Method D).
• Same as Method C. However, the subproblems consists of at most 150 trips in-

stead of 200 (Method E).



Solving Large Real-World Instances 53

• Same as Method D. However, the subproblems consists of at most 150 trips in-
stead of 200 (Method F).

Before we continue our discussion on methods of the second category, we first
look at the effect of recombining the different crew scheduling problems per depot
at the end. Since the effect on the computation time of this step can be neglected, we
only compare the solution values. In Table 4 we provide this comparison for Method
C.

Table 4. Sum of Vehicles and Crew Duties With/Without Recombining CSPs – Method C

instance 1 2 3 4 5 6 7 8
with 49 86 70 89 105 91 122 182

without 49 87 71 91 108 91 126 188

As can be seen from Table 4 the saving of recombining can be quite large (up to
six duties). Therefore, we recommend to use this option always and thus we take this
option into account for the other methods as well.

In Table 5, we report the total number of duties and the maximum computation
time for one subproblem (cpu) in minutes for the methods A until F. The number
of vehicles is not mentioned since it is independent of the method and the same
as in Table 2. The total computation time is also not mentioned, since one of the
advantages of splitting is that the algorithm can run on parallel machines.

Table 5. Results Splitting on Instances 1 - 8

instance 1 2 3 4 5 6 7 8
trips 194 210 220 237 304 386 451 653

depots/trip 1.60 2.47 1.52 2.38 2.48 1.27 1.67 1.74
A duties 31 51 43 57 66 59 75 117

cpu 17 7 5 7 20 72 44 30
B duties 31 51 43 57 66 58 77 117

cpu 17 7 5 7 20 56 47 36
C duties 29 53 43 55 65 59 75 115

cpu 155 3 9 2 27 59 34 22
D duties 29 53 43 56 66 58 74 114

cpu 155 3 7 3 32 127 42 41
E duties 30 53 43 55 67 57 75 118

cpu 10 3 9 2 13 9 12 12
F duties 31 53 43 56 66 58 76 118

cpu 18 3 8 3 6 19 17 12

If we look at the results we need to make a distinction between Instance 1, In-
stances 2-5, Instance 6, and Instances 7 and 8. For Instance 1, Methods C and D pro-
vide the same results as the standard integrated approach, since there is no splitting



54 Sebastiaan W. de Groot and Dennis Huisman

at all. Furthermore, Methods A and B are the same. That is, the problem is divided
into two subproblems, which reduces the computation time significantly but needs
two duties more. For Instances 2-5 Methods A and B are the same. Here, we can see
that the solutions are mostly slightly worse if we split the problems. However, the
computation times reduce significantly. As mentioned earlier, for the largest three
instances, the lower bound phase of the integrated approach was terminated after a
maximum computation time and then feasible solutions were constructed. Here, we
can already see an important benefit of the splitting idea. The solutions of some of
the methods are better, while the others are equal. Moreover, the computation times
are reduced dramatically. For the Instances 7 and 8, we can even see that most of the
splitting methods provide better results. Moreover, the computation times become
reasonably small. If we would run the subproblems on parallel machines the compu-
tation time would be less than one hour on each machine. For all instances, we can
see that splitting the problem leads to much better results than the fast and simple
sequential approach. If we compare the different methods with each other, we can
conclude that Methods A and B perform worse than the others. If we compare C with
D and E with F, i.e., using a more advanced approach to divide the vehicle blocks
over the subproblems, then we can conclude that they are quite similar. Therefore, it
does not make much sense to use this more complicated division. Moreover, if we
compare E with C or F with D, then we see that the impact of smaller subproblems
(at most 150 or 200 trips), is significant on the computation time, which could be ex-
pected of course, but small on the quality of the solutions. Altogether, we conclude
that Method E performs well and has a low computation time. Therefore, we will use
this one in the next subsection to solve the large instances.

4.5 Large Instances

Since we have shown that these methods to split an instance perform well, we con-
sider the two large data sets introduced in the beginning of this section. Recall that
those sets consist of 1104 and 1372 trips, and are called Instance 9 and 10, respec-
tively. Furthermore, notice that the Instances 1 until 8 were derived from Instance 9
and that Instance 10 is completely independent. Although Instances 9 and 10 have
four and six depots, on average each trip can only be assigned to 1.71 and 3.64
depots, respectively. Since Method E performed as the best one in the previous sub-
section, we use this method here. Moreover, we compared it with the sequential ap-
proach and the integrated approach with a maximum computation time. The results
are shown in Table 6.

As can be seen from this table, the computation time of the integrated approach
can far exceed the time limit of 4 hours for computing a lower bound. This can be
explained by the fact that other steps take more time. For instance, the computation
time of the MDVSP is about 9 and 35 minutes for Instances 9 and 10, respectively,
while this was negligible before. Moreover, it can take some time before an itera-
tion in the lower bound phase is finished. Since an iteration is always finished, the
final computation time of the lower bound phase can exceed the time limit. Finally,
the computation of the CSPs in Step 4 takes longer and this is done 10 times for



Solving Large Real-World Instances 55

Table 6. Results Splitting on Instances 9 & 10

instance 9 10
vehicles 109 117

seq duties 185 224
cpu 10 46

int duties 179 219
cpu 336 474

E duties 178 210
cpu 35 62

each subproblem. We can also see that the computation time of one subproblem in
Method E can rise over one hour, while it was at most 13 minutes before. This can
be explained by the larger sizes of the subproblems. Although the maximum size of
a subproblem is 150 trips, this was never reached before. For these larger instances
the number of trips in a subproblem comes closer to this maximum.

If we look at the results, we can see that the splitting method saves 7 and 14 duties
compared to the sequential approach, and 1 and 9 duties compared to the integrated
one. This is a reduction in labor force of 0.6% and 4.1%, respectively, which is quite
significant. Moreover, the computation times are reduced drastically. Therefore, we
can conclude that these splitting methods clearly outperform the sequential approach
as well as the integrated one with a time limit.

5 Conclusions

In this paper we discussed several methods to split large problem instances of the in-
tegrated vehicle and crew scheduling problem into several smaller instances. We first
applied these approaches to small instances, where we were able to calculate lower
bounds on the optimal solutions and a feasible solution with the integrated approach
on the complete instance. We showed that the effect of dividing these instances did
not deteriorate the quality of the solutions a lot. Later on, we applied these ideas to
large instances and showed that those could be solved now, which was not possible
before. Furthermore, we showed that the saving compared with the simple, sequen-
tial approach is large. Finally, we recommend the use of such splitting methods to
solve practical instances instead of dividing the problem in a ‘logical’ way.

References

De Groot, S. W. (2003). Een geı̈ntegreerde aanpak van voertuig- en personeelsplan-
ning toegepast op grote probleeminstanties, master’s thesis (in Dutch). School of
Economics, Erasmus University Rotterdam.

Fores, S., Proll, L., and Wren, A. (2001). Experiences with a flexible driver sched-
uler. In S. Voß and J. R. Daduna, editors, Computer-Aided Scheduling of Public
Transport, pages 137–152. Springer, Berlin.



56 Sebastiaan W. de Groot and Dennis Huisman

Freling, R. (1997). Models and Techniques for Integrating Vehicle and Crew Schedul-
ing. Ph.D. thesis, Tinbergen Institute, Erasmus University Rotterdam.

Freling, R., Huisman, D., and Wagelmans, A. P. M. (2003). Models and algorithms
for integration of vehicle and crew scheduling. Journal of Scheduling, 6, 63–85.

Gaffi, A. and Nonato, M. (1999). An integrated approach to extra-urban crew and ve-
hicle scheduling. In N. H. M. Wilson, editor, Computer-Aided Transit Scheduling,
pages 103–128. Springer, Berlin.

Haase, K. and Friberg, C. (1999). An exact branch and cut algorithm for the vehicle
and crew scheduling problem. In N. H. M. Wilson, editor, Computer-Aided Transit
Scheduling, pages 63–80. Springer, Berlin.

Haase, K., Desaulniers, G., and Desrosiers, J. (2001). Simultaneous vehicle and crew
scheduling in urban mass transit systems. Transportation Science, 35, 286–303.

Haghani, A. and Banihashemi, M. (2002). Heuristic approaches for solving large-
scale bus transit vehicle scheduling problem with route-time constraints. Trans-
portation Research Part A, 36, 309–333.

Haghani, A., Banihashemi, M., and Chiang, K.-H. (2003). A comparative analysis
of bus transit vehicle scheduling models. Transportation Research Part B, 37,
301–322.

Hendrickson, B. and Leland, R. (1993). An improved spectral load balancing
method. In R. F. Sincovec, D. E. Keyes, M. R. Leuze, L. R. Petzold, and D. A.
Reed, editors, Proceedings of the Sixth SIAM Conference on Parallel Processing
for Scientific Computing, pages 953–961. SIAM.

Huisman, D. (2004). Integrated and Dynamic Vehicle and Crew Scheduling. Ph.D.
thesis, Tinbergen Institute, Erasmus University Rotterdam.

Huisman, D., Freling, R., and Wagelmans, A. P. M. (2004). A robust solution ap-
proach to the dynamic vehicle scheduling problem. Transportation Science, 38,
447–458.

Huisman, D., Freling, R., and Wagelmans, A. P. M. (2005). Multiple-depot integrated
vehicle and crew scheduling. Transportation Science, 39, 491–502.

Kernighan, B. and Lin, S. (1970). An efficient heuristic procedure for partitioning
graphs. Bell Systems Technical Journal, 29, 291–307.




