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Abstract

Public concern nowadays is an important frame of reference for the development of

agricultural production systems. The development of such systems, therefore, involves both

society level and production system level. Following Zadeh’s principle of incompatibility,

information obtained at production system level is interpreted at society level in linguistic

terms. Fuzzy models promise to be a valuable tool as they link measurable information

to linguistic interpretation using membership functions. The objective of this paper is to

outline a procedure which deals with criticism regarding the inherent subjectivity in the

construction of membership functions when using expert knowledge. The procedure guar-

antees the selection of appropriate expert knowledge, and provides a guideline supporting

the selection of methods to elicit expert knowledge and construct membership functions.

Also on the basis of the results in an illustrative example, it is concluded that the proce-

dure outlined in this paper suitably deals with criticism regarding membership functions

and, therefore, enables a practical implementation of fuzzy evaluation of agricultural pro-

duction systems. Current research implements the procedure to build a fuzzy model which
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evaluates egg production systems in relation to public concern about the welfare of laying

hens.

Keywords

Evaluation, fuzzy models, expert knowledge, knowledge elicitation, subjectivity.

1 Introduction

Public concern about, for example, food security and food safety, environmental degradation,

and human and animal welfare nowadays is an important frame of reference for the development

of agricultural production systems (e.g. [16], [25], [34], [35], [39], [40]). Such public concern

emphasizes that agriculture is a human activity which takes its shape from being at the meeting

point of natural systems and the rest of society [3, 29, 44]. The development of agricultural

production systems, therefore, involves two system levels (cf. [53]). At society level, public

concern is a perception of the impact of present agricultural production practices on society. At

production system level, public concern finds a response in corrective measures to production

practices (Fig. 1 (a)). For example, public concern for welfare of laying hens stimulated devel-

opment of animal-friendly production practices like aviary and deep-litter production systems

[14].

Public concern is a linguistic expression of a complex problem which generally can be char-

acterized through multiple issues. Public concern regarding animal welfare, for example, com-

prises issues regarding animal behavior, physiology, health and production [14]. In an earlier

paper [12], we proposed a four-phased framework which acknowledges that evaluating devel-

opment of agricultural production systems involves both society level and production system

level (Fig. 1 (b)). In Phase 1, the public concern is defined in its specific context and relevant

stakeholders of the problem are identified. For example, welfare of laying hens is defined as

a public concern in the Netherlands and farmers, consumers, veterinarians and scientists might

be identified as relevant stakeholders. In Phase 2, context-dependent issues which characterize

the public concern are determined by the stakeholders. For example, space allowance and the

resultant possibility for hens to move is a relevant issue regarding welfare of laying hens. In

Phase 3, issues are translated into measurable, context-dependent indicators. For example, the
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Figure 1: (a) Development of agricultural production systems builds on public concern about

the impact of current agricultural activities on society. (b) Four-phased framework to evaluate

the development of agricultural production systems.

issue “possibility to move” is translated into the indicator “stocking density” which at produc-

tion system level is measured as the number of hens per m2. Phase 4 of the framework consists

of three steps. In Step 1, indicators are measured to gather information: e.g. stocking density

is x hens per m2. In Step 2, information gathered is interpreted: e.g. stocking density is ac-

ceptable. In Step 3, interpreted information is integrated to derive a conclusion: e.g. if stocking

density is acceptable, then the possibility for hens to move is good.

Following Zadeh’s principle of incompatibility [50] — which is based on how humans un-

derstand and manage complexity — information obtained at production system level through

measuring indicators (stocking density is x hens per m2) typically is interpreted at society level

in imprecise, linguistic terms (stocking density is acceptable). In other words, according to

Zadeh’s principle there exists a trade-off between the complexity of a problem and the preci-

sion in formulating conclusions on the problem [38].

To make Phase 4 operational, we suggested the use of fuzzy models to link measurable

information and its linguistic interpretation [12]. Membership functions (MFs) are at the core of

fuzzy models, and proper use of such models, therefore, depends on proper construction of MFs
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[24]. A number of elicitation methods are available to construct MFs using expert knowledge.

Such MFs, however, are considered to be both the strongest and the weakest point of fuzzy

models. They are the strongest, because MFs provide an understandable linguistic, context-

dependent interpretation of information. They are the weakest, because MFs, paradoxically, are

often regarded as too subjective with regard to their construction [31].

We propose that criticism regarding the inherent subjectivity in the construction of MFs

mainly builds on two reasons. First, if expert knowledge is used to construct MFs, then proper

selection of experts must ensure the use of appropriate expert knowledge. However, a justifica-

tion for the selection of experts generally is absent in studies applying fuzzy models. Second,

studies which apply expert knowledge to construct MFs either emphasize theoretical rather than

practical aspects of elicitation methods (e.g. [4], [17], [32]), or do not discuss the construction

of MFs at all (e.g. [1], [8], [47]). Therefore, as fuzzy models promise to be a valuable tool

in evaluating development of agricultural production systems, a practical procedure to warrant

proper selection of both experts and methods to elicit expert knowledge is needed.

The objective of this paper is to outline such a procedure and, thus, deal with criticism

regarding the inherent subjectivity in the construction of MFs using expert knowledge. The

procedure must constitute

(i) criteria which qualify a person as an expert, and

(ii) a selection of methods to elicit expert knowledge and construct MFs in a variety of prac-

tical situations.

To realize (i), a foundation which can be used to define selection criteria is needed (Section 2.1).

In addition, it is meaningful to distinguish between the role of stakeholders and the role of

experts in the evaluative framework (Section 2.2). To realize (ii), first the essence of fuzzy

modeling is briefly discussed (Section 3.1) to provide the reader with an adequate background

to consider a list of suitable elicitation methods (Section 3.2) which enables a comparison of

these methods to support their practical application (Section 3.3). Next, the full procedure to

elicit expert knowledge (Section 4) is demonstrated using an illustrative example on the welfare

of laying hens (Section 5).
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2 Criteria to select experts

2.1 Foundation to define selection criteria

Criteria to select experts guarantee elicitation of appropriate expert knowledge, i.e. they guar-

antee the quality of the expert knowledge required [36]. Three aspects are important.

1. How is expert knowledge obtained?

2. Which expert knowledge is available?

3. Which combination of expert knowledge is preferred?

An expert is a person whose knowledge in a specific domain (e.g. welfare of laying hens) is

obtained gradually through a period of learning and experience [9, 45]. Learning and experience

influence a person’s cognitive, judgmental, social, creative, analytical, and procedural behavior

[18]. According to Greenwell, especially a person’s judgmental and analytical behavior provide

tangible points of departure to define criteria identifying experts.

A person’s judgmental behavior relates to making decisions, weighting evidence and as-

sessing consequences; a person’s analytical behavior relates to examining a complex problem

through dealing with it in terms of mutually related parts [18]. Within the evaluation frame-

work in Fig. 1 (b), an expert’s judgmental and analytical experience typically is used at the

boundary of both system levels. An expert, therefore, is familiar with an analysis of the pub-

lic concern in terms of multiple issues (e.g. an analysis of the welfare of laying hens in terms

of behavioral, physiological, health and production issues), and is able to judge measurements

of indicators corresponding to these issues in linguistic terms (e.g. judge “stocking density”

in terms of “acceptable” and “unacceptable”). A person’s experience can be theoretical (e.g.

experience obtained from scientific research), practical (e.g. experience obtained from farm-

ing practice) or a combination of both (e.g. experience obtained in the extension service or at

experimental farms) [9, 42].

Expert knowledge is influenced by individual perspectives and goals [15]. Complete impar-

tiality of expert knowledge, therefore, is difficult to achieve. An important consideration in the

selection of experts is whether to use a heterogenous group of experts (e.g. both scientists and

farmers) or a homogenous group of experts (e.g. only scientists). The effect of differences in

personal experience on an expert’s judgment is assumed to be smaller in a homogenous group
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compared to a heterogenous group. Scientists, therefore, might come to a different evaluation of

production systems in terms of animal welfare than farmers [25]. Such differences, however, are

not necessarily disadvantageous. A heterogenous group of experts can have an advantage over

a homogenous group through considering all opinions and, thus, compensating for dissenting

points of view by more liberal ones (cf. [37]).

In summary, criteria to identify experts are based on

(i) a person’s period of learning and experience in a specific domain of knowledge, thus

influencing his or her judgmental and analytical behavior, and

(ii) the specific circumstances in which experience is gained, e.g. in theoretical or practical

circumstances.

Criteria based on (i) to identify experts regarding welfare of laying hens among a group of

scientists, for example, can be the number of projects on welfare of laying hens a person has

been working on, the number of scientific publications a person has published on the subject,

a person’s involvement in public debates on the subject, or the length of a person’s period of

learning and experience (cf. [36]). Criteria based on (ii) consider whether a heterogenous or a

homogenous group of experts is preferred. Criteria can be assessed by both the person who is a

candidate–expert, and by his or her peers. Although there exists no definite list of criteria, and

even if criteria at best are formulated qualitatively, the important contribution is that the basis

on which experts are to be selected is transparent and public.

2.2 Distinguishing between stakeholders and experts

Regarding the use of expert knowledge within the evaluation framework in Fig. 1 (b), it is

important to distinguish between the role of experts in Phase 4 and the role of stakeholders

in Phase 1 and Phase 2. That is, experts are not necessarily stakeholders and stakeholders

are not necessarily experts. Stakeholders can be any group or individual who can affect or is

affected by the behavior of the system [19, 30]. The role of stakeholders and experts in the

evaluation framework is different, and so are the criteria for selection. Mitchell et al. [30], for

example, present a comprehensive discussion of possible criteria to define stakeholders. The

difference between experts and stakeholders can be demonstrated by considering the role of

expert and non-expert witnesses in law [27]. An expert witness is allowed to give an opinion on
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the meaning of facts observed. Non-expert witnesses, however, only are allowed to affirm the

facts observed but cannot give an opinion on the meaning of these facts. Experts, on the one

hand, are allowed to give an opinion on the meaning of information gathered. Stakeholders, on

the other hand, are allowed to formulate the relevant issues but cannot give an opinion on the

meaning of information.

Thus, a person who qualifies as a stakeholder not necessarily qualifies as an expert, as stake-

holders and experts are selected on the basis of different criteria. For example, although con-

sumers are considered stakeholders regarding the welfare of laying hens in Dutch egg produc-

tion systems [14], they are not necessarily experts qualified to judge whether specific stocking

densities are acceptable with respect to a hen’s possibility to move.

3 Elicitation of expert knowledge

3.1 Essence of fuzzy modeling

Fuzzy models are based on the theory of fuzzy sets [49] and, as discussed in [12], use MFs to

operate “linguistic variables” and interpret indicator information using expert knowledge. In

Fig. 2, a linguistic variable ~A is characterized by [22, 51, 52]

(i) name of ~A,

(ii) base variable x of ~A,

(iii) linguistic value ~Ai of ~A (i = 1 : : : N ), and

(iv) membership function � ~Ai
of ~Ai.

At society level, if “stocking density” is the name of ~A, then “acceptable” ( ~A1) and “unac-

ceptable” ( ~A2) are linguistic values ~Ai of ~A (N = 2). At production system level, indicator

“stocking density” is measured as x hens per m2 which is the base variable of ~A. A mem-

bership function � ~Ai
defines linguistic value ~Ai by determining the degree � ~Ai

(x) to which

stocking density x is “acceptable”, � ~A1
(x), or “unacceptable”, � ~A2

(x), by assigning to each x

a value � ~Ai
(x) between 0 and 1. In Fig. 2, the degree � ~A1

(x) to which stocking density x is

“acceptable” decreases with increasing stocking density. Thus, if � ~A1
(x) = 1, then linguis-

tic statement “stocking density is acceptable” is true; if � ~A1
(x) = 0, then linguistic statement
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(i) Name of Ã

(iii) Linguistic value Ãi of Ã

(iv) Membership function µÃi of Ãi

(ii) Base variable x of Ã

Stocking Density (Ã)

Acceptable (Ã1) Unacceptable (Ã2)

x hens per m2

isis

1

0

µ
Ã

i(x
)

Society level

Production system level

µÃ1 µÃ2

Figure 2: At society level, linguistic variable ~A is characterized by (i) name of ~A, (iii) linguistic

value ~Ai of ~A, and (iv) membership function � ~Ai
of ~Ai. At production system level, ~A is

characterized by (ii) base variable x of ~A (based on [22, 51, 52]).

“stocking density is acceptable” is false; and if 0 < � ~A1
< 1, then � ~A1

(x) defines the degree to

which linguistic statement “stocking density is acceptable” is true. In Fig. 2, ~A2 is the standard

fuzzy complement of ~A1, so that � ~A2
(x) = 1� � ~A1

(x) [22].

Table 1 illustrates linguistic variables in three practical examples. The example “sustainable

development” is based on [13]; the example “animal welfare” is based on the illustrative exam-

ple used in this paper. The example “height of men” is a common illustration in the literature

on fuzzy set theory [46]. The construction of � ~Ai
, i.e. the interpretation of base variable x in

terms of linguistic value ~Ai, is realized by eliciting expert knowledge.

3.2 Elicitation methods

Different methods are available to elicit expert knowledge for the construction of membership

functions. Different methods are based on different assumptions regarding the way an expert
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determines the degree � ~Ai
(x) to which x has property ~Ai [17]. Four elicitation methods are

presented. Point estimation (or polling), interval estimation, and direct rating originate from

the literature [11, 20, 21, 24, 32, 46]; transition interval estimation is developed in this paper as

an alternative to the other elicitation methods.

For each elicitation method, the expert evaluation mode (i.e. the way an expert evaluates the

degree to which x has property ~Ai), the way an overall assessment of � ~Ai
(x) is computed from

individual expert assessments, the meaning of overall assessment � ~Ai
(x), the number of experts

needed to obtain a proper MF, and the characteristics of the MF constructed are discussed and

illustrated. Further, advantages and disadvantages of elicitation methods are considered and, on

this basis, elicitation methods are compared in Section 3.3 to support their practical application.

3.2.1 Point estimation

In point estimation (PE), an expert p (p = 1 : : : P ) determines unambiguously whether each x

does or does not have property ~Ai, i.e. an expert’s response is crisp. Expert p, therefore, assesses

if � ~Ai
(x)p has value 1 or 0. An overall assessment � ~Ai

(x) is computed as

� ~Ai
(x) =

1

P

PX
p=1

� ~Ai
(x)p; (1)

where � ~Ai
(x) = 0:6 means that 60% of P experts determine that x has property ~Ai. To obtain a

proper MF, therefore, more than one expert is needed [22]. The MF constructed is characterized

by data points � ~Ai
(x).

Recall from Fig. 2 that stocking density is measured as x hens per m2 and an expert eval-

uates stocking density in terms of “acceptable” ( ~A1) and “unacceptable” ( ~A2). In Fig. 3(a),

expert p determines if stocking density x is “acceptable” (� ~A1(x)p = 1) or if stocking density x

is “unacceptable” (� ~A1(x)p = 0). Expert p, therefore, determines an unambiguous distinction

xTp = 12 hens per m2 between acceptable stocking densities (x � 12 hens per m2) and unac-

ceptable stocking densities (x > 12 hens per m2). An overall assessment � ~A1(x) = 0:6 means

that 60% of P experts determines that stocking density x is acceptable.

The main advantage of PE is the simple processing of elicited expert knowledge. Also, PE

can be applied to nominal, discrete and continuous base variables. The main disadvantage of

PE is the contradiction between the crispness of the expert response mode (i.e. x does or does

not have property ~Ai) and the fuzziness inherent in human interpretation of information (i.e.
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x has property ~Ai to a degree) [50]. Also, experts need to evaluate a number of individual x

within the relevant range U of the base variable. Therefore, if a large number of x needs to be

evaluated, then practical application of PE can be laborious and time-consuming for an expert,

and influence the reliability of expert evaluations [11, 33].

3.2.2 Interval estimation

In interval estimation (IE), an expert p determines a sharply defined interval (over the relevant

range U of the base variable) containing values of x for which property ~Ai applies, i.e. an

expert’s response is crisp. Expert p, therefore, determines interval ~Aip on U for which � ~Ai
(x)p

has value 1. An overall assessment � ~Ai
(x) is computed using (1) where � ~Ai

(x) = 0:6 means

that 60% of P experts determines that x is in the interval ~Ai. As in PE, more than one expert is

needed to obtain a proper MF [22]. The MF constructed is characterized by data points � ~Ai
(x).

In Fig. 3(b), expert p determines an interval ~A1p that contains all stocking densities x which

the expert considers “acceptable”. Expert p, thus, determines an unambiguous distinction xTp =

12 hens per m2 between acceptable and unacceptable stocking densities as in PE. An overall

assessment � ~A1(x) = 0:6 means that 60% of P experts determines that stocking density x is

acceptable.

The main advantage of IE is the simple processing of elicited knowledge. Also, by defining

an interval over U practical application of IE is less laborious and time-consuming for an expert

compared to evaluating individual x of U . As in PE, the main disadvantage of IE is the crispness

of the response mode required from experts. Also, the range of application of IE is limited

because the elicitation method cannot be applied to nominal base variables.

3.2.3 Direct rating

In direct rating (DR), an expert p directly determines the degree � ~Ai
(x) to which each x has

property ~Ai, i.e. fuzziness is allowed in an expert’s response. Expert p, therefore, assigns to

each x a value � ~Ai
(x)p from the interval [0; 1]. An overall assessment � ~Ai

(x) is computed using

(1) where � ~Ai
(x) = 0:6 means that on average x resembles a typical value xt, which truly has

property ~Ai (i.e. � ~Ai
(xt) = 1), to a degree of 0.6. One expert can be sufficient to obtain a proper

MF [22]. The MF constructed is characterized by data points � ~Ai
(x).

In Fig. 3(c), expert p determines the degree to which stocking densities are “acceptable” by

11
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Figure 3: Four methods to elicit expert knowledge: (a) point estimation, (b) interval estimation,

(c) direct rating, and (d) transition interval estimation. Expert p determines the degree � ~A1(x)

to which base variable x (hens per m2) is ~A1 “Acceptable” (a) by determining xTp , (b) by

determining interval ~A1p, (c) by determining � ~A1(x)p, or (d) by determining interval Tp.
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Table 2: Elicitation method originating from the literature categorized based on expert assess-

ment and expert response.

expert responsea

expert assessmentb crisp fuzzy

individual x of U PEc DR

interval on U IE : : :

aExpert response can be unambiguous, i.e. crisp, or allow fuzziness.
bExpert assessment can be done by judging individual x of U , or by defining an interval on U .
cPE = point estimation, IE = interval estimation, DR = direct rating.

assigning a value from the interval [0; 1] to stocking density x. For example, expert p evaluates

x = 9 hens per m2 as � ~A1(9)p = 0:9, i.e. expert p considers a stocking density of 9 hens per m2

to be acceptable to a degree of 0.9. An overall assessment � ~A1(x) = 0:6 means that, on average,

P experts determine that stocking density x resembles a truly acceptable stocking density to a

degree of 0.6.

The main advantage of DR is that it allows fuzziness in an expert’s response mode, i.e. DR

does not force experts to determine whether x does or does not have property ~Ai. Also, DR can

be applied to nominal, discrete and continuous base variables. A disadvantage of DR, however,

can be the low reproducibility of � ~Ai
(x)p due to the assignment of precise numerical grades

and because small differences in numerical values for � ~Ai
(x)p may not seem to matter to an

expert [26]. As in PE, if a large number of x needs to be evaluated, then practical application of

DR can be laborious and time-consuming for an expert, and influence the reliability of expert

evaluations [11, 33].

3.2.4 Transition interval estimation

Table 2 summarizes expert evaluation modes and expert response modes regarding PE, IE and

DR. In the literature, no distinct elicitation method was found that allowed the expert evaluation

mode to use intervals rather than judging individual x of U and, at the same time, allowing an

expert’s response mode to be fuzzy rather than crisp. Based on a crude concept described in

[28], transition interval estimation (TIE) was developed to fill this gap.

In TIE, expert p determines an interval (over the relevant range U of the base variable) con-

taining values of x for which expert p can make no unambiguous distinction whether property
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~Ai does or does not apply, i.e. TIE allows a fuzzy response. Expert p, therefore, determines

transition interval Tp on U bounded by [xmin;p; xmax;p] for which xmin;p < x < xmax;p and

0 < � ~Ai
(x)p < 1. The minimum value and maximum value in itself, however, are not mean-

ingful: they can be characterized by the center point of and the range between both values. An

overall assessment � ~Ai
(x) in transition interval T , therefore, can be based on a linear transition

characterized by center point xmp and range dp of Tp

xm =
1

P

PX
p=1

xmp (2)

and

d =
1

P

PX
p=1

dp; and dp = xmax;p � xmin;p; (3)

where xm is the mean center point of T based on P assessments xmp (see (2)), and d is the mean

range of T based on P assessments dp (see (3)). One expert, therefore, is sufficient to obtain a

proper MF. Transition interval T is bounded by [xmin; xmax] where xmin and xmax are defined as

xmin = xm �
d

2
(4)

and

xmax = xm +
d

2
: (5)

Next, � ~Ai
(x) is computed as

� ~Ai
(x) =

8>>><
>>>:

0 or 1 when x < xmin

0:5�
(x�xm)

d
when xmin � x � xmax

1 or 0 when x > xmax

(6)

where � ~Ai
(x) = 0 for x < xmin and � ~Ai

(x) = 1 for x > xmax if the �–sign is positive, i.e.

� ~Ai
(x) is linearly increasing with increasing x. If the �–sign is negative, then the assessment

of � ~Ai
(x) in (6) for x < xmin and x > xmax is reversed, i.e. � ~Ai

(x) is linearly decreasing with

increasing x. As we consider this a first exploration in the possibilities of TIE, we have used the

most elementary shape, i.e. a linear transition, to express the change in � ~Ai
(x) over transition

interval T . The transition of � ~Ai
(x) over T , for example, also could be non-linear. The MF

constructed is characterized by (6). Additionally, on condition that only linear transitions are

used in (6), parameter d can be interpreted as a measure of fuzziness to express the uncertainty

among experts regarding the change-over between x is ~Ai and x is not– ~Ai.
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In Fig. 3(d), expert p determines transition interval Tp bounded by xmin;p = 6 hens per m2

and xmax;p = 18 hens per m2. Thus, expert p considers stocking densities smaller than 6 hens

per m2 to be acceptable, stocking densities greater than 18 hens per m2 to be unacceptable,

and stocking densities between 6 and 18 hens per m2 to be intermediate between completely

acceptable and completely unacceptable. An overall assessment � ~A1(x) = 0:6 means that,

on average, P experts determine that x is in the interval T , i.e. P experts cannot determine

unambiguously that x is either ~A1 or not ~A1.

The main advantage of TIE is that experts do not have to determine precise numerical as-

signments � ~Ai
(x). Expert response mode can be fuzzy through defining an interval for which

0 < � ~Ai
(x) < 1 without precisely having to specify � ~Ai

(x). In addition, TIE is less laborious

and time-consuming for an expert. A main disadvantage of TIE can be that the expert evaluation

mode is less straightforward through the assignment of boundary values xmin;p and xmax;p of Tp

compared to PE and IE. Also, the range of application of TIE is limited because the elicitation

method cannot be applied to nominal base variables.

3.3 Comparison of elicitation methods

In Table 3, a qualitative comparison based on a practical application of elicitation methods is

presented. The comparison considers

(i) the range of application,

(ii) the ease of the response mode for experts, and

(iii) the ease of constructing and interpreting MFs.

Regarding (i), both PE and DR can be applied to nominal, discrete and continuous base

variables, whereas both IE and TIE cannot be applied in case the base variable is nominal.

Regarding (i), PE and DR in Table 3 are the most appropriate elicitation methods.

Regarding (ii), the response mode of an expert in PE or IE is straightforward: the expert

determines whether base variable x does or does not have property ~Ai. Both elicitation meth-

ods, however, do not allow fuzziness in the response mode of an expert and require a potentially

difficult to define unambiguous threshold [43]. DR, in contrast, does allow fuzziness in an ex-

pert’s response, but requires a potentially difficult way to define precise numerical value [26].
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Table 3: Comparison of four methods to elicit expert knowledge to support their practical ap-

plication.

elicitation methoda

criteriab PE IE DR TIE

(i) range of application:
applicable to all types of base variables
(nominal, discrete and continuous)

+ � + �

one expert is sufficient to obtain a proper MF � � + +

(ii) ease of response mode for experts:

response mode is straightforward + + � �

response mode is consistent + + � +

response mode allows fuzziness � � + +

response mode is not time-consuming � + � +

(iii) ease of constructing and interpreting MFs:

construction of MFs is uncomplicated + + + +

interpretation of MFs is straightforward � � � +

aPoint estimation (PE), interval estimation (IE), direct rating (DR), and transition interval estimation (TIE).
bFor (+) the method fulfills the criterion; for (�) the method does not fulfill the criterion.
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TIE provides a method that does allow fuzziness in expert response mode, and does not require

a precise numerical evaluation as in DR. In contrast to PE and IE, however, the expert evalu-

ation mode for TIE might be less straightforward. Regarding (ii), TIE in Table 3 is the most

appropriate elicitation method.

Regarding (iii), all four elicitation methods use rather uncomplicated procedures to con-

struct MFs, i.e. (1) through (6). MFs constructed from elicited knowledge applying PE, IE,

and DR, however, are characterized only by data points � ~Ai
(x), whereas the MF constructed

from elicited knowledge applying TIE provides an additional uncertainty measure d which de-

fines the degree of fuzziness in expert evaluation. A similar numerical measure is available for

results from PE, IE or DR only after characterizing available data points using, for example,

logistic functions (cf. [10]). Further, PE and IE need more than one expert to obtain a proper

MF which can lead to problems if experts in a certain domain of knowledge are hard to find.

Regarding (iii), TIE in Table 3 is the most appropriate elicitation method.

Table 3 can be used in practical situations to support decisions regarding the choice of

elicitation method to apply.

4 Procedure to elicit expert knowledge

A six-step procedure to elicit expert knowledge is developed based on criteria to select experts,

and on the choice of a method to elicit expert knowledge.

Step 1 Domain of Knowledge:

define the domain(s) of knowledge represented in the issues and corresponding indicators

selected.

Step 2 Candidate-Experts:

identify candidate-experts within each domain of knowledge; candidate–experts can orig-

inate from various parts of society, e.g. universities, extension services, farming commu-

nities, or pressure groups.

Step 3 Selection Criteria:

criteria are based on

(i) a person’s period of learning and experience in a specific domain of knowledge, and
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(ii) the specific circumstances in which experience is gained.

Step 4 Selection of Experts:

criteria can be assessed by the person who is a candidate–expert, and by his or her peers.

Step 5 Elicitation Method:

determine the elicitation method(s) to be applied considering

(i) the range of application,

(ii) the ease of the response mode for experts, and

(iii) the ease of constructing and interpreting MFs.

Step 6 Knowledge Elicitation:

prepare written questionnaires or oral interviews to elicit expert knowledge.

A body of literature is available to properly prepare and apply Step 6 in the procedure (e.g.

[48]). An in-depth study of Step 6, however, is beyond the objectives of this paper.

5 Illustrative example

5.1 Applying the six-step procedure

5.1.1 Selection of experts

An increasing number of Dutch consumers objects to battery housing systems that interfere

with the natural behavior of laying hens [14]. Battery housing systems, for example, provide

less possibilities for hens to move freely compared to animal-friendly housing systems like

aviary systems or deep-litter systems. Providing a possibility for hens to move, therefore, is

considered an important issue in relation to welfare [2, 5, 7]. Two animal welfare indicators

which determine a hen’s possibility to move have been selected in this illustrative example

[6]: stocking density (AWI1) and presence of perches (AWI2). Table 4 defines characteristics

of selected linguistic variables. The domain of knowledge, therefore, is the welfare of laying

hens in Dutch egg production systems and, specifically, the influence of stocking density and

presence of perches on a hen’s possibility to move (Step 1).
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Eighteen candidate–experts were identified with the assistance of an ethologist of Wagenin-

gen University. The group of candidate-experts consisted of animal scientists, ethologists and

researchers at experimental farms employed at Wageningen University and Research Center,

and professionals from two societal institutions: the Dutch Society for the Protection of Ani-

mals and the Agricultural Extension Service (Step 2).

Selection criteria used were the number of projects a person was involved in regarding the

domain of knowledge defined, a person’s involvement in public debate, and the length of time

of a person’s experience in the domain of knowledge. Because of widely varying points of

view within the domain of knowledge, a heterogenous group of experts was preferred (Step 3).

After being approached to participate in this study, five candidate-experts declined participation

because they were no longer working and, therefore, were no longer up-to-date in the domain

of knowledge. Finally, 13 experts contributed to this study (Step 4).

5.1.2 Elicitation of expert knowledge

Regarding Step 5, transition interval estimation was applied for AWI1, whose base variable is

continuous. Results obtained from TIE are used to also illustrate PE and IE. To illustrate PE,

center point xmp in TIE is considered to be equal to xTp in PE (Fig. 3). To illustrate IE, the

interval [0; xmp] on U is considered to be equal to the interval ~A1p on U in IE (Fig. 3).

Direct rating was applied for AWI2, whose base variable is nominal. DR, however, was

modified (DRmod) to further align the expert response mode with TIE. Rather than defining

a precise numerical assignment � ~A1
(x), experts in DRmod defined an interval on [0; 1], i.e.

a �–interval bounded by [�min;p; �max;p] in which x has property ~A1 to a degree � ~A1
(x) and

�min;p � � ~A1
(x)p � �max;p. Next, � ~A1

(x)p is defined as the center point of the �–interval.

Experts contributed by way of written questionnaires which consisted of an introduction to

this study, an example illustrating the evaluation mode and the response mode required, and the

actual evaluation of AWI1 and AWI2 (Step 6).

20



µ
Ã

1
(x

)

x hens per m2

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30

TIE

PE / IE

Figure 4: Membership function � ~A1(x) constructed for AWI1 (Stocking Density) using transi-

tion interval estimation (TIE), and point estimation / interval estimation (PE/IE).

5.2 Results

Table 5 and Fig. 4 show results of applying TIE for AWI1. The resulting MFs � ~A1 and � ~A2

which define linguistic values “Acceptable” ( ~A1) and “Unacceptable” ( ~A2) are

� ~A1 � ~A28>>><
>>>:

1

0:5�
(x�8:9)

5:4

0

8>>><
>>>:

0

0:5 +
(x�8:9)

5:4

1

x < 6:2

6:2 � x � 11:6

x > 11:6

(7)

where ~A2 is the standard fuzzy complement of ~A1 [22]. Experts, therefore, consider stocking

densities to change from acceptable to unacceptable at approximately 9 hens per m2 regarding

a hen’s possibility to move.

Table 6 shows practical results when implementing Step 2 of Phase 4 in the evaluation

framework of Fig. 1. Based on MF � ~A1 (7), minimum standards — according to European

Union legislation — concerning stocking densities in different egg production systems are ex-

amined for their degree of truth � ~A1(x)TIE regarding the linguistic statement “Stocking Density

is Acceptable”. Experts consider biological egg production systems to provide the most accept-

able stocking densities in relation to a hen’s possibility to move (� ~A1(x)TIE = 0:9), they are

inconclusive where the acceptability of stocking densities for deep–litter and aviary systems is

concerned (� ~A1(x)TIE = 0:5), but they consider stocking densities in systems with enriched

cages and battery cages as completely unacceptable (� ~A1(x)TIE = 0).
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Table 5: Results of applying transition interval estimation for AWI1 (Stocking Density).

transition interval Tp
a

expert p xmin;p xmax;p xmp
b

dp
b

1 3 8 5.5 5

2 7 17 12 10

3 1 4 2.5 3

4 2 8 5 6

5 6 12 9 6

6 6 12 9 6

7 2 4 3 2

8 5 8 6.5 3

9 6 9 7.5 3

10 10 14 12 4

11 7 10 8.5 3

12 6 20 13 14

13 20 25 22.5 5

xm = 8:9 d = 5:4

(sdc 5.3) (sdc 3.3)

aExpert p (p = 1 : : : P; P = 13) determines transition interval Tp bounded by xmin;p and xmax;p between

acceptable and unacceptable stocking densities over a relevant range of [0; 30] hens per m 2.
bmean centre point xm and mean range d to construct MF are computed on basis of P assessments xmp and

dp.
csd = standard deviation
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Table 6: Minimum standards for stocking densities in different egg production systems ac-

cording to European Union legislation, and expert evaluation of their acceptability ~A1 applying

transition interval estimation (� ~A1(x)TIE).

egg production system

stocking density

(x hens per m2) � ~A1(x)TIE

biological 6 0.9

deep–litter 9 0.5

aviary 9 0.5

enriched cage 13 0

battery cage 18 0

µ
Ã

1
(l

ev
el

)

0

0,2

0,4

0,6

0,8

1

present not present

Figure 5: Membership function � ~A1 constructed for AWI2 (Presence of Perches) using modified

direct rating.

Table 7 and Fig. 4 show results for both PE and IE, based on the set of data in Table 5

obtained from applying TIE. In Fig. 4, the MF from TIE shows a smaller degree of fuzziness

compared to the MF from PE/IE, because of lower sensitivity of TIE to outliers (i.e. the response

of expert 13 in Table 5). Considering that both MFs are based on the same set of data, the

difference seems to be systematic (cf. [41]).

Table 8 and Fig. 5 show the results of applying DRmod for AWI2. One expert did not

respond, and one expert did not correctly respond to the questionnaire regarding AWI2, so

P = 11. The degree � ~A1(x) to which level 1 (perches present) is “Acceptable” is 0.9; the

degree � ~A1(x) to which level 2 (perches not present) is “Acceptable” is 0.2. Experts, therefore,

consider the presence of perches an important contribution to a hen’s possibility to move.
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Table 7: Results of both point estimation and interval estimation for AWI1 (Stocking Density)

over a relevant range of [0; 30] hens per m2.

x
P

(� ~A1(x)p = 1) � ~A1(x)

0 13 1

1 13 1

2 13 1

3 12 0.9

4 11 0.8

5 11 0.8

6 9 0.7

7 8 0.6

8 7 0.5

9 6 0.5

10 4 0.3

11 4 0.3

12 4 0.3

13 2 0.2

14 : : : 22 1 0.1

23 : : : 30 0 0

Note: results are derived from applying transition interval estimation assuming xmp = xTp for

point estimation, and assuming interval [0; xTp] = interval ~A1p for interval estimation.
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Table 8: Results of applying modified direct rating for AWI2 (Presence of Perches) which has
two levels: perches present (level 1) and perches not present (level 2).

�p–interval for level 1 (perches present)a

expert p �min;p �max;p range � ~A1(level 1)p
1 0.8 1 0.2 0.9
2 0.5 0.8 0.3 0.7
3 1 1 0 1
4 0.8 1 0.2 0.9
5 0.6 0.9 0.3 0.8
6 1 1 0 1
7 0.9 1 0.1 1
8 0.8 1 0.2 0.9
9 0.7 0.9 0.2 0.8

10 0.75 1 0.25 0.9
11 1 1 0 1

mean range 0.2(sdb 0.1)
� ~A1(level 1) 0.9(sdb 0.1)

�p–interval for level 2 (perches not present)a

expert p �min;p �max;p range � ~A1(level 2)p
1 0 0.2 0.2 0.1
2 0.1 0.4 0.3 0.25
3 0 0 0 0
4 0 0.2 0.2 0.1
5 0.1 0.6 0.5 0.35
6 0.5 1 0.5 0.75
7 0 0.1 0.1 0.05
8 0.2 0.4 0.2 0.3
9 0.1 0.3 0.2 0.2

10 0.25 0.5 0.25 0.38
11 0 0.5 0.5 0.25

mean range 0.3(sdb 0.2)
� ~A1(level 2) 0.2(sdb 0.2)

aExpert p (p = 1 : : : P; P = 11) determines the �p–interval bounded by �min;p and �max;p on a scale of 0 to 1
which determines the degree to which levels of AWI2 are acceptable ( ~A1).

bsd = standard deviation
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6 Discussion

Fuzzy models promise to be a valuable tool in evaluating the development of agricultural pro-

duction systems, as such development nowadays is directed by public concern about the impact

of current agricultural practices. Membership functions (MFs) are at the core of such fuzzy

models. The objective of this study was to outline a procedure which dealt with criticism re-

garding the inherent subjectivity in the construction of MFs when using expert knowledge. We

suggested that such a procedure should consider

(i) selection of appropriate expert knowledge, and

(ii) selection of methods to elicit expert knowledge and construct MFs.

6.1 Selection of expert knowledge

The criteria defined in this study to determine whether a person qualifies as an expert are ex-

pressed in qualitative terms. Qualitative criteria increase the transparency in selecting experts

and, at least, prevent ad hoc choices. It is, however, possible to quantify such criteria [36] using

rating scales as described by Nunnally [33]. The procedure to elicit expert knowledge, how-

ever, already is a time-consuming activity. To fully quantify Steps 3 and 4 in order to establish

a person’s degree of expert knowledge will occupy more of an expert’s time and might well

diminish an expert’s willingness to participate [48]. If, however, a quantitative degree of expert

knowledge for experts is determined, then (1), (2) and (3) can be further adapted to include

weighting of the contribution of individual experts based on their degree of expert knowledge.

Considering public recognition of final evaluation results, credibility can play an important

role in selecting experts. Experts reflect trustworthiness because they act both in the public

interest and with regard to actual technical standards and practice [23]. In Fig. 1(b), experts

typically have to empathize with situations at both society and production system level. Al-

though farmers have considerable practical experience regarding the daily care of their animals,

it remains to be seen whether farmers are qualified to actually judge the welfare of their animals.

Credibility of evaluation in the eyes of the public or the authorities, however, may well increase

when farmers are included as experts [23]. Nevertheless, farmers if not included as experts can

still play an important role as a stakeholder in the evaluation framework presented in this paper.
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6.2 Selection of elicitation methods

Qualitative comparison regarding practical application of four elicitation methods showed that

the appropriateness of an elicitation method and, therefore, the choice of an elicitation method

depends on the starting point for comparison:

1. the range of application,

2. the ease of the response mode for experts, or

3. the ease of constructing and interpreting MFs.

Regarding 1, using PE and DR are appropriate methods. Regarding 2 and 3, TIE is an appropri-

ate method. The actual choice, therefore, can depend on practical aspects like the type of base

variables providing the input for the fuzzy model. Also, the choice to use just one elicitation

method can be a rational one, thus requiring only a single response mode from the experts for all

base variables involved. According to [33] a single response mode can increase the reliability

of expert assessments. The choice for applying just one elicitation method can also be preferred

considering that different elicitation methods result in different MFs for the same base variable,

an effect that can be systematic [41].

Results of the illustrative example show that experts are able to assess a measurable indi-

cator in linguistic terms, which information can be used to construct MFs as shown in Fig. 4

and Fig. 5. The procedure could be further improved by using the supplementary informa-

tion provided by standard deviations in Table 5, and mean ranges and standard deviations in

Table 8, to allow an expression of the uncertainty regarding the reliability of a particular MF.

This uncertainty can be expressed through computing type–2 fuzzy sets [22]. However, these

authors also state that computational demands in defining type–2 fuzzy sets generally outweigh

the advantage of including the supplementary information.

6.3 Application of membership functions in fuzzy models

Cornelissen et al. [12] developed two fuzzy models to evaluate development of agricultural

production systems. In Fig. 6, the results of Step 2 in Phase 4, i.e. the emphasis of the study in

this paper, are integrated in Step 3 using fuzzy aggregation or approximate reasoning to derive

a conclusion about the problem at hand.
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Phase 4 Modeling Phase 4

F
U

Z
Z

Y
M

O
D

E
L

MODEL INPUT

MODEL OUTPUT

measure base variable x

define
linguistic variable Ã

and linguistic values Ãi

construct
membership functions µÃi

combine µÃi(x)
using fuzzy aggregation

evaluation of system development

compute µÃi(x)

measure indicators
to gather information

use expert knowledge
to interpret information

integrate interpreted information
to derive a conclusion

Step 1

Step 2

Step 3

combine µÃi(x)
using approximate reasoning

Figure 6: Operationalization of Steps 1 through 3 of Phase 4 in a fuzzy model[12]

Integrating of all interpreted information provided by different indicators will enable a more

accurate conclusion. In Table 6, for example, experts were inconclusive where the acceptability

of stocking density in relation to a hen’s possibility to move in deep–litter and aviary systems

was concerned. Integrating the results on stocking density with additional results about the con-

tribution of the presence of perches to a hen’s possibility to move will provide a more complete

understanding.

7 Conclusion

Public concern nowadays is an important frame of reference for the development of agricultural

production systems. Fuzzy models promise to be a valuable tool in evaluating such develop-

ment, if a suitable response to criticism regarding the inherent subjectivity in the construction of

membership functions is outlined. Also on the basis of the results in the illustrative example, the

procedure outlined in this study suitably deals with such inherent subjectivity and enables prac-

tical implementation of a fuzzy evaluation of agricultural production systems. Current research

implements the procedure to build a fuzzy model which evaluates egg production systems in
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relation to public concern about the welfare of laying hens.
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